DEMOGRAPHICS - THE SPATIAL REDISTRIBUTION OF PEOPLE AND JOBS

John D. Kasarda, University of North Carolina

Although my topic was listed only as demographics, I will talk about demographics and employment and how they might possibly interact affecting demand for aviation both in terms of passenger travel and air freight. Demographics, I believe, are particularly useful when one wants to assess long-term projections, conduct bottom-up types of analyses and forecasts, market forecasts, as well as to look at processes for improving the forecasts for individual hubs such was described by Alice Herman of the Port Authority of New York and New Jersey. Even if one starts with a national aggregate forecast, the question that seems to arise immediately from this top-down procedure is how best to break it down to regions, States, metropolitan areas, or, individual hubs.

Redistribution of Demand

Today I am going to talk about some of the basic trends that I think will shape redistribution of demand for enplanements and air freight over the next decade. I am going to present some figures on forecasts from various public and private agencies, from the regional level right down to the Metropolitan Statistical Area (MSA) level. I have included an addendum to the tables that describes methodologies underlying the forecasts derived from private and public agencies such as Bureau Economic Affairs (BEA), Wharton of Econometrics, Bureau of the Census, and the National Planning Association. (For additional details you may refer to the Appendix to this paper to obtain appropriate baseline information used by demographers used at these various agencies).

If one looks at patterns and shifts taking place, one sees that over the last two or three decades there has been a dramatic change in the location of population and jobs in individual metropolitan areas, city-suburban shifts, and more macro crossregional Frostbelt-Sunbelt shifts. In interpreting these data I believe that we have to separate the megatrends from the short-term cycles.

In the Table 1 you can see the net inter-regional migration flows. This represents flows of people between census regions for five-year periods beginning with 1955 to 1960, up through the last

date we have data available, which is the Current Population Survey of 1988.

You can see the dramatic shift to the West in the 1950s and 1960s. There are many reasons why the West demographic explosion in the west, California particularly, after World War II. Most deal with its expanding economic base. Over three million people alone moved to California between 1945 and 1960. During this period, the South also turned around from a net exporter of people to a demographic magnet. You can see by 1955 to 1960, in and out migration in the South had pretty much evened out, although the South was still sending more people to the West. These, incidentally, are net figures. Everyone knows there is no such person as a net migrant, the difference in in-movers and out-movers in each region so what this says is that between 1955 and 1960, 380,000 more Southerners moved to the West than Westerners moved to the South. During the following 25 years the South became a demographic magnet, attracting people from all other regions. By the 1980 to 1985 period, for every one person moving to the West, three were moving to the South in terms of net migration exchange.

The Midwest continued to send people to other regions except the Northeast. During the 1980 and 1985 period, dominated by the 1980 to 1982 recession, there was a hemorrhage of midwestern migrants. Notice how this loss really slowed down with the Midwest's economic recovery. Many of these states had cyclically sensitive industries that 1988 responded quite well after 1982 to the economic recovery and, as they stabilized, their outmigration slowed. Thus, the Midwest went from losing 1.5 million people in the net between 1980 and 1985 to a loss of just 183,000 between 1985 and 1988.

Such is not the case in the Northeast. Their net out-migration continued at a rapid pace. The last three years, 817,000 in the net, compared to a 1,022,000 loss between 1980 and 1985. So these are the internal shifts taking place and generally you can see, looking at the totals, not only the Frostbelt-Sunbelt moves but also increasingly over the last 30 years, a shift in terms of internal flows from the West to the South.

Impact of Immigration. All I have discussed so far is internal flows. If you look at movers from abroad who are mostly immigrants, although there are some expatriates here, you see that two basic changes have taken place in immigration. (Table 2.) One, since the 1950s there has been a

substantial increase in the number of movers from

Resignal Migration	Net Higration in Thousands								
Exchanges	1955-60 ¹	1965-70 ²	1970-75 ³	1975-804	1980-854	1985-88			
South: Net Exchange With									
Northeast	+314	+438	+964	+945	+737	+588			
Midwest	+122	+275	+790	+813	+1,100	+104			
West	- 380	-56	+75	+176	+60	+ 41			
Total Other Regions	+56	+657	+1,829	+1,935	+1,897	+732			
West: Net Exchange With									
Northeast	+285	+224	+311	+518	+234	+118			
Hidwest	+760	+415	+472	+634	+475	+190			
South	+380	+56	-75	-176	60	- 41			
Total Other Regions	+1,425	+695	+708	+976	+649	+267			
Midwest: Net Exchange With									
Northeast	+40	+53	+67	+146	+50	+111			
South	-122	-275	-790	-813	-1,100	-104			
West	-760	-415	-472	-634	-475	-190			
Total Other Regions	-842	-637	-1,195	-1,302	-1,525	-183			
ortheast: Net Exchange Wi	th								
Midwest	-40	-53	-67	-146	-50	-111			
South	-314	-438	-964	-945	-737	-588			
Vest	-285	-224	-311	-518	-234	-118			
Total Other Regions	-639	-715	-1,342	-1,609	-1,022	-817			

TABLE 1. NET INTERREGIONAL MIGRATION FLOWS, 1955 TO 1988

¹U.S. Census of Population, Vol 1, U.S. Summary 1960: Table 237

²U.S. Census of Population, 1970 Vol 1, U.S. Summary: Table 274

³Mobility of the Population of the U.S.: March 1970 to March 1975, Series P-20, No. 285 in Current Population Reports

⁴Current Population Survey machine-readable files, 1980, 1985, 1986, 1987, 1988

abroad. Secondly, comparing the figures from 1955 to 1960 right across to 1985 to 1988, the net gain in immigrants has been picked up almost entirely in the South and the West, with the West really pulling ahead as the nation's magnet for immigrants. If you look back at 1955 to 1960 you can see the Northeast was the modal immigration region. This reflected the fact that until the late 1960s, the bulk of the immigrants were orginating from nations that were geographically to the east and north of the United States, primarily Europe.

Region	1955-1960 ¹	1965-70 ²	1970-75 ³	1975-804	1980-85 ⁴	1985-884
Northeast	592	821	903	834	832	672
Midwest	361	440	638	590	457	509
South	505	740	1,082	1,164	1,180	1,001
West	545	697	980	1,475	1,387	1,340

TABLE 2. MOVERS FROM ABROAD BY REGION, IN 1955 TO 1988

¹1960 Census of Population, Vol. 1, U.S. Summary Table 237.

²1970 Census of Population, Vol. 1, U.S. Summary Table 274.

³Mobility of the Population of the U.S.: March 1970 to March 1975 Series P-20, No. 285 in Current Population Reports.

⁴Current Population Survey Machine-Readable Files, 1980, 1985, 1986, 1987, 1988

This does not include illegals; these are census figures. The Census and Current Population Survey might pick up a few illegals, but I doubt most respond to the census questionnaire. If anything, my guess is that illegals would inflate further the West and the South in terms of their immigration dominance.

You can see that when people were moving from nations in Europe, the closest port of entry would be New York City and points in the Northeast. As sending nations shifted to Asia, South America, and the Pacific Islands, the closest ports of entry became San Francisco, Los Angeles, Houston, and Miami. Between the early 1970s and 1984, one million Asian and Hispanic immigrants settled in Los Angeles County alone. Clearly, Los Angeles has become the nation's leading growth node for immigrants.

One other point. Notice that between 1980 and 1985, the West attracted 649,000 people from other regions of the country. It grew twice as fast from immigration, 1,387,000, so that the demographic driving force for the West is no longer people moving from other regions of the country, but people moving to the West from abroad, primarily from Asia and South America. This might also go against conventional wisdom. We think of "Go West Young Man," but a lot of it is "Go East", immigrants coming from Asia. Those living in A lot of California surely recognize this. immigration is by air, increasingly so. Many of the immigrants today have the resources to afford international air travel for return trips to see family and friends. Places like Los Angeles, with a million immigrants in 14 years, are going to feel this immigrant impact on air travel.

But when you combine the flows of internal shifts, with immigration, you can see that the South and the West during the last eight years, that is (1980 to 1988) captured approximately 90 percent of the nation's population increase. (Table 3) In fact, three States alone, California, Florida, and Texas captured half of the increase. California grew by 4,500,000, Florida by 2,600,000, Texas by 2,500,000, which together account for 51 percent of the total nation's population growth. Projections we will see in a moment indicate that these trends will continue.

