
THE QUALITY OF DATA AND THE CHOICE 
AND DESIGN OF PREDICTIVE MODELS 

W I L L I A M A L O N S O * 

Long chains of argument are the delight of theorists and the source of their 
mistrust by practical men. There is some merit in this mistrust. Imagine that 
we argue that i f A then B, if B then C, etc. I f we are 80 percent certain of 
each step in the chain, f rom the joint probability of the steps it follows that 
we are less than 50 percent certain of where we stand after four steps.^ Thus 
the brilhant deductive chains of Sherlock Holmes or the young EUery Queen, 
while da22ling, leave us with the feeling that they wil l not secure a conviction. 
In this paper I wil l raise the issue of the effect of errors and their propagation 
in models for prediction, and suggest some strategies for the selection and 
construction of models which are intended for applied work. The gist of my 
argument is that the use of sophisticated models is not always best in applied 
work, and that the design of the model must take into account the accuracy of 
the data on which it wil l be run. There exists the possibility, which should be 
explored, that some of our most intellectually satisfying models should be pur
sued as fundamental scientific research, but that simpler and more robust 
models should be used in practice. 

Let us distinguish two types of error: error of measurement and error of 
specification. Error of specification arises from a misunderstanding or pur
poseful simplification in the model of the phenomenon we are trying to repre
sent. A simple instance is the representation of a nonlinear relation by a hnear 
expression; another is the omission from the model of variables which have 
only a small effect or the aggregation of variables. Measurement errors are 
those that arise f rom inaccuracy in assessing a magnitude. I f I say that a man 
is six foot tall, or a nation has a population of 200 million, I really mean that 
he is six foot give or take an inch, or that the population is 200 million give 
or take 10 million. Thus, in scientific work it is customary to indicate meas
urement, M, as having an error, e, attached, and we may write the height of a 
man, the population of a nation, or the density of a population as M ± e. I t 
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11 first met this argument in C I Barnard, The Functions of the Executive 
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is customary to use either the standard deviation or the probable error as the 
measure of error. = 

A quantitative model puts together various numbers obtained by measure
ment, and combines them through algebraic operations. Normally we consider 
only the measurements and forget the error terms, and give the result of our 
calculations as a number without indicating its error. Too often we seem to 
hope that the errors in the inputs somehow cancel out as they go through the 
model, but in fact they do not. There exists a well-known formula for estimat
ing the error in the output which results f rom the propagation of errors in the 
inputs. I f we have 

z = / ( - » f i x„) 

where is the error of z; is the partial derivative of / with respect to x,; e,, 
is the measurement error in x,; and r,, is the correlation between x, and x,.^ 

This formula is exact when the function is linear, but an approximation 
when it is not. However, recent work has shown it to be a much better ap
proximation than had been previously thought.' Thus, by applying it to a 
model, we may estimate the probable error in the result that arises f rom errors 
of measurement in the input variables. 

Examination of the formula gives several simple rules of thumb for the con
struction of models or the selection of models, and these may be useful when, 
as is often the case, the investigator has several choices in the formulation of 
the model. 

The first rule is to avoid intercorrelated variables whenever possible. The 
second term on the right-hand side shows that the error in the dependent vari
able can increase very rapidly f rom this source. 

= The probable error is a distance from the mean such that one-half of the prob
ability distribution lies within the mean plus or minus the probable error; in other 
words, there is a fifty-fifty chance that the true magnitude lies within M ± e. The 
probable error is approximately 0 675 the standard deviation I will not deal in this 
discussion with the question of an asymmetric error distribution. 

