My HIGHWAY RESEARCH OCIRCULAR

Number 149 Subject

Subject Areas:

Highway Design Maintenance, General Highway Safety Traffic Control and Operations

October 1973

FIXED HIGHWAY LIGHTING: DESIGN AND OPERATION

COMMITTEE ACTIVITY

OPERATION AND MAINTENANCE OF TRANSPORTATION FACILITIES Lloyd G. Byrd, Chairman Group 3 Council Byrd, Tallamy, MacDonald and Lewis

> COMMITTEE ON VISIBILITY (As of December 1972)

Albert Burg, Chairman University of California Los Angeles, California

K. B. Johns, Staff Engineer

Merrill J. Allen Earl Allgaier Herbert H. Bartel R. Clarke Bennett Andries J. Birkhoff P. L. Connolly C. W. Craig C. L. Crouch A. C. Doty W. H. Edman D. M. Finch T. W. Forbes J. Stuart Franklin R. L. Henderson Marvin H. Janson C. H. Kaehn Antanas Ketvirtis Lee Ellis King Ralph R. Lau George E. Meese Nathaniel H. Pulling Charles H. Rex Oscar W. Richards Neilon J. Rowan Richard N. Schwab Matthew C. Sielski Richard E. Stark Arthur L. Straub Ray P. Teele Earl C. Williams Henry L. Woltman

Questionnaire Subcommittee:

Ralph R. Lau, Chairman Neilon J. Rowan Richard N. Schwab Richard E. Stark

HIGHWAY RESEARCH BOARD

NATIONAL RESEARCH COUNCIL NATIONAL ACADEMY OF SCIENCES - NATIONAL ACADEMY OF ENGINEERING 2101 CONSTITUTION AVENUE, N.W. WASHINGTON, D.C. 20418 <u>i n d e x</u>

1

 \bigcirc

.

Foreword	
Section I - Summary of Responses	l
Section II - Tabulation of Responses to Question 1	13
Tabulation of Responses to Questions 2, 3, 4, 5	16
Tabulation of Responses to Questions 6, 7, 8a	18
Tabulation of Responses to Questions 8b, 9, 11, 12, 14	20
Section III - Narrative Responses to Question 10	24
Narrative Responses to Question 13	26
Narrative Responses to Question 15	30
Narrative Responses to Question 16	34
Section IV - The Questionnaire	41

Page

Fixed Highway Lighting

FOREWORD

One of the primary functions of the Highway Research Board's Visibility Committee is the accumulation and dissemination of up-to-date knowledge on all aspects of visibility. In carrying out this function it is important to maintain an awareness of current operational policies and practices related to visibility, since these practices not only reflect current thinking but also influence the direction of future activities.

One area within visibility that currently is receiving increasing (and well-deserved) attention is Fixed Highway Lighting. In particular, there has been growing concern about the lack of international standards and, indeed, the lack of uniformity in practice among the United States, themselves. To document the degree of this non-uniformity in the U. S., and as a first step toward addressing the broader concern over international standards, the Visibility Committee decided in 1972 to survey the States with regard to their current and proposed fixed lighting policies and practices. An Ad Hoc Committee was appointed to prepare and administer a questionnaire. The Committee was chaired by Ralph R. Lau, and included Neilon J. Rowan, Richard N. Schwab and Richard E. Stark.

The questionnaire was distributed to state highway representatives of all 50 states, Puerto Rico and the District of Columbia in late December, 1972. By early Spring, 1973, 49 questionnaires had been returned. This publication is devoted to a non-critical presentation of the information provided by these 49 respondents. The first section summarizes the data for ease of understanding, while the second part of the Circular presents the raw tabulations upon which the summarises are based.

It is anticipated that this Fixed Highway Lighting survey represents but the first of a series of such questionnaires designed to provide current data on operational practices related to visibility. The results of future surveys by the Visibility Committee will be published as they become available.

Albert Burg

Section I

SUMMARY OF RESPONSES

SECTION I - SUMMARY OF RESPONSES

Not all 49 respondents answered every question. In these cases, the "(N=x)" after the question gives the total number of responses to that question. A complete tabulation of all questionnaire responses will be found in SECTION II AND III.

Question 1. Describe a typical new highway lighting system designed and used by your State Highway Department or Department of Transportation.

a. MAINLINE, CONVENTIONAL INSTALLATION (N=48)

l)	Lamp & Wattage:	175w	400w	700w	1000w	comb.	NS
	MV (mercury vapor)		11	8	6	9	5
	MH (metal halide)		l				
	HPS (high pressure sodium)	1	11			l	3

various

2) Mounting Height:

Range of responses : 30' to 60' Most common responses: 40' (N=12); 50' (N=12) Average height : 42.6'

3) Average Maintained Footcandles:

Range of responses : 0.5 to 4.0 fc Most common responses: 0.6 to 0.8 (N=30) Average fc : 0.85

4) Maximum Uniformity Ratio: (Average/Minimum)

> Range of responses : 2:1 to 6:1 Most common responses: 3:1 to 4:1 (N=40) Average UR : 3.4:1

b. MAINLINE, HIGH MAST INSTALLATION (N=30)

1)	Lamp	&	Wattage	:	<u>400w</u>	1000w	var. comb.	NS
				MV	l	4		
				MH		21		2
				HPS	6	1	1	

2) Mounting Height:

Range of responses : 50' to 160' Most common responses: 100' (N=12) Average height : 111.4'

* NS = wattage not specified

3) Average Maintained Footcandles:

Range of responses : 0.2 to 1.5 fc Most common responses: 0.6 to 0.8 (N=20) Average fc : 0.69

4) Maximum Uniformity Ratio:

Range of responses : 2.5:1 to 6:1 Most common responses: 3:1 to 4:1 (N=22) Average UR : 3.4:1

c. RAMPS, CONVENTIONAL INSTALLATION (N=47)

1)	Lamp	&	Wattage:	<u>175w</u>	250w	400w	<u>700w</u>	1000w	var.	comb.	NS
			MV			19	3	3	11		6
			MH			1					
			HPS	l	l	7			2		2

2) Mounting Height:

Range of responses : 30' to 60' Most common responses: 30' (N=9); 40' (N=10); 50' (N=7) Avcrage height : 39.4'

3) Average Maintained Footcandles:

Range of responses : 0.2 to 6.0 fc Most common responses: 0.6 to 0.8 (N=31) Average fc : 0.83

4) Maximum Uniformity Ratio:

Range of responses : 2:1 to 6:1 Most common responses: 3:1 to 4:1 (N=39) Average UR : 3.5:1

d. RAMPS, HIGH MAST INSTALLATION (N=25)

1)	Lamp	&	Wattage:	400 w	1000w	NS
			MV	2	3	
			MH		17	2
			HPS	5		

2) Mounting Height:

Range of responses : 50' to 160' Most common responses: 100' (N=10) Average height : 113.6'

- 4 -

3) Average Maintained Footcandles:

		Range of resp Most common r Average fc	onses esponse:	: 0. s: 0. : 0.	2 to 1 6 to 0 65	25 fc .8 (N=1	7)	
	4)	Maximum Uniform	ity Rat:	io:				
		Range of resp Most common r Average UR	onses esponses	: 2. s: 3: : 3.	5:1 to 1 (N=1 4:1	6:1 1)		
e.	CRO	SSROAD, CONVENTI	ONAL IN	STALLA	TION (N=47)		
	l)	Lamp & Wattage:	<u>250w</u>	400w	700w	<u>1000w</u>	var. comb.	NS
		MV MH HPS	 1	20 1 7	2 	2	10 2	7 1
	2)	Mounting Height	:					
		Range of resp Most common r Average heigh	onses esponse: t	: 27 s: 30 : 32	' to 6 ' (N=1 .5'	0' 0); 40'	(N=11)	
	3)	Average Maintai	ned Foo	tcandl	es:			
		Range of resp Most common r Average fc	onses esponse:	: 0. s: 0. : 0.	5 to 8 6 to 0 91	8.0 fc 8.8 (N=2	5)	
	4)	Maximum Uniform	ity Rat:	io:				
		Range of resp Most common r Average UR	onses esponse:	: 2: s: 3: : 3.	1 to 6 1 to 4 5:1	:1 :1 (N=4	0)	
f.	CRO	SSROAD, HIGH MAS	T INSTA	LLATIO	<u>n</u> (n=1	9)		
	l)	Lamp & Wattage:	400	<u>w 10</u>	00w	var. co:	mb. <u>NS</u>	
		MV MH HF		1	3 2 -	1 	2	
	2)	Mounting Height	:					
		Range of resp Most common r Average heigh	onses esponse: t	: 50 s: 10 10	' to l 0' (N= 9,9	50' 8)		

- 5 -

3) Average Maintained Footcandles:

Range of responses	:	0.2 to 2.0 fc
Most common responses	:	0.6 to 0.8 (N=14)
Average fc	:	0.69

4) Maximum Uniformity Ratio:

Range of responses : 2.5:1 to 6:1 Most common responses: 3:1 (N=9) Average UR : 3.4:1

g. POWER SUPPLY VOLTAGE USED IN TYPICAL LIGHTING SYSTEM

120/240	 -4	120/21	ŧ0,	240/480		 9
120/208	 1	480				 2
240/480	26	Other	con	bination	15	 4
277/480	 3					

Question 2. What type of light source do you favor for future use in highway lighting? (Number in order of preference)

Light Source	No. of Respondents Ranking This Item	<u>Mean Rank</u>	No. of Respondents Giving Rank of One
Mercury Vapor	46	1.65	23
Metal Halide	37	2.46	14
Fluorescent	18	4.55	0
High Pressure	45	1.80	21
Sodium			
Low Pressure	19	3.74	l
Sodium			

- Question 3. What type of light source do you use for sign lighting? (Number in order of predominance)
 - a. Present Use

b. Future Use

17	Mercury Vapor	33
28	FluorescentFluorescent	6
0	Both of the aboveBoth of the above	1
0	Multi Vapor	3
l	High Pressure Sodium	3
3	NR*	3

*No response

Question 4. Who is responsible for the highway lighting design work in your State?

a.	In-house	Staff (unspecified) or otherwise unspecified	5
Ъ.	In-house	Staff: Illumination Engineer	2
c.	In - house	Staff: Electrical Engineer	8
d.	In-house	Staff: Traffic Engineer	12
e.	In-house	Electrical Engineer plus Consultant Firm	6
f.	In-house	Traffic Engineer plus Consultant Firm	3
g.	In-house	Elect. and Traffic Engineers plus Consult. Firm -	4

h. Other combinations of the above ----- 9

Question 5. Who owns a completed highway lighting system after it has been installed by the State?

		Interstate	Other Roads
a.	Owned by State	41*	27**
b.	Owned by County or Municipality	1***	2
с.	Owned by Utility Company	2	4
d.	State plus Co. or Munic	2	7
e.	State plus Utility Co	1	l
f.	County or Munic. plus Utility Co		2
g.	Owned by all three		2
h.	NR / <u>+</u>	l	3
	* plus one "outside city limits only	.11	

** plus one "except for luminaires and lamps" *** plus one "inside city limits only" /1 No Response

Question 6. Indicate the percentage of the installation cost and the annual energy and maintenance costs paid by the county or municipality and by the State for a highway lighting system installed by the State.

				Interstate	Other Roads
INSTALLATION COST: <u>County or Municipality</u> State %	%	0 100		42	24
		<u> </u>		3	
		<u> 10 </u> 90		2	
		<u>25</u> 75			3
		<u>50</u> 50			10
		<u>100</u> 0			6
	Other NB or	Combina NA	tions-		2 h

	ENERGY COST:		Interstate	Other Roads
	County or Municipality % State %	<u>100</u>	10	23
		<u>50</u>	1	4
9 *	9	0-5 5-100	34	16
	<u>100</u> within city limits 0 and <u>0</u> outside city limits)))	2	2
	100	NR or NA	2	24
	MAINTENANCE COST:		Interstate	Other Roads
	County or Municipality %	<u>100</u>	- 10	19
		80		l
		<u>50</u>	l	24
		<u>0-5</u> 95-100	- 3 ¹ 4	19
	100within city limit0and0100100outside city limi	s))) ts NR or NA	- 2	2 4
Question 7a.	Who is responsible for normal h system which has been installed	ighway lighting by the State or	maintenance 1 an Intersta	for a te route?
	State 26 County 0 Municipality 6 Utility Company 7 N	tate + Utility (tate + Municipal ounty + Municipa funicipality + Ut ot Applicable (I	Company Lity ality cility Compan D.C.)	Ц З і y l l

Question 7b. Who is responsible for normal highway lighting maintenance for a system which has been installed by the State or <u>other</u> than an Interstate route?