Projecting Aviation Demand

In projecting demands for aviation, I tend to look at business travel and economic development as being the key factors. When one wants to predict these, one has to go beyond the economic data and look at other changes such as labor force characteristics. We can see already certain parts of the country are facing a serious labor force squeeze which is driving up wages and preventing businesses from adding employees. These businesses are moving elsewhere to look for employees.

Table 4 gives a population projection for the 10year period 1990 to 2000 for those aged 18 to 44 in each State. I chose 18 to 44 year olds as an indication of the growth of the new labor force entrants, which I consider critical to employment growth and further business expansion. You can see the number of States towards the bottom of the table that are going to take a beating. They are ranked on the left in terms of net changes, this is absolute numbers and on the right in terms of percent change. So, on a percent-change basis,

TABLE 3. POPULATION CHANGES IN U.S. REGIONS AND STATES, 1980 -1988

	1	2	Change	1980-1988
Area	1980	1988	Net	Percent
United States	226,546	245,807	19,261	8.5
Northeast	49,135	50,611	1,476	3.0
Midwest	58,866	59,894	1,028	1.7
South	75.372	84.878	9.506	12.6
West	43,172	50,424	7,252	16.8
Alabama	3,894	4,127	233	6.0
Alaska	402	513	111	27.6
Arizona	2,717	3,466	749	27.6
Arkansas	2,286	2,422	136	5.9
California	23,668	28,168	4,500	19.0
Colorado	2,890	3,290	400	13.8
Connecticut	3,108	3.241	133	4.3
Delaware	594	660	66	11 1
Dist of Columbia	638	620	-18	-7 8
Florida	9 747	12 177	2 610	77 0
Georgia	5 463	6 401	010	17.5
Variaté	3,403	1 003	120	17.2
144411	903	1,093	140	13.3
Idano	799	333	23	5.8
1111018	11,947	11,511	84	0.7
Indiana	5,490	3,3/3	85	1.5
Iova	2,914	2,834	-80	-2.7
Kansas	2,364	2,487	123	5.2
Kentucky	3,660	3,721	61	1.7
Louisiana	4,206	4,420	214	5.1
Maine	1,125	1,206	81	7.2
Maryland	4,217	4,644	427	10.1
Massachusetts	5,737	5,871	134	2.3
Michigan	9,262	9,300	38	0.4
Minnesota	4,076	4,306	230	5.6
Mississippi	2,521	2,627	106	4.2
Missouri	4,917	5,139	222	4.5
Nontana	787	804	17	2.2
Nebraska	1,570	1,601	31	2.0
Nevada	801	1.060	259	32.1
New Hampshire	921	1.097	176	19 1
Ney Jersey	7.365	7.720	155	4.8
New Mexico	1, 103	1.510	207	15.0
ley York	17 558	17 898	140	1.9
orth Carolina	5 880	6 526	646	11.0
orth Dakota	651	663	10	1.6
bio	10 798	10 872	74	0.7
klahona	3 036	1 261	227	0.7
	3,020	3,403	437	
regon	2,033	4,/41	108	4.1
ennsylvia	11,603	12,027	102	1.4
node island	34/	332	48	5.1
outh Carolina	3,121	3,493	372	11.9
outh Dexote	691	715	24	3.5
ennessee	4,591	4,919	328	7.1
exas	14,226	16,780	2,554	18.0
tah	1,461	1,691	230	15.7
ermont	512	556	44	8.6
irginia	5,347	5,996	649	12.1
ashington	4,132	4,619	487	11.8
est Virginia	1,950	1,884	-66	-3.4
isconsin	4,706	4,858	152	3.2
vosing	470	471	1	0.2

SOUCRES: 1. Current Population Reports, Population Estimates and Projections, Series P-25, no. 1017, 1988.
2. Dept. of Commerce, News, CB88-205, released Dec.30, 1988; 1988 Interia method estimates.

Hawaii is ranked number one with a 62,000 increase in those 18 to 44, but that is an 11.9 percent increase because the base is much smaller. The left is the where the States are ranked by absolute increase, California dominates with 714,000 projected growth. If you look at the States

down towards the bottom, they are actually going to be facing dramatic declines of new labor force entrants over the next 10 or 15 years. Pennsylvania, for example, is actually going to lose only about 300,000 people overall, but lose 500,000 people in the 18 to 44 year age range.

TABLE 4. THE STATES RANKED BY NET CHANGE AND PERCENT CHANGEFOR THE POPULATIONAged 18-44, 1990-2000

	Ranked by Ne	et Change			Ranked by Per	cent Char	qe
		Net Chng	*			Net Chng	*
5	STATE	(1000s)	Chnq		STATE	(1000s)	Chnq
1	California	714	5.5	1	Hawaii	62	11.9
2	Florida	441	9.0	2	Alaska	33	11.3
3	Texas	440	5.6	3	Arizona	175	11.1
4	Georgia	329	11.0	4	Georgia	329	11.0
5	Arizona	175	11.1	5	New Mexico	75	10.7
6	North Carolina	84	2.9	6	Nevada	47	9.5
7	New Mexico	75	10.7	7	Florida	441	9.0
8	Hawaii	62	11.9	8	Utah	44	6.1
9	Virginia	55	1.9	9	Texas	440	5.6
10	Nevada	47	9.5	10	California	714	5.5
11	Utah	44	6.1	11	New Hampshire	24	4.6
12	Maryland	39	1.8	12	North Carolina	84	2.9
13	Alagka	33	11.3	13	Virginia	55	1.9
1 4	New Wampshire	24	4 6	14	Maryland	39	1.8
16	New hampshile	22	1 4	15	Delaware	5	1 7
16	Mississippi	~ ~ ~	0.5	16	South Carolina	22	1 4
17	WIRPIBELDDI	5	1.7	17	Mississippi	6	0.5
1/	Delaware	5	1./	17	WISSISSIPPI	0	0.5
18	D. C.		0.0	10	D. C.		0.0
19	Rhode Island	-11	-2.5	19	New Jersey	-17	-0.5
20	Vermont	-13	-5.1	20	Colorado	-15	-0.9
21	Colorado	-15	-0.9	21	Alabama	-42	-2.4
22	South Dakota	-16	-5.7	22	Rhode Island	-11	-2.5
23	New Jersey	-17	-0.5	23	Tennessee	-56	-2.6
24	Maine	-23	-4.4	24	Arkansas	-37	-3.9
25	Idaho	-26	-6.2	25	Connecticut	-56	-4.0
26	Wyoming	-30	-12.9	26	Missouri	-95	-4.4
27	North Dakota	-32	-11.5	27	Maine	-23	-4.4
28	Montana	-34	-10.1	28	Massachusetts	-129	-4.9
29	Arkansas	-37	-3.9	29	Washington	-105	-5.0
30	Alabama	-42	-2.4	30	New York	-384	-5.1
31	Tennessee	-56	-2.6	31	Vermont	-13	-5.1
32	Connecticut	-56	-4.0	32	Oklahoma	-73	-5.3
33	Nebraska	-66	-10.1	33	South Dakota	-16	-5.7
34	Kansas	-69	-6.6	34	Idaho	-26	-6.2
35	Oklahoma	-73	-5.3	35	Minnesota	-118	-6.3
36	Missouri	-95	-4.4	36	Kansas	-69	-6.6
37	Washington	-105	-5.0	37	Illinois	-377	-7.6
38	Oregon	-106	-8.7	38	Louisiana	-154	-8.0
39	Minnesota	-118	-6.3	39	Oregon	-106	-8.7
40	West Virginia	-121	-15.8	40	Michigan	-357	-8.8
41	Maggachusetts	-129	-4.9	41	Kentucky	-141	-8.8
42	Kentucky	-141	-8.8	42	Indiana	-215	-9.1
47	Louisiana	-154	-8.0	43	Ohio	-428	-9.4
4.4	Town	-180	-16.1	44	Wisconsin	-200	-9.9
44	Wisconsin	-200	-0 0	45	Nebraska	-66	-10.1
45	Todiana	-215	-9.1	46	Montana	-34	-10.1
40	Michigan	-357	-8 8	47	Pensylvania	-537	-11.1
4/	Tilinoia	-377	-7 6	49	North Dakota	-32	-11.5
40	TTTTUOTS	-394	-7.0	40	Wyoming	-30	-12.9
49	NEW IOFK	-428	-0.4	43	West Virginia	-121	-15.8
50	Unio	-920	-11 1	50	Town	-180	-16.1
21	Pennayrvania	-537	-tione	of the 1	Population of St	ates by	an. Sey
301	& Race: 1	988-2010	Current	Populat	tion Reports P-2	5 \$1017,	1988.