3 See E. B. Wilson, An Introduction to Scientific Research (New York: Mc
Graw-Hill, 1952), pp. 272-274; L. G. Parratt, Probability and Experimental 
Errors in Science (New York: J. Wiley and Sons, 1961), pp. 110-118; A. deP. 
Palmer, The Theory of Measurements (New York. McGraw-Hill, 1930). H . Theil 
uses a different approach in Applied Economic Forecasting (Amsterdam: North-
Holland Publishing Co., 1966), pp. 262 ff He formulates the problem in terms 
of information theory and considers the prediction of sets of numbers 

* J. W. Tukey, "The Propagation of Errors, Fluctuations and Tolerances: Basic 
Generalized Formulas," Tech. Report No 10, Statistical Techniques Research 
Group, Department of Mathematics, Princeton University. This paper and its com
panions Tech. Reports Nos. 11 and 12 were not published, and they are now 
unobtainable. 
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Let US now examine the most basic algebraic operations to derive some 
other general rules. For simplicity, let us have z = iix.y), where x — 10 ± I 
and y = 8 ± 1. We wil l assume that x and y are mutually independent. 

Addition: 

z = X + y 

18 = 10 + 8 

e'.. = c'x + c\ = 1 + 1 = 2 

e, = 1.4 

We see therefore that, in the case of addition, the absolute magnitude of the 
error in the dependent variable is greater than in the independent variables. 
On the other hand, the percentage error is smaller (8 percent) than in the in
dependent variables (10 and 12.5 percent). I t may be said, then, that the op
eration of addition is relatively benign with respect to the cumulation of error. 
With one exception,' i t is the only operation which reduces relative error. I t 
must be noted, however, that the size of the absolute error increases. 

Subtraction: 

z = X — y 

2 = 10 - 8 

e\ +e\ = \ + \ = 2 

= 14 

The deceptively simple operation of subtraction is explosive with respect to 
relative error, especially when the difference is small relative to the independ
ent variables. I n this case the relative error is 70 percent. 

Multiplication and Division. 

z = xy 

80 = 10(8) 

e\ = e'x + X* e\ = 64(1) + 100(1) = 164 

e. = 13.3 

i t can be seen that multiplication not only raises the absolute error, but also 
the relative error (m this case to 17 percent). Division behaves exactly like 
multiplication. 

= The exception is when an independent variable is raised to a power with an 
absolute value smaller than one, in which case both the absolute and the relative 
error are reduced. 
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Raising to a Power: 

Z = X' 

100 = 10' 

eh = ilxy e', = 400(1) = 400 

= 20 

Raising to a power is another explosive operation. In this case the relative er
ror has climbed to 20 percent. I t may be thought of as multiplication of per
fectly correlated variables, and thus, f rom the second term in the basic equa
tion, we may expect the error to be substantially higher. However, i f the 
variable is raised to a power between 1 and — 1 , both the absolute and the 
relative error decrease. 

From these simple exercises, we can generalize a few rules of thumb for 
building or choosing models if choices are available: 

1. Avoid intercorrelated variables. 
2. Add where possible. 
3. If you cannot add, multiply or divide. 
4. Avoid as far as possible taking differences or raising variables to powers. 

I wi l l illustrate these rules by a "simple" model of the type we all use every 
day without thinking twice about i t . We want to predict population in 1980, 
Pgo, f rom the populations of 1950, Pr,n, and 1960, P^o. These populations were 
enumerated by excellent censuses, with very small errors in the order of 1 per
cent. To take arbitrary but typical numbers, let us say that Pgo = 100 ± 1 
and P,o = 105 ± 1. We wil l extrapolate the 1950 to 1960 rate of growth to 
1980: 

P.-,o» 

Of course, we are squaring the rate of growth because we are predicting for 
two decades. Simple application of the formula, without taking into account 
any correlation between the 1950 and 1960 populations, gives Pgo = 115.76 
d= 4.03. The relative error in the prediction has risen to 3.5 from 1 percent in 
the data. But i f we ask the accuracy with which we are predicting the change 
in population, we obtain 10.76 ± 4.03, which represents a 38 percent error. 
This error is due entirely to measurement errors and assumes that the specifi
cation of the model is perfect. That is to say, that if we know the exact rate of 
growth f rom 1950 to 1960, we would be able to predict the 1980 population 
exactly. 