State	10	State + Utility Company	4
County	1	State + Municipality	7
Municipality	10	County + Municipality	3
Utility Company	5	Other Combinations	7
		Not Applicable (D.C.)	1
		NR	1

1

Question 8a. At what intervals are the luminaires cleaned on a highway lighting system which has been installed by the State?

0.5	years	-	l	2-4	ye	ars	-	2	NR	-	4
1.0	11	-	11	3.0		11	-	3			
1.5	11		1	4.0		11	-	5			
1.6	11	-	1	Othe	er		-	3			
2.0	11	-	6	At I	Bur	n O	ut	- 3			
2.5	11	-	1	No S	Sch	edu	led	l Cleaning	- 8	3	

Question 8b. At what intervals are the luminaires group relamped on a highway lighting system which has been installed by the State?

Mercury Vapor	Multi Vapor/Metal Halides	High Pressure Sodium
2.0 years - 2 3.0 " - 6 4.0 " - 17 5.0 " - 3 5.25 " - 1 5.5 " - 1	1-2 years - 1 1.5 " - 4 1.5-2 " - 1 2.0 " - 2 2.2 " - 1 2.5 " - 1	1.0 years - 1 1.6 " - 1 2.0 " - 5 3.0 " - 1
Burn Out - 5 No Schedule - 6	3	5
NR8	29	28

Question 9. What is your highway lighting design primarily based on?

a.	Average Maintained Horizontal Footcandles	5
Ъ.	Average Maintained Vertical Footcandles	0
c.	Uniformity Ratio	3
d.	Luminance	1
e.	Glare	0
f.	a. plus c. above	30
g.	a. plus c. plus e. above	3
h.	Other combinations of the above	7

Question 10. How do you take glare into consideration in your highway lighting designs?

State-by-state answers to this question will be found in SECTION III.

Question 11. Approximately what is the energy cost per kilowatt-hour for your highway lighting system? (N=42)

Range of responses - 1 to 17 cents per KWH Average cost ----- 2.15 ϕ/KWH

Question 12. If you have had experience with high mast lighting installations (e.g., 80 ft. or higher) in your State, please furnish the following information:

a.	TYPE OF SUPPORT:	Tower 2	
	(N=36)	Pole 29	
		Both 2	
		Not Specified - 3	

Question 12. (cont'd)

	Ъ.	LAMP TYPE: MV - 2 (N=36) MH - 24 MH/MV - 2 HPS - 4 NR - 2
	c.	LAMP WATTAGE: $400w - 3$ (N=36) $1000w - 30$ 400/1000w - 3
	d.	MOUNTING HEIGHT:Range of responses: 80' to 160'(N=36)Most common responses: 100' (N=10)Average height: 113.3'
	e.	MAXIMUM CP ANGLE: Range of responses : 45° to 85° (N=30) Most common responses : 60° to 65° (N=15) Average of responses : 63.8°
	f.	LUMINAIRES PER TOWER: Range of responses : 3 to 16
		(N=35) Most common responses: 6 to 8 (N=16) Average # luminaires: 6.78
	g.	AVERAGE TOWER SPACING: Range of responses : 350' to 750' (N=32) Average of responses: 543'
	h.	AVERAGE INITIAL FOOTCANDLES: Range of responses: 0.2 to 3.5 fc (N=33) Average of responses: 1.05 fc
	i.	UNIFORMITY RATIO: Range of responses: 2:1 to 6:1 (N=31) Most common response:3:1 (N=13) Average UR : 3.3:1
	j.	NUMBER OF HIGH MAST INSTALLATIONS: Range of responses: 0 to 69 (N=42) Average of responses: 6.3 installations
Question 13.	If ins des	you have recently completed or are now completing any new lighting stallations incorporating novel or experimental features, please scribe.
	Sta	ate-by-state answers to this question will be found in SECTION III.
Question 14a.	Wł oż	nere new lighting is installed on new poles, are all unprotected f the break-away type?
		Yes - 45 No - 4
Question 14b.	Do	o you have a program to replace older unprotected and unyielding

Yes - 31 No - 14 Not Applicable - 4

poles with the break-away type?

- 10 --

Section II

TABULATION OF RESPONSES TO QUESTIONS 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14

MAINLINE

•

.

	Quest	ion 1a-C	onventi	onal			Quest	ion 1b—H	igh Ma	st		
	Туре	Lamp		Mounting	Avg.	Max	Туре	Lamp		Mounting	Avg. Maint	Max
State	MV	Met. H	HPS	Ht. (ft)	fc.	UR	MV	Met. H	HPS	Ht. (ft)	fc.	UR
Alabama			400	50	.6	4:1			400	90-120	.6	4:1
Alaska			400	40	1.5	3:1						
Arizona	700			50	.8	2:1						
Arkansas	400			40	.68	3:1	1000			50	.68	3:1
California	700			40	.8	4:1			400	100	.8	4:1
Colorado	700			40	.68	3:1						
Connecticut	400			30-50	.68	3-4:1		1000		100	.68	3-4:1
	700 1000											
Delaware	400		400	30-40	65-1 1	4.1	400	1000		160	.74	3.1
Florida	700		100	40	1.24	3.1	100	1000		100		0.1
Georgia	400			35-45	1 2	9.1		1000		100		3.1
Georgia	1000			00-40	1,4	0.1		1000	122	100		0.1
Uowoil	1000			20 45		4.1						
Idobo	v		.1	50-45	0	4,1						
		400	·V	50	.9	3:1	1000	1000		110	0	0 5 1
IIIInois		400		50	.6	3:1	1000	1000		110	"Z	2.5:1
Indiana			400	45	.9	3:1						
Iowa	400			40	6	3:1		1000		100-150	.23	3:1
Kansas	1000			50	.8-1.2	3:1		1000		100	.68	3:1
Kentucky	700			40	.6	3:1						
Louisiana	400			35-50	.68	3:1		1000		120	.68	3:1
	700											
Maine	400			40	.6	3:1						
Maryland								1000		90-115	.6	3-4:1
Michigan	1000			40-45	1ª	3-4:1		1000		80-110	.2 min.	-
Minnesota	\checkmark			40-50	.6	6:1		N		100-140	.6	6:1
Mississippi			400	50	.68	4:1			400	100	.68	4:1
Missouri	700			45	6	4.1						
Montana	V			40	.6	4.1						
Nebraska	1000			50	8-1 4	4.1		1000		150	8	3-1
Nevada	400			32	8	4.1		1000		100	8	9.4
Now Hampshire	100			40	.0	2.1		1000		100	.0	2.1
New Inampointe	400		175	40	.0	4.1		1000		100	.1	4.1
New Morico	400		110	40 E0	.00	4.1		1000		100	.0	4;1
New mexico	1000		·V	50	1.0	0,1		1000		100		
N. Carolina	1000		050	20	.68	3-4:1		1000		100	0 0	
N. Dakota	1000		250	40-50	.68	3-4:1		1000		120-140	.68	3-4:1
e 1.1	1000		400									
Onio	700			41.7	.6	4:1		1000		100	.6	3:1
Oklanoma	400			40-50	.6	4:1		1000		150	. 6	4:1
	1000											
Oregon	400			50	.6-2	2-4:1		1000	400	80-150	.6-	3:1
	700										1.25	
	1000											
Pennsylvania	700			35-40	.8	4:1		1000		100	.8	4:1
	1000											
Rhode Island	400			30	.8	3:1		1000		100+	.6	3:1
S. Carolina	400			30	.6	4:1						
S. Dakota	400		400	40-60	.5-1	3:1		1000	400	80-150	.5-1	3.1
									1000			
Tennessee	700			45	0.6	3:1						
Texas	1000		400	50			1000		400	150		
Utah	400		400	40-45	0.8		1000		100	100		
Vermont	100		100	40	0.9	3-4.1						
Virginia	1		v	30-50	0.8	1.1						
Wachington	1000			50-50	0.6	9 5.1						
Washington	1000		100	00 50	0.0	2,0:1		1000	400	00 100	1.0	4.0.4
w. virginia	400		400	32-30	,8-1.5	4-0:1		1000	400	20-100	1.0	4-6:1
	700											
	1000		100		4 0 4 5	0 - 4			1005			
Wisconsin	-	-	400		1.0-1.2	2.5:1			1000	50-150	1.5	2.5:1
Wyoming	400			30-40	.8	3:1	1000			150	.8	3:1
period and an end	700											
District of												
Columbia	400		400	30-40	1-4	3:1						
							(I					

^eAvg. init. fc.

^b1000 W - other type.

RAMPS

	Quest	ion 1c-C	onventi	onal		Question 1d-High Mast						
	Туре	Lamp		3.6	Avg.	3/1	Туре	Lamp		Mounting	Avg. Maint. fc	Maria
State	MV	Met. H	HPS	Ht. (ft)	fc	UR	MV	Met. H	HPS	Ht. (ft)		Max. UR
Alabama			250- 400	35-50	.6	3-4:1			400	90-120	.6	3-4:1
Alaska												
Arizona	400			30	.7	3:1						
Arkansas	400			40	.68	3:1	400			50	.68	3:1
California	400			30	.8	4:1				100		
Colorado	700			40	.68	3:1		1000		100	.68	3:1
Connecticut	400 700			30-40	.68	3-4:1		1000		100	.68	3-4:1
Delaware	400		400	30-40	.65-1.1	4:1	400	1000		160	.75	3:1
Florida	400			40	1.2ª	4:1						
Georgia	175 400			35-40		3:1						
Hawaii	v			30		4:1						
Idaho			\checkmark	50	.9	3:1						
Illinois		400		50	.6	3:1	1000	1000		110	.2	2.5:1
Indiana			400	45	.9	3:1						
Iowa	400			40	.6	3:1		1000		100-150	.23	3:1
Kansas	400			40	.46	4:1		1000		100	.46	3:1
Kentucky	400			30	.6	3:1						
Louisiana	400 700			35-50	.68	3;1		1000		120	.68	3:1
Maine	400			40	.6	3:1						
	350											
	175											
Maryland								1000		90-115	.6	3.4:1
Michigan	$\begin{array}{c} 400 \\ 1000 \end{array}$			35-45	1*	3-4:1		1000				
Minnesota	V			40-50	.6	6:1		\checkmark		100-120	.6	6:1
Mississippi			250	50	.68	4:1			400	100	.68	4:1
Missouri	400			45								
Montana	\checkmark			40	.6	4:1						
Nebraska	1000			50	.6	4:1		1000		150	.26	3:1
Nevada	400			32	.8	4:1		1000		100	.8	
New Hampshire	\checkmark			40	.8	3:1		V		100	.7	3:1
New Jersey	400		175	40	.68	4:1		1000		100	.6	4:1
New Mexico			V	50	1.0	2.6:1						
N. Carolina	1000			35	.68	3-4;1		1000		100 140	0 0	0.4.4
N. Dakota	1000		250	40-50	.08	3-4:1		1000		120-140	.08	3-4:1
Ohio	1000		400	24.9	e	4.1						
Oklahoma	400			40-50	.0	4:1		1000		150	6	4.1
OKIAIIOIIIA	1000			10 00	.0	4. 1		1000		100	.0	4.1
Oregon	400			50	.6-2	2 - 4:1		1000	400	80-150	.6-1.25	3:1
	700							179. To 179. To				
	1000											
Pennsylvania	100			30	.8	4:1		1000		100	.8	4:1
Rhode Island	400			30	.8	3:1		1000		100+	.6	3:1
S. Carolina	400			30	.6	4:1						
S. Dakota	400		400	40-60	.5-1	3:1						
Tennessee	700			45	0.6	3:1	4000		100	1		
Texas	1000		400	50	0.0		1000		400	150		
Utah	400		411()	40-45	0.8							
vermont	N			30	0.0-0.8	4.1						
Virginia	700			30	0.0	9 5.1						
W Virginio	400		400	30-40	1.0	4.1			400	100	1.0	
w. wirginia	700		100	00-20	1.0	1.1			100	100	1.0	
Wisconsin	250			32	1.0-1.2	4:1						
	400			-								
Wyoming	400			30-40	.8	3:1	1000			150	.8	3:1
-	700											
District of			1000									
Columbia	400		400	30-40	2-6	4:1						

⁸Avg. init. fc.

