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State-of-the-art infrastructure management systems utilize Markov Decision Processes as 
a methodology for maintenance and rehabilitation (M&R) decision-making. The 
underlying assumption in this methodology is that an inspection is performed at the 
beginning of every year, and that inspections reveal the true condition state of the facility, 
with no error. As a result, after an inspection, the decision maker can apply the activity 
prescribed by the optimal policy for that condition state of the facility. 

Previous research has developed a methodology for M&R activity selection, which 
accounts for the presence of both forecasting and measurement uncertainty. This 
methodology is the Latent Markov Decision Process (LMDP), an extension of the traditional 
MDP that does not assume the measurement of facility condition to be necessarily error-free. 

In this paper, we extend this methodology to include network level constraints. 
This can be achieved by extending the LMDP model to the network-level problem 
through the use of randomized policies. We present both finite horizon (transient) and 
infinite horizon (steady state) formulations of the network-level LMDP. A case study 
application demonstrates the expected savings in life-cycle costs that result from 
increasing the measurement accuracy used in facility inspections, and from scheduling 
inspection decisions optimally. 

INTRODUCTION 

State-of-the-art infrastructure management systems utilize Markov Decision Processes as 
a methodology for maintenance and rehabilitation (M&R) decision-making (Golabi et al. 
1982, Carnahan et al. 1987, Carnahan 1988, Feighan et al. 1988, Harper et al. 1990, 
Gopal and Majidzadeh 1991). In this methodology, facility condition at any time is 
measured by a discrete state and the deterioration process is represented by discrete 
transition probabilities of the form: 

p(x1+1 =jlx1 =i,a1 ); l~i,j~n; t=O, ... ,T-1 

where: 
x, = condition state of the facility at the beginning of year t, 
i, j = indices of elements in the set of discrete conditions, 
a,= M&R activity performed during year t, 
n = number of possible states the facility can be in, 
T = number of years in the planning horizon. 
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Given these transition probabilities, the optimal M&R policy can be solved for 
using Dynamic Programming. The underlying assumption in this methodology is that an 
inspection is performed at the beginning of every year, and that inspections reveal the 
true condition state of the facility, with no error. As a result, after an inspection, the 
decision maker can apply the activity prescribed by the optimal policy for that condition 
state of the facility. 

There are two major limitations in this approach. First, it assumes that inspections 
are error-free. Second, it depends on a fixed, not necessarily optimal inspection schedule 
(an inspection has to be performed at the beginning of every time period). 

The first assumption has been demonstrated to be incorrect in several empirical 
studies (for example, Humplick 1992): there is substantial measurement uncertainty in 
infrastructure inspection. This uncertainty affects M&R decisions because a measurement 
error will lead to the selection of a "wrong" activity if the prescribed M&R activity for 
the true condition and that prescribed for the measured condition are different. The 
second assumption reflects the absence of a systematic methodology for making 
inspection decisions in the field of infrastructure. Current methods of inspection planning 
are ad-hoc and subjective (for example, Shahin and Kohn 1981). 

In previous papers, a methodology for M&R activity selection, which accounts 
for the presence of both forecasting and measurement uncertainty, was presented. This 
methodology is the Latent Markov Decision Process (Madanat 1993, Madanat and Ben­
Akiva 1994). The Latent Markov Decision Process (LMDP) is an extension of the 
traditional MDP, but differs from it in one major aspect: it does not assume the 
measurement of facility condition to be necessarily error-free (Eckles 1968, Smallwood 
and Sondik 1973). 

In this paper, we extend this methodology to include network level constraints. 
This can be achieved by extending the LMDP model to the network-level problem 
through the use of "randomized policies." In the following section, an overview of the 
LMDP is presented. Section 3 presents the extension of this methodology to incorporate 
network level constraints for the case of a finite horizon problem. Section 4 extends the 
network level problem for the infinite planning horizon problem. Section 5 presents a 
case study on the application of this methodology. Section 6 discusses some practical 
aspects of these models and concludes the paper. 