I f we consider that such an extrapolation is a crude model and we say, for 
instance, that the use of the rate of growth has a 20 percent specification error 
(that is to say, that the rate of growth per decade wil l be 5 ± 1 percent f rom 
the effect of variables not considered) and that the variations from decade to 
decade are independent, we would have Pgo = 115.76 ± 1.56, and the 
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change in population will be 10.76 ± 1.56. In other words, there would be a 
14.5 percent specification error if the data were perfect. The joint effect of 
measurement and specification errors will be 40.2 percent on the population 
change.^ 

Before continuing the discussion of the strategy of model construction it 
may be useful to point out the usefulness of this type of analysis for determin
ing strategies of improvement of data to minimize the compounding of 
measurement errors. By taking the partial derivative of the error in the de
pendent variable with respect to the error in an independent variable, we can 
get the rate of improvement to be gained f rom better measurement of that 
variable. The expression, if we disregard the correlation term, is quite simple: 

9e> / ' x . e, 

de, e. 

That is to say, the marginal rate of improvement in predictive error is equal to 
the square of the partial of the variable times the measurement error divided 
by the error in the dependent variable. By use of these marginal rates of im
provement divided into the cost of improving the data {e.g., by denser sam
pling), one can determine the best distribution of budget in data collection. 
Examination of the expression gives two general rules: (a) concentrate on 
important vanables (i.e., those which affect the dependent variable signifi
cantly, as shown by a large f r ) , and (b) concentrate on those with large 

errors. 
Let us illustrate this point by an example. Let us assume the following in

formation: 
z = xy -\- w 

X = 100 ± 10 J' = 50 ± 5 w = 200 ± 50 
Marginal cost of improving x (to 100 ± 9): $ 5.00 
Marginal cost of improving ;» (to 50 ± 4^: $6.00 
Marginal cost of improving w (to 200 ± 49): $ 0.02 

Using our formula we obtain 

— = 35 2 — = 70 5 — = 0.0705 
dex de„ deu, 

These are the marginal improvements on e~ that derive from a marginal im
provement in each of the variables. To find the cost of marginal improvement 
in gj , we divide these rates into the cost of marginal improvement in each of 
the variables, and we obtain. 

marginal cost of improvements in from improvements i n j f : $ 0.142 
from improvements in ;v: $ 0.085 
from improvements in w: $ 0.284 

^ Out of concern for the sensibilities of those who make projections, I am not 
questioning the exactitude of the period of two decades, but, of course, the length 
of time IS also a variable. When we say 1980, we really mean sometime around 
1980, and thus the exponent of the rate of growth might be 2±0 .1 decades. The 
consequences of this upon the error are spectacular. 
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Consequently, it would pay us to improve 3; // marginal reductions in e~ are 
worth 8.5 cents. I t should be noted that improvement of any one variable is 
subject to diminishing returns, even if the cost of improvement does not rise 
(which it wil l normally do) . Therefore the analysis should be repeated at 
small intervals. As might be expected from economic theory, the most efficient 
situation is that where the marginal cost of improvement in the predicted vari
able is the same for all variables. 

Let us return now to considerations of model construction. Imagine a situa
tion in which we have a choice of some very naive model, which we shall not 
describe, which has historically given us 30 percent error, largely because of 
poor specification. We have a perfect specification model to predict the same 
phenomenon of the form z — Xi. x> x^ Xi x,. I f each of these variables has a 
10 percent error, the estimate of z wil l have an error of 22.2 percent resulting 
entirely from measurement errors. We then wil l choose the second model. 

Consider now the same situation in a developing country, where the data 
are poorer The naive model performs worse because its data inputs are 
worse, although its specification error will be the same. Let us say that the er
ror of the naive model is 40 percent. We can use the perfect specification 
model, but now each of the variables has a 20 percent measurement error. 
The second model, then, wil l have an error of 44.5 percent due entirely to the 
compounding of measurement error. In this case we would be better off with 
the naive model. 

The point being made is that the choice of model depends in part upon the 
quality of the data. The more complex the model, in the sense of having more 
operations of the same kind or more "explosive" operations such as raising to 
powers, the more the measurement errors cumulate as the data churn through 
their arithmetic. The gains in correctness of specification in a more complex 
model may be offset by the compounding of measurement errors. Although I 
lack the competence to demonstrate it, I am suggesting that if we tried to pre
dict celestial phenomena by Einstein's General Theory of Relativity using data 
of the quality which were available to Copernicus, the predictions might be 
worse than i f we used the Copernican theory. 