CROSSROAD

Type Lamp Arg. Max. Type Lamp Arg. Max.		Quest	ion 1e-C	onventiona	1		Question_1f-High Mast							
Bate MV Met. H HPS Mant. Max. Max. <t< th=""><th rowspan="2">State</th><th>Туре</th><th>Lamp</th><th></th><th></th><th>Avg.</th><th></th><th colspan="7">Type Lamp Avg.</th></t<>	State	Туре	Lamp			Avg.		Type Lamp Avg.						
Alabara Alaska 200-400 (250) 3-50 (250) 9-2.0 (250) 3-4:1 (250) 400 90-100 $0-2.0$ 3-4:1 (250) Arizona Arizona Arizona (California) 400 90-100 $0-2.0$ 3-4:1 (250) 400 90-100 $0-2.0$ 3-4:1 (250) Arizona Arizona (California) 400 $0-2.0$ $3-4:1$ 400-1000 50 $0-2.0$ $3-4:1$ California 400 0.6 $3:1$ 400-1000 50 $0-2.0$ $3-4:1$ Connecticut 400 0.68 $3:1$ 1000 100 $0-2.8$ $3:1$ Delaware 400 0.68 $3:1$ 1000 100 23 $3:1$ Hawiii $\sqrt{100}$ 0.6 $3:1$ 1000 100 $100 - 150$ 23 $3:1$ Indian 400 68 $3:1$ 1000 100 $10-150$ 23 $3:1$ Indian 400 68 $3:1$ 1000 100-150 23 <th< th=""><th>MV</th><th>Met. H</th><th>HPS</th><th>Mounting Ht. (ft)</th><th>Maint. fc.</th><th>Max. UR</th><th>MV</th><th>Met. H</th><th>HPS</th><th>Mounting Ht. (ft)</th><th>Maint. fc.</th><th>Max. UR</th></th<>		MV	Met. H	HPS	Mounting Ht. (ft)	Maint. fc.	Max. UR	MV	Met. H	HPS	Mounting Ht. (ft)	Maint. fc.	Max. UR	
Alaska 250 400 1.0 3:1 Arkanas 400 .6.8 3:1 400-1000 50 .68 3:1 Arkanas 400 .6.9 3:1 400-1000 100 .68 3:1 Colorado 400 .69 3:1 400 .68 3:1 Colorado 400 .68 3:1 1000 100 .68 3:1 Colorado 400 .68 3:1 1000 100 .68 3:1 Borare 400 40 .6.8 3:1 1000 100 .2 2.5:1 Idaho 400 .6.8 3:1 1000 100 .2.3 3:1 Idamas 400 .6.8 3:1 1000 100-150 .2.3 3:1 Idamas 400 .6.8 3:1 1000 100-150 .6.6 3:1 Marka 400 .6.8 4:1 1000 100-120	Alabama			200-400	35-50	.9-2.0	3-4:1			400	90-100	.9-2.0	3-4:1	
Arizona 400 30 .7 8:1 California 400 .8 8:1 400-1000 100 .68 3:1 California 400 .8 8:1 1000 100 .68 3:1 California 400 .8 8:1 1000 100 .68 3:1 Delaware 400 .6.0 8:1. 1000 100 .68 3:1 Georgia 400 .6.0 8:1. 1000 100 .8.2 .5:1 Indian 400 .6 3:1 1000 100 .8.3 .1 Indian 400 .6 3:1 1000 100 .8.3 .1 Maine 20 .6 8:1 1000 100 .8.4 .1 Minescata 400 .6 8:1 1000 100 .6 .1 Minsecuti 400 .6 .8 .1 1000 .6 .1<	Alaska			250	40	1.0	3:1							
Arkansas 400 68 3:1 400-100 50 .68 3:1 Calioratio 700 40 .68 3:1 1000 100 .68 3:1 Calioratio 700 40 .69 3:1 1000 100 .68 3:1 Caloratio 400 .69 3:1 1000 100 .68 3:1 Floridin 400 .50 3:1 3:1 1000 100 .2 2.5:1 Indiana 400 .6 3:1 1000 100 .58 3:1 Indiana 400 .6 3:1 1000 100 .58 3:1 Indiana 400 .6 3:1 1000 100 .58 3:1 Marke 400 .6 3:1 1000 100 .58 3:1 Marke 400 .6 .6 .6 .6 .6 .6 .6 .6 </td <td>Arizona</td> <td>400</td> <td></td> <td></td> <td>30</td> <td>.7</td> <td>3:1</td> <td></td> <td></td> <td></td> <td>111 Table 1</td> <td></td> <td></td>	Arizona	400			30	.7	3:1				111 Table 1			
Calibraia 400 30 .8 41 Concato 700 700 40 .6 .8 3:1 Concato 700 700 40 .6 .8 3:1 Concato 40 .6 .8 3:1 Decayare 400 30 .6 .9 3.4:1 Decayare 400 30 .6 .9 3.4:1 Hawai 40 .5 .9 3.4:1 Hawai 40 .50 .6 3:1 Indiana 400 45 .9 3:1 Indiana 400 45 .9 3:1 Indiana 400 40 .6 3:1 Nature 400 40 .6 3:1 Maine 400 40 .6 3:1 Maine 400 40 .6 3:1 Maine 400 40 .6 .8 4:1 Minesota 400 40 .6 .8 4:1 Misses 400 40 .6 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	Arkansas	400			40	.68	3:1	400-1000			50	.68	3:1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	California	400			30	.8	4:1		1000					
	Colorado	700			40	.68	3:1		1000		100	.68	3:1	
	Connecticut	400			30	.69	3-4:1							
	Delaware	400			30	.65-1.0	4:1							
	Florida	400			40	1.2	3:1							
Hawalt V 30 $3^{-42.1}$ Idaho 50 β 3:1 1000 100 10 .2 2.5:1 Indiana 400 60 .6 3:1 1000 100 100 .2 2.3:3 3:1 Iowa 400 .6 3:1 1000 100 .5 3:1 Kansas 400 .6 3:1 1000 100 .6 8:1 Maryland 400 .6 3:1 1000 90-115 .6 3-4:1 Minesota 700 30 1.2* 3-4:1 400 100 .6 8:1 Minesota 700 30-50 .6 6:1 40 100 .6 8:1 Missouri 400 40 6-6 4:1 1000 100 .6 8:1 New Harpshire 400 40 6-6 3:4:1 1000 100 .6 3:1 New Mersey 400 40-50 .6 8:3:1 1000 100 .6 .6 <t< td=""><td>Georgia</td><td>400</td><td></td><td></td><td>35-40</td><td></td><td>3:1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Georgia	400			35-40		3:1							
	Hawaii	N			30	0	3-4:1							
$\begin{array}{ $	Idaho	N	100		50	.9	3:1	1000	1000		44.0			
	Illinois		400	100	50	.6	3:1	1000	1000		110	.2	2.5:1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Indiana	400		400	45	.9	3:1		1000		100 150			
Kansas 400 40 .0 .8 4:1 1000 100 .0 .8 5:1 Maine 400 .0	Iowa	400			40	.6	3:1		1000		100-150	.23	3:1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kansas	400			40	.58	4:1		1000		100	.68	3:1	
Maine 400 250 1775 400 .6 3:1 Marine 00 30 .6 6:1 $$ 00-120 .6 6:1 Minnesota 00 30 .6 6:1 $$ 000 .6 8:1 Missessippi 400 50 .6 6:1 $$ 000 .6 8:1 Nestaska 1000 400 6 4:1 1000 100 .6 8:1 Nevada 400 22 .8 4:1 1000 100 .6 8:1 Nevada 400 127 2.7:1 N N N	Kentucky	400			30-40	.0	3:1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maina	100			40	C	9.1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mane	250			40	.0	3:1							
10090-11563-4:1Michigan400301.2°3-4:1400100-120666:1Minesota40050684:1400100.684:1Missouri4004064:1400100.684:1Missouri4004064:1400100.684:1Missouri400406.14:11000100.683:1Newtamph v4083:1 $\sqrt{100}$ 100.68:1New Hampsh v401.272.7:1.7:1.73:1New Markica $\sqrt{100}$ 25040-50.683:4:11000120-140.683:4:1N. Dakota70025040-50.683:4:11000120-140.683:4:1Ohio40030.6-2.02-4:11000100.683:1Ohio40030.6-2.02-4:11000100.61253:1Ohio40030.6-2.02-4:11000100+.6.6253:1Ohio40030.6-2.02-4:11000100+.6.63:1Statoa40040030.6-2.02-4:11000100+.6.63:1Statoa40030.6-2.02-1.31000100+.6 <td></td> <td>175</td> <td></td>		175												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Monuland	110							1000		00 115	G	2 4.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Michigan	400			30	1 9ª	9-4.1		1000		30-115	.0	3-4;1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Minnogato	400			20 50	6	6.1		N		100 120	6	6.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mindiggippi	v		400	50-50	.0	4.1		v	100	100-120	.0	1.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Miggouri	400		400	45	.00	4.1			400	100	.00	4.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MISSOULI	400			40	-	4.1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Montana	1000		400	40 50	619	4.1		1000		100	6	3.1	
New Hampshire 400 32 .6 4.1 1000 100 .7 3:1 New Jersey 250 27-40 1 4:1 100 .7 3:1 New Mexico $\sqrt{400}$ 35 .68 3-4:1 100 120-140 .68 3-4:1 N. Dakota 700 250 40-50 .6 4:1 1000 120-140 .68 3-4:1 N. Dakota 700 250 40-50 .6 4:1 1000 150 .6 4:1 Oregon 400 34.2 .6 4:1 1000 150 .6-1.25 3:1 Oregon 400 50 .6-2.0 2-4:1 1000 100 .6-1.25 3:1 Pennsylvania 400 30 .6 4:1 1000 100+ .6 3:1 S. Carolina 400 30 .6 3:1 1000 100+ .6 3:1 Texas 1000 400 30 .6 3:1 1000 100+ .6 3:1 <td>Nebraska</td> <td>1000</td> <td></td> <td>400</td> <td>40-00</td> <td>.0-1.2</td> <td>4.1</td> <td></td> <td>1000</td> <td></td> <td>100</td> <td>.0</td> <td>0.1</td>	Nebraska	1000		400	40-00	.0-1.2	4.1		1000		100	.0	0.1	
New Jersey 250 27-40 1 4:1 100 1.1 3.1 New Mersey 250 27-40 1 4:1 100 1.20 1.4 1.10 New Mersey 250 27-40 1 4:1 1000 120-140 .68 3-4:1 N. Dakota 700 250 40-50 .68 3-4:1 1000 120-140 .68 3-4:1 Ohio 400 34.2 .6 4:1 1000 120-140 .68 3-4:1 Oklahoma 400 34.2 .6 4:1 1000 120-140 .68 3-4:1 Oklahoma 400 34.2 .6 4:1 1000 150 .6 4:1 Oklahoma 400 34.2 .6 4:1 1000 100 80-150 .6-1.25 3:1 Pennsylvania 400 3035 .8 4:1 1000 100 .6 3:1 S. Carolina 400 30 .6 3:1 1000 100+ .6 3:1	Nevada	400			32	.0	2.1		1000		100	.0	3.1	
New Jersey 40023021-4014.1No N. Carolina40035.68 $3-4:1$ N. Dakota700250 $40-50$.68 $3-4:1$ N. Dakota700250 $40-50$.68 $3-4:1$ 100040040-50.6 $4:1$ 1000120-140.68Okio400 $40-50$.6 $4:1$ 1000150.6 $4:1$ Okio100050.6-2.0 $2-4:1$ 1000400 $80-150$.6-1.2.5 $3:1$ Oregon40050.6-2.0 $2-4:1$ 1000100.8 $4:1$ Nodo30-35.8 $4:1$ 1000100+.6 $3:1$ S. Carolina40030.8 $3:1$ 1000100+.6 $3:1$ S. Dakota400400 $35-0.6$ $3:1$ 1000100+.6 $3:1$ Temessee40030.6 $4:1$ 1000 400 150 .6Vermont $$ $30-0.6$ $3:1$ 1000 400 150 .6Virginia $$ $30-40$ $0.8-2.0$ 100 400 150 .8 $3:1$ Wisconsin 250 32 1.0 $4:1$ 400 400 $30-40$ 8 $3:1$ 1000 150 .8 $3:1$ Utah400 400 $30-40$ 8 $3:1$ 1000 150 .8 $3:1$ Usiconsin 250 <td>New Hampshire</td> <td>950</td> <td></td> <td></td> <td>97 40</td> <td>.0</td> <td>4.1</td> <td></td> <td>v</td> <td></td> <td>100</td> <td></td> <td>J. 1</td>	New Hampshire	950			97 40	.0	4.1		v		100		J. 1	