When we look at the Massachusetts miracle of unemployment decline, much of that was demographically driven. Their labor force did not grow. They added jobs only at a national average rate, but their very slow labor force growth pushed down their unemployment rate.

In Table 5, you can see the overall projections for State population growth. Again, the nation will be

dominated in the next 10 to 12 years by the growth of California, Florida and Texas. I think Texas is a good example of separating cycles from trends. Houston's economy is booming right now. They added 36,000 jobs in the last eight months, over 50,000 jobs in the last 14 months. Talking to real estate investor members of the Urban Land Institute, Houston is considered to be a hot spot for investment when just a couple of years ago it

TABLE 5. THE STATES RANKED BY NET CHANGE AND PERCENT CHANGE IN POPULATION 1987-2000

		Net Chng	*			Net Chng	*
	State	(1000s)	Chnq		State	(1000s)	Chng
1	California	5969	21.7	1	Arizona	1186	34.6
2	Florida	3453	28.9	2	Nevada	310	31.2
3	Texas	3274	19.3	3	New Mexico	450	29.6
4	Georgia	1713	27.4	4	Florida	3453	28.9
5	Arizona	1186	34.6	5	Georgia	1713	27.4
6	North Carolina	1061	16.5	6	Alaska	143	26.3
7	Virginia	994	16.9	7	New Hampshire	275	26.0
8	New Jersev	859	11.2	8	Hawaii	264	24.4
9	Marvland	742	16.4	9	California	5969	21.7
10	Colorado	505	15.3	10	Texas	3274	19.3
11	South Carolina	486	14.2	11	Utah	297	17.5
12	Washington	477	10.6	12	Virginia	994	16.9
13	New Mexico	450	29.6	13	North Carolina	1061	16.5
14	Tennessee	418	8.6	14	Maryland	742	16 4
15	Alabama	324	7.9	15	Colorado	505	15 3
16	Nevada	310	31.2	16	Delaware	93	14 5
17	litab	297	17 5	17	South Carolina	486	14.2
18	Missouri	297	5 5	18	New Jargev	859	11 2
10	New Hampshire	205	26.0	19	Washington	477	10 6
20	New Hampbhille	275	20.0	20	Wigeleginni	274	10.0
20	Maggachugotta	204	4 3	20	Teppessee	234	0.7
21	Massachusetts	249	4.J 5.0	21	Verment	410	8.0
22	Mississippi	24/	0.0	22	Alabama	224	7 0
23	Coppostigut	234	7 2	23	Maine	524	7.9
24	Now York	233	1.3	24	Connecticut	222	7.3
20	New IOIX	22/	1.3	25	Phode Taland	233	6.0
20	Alacka	147	26.3	20	Anoue Island	147	6.0
20	ALABKA	143	20.5	27	Arkansas	143	5.0
20	Delaware	143	14 5	20	Minnesota	247	5.9
29	Maine	93	7 2	29	Minesota	24/	5.0
21	Oklahama	0/	7.5	30	Massachusetts	203	4.2
31	Oklanoma Dhada Jaland	61	2.5	22	Tassachusetts	249	4.3
22	Knode Island	67	0.0	32	Oklahoma	41	4.1
33	Kansas	60	2.4	23	UKIANOMA	60	2.5
34	Michigan	59	0.0	34	Kansas	00	2.4
35	Vermont	44	8.0	35	D. C.	227	2.1
36	Idano	41	4.1	30	New YORK	227	1.3
31	D. C.	13	2.1	37	South Dakota	50	1.0
38	Louisiana	12	0.3	38	Michigan	29	0.0
39	1111nole	11	0.1	39	Louisiana	12	0.3
40	South Dakota	/	1.0	40	IIIInois Tracturales	11	0.1
41	Kentucky	0	0.0	41	Kentucky	-7	0.0
42	Wisconsin	-/	-0.1	42	Wisconsin	-/	-0.1
43	Indiana	-16	-0.3	43	Indiana	-10	-0.3
44	Wyoming	-17	-3.4	44	Onio	-138	-1.3
45	Montana	-20	-2.5	45	Nebraska	-39	-2.9
46	Nebraska	-39	-2.4	46	Montana	-20	-4.5
47	North Dakota	-45	-6.7	47	Pennsylvania	-371	-3.1
48	Onio	-138	-1.3	48	wyoming	-17	-3.4
49	West Virginia	-180	-9.5	49	North Dakota	-45	-6.7
50	Iowa	-277	-9.8	50	West Virginia	-180	-9.5
51	Pennsylvania	-371	-3.1	51	Lowa	-277	-9.8
Sou	irce: U.S. Burea	u of Cens	us, C	urrent I	opulation Repo	TCB "Popu.	lation
	Estimates	and Proje	CTION	, Series	P-25, NO.1017	, 1988.	

was a sure loser, and before that a boom area. So you have to separate the cycles from the trends. In projecting air travel demand in the early 21st century, one wants to look at the longer-term trends, not the short term cycles. Taking any one of these short-term cyclical boom or bust periods and extrapolating could get you into big trouble. You can see when States are ranked in terms of net change and percent change in employment, Texas is second. The National Planning Association projections, the BEA projections, and the Bureau of Labor Statistics projections closely correspond. As a matter of fact, the National Planning Association derives its projections here, as you can see in the Appendix, from the Bureau of Economic Analysis figures, so the growth nodes will, in terms of employment, continue to be California, Texas and Florida, with Georgia and Virginia following close behind.

TABLE 6. THE STATES RANKED BY NET CHANGE IN EMPLOYMENT1987-2000

		Net Chng	8			Net Chng	8
	State	(10008)	Chnq		State	(1000s)	Chng
1	California	3556.3	24.1	1	Nevada	200.1	34.0
2	Texas	2000.8	24.4	2	Arizona	515.8	32.0
3	Florida	1807.3	30.1	3	Florida	1807.3	30.1
4	Georgia	691.6	20.4	4	Alaska	85.7	29.0
5	Virginia	654.3	19.8	5	Colorado	515.4	28.0
6	New Jersev	648.9	15.2	6	New Hampshire	169.6	27.6
7	New York	626.4	6.6	7	Utah	207.3	26.7
8	North Carolina	592.3	16.6	8	Texas	2000.8	24.4
9	Massachusetts	529.5	14.8	9	New Mexico	165.1	24.4
10	Arizona	515.8	32.0	10	California	3556.3	24.1
11	Colorado	515.4	28.0	11	Wyoming	61.8	23.6
12	Washington	513.0	21.7	12	Washington	513.0	21.7
13	Pennsylvania	481.8	8.1	13	Georgia	691.6	20.4
14	Illinois	450.7	7.6	14	Virginia	654.3	19.8
15	Ohio	436.2	8.0	15	Idaho	95.1	19.5
16	Minnesota	419.7	17.2	16	Hawaii	119.2	19.3
17	Maryland	397.3	16.5	17	Oregon	268.0	18.7
18	Michigan	379.9	8.9	18	Vermont	55.0	17.7
19	Tennessee	358.5	14.0	19	South Carolina	314.7	17.6
20	Wisconsin	343.8	13.2	20	Minnesota	419.7	17.2
21	Missouri	328.6	11.8	21	Oklahoma	275.6	16.9
22	Louisiana	318.9	16.4	22	Maine	109.5	16.9
23	South Carolina	314.7	17.6	23	North Carolina	592.3	16.6
24	Connecticut	296.7	15.2	24	Marvland	397.3	16.5
25	Oklahoma	275.6	16.9	25	Louisiana	318.9	16.4
26	Oregon	268.0	18.7	26	New Jersey	648.9	15.2
27	Indiana	263.2	9.2	27	Connecticut	296.7	15.2
28	Alabama	241.8	12.6	28	Montana	60.2	14.9
29	Kentucky	209.6	11.8	29	Massachusetts	529.5	14.8
30	Utah	207.3	26.7	30	Arkansas	165.0	14.4
31	Nevada	200.1	34.0	31	Tennessee	358.5	14.0
32	Kansas	192.0	13.7	32	Kansas	192.0	13.7
33	New Hampshire	169.6	27.6	33	Wisconsin	343.8	13.2
34	New Mexico	165.1	24.4	34	Rhode Island	70.6	13.1
35	Arkansas	165.0	14.4	35	Alabama	241.8	12.6
36	Iowa	121.7	7.8	36	North Dakota	44.1	12.2
37	Hawaii	119.2	19.3	37	Kentucky	209.6	11.8
38	Maine	109.5	16.9	38	Missouri	328.6	11.8
39	Mississippi	106.3	9.1	39	Nebraska	105.5	11.4
40	Nebraska	105.5	11.4	40	South Dakota	37.9	10.2
41	Idaho	95.1	19.5	41	Delaware	35.2	9.6
42	Alaska	85.7	29.0	42	Indiana	263.2	9.2
43	Rhode Island	70.6	13.1	43	Mississippi	106.3	9.1
44	West Virginia	64.0	8.5	44	Michigan	379.9	8.9
45	Wyoming	61.8	23.6	45	West Virginia	64.0	8.5
46	Montana	60.2	14.9	46	Pennsylvania	481.8	8.1
47	Vermont	55.0	17.7	47	Ohio	436.2	8.0
48	North Dakota	44.1	12.2	48	Iowa	121.7	7.8
49	South Dakota	37.9	10.2	49	Illinois	450.7	7.6
50	Delaware	35.2	9.6	50	New York	626.4	6.6
51	D. C.	26.5	3.6	51	D. C.	26.5	3.6
Sou	rce: National	Planning	Assoc.,	Regiona.	Projection Se	ries,	