To use a homier example, suppose that we had the wit to design the struc
ture of a skyscraper, but our construction material were timber and our joints 
were secured with nails. The give in the joints and the members are like weak
ness in the data: we sometimes can design beyond the capacity of our 
materials. With timber one should build relatively low and wide, with steel 
one can build tall and narrow. We shall return to this analogy. 

The proposition may be represented in a diagram (Fig. 1 ) . On the horizon
tal axis we measure the complexity of the model. I know of no good definition 
of complexity. The suggested definition, that one model is more complex than 
another i f i t has more operations of the same kind or if i t has operations 
which are more explosive with regard to the compounding of errors (such as 
subtraction of nearly equal numbers or exponential functions) is somewhat 
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C O M P L E X I T Y 

Figure 1. 

circular, but it wi l l have to do. I f we are good model-builders, we wil l only 
complicate a model to gain advantages of specification. Thus, i f our data were 
perfect, we could imagine a curve of specification error, e„ which slopes 
downward asymptotically to the horizontal axis.' 

On the same diagram we can draw a curve, e„„ for the prediction errors that 
result solely f rom measurement errors in our input variables. As the complexi
ty of the model increases, the compounding of measurement error increases. 
Measurement error increases rapidly at first, but under most conditions, it wi l l 
increase more slowly with further complications. Total predictive error, E, is 
the combination of these two types of error in a multiplicative relation, so that 
£ = (e-, + e-,„y/'. The best point for prediction is the bottom of the total 
error curve. 

In Figure 2 we consider two cases subject to the same specification, but the 
data in one case are worse than in the other. The curve for the case with poor 
data, e*m, is therefore higher than the curve e,,, of the case with good data. The 

'' I am speaking of situations in which models are improved by progressive re
finements, rather than by radical reformulation which may give better predictive 
accuracy with a simpler model. Such a radical reformulation, which may be called 
a Copernican advance, would result in a new curve substantially below the orig
inal one. This would be the case of a radical scientific advance, and these cannot 
be called upon at will. 1 am speaking here of the marginal improvements in the 
formulation of models. 
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C O M P L E X I T Y 

Figure 2. 

curve E* of total error in the poor data case is quite naturally higher than the 
curve E of the good data case. But the important point is that E* bottoms out 
at a lower degree of complexity than E. I n other words, when accurate data 
are available, complex models are possible. When the data are poor, simpler 
models are advisable."" 

I n this view, it is perfectly conceivable that we can devise predictive models 
which are beyond the capacity of the data, in the sense that, although they are 
more "accurate" in their specification, the quality of the data results in a dete
rioration of prediction. I raise the question of whether in the field of land use 
and traffic models we have not gone beyond the best predictors. I must stress 
that I do not know whether we have or have not; but we must try to find out. 

Let me outline a fairly typical form of one of today's models for predicting 
needed changes in highway capacity. (1) We predict a change in the absolute 
numbers of basic employment defined by some reference to a theory of export 
multipliers. (2) Based on an estimated participation rate, we predict "basic" 
population. (3) We predict a basic-service employment ratio. (4) We predict 
service employment. (5 ) We predict "service" population. We now pass on to 
(6) a prediction of the location of basic employment. Based on this, (7) we 
predict the location of "basic" population. (8 ) We distribute service employ-

^ Note that under these assumptions, as the effects of cumulation of errors and 
of better specification both flatten out, the curve of total error approximates the 
curve of measurement error and becomes relatively flat. 
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ment according to basic population. (9) We distribute "service" population.'' 
We now have a predicted distribution of jobs and people. Based on this we 
predict (10) travel patterns or desire lines. (11) We subtract existing capaci
ty from projected demand to obtain (12) needed changes in highway capaci
ty. 