New Mexico 400 40 1.27 $2.7;1$ N. Carolina 400 35 $.68$ $3-4:1$ 1000 $120-140$ $.68$ $3-4:1$ N, Dakota 700 250 $40-50$ $.68$ $3-4:1$ 1000 $120-140$ $.68$ $3-4:1$ Ohio 400 34.2 $.6$ $4:1$ 1000 150 $.6$ $4:1$ Oklahoma 400 34.2 $.6$ $4:1$ 1000 150 $.6$ $4:1$ Oregon 400 50 $.6-2.0$ $2-4:1$ 1000 400 $80-150$ $.6-1.25$ $3:1$ Pennsylvania 400 50 $.6-2.0$ $2-4:1$ 1000 100 $.8$ $4:1$ Rhode Island 400 30 $.8$ $3:1$ 1000 $100+$ $.6$ $3:1$ S. Carolina 400 30 $.6$ $4:1$ 1000 $100+$ $.6$ $3:1$ S. Carolina 400 400 $40-60$ $.5-1$ $3:1$ 1000 $100+$ $.6$ $3:1$ Tennessee 400 400 $40-60$ $.5-2.0$ 1000 400 150 $.5$ $.5$ Virginia $$ 30 $0.6-2.0$ $.2$ $.5:1$ $.5$	New Jersey	400			21-10	T	ч. 1							
New NetWord N. Carolina 100040035.68 $3-4:1$ 1000120-140.68 $3-4:1$ N. Carolina 100040034.2.64:11000120-140.68 $3-4:1$ Ohio Oklahoma40034.2.64:11000150.64:1Oklahoma 100040050.64:11000150.64:1Oregon 100040050.6-2.02-4:1100040080-150.6-1.253:1Pennsylvania Node Island S. Carolina S. Carolina 40030.83:11000100+.63:1S. Dakota Vermont $$ 40030.64:11000100+.63:1Texas Vermont $$ 300.6-0.84:11000100+.63:1Virginia 40040030-40.82:11000400150.Wisconsin 400250.84:1.63:1Wisconsin 400250.83:11000150Wyoming 40030.6.83:11000150Wisconsin 40040030-40.83:11000150Wyoming 40030-40.83:11000150Using 40030-4	Now Movico	400		N	40	1 97	9 7.1							
N. Dakota40025040-50.68 $3 - 4:1$ 1000120-140.68 $3 - 4:1$ N. Dakota100040034.2.6 $4:1$ 1000150.6 $4:1$ Oklahoma40034.2.6 $4:1$ 1000150.6 $4:1$ Oklahoma40050.6 - 2.0 $2 - 4:1$ 1000150.6 $4:1$ Oregon40050.6 - 2.0 $2 - 4:1$ 1000400 $80 - 150$.6 - 1.25 $3:1$ Pennsylvania40030 - 35.8 $4:1$ 1000100.8 $4:1$ S. Carolina40030.6 $4:1$ 1000100+.6 $3:1$ S. Dakota40030.6 $3:1$ 1000100+.6 $3:1$ Tennessee400350.6 $3:1$ 1000400 150 .6Vermont $$ 300.6-0.8 $4:1$ 1000 400 150 .6Washington700400.6 $2.5:1$.6 $4:1$.6 $3:1$ Washington700 400 $30-40$ 1.6 $3:1$ 1000 150 .8 $3:1$ Wyoming400 $30-40$.8 $3:1$ 1000 150 .8 $3:1$ District of700 700 700 700 150 .8 $3:1$	New Mexico	400		,	35	6- 8	3-4-1							
N. Dakka100200300 10^{-10}	N. Dakota	700		250	40-50	6- 8	3-4.1		1000		120-140	6- 8	3-4.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N. Dakota	1000		400	10-00	.00	0.1.1		1000		120 110	.00	0-1.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ohio	400		100	34 9	6	4.1							
Oktational1000100100100100100100111000000050 $6-2.0$ $2-4:1$ 1000400 $80-150$ $.6-1.25$ $3:1$ 00001000100 8 $4:1$ 1000100 $.8$ $4:1$ Pennsylvania400 30 $.8$ $3:1$ 1000100+ $.6$ $3:1$ Rhode Island400 30 $.6$ $4:1$ 1000 $100+$ $.6$ $3:1$ S. Carolina400 30 $.6$ $4:1$ 1000 $100+$ $.6$ $3:1$ Tennessee400 35 0.6 $3:1$ 1000 400 150 Utah 400 400 $35-40$ $0.8-2.0$ 1000 400 150 Vermont $$ 30 $0.6-0.8$ $4:1$ 400 400 $35-40$ $0.8-2.0$ Washington 700 40 0.6 $2.5:1$ 1000 400 150 Wisconsin 250 32 1.0 $4:1$ 400 Wyoming 400 $30-40$ $.8$ $3:1$ 1000 150 $.8$ $3:1$ District of $Columbia$ 400 400 $30-40$ $1-8$ $3:1$ 1000 150 $.8$ $3:1$	Oklahoma	400			40-50	.0	4.1		1000		150	6	4.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Onialionia	1000			10-00	.0	A. 1		1000		100	.0	4.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oregon	400			50	6-2.0	2-4-1		1000	400	80-150	6-1 25	3.1	
1000Pennsylvania400 $30 \cdot 35$ $.8$ $4:1$ 1000 100 $.8$ $4:1$ Rhode Island400 30 $.8$ $3:1$ 1000 $100+$ $.6$ $3:1$ S. Carolina400 30 $.6$ $4:1$ 1000 $100+$ $.6$ $3:1$ S. Dakota400 400 $40-60$ $.5-1$ $3:1$ 1000 $100+$ $.6$ $3:1$ Tennessee 400 35 0.6 $3:1$ 1000 400 150 1200 Utah 400 400 $55-40$ $0.8-2.0$ 1000 400 150 1200 Varmont $$ 30 $0.6-0.8$ $4:1$ 1000 150 150 Virginia $$ 30 0.6 $2.5:1$ $30-40$ 1.0 $4:1$ Washington 700 $30-40$ $.8$ $3:1$ 1000 150 $.8$ $3:1$ Wyoming 400 $30-40$ $.8$ $3:1$ 1000 150 $.8$ $3:1$ District of Columbia 400 400 $30-40$ $1-8$ $3:1$ 1000 150 $.8$ $3:1$	Orogon	700			00	10 110			1000	100	00 100	.0-1.20	0.1	
Pennsylvania400 700 $30-35$.84:11000100.84:1Rhode Island40030.83:11000100+.63:1S. Carolina40030.64:1.83:11000100+.63:1S. Dakota40040040-60.5-13:1.83:11000100+.63:1Tenaessee400350.63:1.8		1000												
700 700 700 700 100 100 100 100 100 110 Rhode Island 400 30 $.6$ $4:1$ 1000 $100+$ $.6$ $3:1$ S. Carolina 400 400 30 $.6$ $4:1$ 1000 $100+$ $.6$ $3:1$ S. Dakota 400 400 400 $55-1$ $3:1$ 1000 $100+$ $.6$ $3:1$ Tennessee 400 35 0.6 $3:1$ 1000 400 150 Utah 400 400 $35-40$ $0.8-2.0$ 1000 400 150 Utah 400 400 $35-40$ $0.8-2.0$ 1000 400 150 Vermont $$ 30 $0.6-0.8$ $4:1$ 300 0.8 $4:1$ Washington 700 40 0.6 $2.5:1$ $30-40$ 1.0 $4:1$ 700 $30-40$ $.8$ $3:1$ 1000 150 $.8$ $3:1$ Wyoming 400 $30-40$ $.8$ $3:1$ 1000 150 $.8$ $3:1$ District of Columbia 400 400 $30-40$ $1-8$ $3:1$ 1000 150 $.8$ $3:1$	Pennsylvania	400			30-35	.8	4.1		1000		100	8	4.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 child j 2 v diffed	700			00 00				1000		100	.0	1.1	
S. Carolina40030.64:11001001001.00.1S. Dakota400400400 $5-1$ $3:1$ 1000400 150 1000Texas1000400501000400 150 1000100Texas1000400 $35-40$ $0.8-2.0$ 1000400 150 Vermont $$ 30 $0.6-0.8$ $4:1$ Virginia $$ 30 0.6 $2.5:1$ Washington70040 0.6 $2.5:1$ Wisconsin 250 32 1.0 $4:1$ 400 $30-40$ $.8$ $3:1$ 1000 150 Wyoming 400 $30-40$ $.8$ $3:1$ 1000 150 District of Columbia 400 400 $30-40$ $1-8$ $3:1$	Rhode Island	400			30	.8	3.1		1000		100+	6	3.1	
S. Dakota 400 400 40-60 .5-1 3:1 Tennessee 400 35 0.6 3:1 Texas 1000 400 50 1000 400 150 Utah 400 400 35-40 0.8-2.0 Vermont $$ 30 0.6-0.8 4:1 Virginia $$ 30 0.8 4:1 Washington 700 40 0.6 2.5:1 W. Virginia 400 30-40 1.0 4:1 Wisconsin 250 32 1.0 4:1 Wyoming 400 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 400 30-40 1-8 3:1	S. Carolina	400			30	6	4.1		1000		1001	.0	0.1	
Tennessee400350.63.1Texas1000400501000400150Utah40040035-400.8-2.0400150Vermont $$ 300.6-0.84:1Virginia $$ 300.62.5:1W. Virginia40030-401.04:1700700304:1Wisconsin250321.04:170070030-40.83:11000150.8Wisconsin250321.04:170070030-40.83:11000150.83:1District of Columbia40040030-401-83:11000150.83:1	S. Dakota	400		400	40-60	.5-1	3.1							
Texas1000400501000400150Utah40040035-40 $0.8-2.0$ 1000400150Vermont $$ 30 $0.6-0.8$ 4:1Virginia $$ 30 0.6 2.5:1Washington70040 0.6 2.5:1Wisconsin25032 1.0 4:140040030-40 8 $3:1$ Wyoming400 $30-40$ $.8$ $3:1$ 1000District of Columbia400400 $30-40$ $1-8$ $3:1$	Tennessee	400			35	0.6	3.1							
Utah 400 400 35-40 0.8-2.0 100 100 Vermont $$ 30 0.6-0.8 4:1 Virginia $$ 30 0.8 4:1 Washington 700 40 0.6 2.5:1 W. Virginia 400 30-40 1.0 4:1 700 700 700 700 700 Wisconsin 250 32 1.0 4:1 400 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 400 30-40 1-8 3:1 1000 150 .8 3:1	Texas	1000		400	50			1000		400	150			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Utah	400		400	35-40	0.8 - 2.0				100	100			
Virginia $$ 30 0.8 4:1 Washington 700 40 0.6 2.5:1 W. Virginia 400 30-40 1.0 4:1 700 700 700 700 Wisconsin 250 32 1.0 4:1 400 700 700 700 District of 700 30-40 1-8 3:1	Vermont	N			30	0.6-0.8	4:1							
Washington 700 40 0.6 2.5:1 W. Virginia 400 30-40 1.0 4:1 700 32 1.0 4:1 400 30-40 .8 3:1 1000 150 .8 3:1 Wyoming 400 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 30-40 1-8 3:1 1000 150 .8 3:1	Virginia	\checkmark			30	0.8	4:1							
W. Virginia 400 30-40 1.0 4:1 700 700 32 1.0 4:1 Wisconsin 250 32 1.0 4:1 400 30-40 .8 3:1 1000 150 .8 3:1 Wyoming 400 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 400 30-40 1-8 3:1	Washington	700			40	0.6	2.5:1							
700 700 Wisconsin 250 400 30-40 .8 31 1000 1000 11000 <	W. Virginia	400			30-40	1.0	4.1							
Wisconsin 250 400 32 1.0 4:1 Wyoming 400 700 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 400 30-40 1-8 3:1 1000 150 .8 3:1	J. J	700												
400 Wyoming 400 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 400 30-40 1-8 3:1	Wisconsin	250			32	1.0	4:1							
Wyoming 400 30-40 .8 3:1 1000 150 .8 3:1 District of Columbia 400 400 30-40 1-8 3:1	242	400			2-95 ⁵⁰									
700 District of Columbia 400 400 30-40 1-8 3:1	Wyoming	400			30-40	.8	3:1	1000			150	.8	3.1	
District of Columbia 400 400 30-40 1-8 3:1		700				1992							0,1	
Columbia 400 400 30-40 1-8 3:1	District of													
	Columbia	400		400	30-40	1-8	3:1							

^aAvg. init. fc.