THE LATENT MARKOV DECISION PROCESS 

When measurement uncertainty is introduced into the MDP, what the decision maker 
observes at the beginning oft becomes a measured state which is probabilistically related 
to the true state of the facility. This relation can be mathematically stated as: 

where: 
x1 = measured condition state of the facility at start oft, 
x 1 = true condition state of the facility at start oft, 
j, k = indices of elements in the set of discrete condition states, 
q = a known probability mass function. 

(2) 
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These measurement probabilities can be obtained empirically, using the concept 
of measurement error models (see Humplick 1992, Ben-Akiva et al. 1993). 

Due to the presence of measurement errors, the true state of the facility is no 
longer observed. Using state augmentation, a new state is defined to account for all the 
information available to the decision maker and relevant to future decisions (Bertsekas 
1987). The information available to the decision maker at the beginning oft includes the 
entire history of measured states up to t and the decisions made up to t-1. Moreover, 
knowledge of the measured state is not sufficient for decision making. Thus, all the 
previous measured states and decisions can be relevant to future decisions, and have to be 
included in the augmented state. Denoting the new state by / 1, we have: 

11 = {I0 ,a0 ,x" ... ,a1_"xr} t = 1,2, ... T 

10 = { x_~,a-~, ... ,a_"x0 } 

where: 
't = number of years between first inspection of facility and start of planning horizon. It 
follows that: 

P(I1II0 ,a0 ,.xi, .. ,J1_"a1_ 1 ) = P(I1II1_"a1_ 1 ) t = 1, ... ,T 

Assuming 10 to be known, the transition probabilities P(IrlJ1_1,a1_1) define the 
evolution of the state of information, and this evolution is Markovian. 

(3) 

(4) 

We can thus write a Dynamic Programming formulation over the space of 
information states; for notational simplicity, this is done using the generic cost function 
g(x,a). First, the cost function has to be rewritten in terms of the new variables. The cost 
per stage as a function of the new state, I, and of the activity a, is: 

n 

Ex {g(x,a)II} = LP(x =ill)* g(x,a) (5) 
1=1 

To evaluate expression (5), we need to know the distribution of the true condition 
state at t conditional on I, that is: 

p(xll), '-.:Ix, '-.:II (6) 

or, in vector form, 

PII, '-.:II (7) 

where: 
PII = n-dimensional vector (the information vector). 
If Pollo is known, then PrlJ1 can be calculated recursively for all t, starting from t = 1 to 
t = T, using Bayes'' law, the known measurement probabilities and the known transition 
probabilities. Given / 1 ={/1_ 1,a1_ 1,£1}, each element of PM, can be calculated as follows: 

(8) 

k 
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It can be seen that the denominator of (8) yields the total probability of measuring 
£ in time period t conditional on the information state in the previous time period Ui-,) 
and the activity a performed in time period t-1. Since each combination of measured 
state£ and activity a produces a new information state in time period t, the denominator 
of (8) is the transition probability from state /1_ 1 to state Ii conditional on activity a1-1- We 
denote these transition probabilities by P(Iil!i-l, a1). 

Using the elements p(xilJ1) calculated above, the Dynamic Programming recursion 
over the space of information states can be written as: 

11(11) = m}n{Iip(xi = ilI1)g(x1,a1)+a LP(xi = ilI1)[Lp(x1+1 = Jlx1 = i,a1) 
I l ] 

~q(X,+1 =klx,+1 = j)• J,+1(!,+,l)]} VI,,t =0, ... ,T-1 

where: 
a= discount amount factor, and 
/1+1 = {/1, a1 ,k} 

(9) 

The model defined by this fonnuhition is referred to as thP. T ,atent Markov 
Decision Process with annual inspections, because it assumes that the state of the facility 
is latent, and because it assumes that a measurement of facility condition is available at 
the start of every period t. 

For computational reasons, it is of interest to replace Ii with a quantity of smaller 
dimension, but which has the same information content. Such a quantity is referred to as 
a "sufficient statistic" for /1• Since, as observed earlier, /1 affects decisions only through 
p(xilJ1), an ideal sufficient statistic is the information vector PilJ1. 