Data for earlier periods are fitted, most commonly by multiple regressions, 
to each of the postulated relationships, and the ordinary tests of significance 
are applied to the relations one by one. But when the predictive phase is 
reached, these relations are strung together m a chain. The values of some 
variables such as basic employment are estimated outside of the model and 
plugged in. The predicted values of these variables are measurements, and 
their errors m estimate are measurement errors. The parameters which were 
calculated m the first stage of the model now become themselves variables to 
which we can often attach concrete significance such as land requirements per 
worker or propensity to travel. I t should be noted that standard regression 
techniques give us estimates of error for the parameters. The estimates of the 
final variables wil l thus have five sources of error: (1) specification error in 
the period for which we have calibrated; (2) further specification error if con
ditions in the future differ structurally to some degree f rom conditions in the 
calibration period, so that a perfect specification of past relations does not 
specify perfectly for the future; (3) measurement (or predictive) errors in the 
exogenous variables; (4) measurement errors in the parameters (now varia
bles) in the calibration period; and (5) measurement (or predictive) errors 
resulting from using past values in place of future values for these 
parameters/variables.'" Predictive errors from each of these sources wil l com
pound through the operations of the model, as the dependent variables of one 
step in the chain become the "exogenous" inputs into the next step. 

The effects of such a chain can lead to rapid deterioration of prediction. 
Imagine a three-step chain of regression equations, each validated with an R 
= 0.9. Assume further that the last four types of error are nil , so that we are 
dealing only with specification errors in the original relations. The result of 
the three-step chain wil l have a 34 percent standard error of estimate from 
this source alone. 

The general point has now been made, and gives rise to a fifth rule of 
model construction: 

5 . Avoid as far as possible models which proceed by chains. 

This general rule, in its positive aspect, says that we should proceed by 
models which do not build step upon step. This rule increases in importance 
with weaker data. ' 

^ I omit here some possible iterative steps to adjust services to total population. 
°̂ Sometimes these parameters are adjusted for the predictive equations, based 

on some other information; this may reduce this source of error, but, of course, 
will not eliminate it. 



ALONSO: DATA QUALITY AND PREDICTIVE MODELS 187 

But certainly, if we have information on many variables, we want to put it 
to use, on the general principle that any further information wil l assist our 
prediction, and that simple models which use few variables neglect some of 
the information available. My suggested strategy, which I cannot illustrate by 
concrete example, is to build several simple models which among them use all 
of the data, and to make some sort of average of them. To paraphrase a 
scientist in a field that faces similar problems," the strategy is not to build 
one master model of the real world, but rather a set of weak models as alter
native models for the same set of phenomena. Their intersection will produce 
"robust theorems." As complementary models, they shed light on different as
pects of the same problem. I n other words, an average of simple models wi l l 
give predictors which are far stronger than the individual models. For in 
stance, if we have eight variables with 10 percent measurement errors, and we 
can construct four simple models of products of different pairs of the varia
bles, each of these simple models having 40 percent specification error, the 
total error in their average wil l be 23 percent. I f we had a single multiplicative 
model using all eight variables which were perfect with regard to specification, 
the expected error would be 28 percent. 

This strategy of netting out weak and complementary models may be called 
a technique of mulling over, in contrast to the deductive chains of our present 
models and the classic detectives of fiction. I t is what most of us do in real life 
when faced with a difficult problem. We consider first one aspect and then an
other; when we have considered every aspect we can think of, we start all 
over again, and eventually we come to a decision. 

I want to stress that I am by no means certain that our urban and regional 
models have reached the level of mathematical complexity where the com
pounding of experimental or predictive error offsets the gains in specification 
accuracy. I am only raising the question of whether they have. I f this is the 
case, I am suggesting a strategy of many short, stubby models to be averaged 
as opposed to the present strategy of long, thin models. In terms of my earlier 
analogy, I am questioning whether we have arrived at the design of skyscrap
ers but we have only lumber for construction material. I f we do, we had 
better build low to the ground while we improve upon our materials. 