		Question 2-Future Hwy. Lighting						tion 3a- Lighting	-Present g	Question 3b—Future Sign Lighting		
State	Voltage	MV	Met. H	Fluor	HPS	LPS	MV	Fluor	Met. H	MV	Fluor	Met. H
Alabama	С	3	4	-	1	2	\checkmark			\checkmark		
Alaska	С	3	2	4	1	5	-	,		-ª	-	-*
Arizona	С	1	2	5	3	4		N			N,	
Arkansas	A, C	1	2	-	3	-		N		1	V	
California	A, C	1	3	-	2	-		N		N		
Colorado	С	1	1	-	2	-	1	N		N,		
Connecticut	С	1	3	5	2	4	N			N,		
Delaware	С	3	2	-	1	-	V	1		N,		
Florida	С	-	-	-	1	-	1	V		N,		
Georgia	A, C	1	2	- E	3	-	N	1		N,		
Hawaii	A, C, D	1	3	5	2	4		N,		N,		
Idaho	С	2	-	0	1	-	1	V		V		6
Illinois	С	2	3	5	1	4	N,			-		-
Indiana	С	2	-	-	1	?	V			N		
Iowa	A	2	3	1	1	-	-	1		N		
Kansas	C	1	2	4	3	5		N		V	.1	
Kentucky	C	2	3	5	1	4	.1	V			N	.1
Louisiana	C	2	1	4	3	5	N			./		V
Maine	B, C	1	Z		3	-	N			Y		
Maryland	D	4	3		1		·V.	1		V	.1	
Michigan	A, C	1	2	3	4	-		N.		.1	N	
Minnesota	C	2	3	0	1	4	./	Y		N		
Mississippi		4	-	1.77	1	-	N.			1		
Missouri		1	-	-	0	-	1			.V		
Montana	A	1	3	-	2	-	Y			-		
Nepraska		1	0	9	2	4	.A.	1			al	
Nevada New Hownshine	A, C	1	3		2	-	1	.^		1	v	
New Langer	A	4	1	-	0	-	N.			N.		
New Jersey	D	1	2		3	-	·V	al		N		20
New Mexico	C	4	0	.4.	1	-		1			al	•
N. Carolina		1	2	÷	0	-		N		al	·V	
Ohio	A, C	1	5	-	1	2		N		1		
Ohlohama	C F	4	2		1 2	3		N.		N		
Orianoma		2	4	9	9	**		N		V		N
Dependentio	A, C	0	3	5	1	-	N	·V		al		V
Pennsylvania Phodo Jelond	C D	1	3	0	1	T	v	N		1		
Carolina	C, D	1	-	-	2	-		Å		1		
S. Carolina	č	5	2	5	-	4		V		J		
Toppossoo	ÅC	1	2	5	2	1		N		Ň		
Toyog	A, C	3	-	5	2	1		N		1		
litah	AC	2	4	5	1	3		a				
Vermont	A, C	1	-		1	2	-	N.	-			
Virginia	D	2		2	1	v		1				
Washington	F	1	9	0		2°		N		al		
W Virginia	BCD	2	3	1	1	5		N		N		
Wiecongin	D, C, D F	2	J		1	2		N		N		
Wisconsin	0	1	-		2	2	1	v		1		
District of	C	T	-		6	-	v			v		
Columbia	в			-	1	-				V	V	

Note: A = 120/240, B = 120/208, C = 240/480, D = 277/480, E = 480, \bigcirc = in house staff (unspecified) or other, O.C. = outside city limits, I. "HPS. ^bExcept for luminaires and lamps. ^c4th choice—tin. chloride molecular ARC lamp.

					Question 5-Owns Hwy. Lighting Sys.						
Quest	ion 4-Hy	wy. Lighti	ng Desigi	1	Other			Inter.			
Illum Engr.	. Elect. Engr.	Traffic Engr.	Con- sultant	Utility Co.	State	Co. or Munic.	Util. Co.	State	Co. or Munic.	Util. Co.	State
	\checkmark	N.	\checkmark		N			N			Alabama
		Ň			V			V			Arizona
		N.							N.		Arkansas
0		V			N,			1	\checkmark		California
\bigotimes	1	1			N,			V			Colorado
	N	N	.1		N,			Y	.1	.1	Connecticut
al	V	N	N		N			N	V	V	Delaware
à	1		16		N			3			Florida
U	v	1	N		1			1			Georgia
		N	•		N.			1	V		Idaho
	N				Ň			1	V		Illinois
~	V		\checkmark		V			1			Indiana
$\langle \mathcal{Q} \rangle$					N.			N			Iowa
\checkmark	N,	N,	4					N.			Kansas
	N,	V	V		N,			N,			Kentucky
	N				N,			N			Louisiana
	N		./	.1	N			J	./	.1	Maine
	N		N	V	Ň			V	V	V	Maryland
	Y	N	·V		N.			J			Michigan
	V	v			N			N			Minesota
	V				J.			Ň			Missouri
- (V				Ň			V			Montana
\mathbf{Q}	1						V			V	Nebraska
0	1				\checkmark			-	-	7	Nevada
Θ	-7				4		V			\checkmark	New Hampshire
	\checkmark	1	\checkmark		N,			\checkmark	1	1	New Jersey
1		√,	1		N,			1	\checkmark	\checkmark	New Mexico
N		N,	\sim		N			N			N. Carolina
./	.1	V	1		V			N.			N; Dakota
ക	V		N	.1	0.C.	I.C.		Y			Ohio
Y			·V	Y	N			N.	N		Oregon
Y	V		N		J.			v	N.		Dennevlvania
		V	V		Ň		N	V		\checkmark	Rhode Island
			V		V			V			S. Carolina
		V.			-						S. Dakota
0	\checkmark	\checkmark				1		,		V	Tennessee
(\mathcal{D})	1				N,	\checkmark			N,	1	Texas
	\checkmark	1			N			.1	N	V	Utah
		N	.1		N			V	N	.1	Vermont
	V	Y	N		N			al		N	Virginia
		N	1		N.			N			W Winginio
	N	N.	.A.		N			N	V		Wigcongin
	V	×.			J.			Ň,	*		Wyoming
	,										District of
	V		V		O.C.			O.C.			Columbia

C. = inside city limits.

.

÷

	Questio	n 6-Co	st									
	Installa	tion (%)			Energy	(%)			Maintenance (%)			
	Inter.		Other		Inter.		Other		Inter.		Other	
State	Co. or Munic.	State	Co. or Munic.	State	Co. or Munic.	State	Co. or Munic.	State	Co. or Munic.	State	Co. or Munic.	State
Alabama	0	100	50	50	100	0	100	0	100	0	100	0
Alaska	0	100	(100		100	100			100	100	
Arizona	0	100	50	50		100	100			100	100	
Arkansas	0	100	100		100		100		100		100	
California	0	100	50	50		100	50	50		100	50	50
Colorado	0	100		100	100		100			100		100
Connecticut	0	100		100		100		100		100		100
Dolawaro	õ	100		100		100		100		100		100
Florido	õ	100		100		100	100	100		100	100	100
Coordia	0	100		100		100	100			100	100	
Georgia	0	100		100		100	100	100		100	100	100
Tawan	0	100		100		100	100	100		100	100	100
	0	100		100		100	100			100	100	
IIIInois Indiana	0	100	100	100	100	100	100		100	100	100	
Indiana	0	100	100	100	100	100	100	100	100	100	100	100
lowa	0	100		100	100	100		100	100	100		100
		100		100	1.C.	0.0.	100		I.C.	0.0.	~~	
Kansas	0	100		100		100	100			100	80	20
Kentucky	0	100		100		100		100		100		100
Louisiana	0	100	100		100		100		100		100	
Maine	0	100		100 ^a		100	100		100			100
Maryland	0	100		100		100		100		100		100
Michigan	0	100		0		100		0		100		0
Minnesota	0	100	25	75	2	98	50	50	2	98	50	50
Mississippi	0	100		100		100		100		100		00
Missouri	10	90	50	50	100		100		100		100	
Montana	0	100		100		100		100		100		100
Nebraska	5-0	95-100)	50-100		100		100		100		100
Nevada	0	100		100		100	100			100	100	
New Hampshire	0	100		100	1	99	5	95	1	99	5	95
New Jersey	0	100		100		100		100		100		100
New Mexico	0	100	50	50	100		100		100		100	
N. Carolina	0	100		100		100		100		100		100
N. Dakota	0	100	25	75		100	100			100	100	
Ohio	5	95	50	50		100	100	100		100	100	100
							I.C.	O.C.				O.C.
Oklahoma	10	90	50	50	100		100		100		100	
Oregon	0	100	S	S		100	S	S		100	S	S
Pennsylvania	0	100		100		100	50	50		100	50	50
Rhode Island										100		
S. Carolina	0	100		100	100			100	100			100
8 Dakota	ō	100	100-0	0-100	100	100	100	100	100	100	100	100
pr zrazota	Ŭ	100	100 0	0 100	IC	0.0	ĨC	0.0	IC	0 C	IC	0.0
Tonnessoo	٥	100	100		100	0.0.	100	0.0.	100	0.0.	1.00	0.0.
Tennessee	5	05	50	50	50	50	50	50	50	50	50	50
Itab	0	100	25	75	50	100	100	50	50	100	100	50
Vormont	0	100	50	50		100	100	100		100	100	100
Vermont	0	100	00	100		100		100		100		100
virginia	0	100		100		100		100		100		100
washington	0	100	FA	100		100	100	100		100		100
w. Virginia	0	100	90	50		100	100			100		100
Wisconsin	0	100	-	-		100	-	-		100	-	-
Wyoming	0	100	100			100	100			100	100	
District of	NT 4			37.4	37 A	BT A		37.4				
Columbia	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: B.O. = at burn out, I.C. = inside corp. (city) limits, O.C. = outside corp. (city) limits, S = special-see questionaire, N = no scheduled cleaning, *Except luminaires and lamps. b4 yrs. MV, 3 yrs. HPS. c4 yrs. MV, 1.5 yrs. MH.

Questi Respo	Question 7a-Maintenance Responsibility, Interstate				ion 7b—M nsibility,	aintenance Non-Inter	e rstate	Question 8a—	
State	County	Munici- pality	Utility Co.	State	County	Munici- pality	Utility Co.	Cleaned (Yr.)	State
√ √ √		1		~~ ~~	1	~~~~	V	3 N 1 N 2 N	Alabama Alaska Arizona Arkansas California Colorado
LLLLL		\checkmark	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	イン	インシン	~	1 N 2 1.5 B.O. 1	Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)	く く く く く	$\sqrt{1}$	× × × × × × ×	\checkmark	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-4 1 N 4 4 1 1 B.O. .5 2 1 2 - 3 - N 2 1	lowa Kansas Kentucky Louisiana Maine Maryland Michigan Minesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico N. Carolina N. Dakota Ohio
インシン	\checkmark	√ √	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	$\sqrt{2}$	- 0 2 4 - 2-4	Oklahoma Oregon Pennsylvania Rhode Island S. Carolina S. Dakota
~ ~~~~		\checkmark	イ ノ	~ ~~~	\checkmark	ک ک ک		-* N 1.6 N 1 2.5 B.O.	Tennessee Texas Utah Vermont Virginia Washington W. Virginia
√ √ 0.C.			\checkmark	√ √ 0.c.			\checkmark	4 3 1	Wisconsin Wyoming District of Columbia

NA = not applicable.

×.

×.