R-87-1, 1988.

Tables 6, 7 and 8 describe population and employment projections by labor market area and by metropolitan area. They speak for themselves. I also present projections for single-unit housing construction, (Table 9) multi-unit (Table 10) and non-residential (Table 11) construction and some other factors for your consideration.

Effect on Air Transportation

What does this all mean? Well, I thought I heard Paul Biederman say that airline travel is not likely to grow very fast. Aggregate air passenger forecasts are based on a number of variables --GNP, CPI, fuel prices. I would like to comment on such factors for a moment because we found

TABLE 7. THE TOP 50 METROPOLITAN AREAS RANKED BY NET CHANGE AND PERCENT CHANGE IN POPULATION,

1987-2000

		Populatio	on Change -2000			Population 1987-	n Change 2000
Metropolitan		Net Chng	Percent		Metropolitan	Net Chng	Percent
Area		(10008)	Change	1	Area	(1000s)	Change
Martine							
1 Los Angeles-La	ong Beach CA	874.8	10.4	1	Naples FL	68.6	53.3
2 Houston TX		752.1	23.0	2	Fort Pierce FL	97.2	44.9
3 Riverside-San	Bernardino CA	643.3	30.9	3	Fort Meyers FL	124.5	42.4
4 Atlanta GA		547.3	20.8	4	Ocala FL	67.6	37.7
5 Dallas TX		546.8	22.5	5	Olympia WA	54.7	35.9
6 Phoenix AZ		527.4	26.8	6	Bryan-College Station TX	43.7	35.3
7 Anaheim-Santa	Ana CA	498.9	22.3	7	West Palm Beach-Boca Rato	n FL 273.2	34.7
8 San Diego CA		494.7	21.8	8	Santa Cruz CA	78.1	34.3
9 Washington D.	с.	488.7	13.5	9	Fort Collins-Loveland CO	56.9	31.9
10 Tampa-St Pete	rsburg FL	419.4	21.3	10	Santa Rose-Petaluma CA	113.3	31.7
11 Denver CO		370.9	22.5	11	Riverside-San Bernardino	CA 643.3	30.9
12 Fort Lauerdal	e-Hollywood FL	302.2	25.6	12	Vallejo-Fairfield CA	118.4	29.1
13 Minneapolis-S	t. Paul MN-WI	300.9	13.0	13	Bremeton WA	50.4	28.9
14 Oakland CA		298.5	15.1	14	Sarasota FL	73.4	28.6
15 Fort Worth-Ar	lington TX	293.3	23.1	15	Orlando FL	262.4	28.2
16 San Jose CA		283.5	19.7	16	Phoenix AZ	527.4	26.8
17 West Palm Bea	ch-Boca Raton I	L 273.2	34.7	17	Portsmouth-Dover NH	87.6	26.8
18 Sacremento CA		271.9	20.5	18	Las Vegas NV	156.3	26.3
19 Boston-Lawren	ce-Salem MA	267.6	7.2	19	Oxnard-Ventura CA	164.7	26.0
20 Orlando FL		262.4	28.2	20	Fort Lauerdale-Hollywood	FL 302.2	25.6
21 Seattle WA		241.8	13.6	21	Reno NV	60.1	25.6
22 Miami-Hialeah	FL	235.9	13.1	22	Brazoria TX	47.7	24.9
23 Philadelphia	PA-NJ	190.2	3.9	23	Davtona Beach FL	82.3	24.8
24 Salt Lake Cit	v-Ogden UT	184.8	17.6	24	Anchorage AK	57.5	24.8
25 San Antonio T	X	184.4	14.4	25	Austin TX	179.1	24.3
26 Austin TX		179.1	24.3	26	Provo-Orem UT	57.8	23.7
27 Oxnard-Ventur	a CA	164.7	26.0	27	Bradenton FL	42.7	23.4
28 Baltimore MD		164.6	7.1	28	Tucson AZ	145.0	23.4
29 San Francisco	CA	161.8	10.0	29	Fort Worth-Arlington TX	293.3	23.1
30 Las Vegas NV		156.3	26.3	30	Houston TX	752.1	23.0
31 Tucson AZ		145.0	23.4	31	Chico CA	39.5	23.0
32 Monmouth-Ocea	IN NJ	143.7	15.2	32	Dallas TX	546.8	22.5
33 Norfolk-Virgi	nia Beach VA	141.4	10.6	33	Denver CO	370.9	22.
34 Portland OR		133.0	11.4	34	Anabeim-Santa Ana CA	498.0	22 3
35 Nassau-Suffol	k NY	132.5	5.0	35	McAllen-Edinburg TX	82.3	22.1
36 Raleigh-Durha	M NC	126.1	18.9	36	Lafavette LA	48.7	22.2
37 Fort Meyers 1	21.	124.9	42.4	37	Boise City TD	43.3	22.2
38 Charlotte-Gas	stonia NC-SC	121.0	11.2	38	Midland TX	24.5	22.1
39 Tulsa OK		120.0	16.4	39	Vancover WA	47.9	22
40 Valleto-Fairt	field Ca	118	291	40	San Diego Ch	494	7 21 9
Al Oklahowa City		113.5	11.7	41	Wanchester-Nashua MH	70	21 3
42 Santa Rose-Pe	taluma Ca	113.1	31.7	42	Panama City FL	27.1	21 0
43 New Orleans	A	109.8	8.1	43	Santa Pe NM	21 3	2 21
44 Jacksonville	PT.	105 4	12.1	44	Boulder-Longmont CO	46 4	21 4
45 Baton Rouge	LA L	105	19.2	4 5	Laredo TX	26	21 4
46 Columbus OH		104	7.9	4.6	5 Tampa-St Petersburg FL	A10	21.1
47 Nashville TN		102	109	47	Fort Walton Beach FL	30.0	21.3
48 Kangae City 1	IO-KS	QR	6 4	49	Salinas-Seaside Ch	30.5	21.2
49 Fort Pierce	FT.	97.		40	Richland-Kennewick WA	73.	21.1
50 Albuquerque M	MM	95.0	19.7	50	Atlanta GA	547.	20.8

Source: National Planning Association, Regional Economic Projections, Series 87-R-1, 1988.

that, at least in terms of the territorial shifts of population, they did not predict very well.