This argument has a complementary conclusion. I f the data are very good, 
it is wasteful to use too simple models. This raises some interesting issues con
cerning the applicability of models generated in developed countries to situa
tions in developing countries, where the data are invariably poorer. The use of 
the same model implies that its specification is acceptable in both cases. But i f 
the specification is properly matched to the quality of data in the developed 
country, the poorer data in the developing country assure us that we shall be 
well past the low point of the total error curve for that country, as illustrated 
in Figure 2. On the other hand, i f the model is well suited to the quality of 

" R. Levine, "The Strategy of Model Building in Population Biology," Ameri
can Scientist, 54 (December 5, 1966). 
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the data in the developing country, it is wasteful of the power of the data in 
the developed country. The use of the same model for reasons other than 
those of expediency in both situations wi l l be justified only if we cannot think 
of alternative model designs. 

In conclusion, I want to touch lightly upon three general points which have 
to do with the uses of models rather than with their design. The first point is 
that, whether or not we have exceeded the capacity of our data in the design 
of models, we are surely operating in broad areas of uncertainty, and that we 
find errors of 50 or even 100 percent acceptable because alternative means 
give even larger errors.^- Yet the institutional context in which most of our 
most advanced models are constructed results in relatively short tenures by 
the key investigators, in the order of one to five years. In that conditions of 
high uncertainty place an extraordinary premium on feedback, it seems to me 
that the love-them-and-leave-them nature of most of our significant modeling 
efforts is extremely wasteful. A t a time when urban planners are rebelling 
against the master plan and calling for continuing planning (that is, contin
uously revised plans), our most advanced quantitative planning is reverting to 
the master plan, not out of the logic of its instruments, but out of the sociol
ogy and the institutional matrix of the investigations. I t is obvious that these 
models should be designed and placed in their institutional context in such a 
way that continuing revisions and improvements can be incorporated easily 
and, more important, the consequences and importance of such revisions be 
understood by the decision-makers who are the consumers of the model. 

This matter must be stressed. A decade ago, these models were viewed pri-
manly as predictors of the future. Somewhat later, stress was placed in their 
use as conditional predictors of the consequences of alternative policies, and 
efforts were made to incorporate into them policy variables which would per
mit such experimentation. Most recently, as experience has been gained, the 
practitioners of this craft have tended to play down the ability of the models 
to predict, and to stress their value as educational instruments which serve to 

^- General literature on the actual size of errors for various types of data and 
forecasts is relatively rare and often polemic. See O. Morgenstern, On the Accu
racy of Economic Observations (Princeton: Princeton University Press, 1963), for 
a sobering discussion of the magnitudes of error in national economic statistics. 
Urban data may be expected to have errors of at least this magnitude For a dis
cussion of the actual errors in the prediction of national macro-economic variables, 
see Victor Zarnowitz, An Appraisal of Short-Term Economic Forecasts, Occa
sional Paper 104, National Bureau of Economic Research, 1967. The Bureau of the 
Census and other agencies frequently produce studies on the reliability of their 
data One that has received considerable recent attention is Measuring the Quality 
of Housing: An Appraised of Census Statistics and Methods, Working Paper No. 
25, Bureau of the Census. Interesting points on the interpretation of error and re
liability of standard statistical procedures are found in W. H. White, "The 
Trustworthiness of 'Reliable' Econometric Evidence," Zeitschrift fur Nationalbkon-
omie, X X V I I : 1-2, 1967. 
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bring to the consciousness of those who make decisions the complex interrela
tions among the variables, including those which can be manipulated for nor
mative purposes. Thus, the downgrading of the importance of the numbers 
which emerge from the model accords with the viewpoint being advanced 
here. The large model may serve as a context or evolving background for a 
collection of more partial and overlapping quantitative models and for that 
vast reservoir of knowledge about the urban system which inhabits the heads 
of experienced men and which has yet to find its way into formal models. 

In justice, it must be noted that some of this takes place now during the rel
ative privacy of the period in which the model is calibrated.^Commonly, in 
the early runs the model will produce some outrageous results, and the mod
elers wil l use their necromantic powers to have the black boxes give reasonable 
results. Although these false starts are little advertised, the corrections consti
tute a combining or averaging of models. For how would we know what is 
outrageous or what is reasonable except by appeal to other models of the f u 
ture, even if some of these are implicit or intuitive? Rather than treating this 
process as an embarrassing occurrence during the model's infancy, it should 
be treated as a continuing source of strength and enrichment to be carried into 
adulthood." 