-				Questio	n 9—Hwy	. Lighting	Based Or	1	Question	Question 12-High Mast Lighting			
	Quest narie	ion 8b—L s Relampe	umi- ed (Yr.)	Avg. Maint. Horiz.	Avg. Maint. Vert.	Uni- formity	Lumi-		Energy Cost per			Height	Туре
State	MV	Met. H	HPS	fc	fc	Ratio	nance	Glare	KWH (¢)	Tower	Pole	(ft.)	Lamp
Alabama	3	-	N	1	and the second second	N,			1		V	90-120	HPS
Alaska	N	N	N	N,		\checkmark			5-17		1		
Arizona	-	-	-	Y		.1			-	.1	\checkmark	100	MH
Arkansas	N	N	N	Y					-	V	.1	100-150	UDC
Colorado	N	N	N	1		V			5		N	100-120	MH
Connecticut	3	_	-	1		V			2.4		Ń	100 100	MH
Delaware	5	-	-	1					2.1		N.	160	MH
Florida	-	-	-	1.					1.7		N,	100	MH
Georgia	4	-	-	1		N,			1.5		\checkmark	100-120	MH
Hawaii	B.O.	-	-	V		N		J	1.5				
Idano	B.O.	- 1_9	B.U.	1		N.		V	3		N	110	MH
Indiana	2		1	J.		N.			1.35		¥	110	TATT
Iowa	4	1.5	-	V.		V			1.5		N.	140	MH
Kansas	4	1.5	-	N,	\checkmark	N,	\checkmark		2		\checkmark	100	MH
Kentucky	Ν	N	N	N		N,			2		1		
Louisiana	4	N	N	N		N			2		V	120	MH
Maine	4	-	-	V		N			2.95		~	00 115	BALL
Maryland	4	-	2			2		1	3.2		1	80-110	MH
Minnesota	-	2	-	V		,		J	2.3		1	100-140	MH
Mississippi	в.о.	в.о.	в.о.	\checkmark		V.			1.87		\checkmark	100	HPS
Missouri	5.25	-	-	1		N			1				
Montana	4	-	2	N		N			1.716		1		-
Nebraska	3	-	-	N		N			1.5-2.5		N	100-140	H
Nevada Non Homoshiro	4	1.5	-	N.		N.			1-4 6 895°		'A	100 80_100	MIL
New Jersev	3	1.5		V		Ň			2.8-4.24			100	MH
New Mexico	-	-	-	V		V.			-		V	120	MH
N. Carolina	-		-	V					2		\checkmark	100-120	MV
				1		1				1			MH
N. Dakota	4	-	-	V		N			2.9	V	./	140	MV
Okluhoma	4	4	÷.	1		N			2.2		V	80-120	MH
Oregon	B.O.	B.O.	B.O.	N.		V			1		V	80-150	HPS
er obou	2.0.	2.01	2.0.			-			10		-		MH
Pennsylvania	4	1.5-2	B. O	V		N	- Î		2.2		N,	100	MH
Rhode Island	4		-	N,	\checkmark	\checkmark	\checkmark		2.5		\checkmark	120-135	MH
S. Carolina	-	-	-	N		./		Al-	1.5	.1	./	00 150	NALL
S. Dakota	9	4.4	-	.V		·V		Y	2	'V	.4	80-190	MV
Tennessee	4	-	3	V		N			1.36			100	IVI V
Texas	N	N	N			V	\checkmark	\checkmark	1-2	\checkmark	V	100-150	MV
Utah	-	-	1.6	N,					1.75				
Vermont	N	N	N	\checkmark		N,			-				
Virginia	5.5	-	-	.1		\checkmark			1		.1	100	
Washington	5	25	2	N		1			1.2		N	103	MH
w. wirdning	в.0.	ь.0,	ь.0.	¥.		A			1.9-2.1		V	20-140	MH
Wisconsin	4	-	-				\checkmark		1.25-2.5			100-150	HPS
Wyoming	3		-	\checkmark					2		\checkmark	150	MH
District of				1		1							
Columbia	3	-	2	N		\sim			1.5				

Note: B.O. = at burn out, N = no scheduled relamping.

^eAvg. init. fc. ^bNo significant no. of unyielding poles in use.

^cIncludes maintenance, lamps, luminaires, poles, wiring, etc. ^dNo. breakaway poles have been used exc

							Question	Question	
Lamp Watt - age	Max. CP Angle	Lumi- naires per Tower	Avg. Tower Spacing	Avg. Initial fc	Uni- formity Ratio	No. Installa- tions	14a– New Ltg Frangible Base	14b Replace w/Frangible Base	State
400	67	8-10	400	1.0	2:1	4	Yes	No	Alabama
							Yes	Yes	Alaska
1000	45		600			3	Yes	Yes	Arizona
1000		6-10		.2		1	Yes	Yes	Arkansas
400	70	8	500	1	4:1	1	Yes	Yes	California
1000	63	6-8	700	1.0	3:1	2	Yes	Yes	Colorado
1000		4	500			1	Yes	Yes	Connecticut
1000	75	16	750	1.2	2.5:1	1	Yes	-°	Delaware
1000	60	6	600-650	.3	2:1	3	Yes	Yes	Florida
1000	55	6	500-600	1.43	3;1	4	Yes	Yes	Georgia
						0	Yes	Yes	Hawaii
					Territory and	-	Yes	Yes	Idaho
1000	60	2.6	400	.5	2.5:1	3	Yes	Yes	Illinois
						_	Yes	No	Indiana
1000	65	8	700	.3	3:1	5	Yes	No	Iowa
1000	62	6	600	.46	3:1	9	Yes	Yes	Kansas
							Yes	Yes	Kentucky
1000		8	500	1.0	3:1	1	Yes	No	Louisiana
			400	1.05		0	Yes	No	Maine
1000	68	3-8	400	1.05	3.4:1	00	Yes	Yes	Maryland
1000	80	8 max.	600	. 2 mm.	-	69	Yes	Yes	Michigan
1000	63	6-10	600	1.0	6:1	5	Yes	Yes	Minnesota
400	63	6-7	486	1.3	3.6:1	1	Yes	Yes	Mississippi
						0	Yes	Yes	Missouri
1000		0 10	E00 000	1019	0.1	0	Yes	Yes	Montana
1000	5	6-10	500-600	1.0-1.3	3:1	20	NO	Yea	Nebraska
1000	00	0 0	400	1.04	3:1	4	Veg	No	Nevada New Herenchine
1000	68	2-0	500	1.04	2.93:1	1	ies		New Hampshire
1000	50	0	400	1.49	2 0.1	2	Vec	No	New Jersey
1000	09	6 0	175	6 9	2.5.1 4.1	40	Voc	No	New mexico
1000	15	0-0	475	.00	1.1	40	100	110	N. Calonna
1000		7 10	700	6	4.1	2	Voe	No	N. Dokoto
1000	65	1-10	400	12	3.1	3	Ves	Ves	Ohio
1000	63	6	600	1.2	4.1	1	Ves	Yes	Oklahoma
400	63	2-8	000	1-2	3.1	8	Ves	Ves	Oregon
1000	00	20		1 4	0.1	0	100	100	Oregon
1000	60	3-6	350	1.6	3.5.1	3	Yes	Yes	Dennsylvania
1000	72	6	700	.835	3:1	6	Yes	Yes	Rhode Island
1000	14	U	100	.000	0.1	õ	No	No	S Carolina
1000	65-85	10		.8-1.2 ^r	6:1	7	Yes	No	S. Dakota
1000	00 00				3.6.1				or Durotu
1000	62.5	6	600	0.6	4:1	1	Yes	Yes	Tennessee
1000	45	6-15	600			31	Yes	_6	Texas
1000	-0	0 10					No	No	Utah
						0	Yes	h	Vermont
						0	Yes	No	Virginia
1000	64	3	400	1.5-1.6	3:1	3	Yes	Yes	Washington
400		4-8		.8-1.1	4:1	8	No	No	W. Virginia
1000									
1000		3-6	5-600	1.5	2.5:1	1	Yes	Yes	Wisconsin
1000	70	8	550	3.5	3:1	1	Yes	Yes	Wyoming
									District of
						0	Yes	Yes	Columbia

.

•

lusively since 1949. ^eInit. horiz. fc. ^fAvg. maint. fc .8-1.2. ^gCompleted. ^hNo such poles are owned by utility.

Section III

NARRATIVE RESPONSES TO QUESTIONS 10, 13, 15, 16

FIXED HIGHWAY LIGHTING QUESTIONNAIRE

QUESTION 10

How do you take glare into consideration in your highway lighting designs?

- Alabama - By selection of luminaire distribution and mounting height.
- Restrict usage to IES type III Medium semi-cutoff distribution Alaska with minimum 30' mounting height.
- By placement of poles in relation to Geometrics so as to restrict Arizona blare to a minimum. Also through the use of shields.
- Arkansas - Glare is not considered quantitatively; however, we rely upon experience to avoid any undesirable situations regarding the problem.
- California We use glare shields in dark areas.
- Colorado - Use higher mounting height.
- Glare is considered during design by luminaire selection which is Connecticut dictated by the classification of luminaire light distributions.
- Most designs aim at minimization of direct glare affecting drivers. Delaware In high level systems being planned, an attempt is made to minimize glare for adjacent residences also.
- Florida
- By increasing mounting height.
- Higher mounting heights help prevent glare. Also, do not use Georgia long-non-cutoff distribution.
- No particular consideration except that 30 ft. mounting height is Ilawaii used for 250 watt and 400 watt mercury vapor lights and up to 45' mounting height is used for 700 watt and 1000 watt luminaires.
- Idaho - General type considerations only.
- Height and Vertical Light Control. Illinois -
- Indiana - Rule of Thumb Mounting Height.
- By using cutoff or semi-cutoff luminaires with either short or Iowa median distribution.
- Decrease the light intensity on approach to lighting project. Kansas (Necessary on 30' mounting height) 40" MTGH and 400 watt mercuryvapor glare is no noticeable problem.
- No Kentucky
- The luminaire is placed over edge of pavement to reduce glare. Louisiana
- Using higher mounting heights. Remove luminaire from direct line Maine of sight, e.g. locate luminaire off travelled way.

Question 10, cont'd.

- <u>Maryland</u> In low level lighting by shielding the luminaire(s) and/or by increasing height of the pole(s).
- <u>Michigan</u> Cut off distribution, cut off angle, mounting height and offset distance from edge of pavement.
- <u>Minnesota</u> Vertical F.C. are thought to be important in visibility, therefore a compromise in cutoff is necessary. If 5:1 spacings are not exceeded, units with better cutoff are sought.
- <u>Mississippi</u> In the specifications for highway luminaires and their placement along the roadways.
- <u>Missouri</u> Experience indicates that the 45 foot mounting height with 700w Mercury Vapor has produced satisfactory illumination without glare.
- <u>Montana</u> We do not normally consider glare in design. If it appears as a problem we install glare shields. We have gone to 40 feet and over mounting heights to help reduce glare.
- <u>Nebraska</u> By careful choice of most appropriate mounting heights and proper lamp sizes; also by using cutoff and semi-cutoff fixtures and by limiting angle of maximum candlepower on high mast fixtures.
- Nevada The glare is controlled by mounting height and IES type distribution.

<u>New Hampshire</u> By using as high a mounting height as practicable and by using semi-cutoff fixtures.

- <u>New Jersey</u> Luminaires and new design standards are field tested before being adopted for field use. No field measurements are taken unless from observation it appears that glare is objectionable.
- <u>New Mexico</u> Have found a semi-cutoff fixture satisfactory. Use a 40' or higher mounting height.

North

Carolina - Glare is considered in layout although not a quantitative approach.

North Dakota - Try not to install standards in locations where this may present a problem. Use 50' mounting heights.

<u>Ohio</u> - By use of medium cutoff distributions as well as specified minimum mounting heights based on lamp size.

Oklahoma - Fixture selection.

<u>Oregon</u> - Placement of light sources as far from the driver's line of vision as possible.

<u>Pennsylvania</u> By proper selection of vertical light distribution consistent with mounting height.

Question 10, cont'd.

Rhode Island-	By	raising	light	sourc	e or	by	sett	ing	lights	farther	back	from
	the	road.	(There	are	many	way	s to	cut	down	glare.)		

South

Carolina - Vertical height of fixtures.

- South Dakota-We try to keep the mounting heights as high as practical and use only luminaires having a cutoff giving a max beam angle of approximately 65 degrees.
- <u>Tennessee</u> Avoid situations where it might present a problem and install glare shields where it is a problem.
- <u>Texas</u> We strive to reduce glare to a nominal amount by increased mounting heights and careful placement of luminaires in relation to movement of traffic.
- <u>Utah</u> At mounting heights of 40 to 45 feet, glare is not considered to be a problem. In exceptional cases, luminaires are shrouded.