For example, when the real energy prices went up, it was thought that people would come back to the cities. When prices went up in the mid- to late-1970s, we had one of our greatest period of population deconcentration. We had the nonmetropolitan revival. People moved even further away from their urban jobs. We saw figures on airline trends that bucked the CPI; and during the 1980-82 recession, certain hubs -- Phoenix for example -- boomed, as did the Texas airports. When we look at exogenous factors, we need to get into industry-specific propensities, getting back to the idea of structural change in the economy. As

TABLE 8. THE TOP 50 METROPOLITAN AREAS RANKED BY NET CHANGE AND PERCENT CHANGE IN EMPLOYMENT, 1987-2000

	Employment 1987-2	t Change 2000	-2000	Employment 1987-2	Change	
Metropolitan	Net Chng	Percent	Metropolitan	Net Chng	Percent	
Area	(1000s)	Change	Area	(1000s)	Change	
1 Los Angeles-Long Beach CA	723.6	15.1	l Naples FL	36.2	54.4	
2 Anaheim-Santa Ana CA	616.4	45.7	2 Fort Meyers FL	71.1	52.0	
3 Washington D.C.	522.5	21.4	3 Fort Pierce FL	46.3	49.4	
A Houston TX	515.1	30.7	4 Anaheim-Santa Ana CA	616.4	45 7	
5 Dallas TX	471.6	31.1	5 West Palm Beach-Boca Rato	n FI. 171 5	42 3	
6 Atlanta GA	452.2	28.1	6 Bradenton FL	36.2	41 8	
7 Boston-Lawrence-Salem WA	396.1	15.9	7 Boulder-Longmont CO	54 0	30.2	
8 San Diego Ch	351.3	29.4	8 Orlando FL	215 2	39.1	
9 San Jose Ch	348.8	35.9	9 Ocala FL	27.7	38.2	
10 Phoenix AZ	347 5	34 3	10 Fort Lauerdale-Hollywood	FT. 216.2	37 6	
1) Denver CO	291 0	29 0	11 Santa Pose-Detaluma Ch	64 7	37.5	
12 Minneanolig-St Daul MN-WT	290 5	19.9	12 San Jose Ch	348.9	35.0	
13 Tampa-St Detershurg FL	296.4	30.0	13 Saragota FL	46 3	35.9	
14 Seattle WA	278 2	25.4	14 Bryan-College Station TV	20.5	34.5	
15 Chicago II	261 4	7.6	14 Digan correge Station IX	112.0	34.5	
16 Nassau-Suffolk NV	258 7	18 5	16 Santa Cruz Ch	25.2	34.5	
17 Dhiladelphia DA-NT	256.7	10.0	17 Phoenix 17	33.3	34.4	
19 Fort Isuardala-Hollymood FI	230.3	37 5	19 Ownerd-Venture Ch	347.5	34.3	
10 Orlando BI	210.2	37.5	10 Canald-Vencula CA	92.4	34.1	
20 San Francisco Ch	215.2	19.1	20 Portsmouth-Dover NU	27.8	33.5	
20 San Francisco CA	214./	26.2	20 POILSMOULI-DOVEL NA	50.1	33.3	
21 Riverside-San Dernardino CA	198.1	20.3	22 Reno NV	51.8	32.5	
22 Oakland CA	195.9	19.4	22 AUSCIN TA	133.2	32.2	
23 Sacremento CA	193.4	20.7	23 TUCSON AZ	90.8	31.9	
24 Miami-Hiaiean FL	188.0	18.5	24 Midland TX	19.5	31.4	
25 Baltimore MD	180.1	13.8	25 MCAIlen-Edinburg TX	35.1	31.2	
26 West Paim Beach-Boca Raton	FL 1/1.5	42.3	20 Lalayette LA	34.3	31.2	
27 Fort worth-Arlington TX	108.0	28.2	27 Dallas TX	4/1.0	31.1	
28 St. LOUIS HO-IL	151.2	11.3		33.0	31.0	
29 Detroit MI	149.0	/.2	29 Houston TX	515.1	30.7	
30 San Antonio TX	143.9	23.5	30 Boise City ID	34.9	30.6	
31 Middlesex-Somerset NJ	143.8	25.2	31 Tampa-St Petersburg FL	280.4	30.0	
32 Salt Lake City-Ogden UT	137.1	26.0	32 Fort Walton Beach FL	22.8	29.7	
33 AUBCIN TX	133.2	32.2	33 Brazoria TX	20.9	29.4	
34 Portland OR	130.5	19.1	34 San Diego CA	351.3	29.4	
35 Noriolk-Virginia Beach VA	130.0	17.0	J5 Albuquerque NM	/9.6	29.3	
36 Charlotte-Gastonia NC-SC	12/.5	19.2	36 Panama City FL	19.1	29.2	
37 Columbus OH	126.8	10.0	37 Atlantic City NJ	62.1	29.2	
38 Raleign-Durnam NC	122.4	28.1	38 Denver CO	291.0	29.0	
39 NASHVIIIG TN	119.2	21.0	J9 Anchorage AK	39.7	28.7	
40 Hartford-New Britain CT	118.1	10.5	40 Sacremento CA	193.4	28.7	
41 Kansas City MO-KS	115.7	13.2	41 Olympia wa	18.4	28.4	
42 Las Vegas NV	113.0	34.5	42 Santa Fe NM	17.6	28.3	
43 Oklahoma City OK	108.5	19.9	43 Fort Worth-Arlington TX	168.6	28.2	
44 Newark NJ	105.6	9.5	44 Tallahassee FL	34.7	28.2	
45 Monmouth-Ocean NJ	105.2	25.7	45 ACLANCA GA	452.2	28.1	
40 New Orleans LA	104.0	16.3	46 COLORADO Springs CO	57.7	28.1	
47 Indianapolis IN	96.6	13.3	47 Redding CA	15.8	28.1	
48 JACKSONVIIIS FL	93.5	19.9	48 Raleigh-Durham NC	122.4	28.1	
49 Greensboro-Winston Salem NG	93.3	16.7	49 Chico CA	19.1	27.8	
50 Milwaukee WI	92.5	11.3	50 Manchester-Nashua MH	57,6	27.5	

Source: National Planning Association, Regional Economic Projections Series, 87-R-1, 1988.

we move from a goods-processing to an information-processing society, with the types of businesses changing, business travel is, in all likelihood, going to increase. If we can get industry-specific propensities to fly, and then calculate the forecasts in employment in specific industries I think we are going to get a better sense of what we might expect from a business travel standpoint in different areas of the country. We have to look at other industry factors as well such as acquisitions and mergers and what they mean from the standpoint of spatial distribution of units. When you have one single-site company buying other companies located at different sites but controlled from the corporate headquarters, what is that going to mean in terms of linking and controlling these various multiple dispersed-site locations for air travel?