A second general point has to do with models as instruments for decision. 
Our models give point estimates for the variables which we are predicting. I n 

13 This is the term commonly applied by traffic and land-use technicians to the 
obtaining of parameters to fit data for earlier periods 

At the presentation of this paper, Britton Harris raised the question of wheth
er the problem of cumulation of error would apply with equal force to models 
which possessed negative feedback. This is an intriguing suggestion, although it is 
hard to determine what constitutes negative feedback. In many cases the under
lying theory may have this feature, but the computational model does not. In other 
cases, the feedback is no more than a series of dampening mechanisms to foster 
conservative predictions. Among these mechanisms are the use of rigid constraints 
which will not yield, or soft ones which yield grudgingly. Of course, the mathemat
ical form of some models, based on systems of equations, provides for a particular 
form of negative feedback Recent models have frequently been based on algo
rithms for numerical estimation of the hill-cIimbing type, in which the investigator 
uses feedback from each successive estimation to proceed to the next. Yet this 
feedback, used to find the solution of the model, must not be confused with feed
back within the model itself, but rather results from our inability to solve the 
model analytically. I f we could solve it analytically, the arguments presented m the 
body of this paper would apply. When we use a technique of numerical approxi
mation, we add to the errors of specification and compounded errors of measure
ment a further error resulting from the remaining inaccuracy of our last numerical 
approximation to the analytic solution. 

Of course, a form of feedback is involved when consistency checks are used, of
ten by the use of alternative models. This reflects the position argued in this paper. 
Lastly, unambiguous feedback occurs when models are kept a long time and 
incorporate corrections as new information becomes available. 
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this paper I have suggested that these estimates should include estimates of 
predictive error. The crude techniques I have employed have dealt entirely 
with probable error or standard deviation. 

But the purpose of the study of error is not to burnish our scientific con
science, but to assist in the making of decisions. I f either the penalties of error 
or the probabilities of error are asymmetric about the most probable estimate, 
m all likelihood our best action will not be addressed to the most probable es
timate. This may be illustrated concretely. Suppose that our estimate of traffic 
on a new roadway is a central value with a symmetric probability distribution 
about it. I f we guess too high, the cost is the waste of a bit more land bought 
and a bit more surfacing laid. I f we guess too low, the costs of widening the 
road later are far higher, for we are forced to buy out development by the side 
of the road which the road itself has induced, to widen bridges, rebuild clover-
leafs, etc Where the costs of error are asymmetrical, the best action wil l be 
off the most probable value in the direction in which the error has higher cost. 
Similarly, skewness in the error distribution about our central estimate should 
lead us to base our actions on quantities other than the point prediction.''^ 
Thus far, builders of models of urban traffic and land use have been content 
to predict a single value or, at most, a set of high-medium-low values without 
attached probabilities. The challenge is to pass from this to more reasoned 
recommendations for action. This is undoubtedly very difficult to do, but it 
needs doing. 

The third point is one of which I am statistically less certain, although the 
institutional sociology of it is clear. For instance, the most important studies 
in the field of transportation and land use projection have cost several millions 
of dollars The techniques they have employed are generally pioneering. But 
they have found themselves in a difficult position. As pioneering studies, they 

1'"' While most workers in the field seem to view the point prediction as a central 
value of a normal distribution (as evidenced in part by the occasional use of high-
medium-low estimates), it is hard to know the precise statistical meaning of this 
value In many models the probability distribution of the output variable will be 
non-normal and skewed. In such cases the point estimate will not be any particular 
statistic such as the mean, the mode, or the median (although it will tend to be 
closer to the median), and therefore its interpretation and consequences for action 
remain ambiguous, even when the distribution of costs of being wrong are known. 
The presentation in these pages has followed a hybrid version of classical statistics, 
but readers interested in these issues may refer to the growing literature on Baye-
sian approaches See, for instance, J. W. Pratt, H . Raiffa, and R. Schlaifer, Intro
duction to Statistical Decision Theory (A Preliminary Edition) (New York. 
McGraw-Hill, 1965), and in particular "Appendix 3: Classical Methods," which 
compares the two approaches. The approach followed in this article has been 
chosen because it permits simple and intuitively accessible development of the 
arguments, and because the existing formulae make it easier to apply to chains of 
operations than the more demanding Bayesian approaches. 
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went into the unknown, where there is a high possibility of failure. As profes
sional agents, they were in fact charged with using an existing and generalized 
body of knowledge upon a concrete situation. After having spent some mil
lions of dollars, they could not afford to say that the experiment did not work. 
I submit that, considering the vast national investment in such studies, the 
reportage on what we have found out has been minimal. A few journal 
articles and a few handfuls of agency reports which are generally un
clear is all we have. Seldom do we find clear and self-examining evaluations of 
the work.^'-