Vermont - Consideration given to luminaire size, location and mounting height.

Virginia - Mounting height.

Washington - Selected locations are treated with glare shields.

West

- <u>Virginia</u> Yes, usually with higher mounting heights, shields, short distribution.
- <u>Wisconsin</u> Using semi-cutoff and cutoff luminaires and increasing mounting heights.
- Wyoming Smaller wattage lamp and higher mounting heights.

District of

Columbia - Maintaining adequate mounting heights for each type of luminaire.

QUESTION 13

a.) If you have recently completed or are now completing any new lighting installations incorporating novel or experimental features, please describe.

b.) If there is written material available from your office regarding this installation, please indicate how copies may be obtained.

Alabama - None

Question 13, cont'd:

Alaska

- a.) Just completed rail-light project on major structure. Roadway is 32' wide with sidewalk on one side. Rail-light is opposite sidewalk and extends down the approach roadway which is on fill. Also, we are installing our first overhead illuminated sign utilizing HPS for an illumination source.

b.) N.A.

Colorado None

- a.) Georgia None
 - b.) None
- Hawaii a.) None
 - b.) None
- Illinois - a.) Attached a reprint concerning low pressure sodium installation in Chicago area.
- a.) A 15.5 mile system on I-80 from the Illinois State line to Indiana the toll road interchange. 3-12' lanes each way, 36' median, 11 interchanges, 800 units 400 watt high pressure sodium, 150 sign lighting units, 175 watt mercury vapor deluxe white, 45' mounting height, 10' from traveled road edge, 0.9 ftc maintained, 70% factor (maintenance), 3/1 uniformity.

- a.) No Iowa

Kansas

- a.) 50' mounting height in the median using 1,000 watt mercury and 400 watt metal halide.
 - b.) None to date.
- Louisiana - a.) No
 - ъ.) No
- Maine - None

Maryland

- a.) We recognize that others are doing likewise, however, we are currently in process of installing 350 high mast lighting poles (90' - 115') on a 33 mile Interstate Route. Also, a quantity of inrail eye-level lighting has been placed atop the median parapet within a two mile bridge.

> b.) There are only Contract Drawings and Special Provisions available which may be obtained through this office.

- <u>Michigan</u> a.) We have recently completed high level tower lighting for a four level interchange north of Detroit. This is the first of a number of installations of this type of lighting.
- <u>Minnesota</u> a.) 7-mile median mounted 400 watt HPS using Holophane 1100 series - Type I Refractor - with 8-inch light center setting. 240-270' pole spacings. 50 foot Mounting Height. Twin units -12 feet back to back.

b.) To be completed by late 1973. Anticipate:
1.6 initial average intensity
3:1 uniformity ave/min
260' x 52
6:1 max./min.
Design area
0.6 min @ Hur-230', T=52'
glare acceptable

- Mississippi a.) None
- <u>Missouri</u> a.) Airport runway inset light fixtures with red lens are being placed across ramp terminals on an experimental basis to create a red barrier effect to prevent wrong way movements. Fixture utilizes a 45 watt center line marker light with a quartz iodine lamp. Electrical power requirements are 6.8 volts @ 6.6 amperes. Centerline spacing is 33" C.T.C. across the ramp.
 - b.) None available.
- Montana a.) None
 - b.) None
- <u>Nebraska</u> a.) Presently designing an intersection lighting system using 80 foot wooden pole with 4-1000 watt multi-vapor fixtures. First time in Nebraska this has been tried outside of Interstate system. Evaluation of both lighting effectiveness and economics will probably be undertaken.
- Nevada a.) None up to the present.
 - b.) None
- <u>New Jersey</u> The Route 87 Bridge in Absecon, a 2300 ft. length structure is being provided with low level rail lighting. Each fixture is ll feet in length and contains two F 64 T-6 slim-line fluorescent lamps. The total dark space between the fixtures will be a maximum of 3 inches. The lamps will operate at 200 milliampere. To reduce costs, one ll ft. length module is used on all spans of the structure. Provisions are incorporated in the mounting arrangement of the rail for expansion to permit straddling of expansion joints between spans. The mounting arrangement also permits considerable anchor bolt tolerance.

· Question 13, cont'd:

New Mexico	-	a.)	None
Ohio	-	a.)	None
Oregon	-	a.) the i illu	Flush mounting indoor type luminaire (G.E. Low Mount) in underside of overcrossing structures for supplemental mination and the same type luminaire in tunnel illumination.
Pennsylvani	<u>a</u> -	a.) the desi util:	We are presently designing a tunnel lighting system for covered section of I-95 in Philadelphia using the new IES gn standard of 500 fc (daytime) in the entrance area and izing Low Pressure Sodium lamps.
		Ъ.).	None
Rhode Islan	<u>d</u> -	a.)	No
		ъ.)	No
South Carolina	-	a.)	No
South Dakot	<u>a</u> -	a.) 80 ft 3 on (Aber with opera South	We have currently under contract the installation of two t. poles with 400 watt HPS Type III luminaires (2 on one and the other) at a T at grade intersection of two major highways rdeen, South Dakota). We currently have two 80 ft. poles each three 1000 Metal Halide Type V luminaires installed and ating at an intersection of two major highways (Rapid City, n Dakota). Both installations are located within urban areas.
		b.) const South	The only written information available would be the truction plans. These plans can be obtained from the n Dakota Department of Highways.
Tennessee	-	a.) dire	High Mast Installation (150' poles) I-65 and I-440 ctional interchange, Davidson Company.
Vermont	-	a.)	None
Virginia	-	a.)	Not applicable
		ъ.)	Not applicable
Washington	-	a.) New a cont: It pr light	Twin mast arm lighting standards are mounted on the top of Jersey type curb. We are now completing about 15 miles of inuous illumination on I-5 with this method of contruction. rovides better light and has proved safer than conventional ting methods.

b.) No papers, as yet, have been prepared.

Question 13 cont'd:

West <u>Virginia</u> _ a.) We are working on a system of 400 H.P.S. at 40' in Holophane 9" assymmetric fixtures, back to back on a median barrier.

Wyoming a.) No b.) No

District of <u>Columbia</u> - a.) None

b.) None

QUESTION 15

What are some of the major problems you encounter in the area of fixed highway lighting for which you feel potential solutions can be obtained through appropriate research?

- Alabama None
- <u>Alaska</u> Better uniformity with regard to luminance as opposed to illumination. Present practice still produces dark spots which can "hide" persons and objects from the motorist. This is particularly true at low (0.6-1.5 f.c.) levels.

<u>Arizona</u> - High mast (100' +) lighting apparently will offer many advantages in good lighting - uniformity, general "see-ability" and economics. Cood light cources are available, <u>but</u> more control thru optics, aiming, tilting, refraction, shielding and cutoff/s needs to be obtained.

California - We need better means of lighting areas of merging or diverging traffic.

<u>Florida</u> - Correct the cycling characteristic of some high pressure sodium luminaires.

<u>Georgia</u> - There seems to be a problem in the new designs trying to locate the lighting standard as far from the traveled roadway as possible and still have them breakaway. The higher mounting heights along with the long bracket arms produce a problem (functionally and economically) when trying to make them breakaway.

Hawaii

- Development of lighting warrants for roadways other than freeways.

Question 15, cont'd:

Idaho

- Primary problems relate not to the physical installations but to justification for illumination projects. More data needs to be developed on a before-and-after basis to indicate the effectiveness of illumination on such items as safety and capacity for various highway designs and environs.

Illinois - Known fog and smog areas.

- <u>Iowa</u> We have experienced considerable opposition to using HPS lamps from the utility companies. They feel the lamps are unproven and the public is not ready to accept them. We feel HPS offers great advantages in reducing power costs and consumption but still providing lighting that fulfills the requirements of the motorist.
- <u>Kansas</u> (a) Warrant other than traffic data;(b) Directional Lighting; (c) Sign Lighting; (d) Better uniformity.

Louisiana - (1) Vibration of Luminaires on Structure; (2) Lightning damage of ballasts.

- <u>Maine</u> (1) Reduction of glare by use of improved luminaire design; (2) Use of maximum/minimum uniformity ratios instead of average/ minimum ratios.
- <u>Maryland</u> Overall need for lighting under varying roadway and traffic conditions and characteristics.
- <u>Michigan</u> There are several areas: 1. A determination of the safety and other operational aspects of using light poles in the median either on GM concrete barriers or with some other type of median barrier. 2. Development of a system of determining cable fault before digging on multiple lighting circuits. 3. Development of a system of lighting which would not be subject to knock downs or require protection.

Minnesota - Luminaire manufacturers do not keep abreast of lamp developments.

- <u>Mississippi</u> On our first conventional installation using 400 and 275 watt high pressure sodium mounted 50 and 30 feet, we have had a very high failure rate of ballast and have not found a solution. More research is needed in developing a more reliable ballast.
- <u>Missouri</u> We feel that adequate justification for warranting lighting is not available. The AASHO Informational Guide says, "A statement of design policy or guides regarding highway lighting cannot be made on a definite or positive basis for all features." Research that would provide warranting criteria based on proven need would be helpful.

Question 15 cont'd:

- Montana None
- <u>Nebraska</u> Use of median placed high mast poles with appropriate impact protection. Problem is getting FHWA approval for federally funded projects. We think this has promise.
- We find one major problem, encountered by fixed highway lighting, is the glare. If some research was done, such as experiments with semi-directional lighting, we feel that this could reduce the objectional glare in the line of the driver's vision and increase the vertical illumination on objects. An example would be a depressed freeway with light standards in the median behind a double barrier rail; then the light could be aimed in the direction of the traffic flow and toward outside shoulder at 7° to 10° rt. of the ahead line. The house side would illuminate the lt. shoulder under luminaires at the median. The twist angle of the luminaire on the arm could be from 45° to 60°+. Lower than 30 to 35' and a spot type light projection.
- Excessive deterioration of luminaire reflectors in industrial New Jersey areas. Perhaps some economical alternate to the present Alzak reflector could be obtained through appropriate research. Objectionable spill light in urban areas -- Redesign of luminaires could possibly eliminate some of the difficulties which are presently experienced with conventional luminaires. Present design standards are not appropriate for establishing quality designs. Average intensity of illumination and uniformity ratio are not good design standards. Perhaps average and minimum to maximum ratio may be a better way of describing and establishing design criteria. Lack of public knowledge about highway illumination -- The general public believes that highway lighting is a panacea for all nighttime highway problems. They expect whiteway lighting even on remote, low traffic volume, rural intersections.

New Mexico - None

North

<u>Carolina</u> - More study is needed to determine when median lighting is more desirable than roadside lighting; taking into account construction and maintenance costs, accident rates, median widths, speeds, volumes and the potential of secondary collisions between vehicles and downed poles. Also when breakaway poles desirable in medians.

North Dakota- There is a need to develop improved cutoff visors or shields for MV luminaires for control of street side lighting. Question 15 cont'd:

- Ohio
 1. Development of a cost effectiveness system for determining lighting warrants and optimum system design.
 2. Effectiveness of lighting in wet weather.
 3. Specifications explicit enough to control quality but not so detailed that the materials are unavailable by the time a project is constructed.
- Oklahoma (1) Damage to direct burial cables by pocket gophers. (2) Failure of mast arms, luminaires and lamp damage as a result of vibration of poles mounted on bridge parapets.
- <u>Oregon</u> At the present time there are no conventional roadway lighting type luminaires designed for freeway applications.
- Pennsylvania-(1) The calculation of horizontal footcandles on the road surface using the point-by-point method for high mast lighting. (2) Providing breakaway features for poles of 40' - 45' M.H. w/arm lengths of 25' - 30' due to the little that is known of how a pole of this mass will react if broken free of its mounting.
- Rhode Island- Our major problem concerns knocked down poles. It is impossible to replace them as fast as they are knocked down.
- <u>Tennessee</u> A need for greater flexibility in placing standards through development of better safety devices.
- <u>Texas</u> The major problem in our high mast design is the fact that only one floodlight is presently available which combines a fairly good light distribution with a physical shape readily adaptable to a high mast environment.
- <u>Utah</u> Largest problem encountered is where state furnishes cost of material and prepares plan on lighting projects on state roads within the municipalities. The cost of installation is assumed by the local authorities and in many cases the officials are against the break away bases because of high cost of installation.
- <u>Virginia</u> Not any that couldn't be secured through better spacing, distribution, mounting heights, glare, etc.
- <u>Washington</u> 1. A good vibration damper is needed for light standards supporting post-top luminaires. This year we had 3 aluminum pole breaks due to fatigue caused by vibration.
 2. Electrical disconnects are needed to augment slip bases to remove the electrical hazard at accident sites.