				1987-	-1997
1	Metropolitan	1987	1997	Net	Percent
	Area	(1000s)	(1000s)	Change	Change
1	Dallas-Ft. Worth TX	22.1	30.5	8.4	38.0
2	Atlanta GA	30.6	30.3	-0.3	-1.0
3	Riverside-San Bernardino CA	29.2	26.6	-2.6	-8.9
4	Washington D.C.	28.7	21.6	-7.1	-24.7
5	Philadelphia PA-NJ	24.3	19.1	-5.2	-21.4
6	Phoenix AZ	17.3	17.5	0.2	1.2
7	Orlando FL	14.8	16.5	1.7	11.5
8	Tampa-St Petersburg FL	13.2	16.1	2.9	22.0
9	Chicago IL	19.6	15.1	-4.5	-23.0
10	Boston-Lawrence-Salem MA	13.6	14.6	1.0	7.4
11	West Palm Beach-Boca Raton FL	13.1	14.2	1.1	8.4
12	Minneapolis-St. Paul MN-WI	17.7	13.9	-3.8	-21.5
13	St. Louis MO-IL	11.9	12.7	0.8	6.7
14	Los Angeles-Long Beach CA	16.2	12.5	-3.7	-22.8
15	San Francisco-Oakland CA	15.3	11.9	-3.4	-22.2
16	Baltimore ND	17.4	11.9	-5.5	-31.6
17	Nagan-Suffolk NV	10.4	11.7	1.3	12.5
10	Nassau-Sulloik Mi	5.8	11.4	5.6	96.6
10	Nowfolk-Vivginia Boach VA	11 4	10.5	-0.9	-7.9
19	Norioik-virginia Beach VA	0.5	10.2	0.7	7.4
20		14.0	10.1	-4 8	-32.2
21	San Diego CA	14.3	10.1	-4.0	10 3
22	Raleign-Durnam NC	0./	9.0	1.4	17.3
23	Charlotte-Gastonia NC-SC	10.1	9.5	-2.2	-25 6
24	Monmouth-Ocean NJ	12.5	9.3	-3.2	-25.0
25	Kansas City MO-KS	8.9	9.1	0.2	4.4
26	Richmond-Petersburg VA	9.4	8.9	-0.5	-5.3
27	Indianapolis IN	8.4	8.9	0.5	6.0
28	Nashville TN	9.7	8.8	-0.9	-9.3
29	Detroit MI	11.5	8.7	-2.8	-24.3
30	Greensboro-Winston Salem NC	7.5	8.6	1.1	14.7
31	Sacremento CA	10.6	8.6	-2.0	-18.9
32	Fort Lauerdale-Hollywood FL	7.5	8.3	0.8	10.7
33	Portland OR	6.0	7.4	1.4	23.3
34	Columbus OH	9.1	7.2	-1.9	-20.9
35	Hartford-New Britain CT	8.4	7.2	-1.2	-14.3
36	Las Vegas NV	7.8	7.2	-0.6	-7.7
37	Miami-Hialeah FL	8.2	6.9	-1.3	-15.9
38	Davtona Beach FL	5.9	6.8	0.9	15.3
39	Memphis TN-AR-MS	7.1	6.6	-0.5	-7.0
40	Melbourne-Titusville FL	5.4	6.5	1.1	20.4
41	Seattle-Everatt WA	9.3	6.2	-3.1	-33.3
42	Cincinnati OH-KY-IN	8.5	6.2	-2.3	-27.1
43	Denver-Boulder CO	6.6	5.8	-0.8	-12.1
4.4	Fort Meyers FL	5.0	5.8	0.8	16.0
4.5	Albany-Cohonectedy-Troy NV	5.0	5.1	0.1	2.0
40	Albahy-Scheneccaty-110y NI	2.8	5.0	2.2	78.6
40	There h	5 1	5.0	-0.1	-2.0
4/	Niddlesey-Comercet NT	8 1	4.8	-3.5	-42.2
48	WINGTEREX-SOMELBER WO	5.J	4 6	-1.1	-19.3
49	NEW IOFK NI	5.4	4.5	-0.9	-16.7
50	ROCHEBCET NY	ion Same	ICA LODG-	tarm MSA "	Tables
sou	rce: Keal Estate and Construct	ing hace	vistes. Br	ring 1988.	
	Wharton Econometric Forecast	ASSOC	races of		

TABLE 9. THE TOP 50 METROPOLITAN AREAS RANKED BY PROJECTED 1997SINGLE UNIT HOUSING CONSTRUCTION STARTS (in thousands)

Air Freight

What do just-in-time manufacturing processes mean? These new processes of inventory control add to the growing importance of air freight. We can see already that parts of Southeast Asia are booming in air freight shipments, which are growing faster than container sea shipping. North Africa now is beginning to take off in terms of its air freight shipments. I do not have time to go into the details, but I really believe that air freight is going to take on an increased importance and that airports are certainly going to be as important as railroads were to our economy and citics in the past. I understand that Ross Perot, Jr. is building an air-freight-only facility on the periphery of Fort Worth. I will not be surprised to see more of them in the future with the economic vitality of the area being driven by air freight. Just think of types of multiplier effects we are going to have in

			1987-	-1997
Metropolitan	1987	1997	Net	Percent
Area	(1000s)	(1000s)	Change	Change
1 Los Angeles-Long Beach CA	47.2	38.8	-8.4	-17.8
2 Dallas-Ft. Worth TX	3.3	21.5	18.2	551.5
3 Atlanta GA	17.0	15.8	-1.2	-7.1
4 Houston TX	0.0	13.1	13.1	(X)
5 San Diego CA	19.0	12.9	-6.1	-32.1
6 Riverside-San Bernardino CA	15.1	12.3	-2.8	-18.5
7 Phoenix AZ	10.2	12.2	2.0	19.6
8 Nashville TN	2.3	12.0	9.7	421.7
9 Chicago IL	15.5	10.4	-5.1	-32.9
10 Detroit MI	18.8	10.3	-8.5	-45.2
11 Seattle-Everett WA	18.7	10.1	-8.6	-46.0
12 Anaheim-Santa Ana CA	14.7	9.4	-5.3	-36.1
13 Kansas City MO-KS	10.2	9.3	-0.9	-8.8
14 West Palm Beach-Boca Raton FL	13.3	9.2	-4.1	-30.8
15 Minneapolis-St. Paul MN-WI	10.6	9.1	-1.5	-14.2
16 Las Vegas NV	8.4	8.5	0.1	1.2
17 Fort Lauerdale-Hollywood FL	12.2	7.9	-4.3	-35.2
18 St. Louis MO-TL	9.2	5.9	-3.3	-35.9
19 Boston-Lawrence-Salem MA	10.0	5.9	-4.1	-41.0
20 Miami-Hialeah FL	10.0	5.5	-4.5	-45.0
21 New York NY	5.7	5.3	-0.4	-7.0
22 Sacremento Cà	5.9	4.7	-1.2	-20.3
23 San Antonio TY	1.0	3.9	2.9	290 0
24 Norfolk-Virginia Beach VA	2.8	3.5	0.7	25.0
25 Columbus OH	3.8	3.5	-0.3	-7.9
26 Denver-Boulder CO	5.3	3.5	-1.8	-34 0
27 Baltimore MD	4 9	3.2	-1.7	-34 7
28 Austin TY	0.8	2.9	21	262 5
29 Portland OP	2 4	2.7	0 3	12 5
30 Tampa-St Detershung FL	6 5	2 7	-3.8	-59 5
31 Charlotte-Cestopia NC-SC	3.9	2 7	-1.1	-28 9
32 Theses 17	1 5	2.7	1 2	80.0
32 San Francisco-Oakland Ch	5 4	2.6	-2.8	-51 9
24 Salt Taka City-Orden ITP	0.9	2 3	1.4	155 6
35 Indiananolis IN	3.0	2 1	-0.9	-30.0
36 Washington D C	7.3	2 1	-5.2	-71 2
17 Deleigh-Durber MC	1.6	2 0	0.4	25 0
32 El Dago TV	0.2	1 0	1.7	850.0
10 Drovidence-Deutucket DT	1 0	1 5	-0.4	-21 1
10 Dhiladalabia Di-WT	1.5	1.5	-0.4	-66 7
40 Philadelphia PA-NJ	2.0	1.5	-1.4	-49.7
41 Atlantic City NJ	2.9	1.5	-1.4	-40.3
42 Richmond-Petersburg VA	1.4	1.7	-1.2	-49 1
43 New Haven-waterbury Cr	2.7	1.4	-1.3	-90.1
44 Middlesex-Somerset NJ	2.2	1.9	-0.8	-30.4
45 MCALLON-EGINDURG TX	0.0	1.3		-12.2
46 Greensboro-winston Salem NC	1.3	1.3	-0.2	-13+3
4/ Jacksonville FL	2.1	1.3	-1.4	-51.9
48 Bergen-PassalC NJ	2.4	1.2	-1.2	-50.0
49 Orlando FL	3.3	1.2	-2.1	-03.0
50 Grand Rapids MI	4.0	110 100	-0.4	-43.0
NOTE: (X) indicates that percent cl	hange cou		e calcula	leble-
Source: Real Estate and Construction	JI Servic	e Long-t	SLE ROA 1	anias'
Wharton Econometric Forecasti	ny Associ	ates, Spr	1ng 1988.	

TABLE 10. THE TOP 50 METROPOLITAN AREAS RANKED BY PROJECTED 1997, MULTI-UNIT HOUSING CONSTRUCTION STARTS.

warehousing and just-in-time manufacturing facilities around such facilities.