I t seems that the vast expense required for these studies places them be
yond what the sources of tunds are currently disposed to spend for basic re
search; these are labeled planning costs for applied work, where a handful of 
millions are acceptable in the face of investments in infrastructure in the order 
of magnitude of one billion. Yet, to those with an interest in this subject, the 
promise of one after another of these multi-miUion-dollar studies has not been 
fulfilled. I t is not that strong statistical findings have been lacking; it is my im
pression that there is a wealth of regularities What is lacking is a dispassion
ate report on findings and failures from which scholars in this field, including 
those in the project, can test and evolve new understanding of the phenomena 
with which we are dealing and techniques to deal with them. Researchers are 
being put in the very difficult position of being both practitioners and innova
tors. As practitioners, they are called upon to use techniques that have a high 
probability of success; in effect, to apply known and proven methods. But in 
this field most of our methods are still in their infancy, still in the process of 
discovery. Innovative or scientific work is by definition an exploration beyond 
what is presently known, and any one probe wil l have low probability of suc
cess. The societal logic of support for scientific work is that the rare successes 
tend to have very high pay-offs. The institutional context of these studies blurs 
this distinction under the pressing need to decide how to spend vast quantities 
of money in urban infrastructure, and thus hampers the openness of method, 
the candidness of reportage, and the freedom of discussion of these important 
studies. This represents a dreadful waste, as errors are repeated and successes 
are not followed up. Although there have been significant advances, they have 
not matched the possibilities. 

I n conclusion, I would like to advance, with considerable hesitation, a sta
tistical argument for a distinction between models for fundamental research 
and models for applied work. Consider a case in which we use the same 
model design for both purposes. I n the research model we are asking what 
are the relations among the measured variables, and whether they conform to 
what we would expect f rom various theories and pnor empirical work. We 
may regard the parameters we obtain not as variables in their own right, but 

The most significant exception of which I am aware is Ira Lowry's, A Model 
of Metropolis (Santa Monica, Calif.: The RAND Corporation, 1964). 
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as relations among the variables we have measured.'^ But, as we have dis
cussed, i f we are using the model for prediction, all of our numbers become 
variables. Further, as variables they have a larger error when they are pre
dicted for a future state of the system, and the model itself, as mentioned, 
may have a larger specification error with regard to a future state. From these 
considerations, i t would seem that a model that seeks to increase our under
standing by asking how certain variables relate to each other is in a sense 
less subject to some of the sources of error than the identical model design 
used to predict the future. 

This point may be arguable both in statistical terms and in terms of the phi
losophy of science, in which it is often held that the purpose of all scientific 
work is prediction. This may be countered by pointing to much of the good 
scientific work which classifies, describes efficiently, generalizes, merely checks 
that things are as we expect them to be, and in other ways improves our com
prehension of nature. Such work wil l often result m better prediction, not by 
its direct use, but by shedding light on some facets of the structure we are 
considering, while the prediction itself proceeds in the fashion which I have 
called mulling over. But if there is merit to the statistical argument, i t follows 
that, for a given quality of data, the scientific model is more tolerant of com
plexity of formulation than an applied model. I f this is true—and the alert 
reader wi l l note that this is a deductive chain—it follows that we should have 
research groups in universities and other centers working on complex models, 
while operational agencies would be working with simpler and safer models. 

1 ' This, of course, is relative, for we often "measure" a variable as a relation 
among variables which have been measured directly. The question of what is di
rect measurement is a difficult one. 