West

Virginia - Our only real problem is an occasional hard-to-read photometric curve.

Wyoming - None at this time

District of Columbia - None What specific highway lighting research projects would you recommend be encouraged by the Highway Research Board?

- Alabama None
- <u>Alaska</u> Optimum lighting warrants and levels. With existing high energy costs and scarcity of highway funds a modification of IES "ideals" is needed. Where is optimum level? What is optimum uniformity? Optimum being described in terms of collision costs, etc.
- <u>Arizona</u> <u>XENON LIGHT SOURCE</u> I understand that the Xenon Light Source offers extremely good illumination, color rendition and a high watt to lumen ratio. Yet its best known usage in the U.S.A. has been with N.A.S.A. If such a good light source is available why isn't more research directed in this area instead of on the various sodium lights which apparently never will provide proper color rendition?
- <u>California</u> Develop a lighting fixture specifically for highway lighting (not street lighting or parking lot lighting).
- <u>Colorado</u> Economic comparison of lighting installation using different lamp types including low pressure sodium.
- <u>Georgia</u> There seems to be a problem in the new designs trying to locate the lighting standard as far from the traveled roadway as possible and still have them breakaway. The higher mounting heights along with the long bracket arms produce a problem (functionally and economically) when trying to make them breakaway.
- Hawaii Improvements in tunnel lighting methods.
- Idaho Research to assist in solving the illumination justification problem.
- Illinois Development of relation between lumination, glare and driveability.
- <u>Indiana</u> What light levels are required to provide adequate sight for the older eye? The age of 50 is suggested as a cutoff. What percent of nighttime travel does this age and above accomplish? Should we be establishing seeing conditions for this group rather than the younger driver?
- <u>Iowa</u> 1. The development of criteria for placement of high mast lighting, recommend lighting levels, uniformity, and applications to areas other than the interchange lighting (i.e., medians, intersections, etc.).
- Kansas
- Lowering devices for high-mast lighting (more quality needed in the latching and lowering devices for high-mast lighting).

· Question 16, cont'd:

<u>Maine</u> - (1) Reduction of glare by use of improved luminaire design. (2) Use of maximum/minimum uniformity ratios instead of average/ minimum ratios.

- Development of warrants for lighting, specifically for rural as

Maryland

- Mighigan
 - 1. Determination of the amount of light required to perform the driving task.
 2. Investigation of the effect of glare on the driving task.
 3. Determination of methods to provide daytime eye adaptation transition zones at entrances to tunnels and long overpasses.
 4. Determination of the optimum location of signing.
 5. Determination of the need for transition lighting at each end of lighted highway.
 6. Research to determine the optimum light source for maximum efficiency and all weather vision.
 7. Test to determine actual isolux lines on various arrangements and mounting heights of asymmetric type high mast luminaires compared with theoretical one offered by manufacturers; elliptical patterns of varying axes.
- Minnesota Sign Lighting.

well as urban areas.

- <u>Missouri</u> We feel that adequate justification for warranting lighting is not available. The AASHO Informational Guide says "A statement of design policy or guides regarding highway lighting cannot be made on a definite or positive basis for all features." Research that would provide warranting criteria based on proven need would be helpful.
- Montana Glare.
- <u>Nebraska</u> Use of high pressure sodium lamps extensively in highway lighting rather than just at railroad grade crossings.
- We find one major problem, encountered by fixed highway lighting, is the glare. If some research was done, such as experiments with semi-directional lighting, we feel that this could reduce the objectional glare in the line of the driver's vision and increase the vertical illumination on objects. An example would be depressed freeway with light standards in the median behind a double barrier rail; then the light could be aimed in the direction of the traffic flow and toward outside shoulder at 7° to 10° rt. of the ahead line. The house side would illuminate the lt. shoulder under luminaires at the median. The twist angle of the luminaire on the arm could be from 45° to 60°+. Lower than 30 to 35' and a spot type light projection.
- <u>New Jersey</u> Establish new design criteria -- eliminate present uniformity ratio definition. Control of spill lights.

New Mexico - None

NT 13		
North Carolina	-	More study is needed to determine when median lighting is more desirable than roadside lighting; taking into account construction and maintenance costs, accident rates, median widths, speeds, volumes and the potential of secondary collisions between vehicles and downed poles. Also when are breakaway poles desirable in medians?
<u>Ohio</u>	-	1. Field investigation of interaction of fixed lighting systems and vehicular headlights, including feasibility of fixed lighting system designed for use without headlights. 2. Determination of minimum maintained illumination level which would still provide safe movement of traffic at night. 3. Evaluation of high mast and other novel lighting systems.
Oklahoma		 (1) Find method to predict pole vibration and design pole assembly to withstand these vibrations. (2) Find a simple test method for field evaluation of highway luminaires photometrics.
Oregon	-	(a) Lighter colored asphalts for nightime visibility. (b) Economic advantage to high mast illumination.
		(c) Disposal of gaseous discharge lamps. (d) Accident/Illumination comparison involving high mast installations.
<u>Pennsylvani</u>	<u>a</u> -	(1) A program to determine a method of calculating horizontal foot- candles in a total interchange area, using the utilized lumens method, that would correlate in some manner to the horizontal foot- candles on the road surface. (2) Research should be performed to test the frangibility, performance, and safety of steel and aluminum poles with 40' - 45 M.H. and arm lengths of 25' - 30', mounted on suitable cast aluminum transformer bases, when struck by vehicles ranging in weight between 2000 and 5000 pounds at speeds ranging between 20 and 70 m.p.h.
Rhode Islan	<u>d</u> -	Further investigation into high mast lighting is recommended.
South <u>Carolina</u>	-	Separate Interchange lighting - warrants and types.
Tennessee	-	Standardizing manufacturers to some extent to assure an installation complying with design.
Vermont	-	Establish a relationship between average maintained horizontal footcandles needed on the road to lighting or lack of lighting adjacent to the roadway.

Question 16, cont'd:

Washington -

Condition #1: Electricity costs about 12¢ a KWH generated in a car and is used in a lamp that produces 15 to 20 lumens per watt.
Condition #2: Electricity costs 1.2¢ a KWH commercially and can be used in a luminaire producing 100 lumens per watt.
Proposition: There is an equation in terms of vehicles per lane per hour of darkness whereby it is cheaper to light the highway with fixed source lighting. Obviously, this would be safer--no oncoming headlamps. Research Project: Develop the equation.

West <u>Virginia</u>	-	None			
Wisconsin	-	None			
Wyoming	-	None	at	this	time
District of Columbia	_	None			

Section IV

QUESTIONNAIRE

 \bigcirc

NATIONAL RESEARCH COUNCIL

NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING WASHINGTON, D. C.

HIGHWAY RESEARCH BOARD OF THE DIVISION OF ENGINEERING

December 5, 1972

The enclosed questionnaire has been designed by the Highway Research Board Conmittee on Visibility as a means of obtaining the latest information from the States about the design and operation of their fixed source lighting systems. This data is needed in the Committee's effort to focus attention on current and projected design practices, and upon areas needing research attention.

It is possible that the summarized data will be suitable for publication in Circular form, but in any case you will be given the summary of replies. This should prove helpful to you in permitting an assessment of your design and operating practices versus those in other states. The data could, of course, point the way toward more uniform and therefore less costly and more effective designs.

You may need to pass the questionnaire on to others for completion; please feel free to do so, including both design and operations agencies where these are separated.

I hope that the completed questionnaire will be returned to Mr. Lau on or before the February 1, 1973 deadline. Thanks for your help.

Very truly yours,

W. N. Carey, Jr.

Executive Director

Enclosure

- 41 -

FIXED HIGHWAY LIGHTING QUESTIONNAIRE

After completion, and prior to February 1, 1973, please return this questionnaire to:

Mr. Ralph R. Lau Electrical Engineer Bureau of Design Pennsylvania Dept. of Transportation Harrisburg, Pennsylvania 17120

He is Chairman of the Ad Hoc Committee responsible for analysis of the replies.

STATE

DATE

RESPONDENTS TITLE

1. Describe a typical new highway lighting system designed and installed by your State Highway Department or Department of Transportation.

		MAINLI	INE	F	RAMP	CROSSROAD		
		a. Conven- tional	b. Hi-Mast	ç. Conven- tional	d. Hi-Mast	e. Conven- tional	f. Hi-Mast	
	MV							
	*MULTI V							
Lamp and Wattage	OTHER							
Mounting Height								
Avg. Maint. fc Design Level								
Max. Uniform- ity Katio (Avg./Min.)								
g. Power Supply Voltage	<u>/</u> / 120/	240 /_/	120/208	<u>/</u> / 240/	/480 <u>/</u> /	277/480		

*Metal Halides

2. What type of light source do you favor for future use in highway lighting? (Number in order of preference)

3. What type of light source do you use for sign lighting? (Number in order of predominance)

Present Use		Future Use
	Mercury Vapor	
	Fluorescent	
	Multi Vapor	
	Other	

4. Who is responsible for the highway lighting design work in your State?

\Box	In-house	staff	
	TH HOUDO	DOULT	

// Illumination Engineer
// Electrical Engineer
// Traffic Engineer
// Other
Consultant Firm
Utility Company
Other

5. Who owns a completed highway lighting system after it has been installed by the State?

Route	State	County or Municipality	Utility Company
Interstate			
Other			

6. Indicate the percentage of the installation cost and the annual energy and maintenance costs paid by the county or municipality and by the State for a highway lighting system installed by the State.

Route	Function	County or Municipality	State
Interstate	Installation Energy		
	Maintenance		
	Installation		
Other	Energy		
	Maintenance		

7. A. Who is responsible for normal highway lighting maintenance for a system which has been installed by the State on an Interstate Route?

\Box	State

- County
- Municipality
- Utility Company
- Other

|

B. Who is responsible for normal highway lighting maintenance for a system which has been installed by the State on other than an Interstate Route?

	State
	County
	Municipality
	Utility Company
$\overline{1}$	Other

In 7A and 7B above, please briefly explain unusual shared or conditional responsibilities, if any.

8. At what intervals are the luminaires cleaned and group relamped on a highway lighting system which has been installed by the State?

Cleaned every	
Relamped every	(Merc.)
	(Multi V - Metal Halides)
	(HPS)

9. What is your highway lighting design primarily based on?

/ Average maintained horizontal fc.

/ Average maintained vertical fc.

/ Uniformity ratio

/// Luminance

☐ Glare

/// Other

10. How do you take glare into consideration in your highway lighting designs?

11. Approximately what is the energy cost per Kilowatt-Hour for your highway lighting systems?

_____cents per KWH

12. If you have had experience with high mast lighting installations (e.g., 80 ft. or higher) in your State, please furnish the following information:

Type of Support	// Tower // Pole	
Height	ft.	
Type Lamp		
Lamp Wattage	watt	S
Max. CP Angle	o	
Luminaires Per Tower		
Avg. Tower Spacing	ft.	
Avg. Initial fc.	fc.	
Uniformity Ratio	:1	
No. of Hi-Mast Installations		

General Comments:

If there is written material available from your office regarding this
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
<pre>If there is written material available from your office regarding this installation, please indicate how copies may be obtained</pre>
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.
If there is written material available from your office regarding this installation, please indicate how copies may be obtained.

15. What are some of the major problems you encounter in the area of fixed highway lighting for which you feel potential solutions can be obtained through appropriate research? (Use extra sheet if necessary)

16. What specific highway lighting research projects would you recommend be encouraged by the Highway Research Board? (Use extra sheet if necessary)

HIGHWAY RESEARCH BOARD NATIONAL ACADEMY OF SCIENCES -- NATIONAL RESEARCH COUNCIL 2101 Constituilum Avenue Washington, D. C. 20418

ADDRESS CORRECTION REQUESTED

NON-PROFIT ORG. II S POSTAGE P A I D WASHINGTON, D.C. PERMIT NO. 42970