In addition, we have to look at foreign trade deficits and what all those U. S. dollars that are building up in Japan mean. I believe that in the next 10 years, you are going to see that Japanese teenagers and young people coming into the U.S. will continue to increase. They have all these dollars that have to be spent, and a lot of them are going to be spent travelling here. What is the effect of age distribution and shifts in the age distribution that Alice Herman mentioned earlier? Oftentimes, we look at airlines and airports as endogenous factors. They could be activistic. They can, themselves, play a role through innovative marketing and service and create growth opportunities that otherwise would not exist. Where are the foreign investors located? What does this mean for future air travel demand? Are they changing? To date they have been concentrated in the Northeast and in

TABLE 11. TOP 50 METROPOLITAN AREAS RANKED BY PROJECTED 1997 VALUE OF NONRESIDENTIAL CONSTRUCTION PUT IN PLACE IN 1982 DOLLARS.

				1987	-1997
1	Metropolitan	1987	1997	Net	Percent
	Area	(in mil	lions \$)	Change	Change
1	Los Angeles-Long Beach CA	3203.4	2630.3	-573.1	-17.9
2	Atlanta GA	1787.2	2078.1	290.9	16.3
3	Washington D.C.	2221.0	2021.5	-199.5	-9.0
4	Chicago IL	1913.7	1840.0	-73.7	-3.9
5	Detroit MI	1805.6	1517.5	-288.1	-16.0
6	Seattle-Everett WA	717.4	1114.0	396.6	55.3
7	Dallas-Ft. Worth TX	1791.1	1086.1	-705.0	-39.4
8	Philadelphia PA-NJ	1167.7	1076.6	-91.1	-7.8
9	New York NY	1406.9	1046.7	-360.2	-25.6
10	San Diego CA	797.3	1025.8	228.5	28.7
11	Riverside-San Bernardino CA	1031.5	879.8	-151.7	-14.7
12	Boston-Lawrence-Salem MA	1263.9	867.4	-396.5	-31.4
13	Minneapolis-St. Paul MN-WI	1088.6	827.3	-261.3	-24.0
14	Anaheim-Santa Ana CA	1265.0	821.4	-443.6	-35.1
15	San Jose CA	551.9	720.4	168.5	30.5
16	Greensboro-Winston Salem NC	346.5	699.6	353.1	101.9
17	Tampa-St Petersburg FL	978.2	688.1	-290.1	-29.7
18	Baltimore MD	738.6	676.2	-62.4	-8 4
19	Phoenix AZ	1237.3	672.2	-565.1	-45.7
20	Jacksonville FL	402.5	652.2	249.7	62 0
21	St. Louis MO-IL	719.8	643.1	-76.7	-10.7
22	Indianapolis IN	676 5	641 5	-35 0	-5.2
23	Middlesey-Somerset N.T	760 5	579 9	-180 6	-23 7
24	Orlando FL	781 6	561 1	-220 5	-29.2
25	Columbus OH	543 1	526 6	-16 5	-20.2
26	Raleigh-Durham NC	AA6 1	521.1	75.0	16.9
27	Houston TX	663 2	515 2	-148 0	-22.3
28	Cleveland OH	604 6	495 2	-110 4	-10 7
29	West Dala Beach-Boca Daton FL.	444 9	400.0	76 1	-19.7
30	Newark M.T	442 4	450.5	15 1	3.4
31	Miami-Hialoah FL	512 9	443 6	-80 2	-16.7
32	Kangas City MO-KS	597 7	438.0	-159.2	-26.7
33	Norfolk-Virginia Beach VA	576 0	426 4	-149 6	-26.0
34	Cincipneti OH-KY-IN	443 9	425 4	-19.5	-4.2
35	Portland OP	252 0	412 5	160 5	63 7
36	Nachville TV	592 7	412.0	-170.7	-29.7
37	New Haven-Waterbury CT	371 0	385 9	14 9	4 0
38	Charlotta-Gastonia NC-SC	433 B	385 9	-47 9	-11.0
39	Nassau-Suffolk NV	548 8	385.0	-163 8	-29 8
40	Sacremento Ch	510.3	373.7	-165 6	-30 7
41	Monmouth-Ocean NJ	294 4	370.9	76.5	26.0
42	Rirmingham AT.	284 1	370.5	86 4	30 4
43	Ditteburg Di	499 7	343 3	-145 4	-20.9
44	Memohie TN-ND-MC	533 7	340.9	-192 9	-36 1
45	Milwaukee WT	202 2	224 8	-59 5	-14 9
45	Louisville KV	345 0	221 0	-14 9	-4 3
47	Fort Inverdele-Vollamood PI	592 4	331.0	-267 2	-4.1
4/	Pichwond-Datawahuwa VI	202.0	343.4	-43/.4	12 5
40	Crand Danida WI	202./	214 6	38.2	12.2
49	Grand Rapids Mi Vertford New Dritein Off	432 0	314.0	-110 6	-27 4
50	nai Lioid-New Britain Cr		Ca Long-*	-110.3	
Juar	Wharton Econometric Forecast	ing Beeco	iateg grow	ing 1099	unien,
	The for hooroustre forecast.	my hoode	reces, ohr	119 19000	

California, but that is beginning to shift. More and more foreign money is going to Chicago for example. Where are the immigrants locating? I talked about the circulatory nature of immigration. Immigrants are not just coming in and staying. They go back and forth and this is going to have an impact on air passenger flows.

Discussion

Comment: Who are the workers going to be in the coming decade? Who is going to take care of the airport, the planes? Who is going to do all of the things that entry-level workers are currently doing?

Mr. Kasarda: There are going to be labor force squeezes. One of the unfortunate aspects is that people leaving are not just retirees. The modal category are college-educated young adults seeking employment opportunity throughout the Southeast. So, in addition to the stereotype snowbirds moving down South, many well-educated people are also relocating. As labor forces decline in certain areas, problems of finding appropriate manpower, both skilled and entry-level, will increase.

Comment: One of the things, in addition to propensity, that we look at in the FAA is how the propensity to fly by age group might also change the long-run forecast because of the significantly aging population. We assumed a constant propensity to travel and looked at that. We then broke it down by age group. First we did a forecast using the propensity to travel to 2010 just by the number of people that are going to be around using census data. Then we broke that down and looked at the different propensities of travel based on different age groups and looked at those age-group distributions projected in 2010. We found, very surprisingly, that it changed the long-run forecast less than one percent in 2010 by considering all of the distributions from the Gallup survey.

Comment: This is a good point because right now, all these groups have about the same propensity. I suspect that a lot of the regional distributions and the propensities for flying are correlated with income. From an airline perspective it is important to understand exactly where their growth is going to be, but from a broader perspective, if you are looking at an amount of money to budget 10 years down the road for facilities, the top-down forecast may give you a fairly good idea of how much money to budget. Then, as you get closer to the time for implementation, you have an idea of where to invest that money in facilities.

Mr. Kasarda: As industries change and income levels of certain groups rise, more demand for air travel and air facilities will occur.

Comment: We are seeing some different roles in society that are not directly correlated to age as they were in the past. For example, McDonald's is getting a lot of their new employees from people who are 60 and over. What other roles like that do you see changing? We are also seeing that older people are not necessarily all on the beach in Florida, some are still working somewhere part time. Mr Kasarda: There are two factors playing a role here. One is that the younger age cohorts are declining in size. This is why I expect that in the 1990s immigration might play a greater role in aviation demand. I think there is going to be tremendous pressure on Congress from the business community to relax Simpson-Mazzoli, to put the drawbridges down and get more labor into the country. The Bureau of Census forecasts immigration stabilization at 500,000 per year. Given the demographic trends of shrinking younger cohorts, there is going to be political pressure to increase this. Part of the problem is that there are young people out there, but many do not even have the most elementary skills, interpersonal, let alone education or technical -- to assume jobs, or who are not inclined to take these jobs. Thus, we have the irony in many of our metropolitan areas where there are simultaneously labor shortages and high unemployment among youth, particularly minority youth.

This has a double-barrelled effect that is encouraging business to keep or to attract older labor, and I think this trend is going to continue. Then you have to ask, if they have the resources and they are working at MacDonald's rather than sitting home, are they more likely to fly? Likewise you have to ask what is going to happen as a result of the two-income families. Is that going to help or hinder air travel? I have a gut feeling it is going to help it, because we're going to have a larger percentage of people with quite a bit of discretionary resources that could be used for travel. Those people at that bottom, of course, probably would not be flying anyway.

Comment: In addition to the population distribution and the age effects, which have a major macro effect, consideration should be given to the fact that the population growth rate is now so much lower than it was when many of these models were being developed. Also, there may be some other correlation between GNP growth and population growth so that when GNP growth was basically going along at two percent a year or so. then you had population growth that was in the late 1960s growing at two percent a year. By the year 2010, we see population growth going down to less than half a percent a year. In fact, being very close to zero percent after that. Absent the wholesale immigration that was mentioned, this will be a major factor in the forecasts.

ALTERNATIVE PROJECTIONS SERIES

A large number of government, nonprofit, and for-profit organizations produce projections and forecasts of a wide range of variables, several of which can be used as measures of real estate demand. A sampling of series produced by these firms and reviewed for this paper include projections/forecasts of population, employment, housing starts, and value of construction put in place (in 1982 dollars). Firms providing these projections/forecasts and the Bureau of Economic Analysis; the National Planning Association; Woods & Poole Econometrics, Inc.; and Wharton Econometrics Forecasting Associates (WEFA).

Projections should be distinguished from forecasts in that projections assume that past trends will persist; whereas forecasts build in anticipation of future events that may not follow a historical trend. Typical forecasting processes allow greater modification of the mathematical output based on judgement. Discussions which follow will use the term projection as a generalized reference to either a projection or a forecast.

Organizations producing projections must often trade off time and resource constraints against the benefit of comprehensive review on a series by series, or area by area basis. Similarly, the need for timeliness and comprehensiveness of the projected series and level of geographic detail may outweigh the ability of an organization to undertake a detailed review. Organizations like BEA build into their projections a major allocation of time for internal review, including adjustments for recent strikes, plant closings and openings, as well as a formalized process for local and State review. However, their projections are available only every five years, and include only about 35 variables at the MSA level. With this time lag, even if comprehensive analysis were undertaken, short-term projections may be out of line with current data by their release. On the other hand, for-profit firms, like WEFA, often provide quarterly forecasts of hundreds, if not thousands, of series for many, many geographic areas. The resources necessary to undertake a comprehensive review for all series, for all areas, for all periods would be prohibitive and probably would preclude many data users from purchasing their services. In addition, it would be unlikely that they could compete against other for profit firms, who control quality in the aggregate, not at every level.

To evaluate projections from different types of organizations, one must judge the quality, timeliness, and degree of detail of the of the <u>overall</u> projections program relative to cost. For private and not-for-profit organizations, the cost would be reflected through client fees; for government organizations, the cost would have to be determined through information on the direct funding of the projection program.

A brief description of the source, series, release date, and general methodological approach of each organization follows:

Source:U.S. Department of Commerce, Bureau of Census

Series: Population by State

Release Date: October, 1988

Methodology: These projections are developed using a cohort-component method which allows for different assumptions for each component of population change, categorized by age, race and sex, births, deaths, internal migration, and international migration. The base data are resident population of the States by sex and single year of age as July 1, 1986. These data are disaggregated into racial groups based on 1980 census information and administrative records. The projections for mortality are State-specific and assume a slight increase in overall life expectancy. The appropriate age, race, and sex survival rates by State are developed from the 1979-81 State life tables developed by the National Center for Health Statistics. Future births are developed from applying age-race-specific fertility rates by State to the projected number of females of child-bearing age by State. In general, these projections assume a slight increase in the levels of fertility to an ultimate level of 1.8 births per woman. Fertility differences across States are based on historical patterns. International migration is assumed to decrease linearly from an annual level of 600,000 through 1988 to 500,000 by 1998 and remaining constant thereafter. State-to-State migration rates are used to develop estimates of domestic migration. A set of synthetic data was created using migration rates from the Current Population Survey March Annual Demographic File, migration flows from the 1980 decennial census, and annual State-to-State migration flows from matched federal income tax returns. Final State populations by age, sex, and

race are controlled to the middle series national totals, which are independently projected.

Source: U.S. Department of Commerce, Bureau of Economic Analysis

Series: Employment by State and MSA

Release Date: 1986(?)

Methodology: The Bureau of Economic Analysis develops detailed regional projections every five years, with the most recent set being the 1985 **OBERS, BEA Regional Projections. BEA develops** its State and metropolitan projections using a step down method, moving from a national projection, to state-level, to MSA level, where the smaller constituent areas are forced to sum to larger areas. BEA relies on gross national product and employment projections by detailed industrial sector from the Bureau of Labor Statistics for 1990 and 1995, extending these series further into the future themselves. BLS develops GNP projections by 1) projecting the labor force participation rate, applying it to Census projections of population to obtain the labor force. 2) projecting unemployment rates, applying them to the projected labor force to obtain employment through substraction, and 3) projecting output per employee and multiplying it by employment to yield projected GNP. BLS distributes GNP across about 150 industrial sectors using a variety of interindustry relationships. For State and substate level projections, BEA aggregates industry detail to 57 industry sectors. BEA adopts the middle series national population projections by age produced by the Bureau of Census.

Employment in each national industry is distributed among the States, according to whether an industry is basic (produces products generally exportable) or service (satisfies local demand) by use of a base-service model of the economy of each State. Each State's share of the basic industries is projected into the future and controlled to a national total. Service employment flows from basic employment with the relationship varying from State to State, sensitized by changing national trends.

Projections of population by State are driven by the employment base, taking into account changing State and national trends in this relationship. Total population is the sum of three separate age group projections, the population 0 - 14, 15 - 64, and 65 plus. The population 15-64 is developed through a ratio of age-group population to total employment by State, adjusted for trends in the State-to-national relationship of this ratio over time. The population under age 15 is developed from trends in the ratio of the under-15 category to the 15-64 category, sensitized by the State-to-national relative. The projection of population over 65 is developed similarly using the 0-64 population base.

At all phases of the State/industry projection process, the mathematical model results were reviewed and modifications made, when necessary, to adjust for 1) unusually rapid growth or decline, 2) a permanent event, such as factory shutdown, that primarily affected the level, rather than the trend in economic activity. 3) a temporary event, such as a strike, that should have no long-term impact, or 4) a planned event, such as an opening of a new facility after 1983, that was not reflected in the base data. The review process involved first BEA staff, followed by State review by Federal State Cooperatives for Population Projections and other State organizations knowledgeable in these fields. Finalized industry and population projections served as the controls for the MSA and nonmetropolitan aggregate projections.

MSA projections flow from the State level projections. The historical annual growth rate in the MSA's share of the State level employment by industry is projected into the future at a declining rate, then applied to the projected state level employment. This assumes that economic forces will emerge which will preclude an MSA share from either growing or declining at a rapid rate for extended periods of time. Once again, preliminary projections are reviewed and modified based on current data. As with State population projections, MSA population is driven by the employment projections. For all series and all levels of geography, smaller areas are summed and controlled to larger areas.

Source: National Planning Association

Series: Population and Employment by State and MSA

Release Date: Late 1987 to Early 1988

Methodology: The National Planning Association uses the population, employment, earnings, and income historical data base from the Bureau of Economic Analysis as their core data base. NPA uses a regional growth accounting model which disaggregates a national forecast into consistent subnational forecasts. NPA allocates their forecast to economic areas of the country, then to counties within these areas through a two-step disaggregation process, utilizing relative growth rate differential and multiplier analyses. The counties are then aggregated into State, regional, and MSA area totals. Hisorical growth rate differentials, (the ratio of the area growth rate to the national growth rate) are projected to decay over the projection horizon. The resulting area specific growth rates are then applied to prior vear employment, while controlling the sum of the areas to the national total. Population, as with the BEA projections, is driven by the employment projections. A similar methodology is followed for the counties, except differentials by county are used instead of multipliers, since at the county level, population (by place of residence) may not be as closely related to employment (by place of work) as in larger geographic areas where commuting does not influence the ratios as much.

- Source: Wharton Econometric Forecasting Associates (WEFA)
- Series: Single and Multifamily Housing Starts and Value of Nonresidential Construction Put in Place, in 1982 dollars

Release Date: Spring 1988

Methodology: Wharton Econometrics produces, on a quarterly basis, quarterly forecasts ten years into the future for a large number of economic and demographic variables. These series are available only to their clients, and detailed information on how the series is developed is unavailable for public distribution. WEFA in general uses an econometric approach in their forecasts by developing structural equations for all concepts, adjusting the forecasts through add factoring for deviations in the most current information which have not been picked up by the mathematical model.