The advantage of using the vector PilJi is that it allows for direct comparison 
among states at a given t. Whereas it is impossible to directly compare the states Ii, it is 
possible to compare the information vectors Pil!i, by pair-wise comparison of 
corresponding elements. When two states are found to have equal, or almost equal, values 
of PilJ1, they can be combined into a single state, which reduces the number of times 
equation (9) has to be applied. The subject of combination of different states is covered in 
(Madanat 1991) in more detail. 

We assume that Pollo is given, in order to be able to calculate PilJ1, for all t, using 
(8). This initial vector, the prior distribution of the true states, represents the prior belief 
of the decision-maker regarding the state of the facility. 

Solving program (9) for a specified planning horizon Twill yield the minimum 
expected cost J0(P0II0) and the optimal sequence of policies n* = {µ;(Pollo), ... , 
µ~_ 1 (Pr-dlr_1)}, where µ~(Ptllt), the optimal policy for period t, specifies the optimal 
M&R activity for each possible information vector at time t, PilJ1• A "possible" 
information vector is one which can be reached with non-zero probability at time t, given 
Pollo, and given the optimal policies up tot. 

The components of the cost function g(x,a) are: 

• the cost of performing an activity, which depends on the type of activity and the 
condition state of the facility; this cost is denoted by c(a, x); 
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• the user cost, which depends on the condition state of the facility; this cost is 
denoted by u( x ). 

EXTENSION TO THE NETWORK LEVEL PROBLEM: 
THE FINITE HORIZON CASE 

G-2 I 5 

The type of policies produced by the LMDP (and by the ordinary MDP) are non­
randomized policies. This is because, given a state of the system, the model specifies a 
single M&R activity. A randomized policy does not specify a single optimal activity for 
each state of the system. Instead, it specifies optimal probabilities for different activities 
for each state of the system. 

At the facility level, the concept of the probabilities of different activities is 
ambiguous. On the other hand, if we are dealing with a number of facilities in the same 
information state, these probabilities can be interpreted as fractions. In other words, the 
optimal policies would specify the optimal fractions of activities to be applied to facilities 
in each state. The choice of the specific activity to be applied to each facility in this state 
is left to the engineer. This procedure recognizes that there exist other considerations in 
the choice of M&R activities which are not captured by the model; for example, materials 
and labor availability, traffic disruption, etc. Thus, it is necessary to allow for some 
flexibility in the model recommendations, which can be exploited by the engineer in 
charge of these facilities. 

By using randomized policies, it is possible to include in the LMDP formulation 
budget constraints, a feature which would make it possible to use the new model for the 
solution of the network-level problem. This is achieved by formulating the problem as a 
Linear Program, where the decision variables are the fractions of activities to be applied 
to facilities in each state of the information. The concept of randomized policies has been 
used extensively in the context of classical MDP models; see Golabi et al (1982), Harper 
et al (1990) and Gopal and Majidzadeh (1991). 

For a finite horizon of T periods, a Linear Program can be used to solve for the 
optimal fraction of facilities in each state of the information receiving each of the 
maintenance and rehabilitation activities. As in the facility-level LMDP, information 
states are represented by the vector /1, or by the sufficient statistic PilJ1• The decision 
variables are the fractions of facilities in each information state / receiving activity a in 
time t, and are denoted by Wair• Included in the set of activities is the decision to inspect; 
each activity can be performed with inspection or without. Since not inspecting 
essentially yields the same information as inspecting with a technology of infinite 
variance, the decision to inspect is modeled as a choice between performing an 
inspection and incurring the additional cost of inspection or inspecting with a 
technology of infinite variance and incurring no inspection cost (Madanat and 
Ben-Akiva 1994). 

The formulation of the Linear Program is as follows: 

min~:p:[ ~(c(a,k)+u(k))*p(x, =kl!,)] •~,, (10) 
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Subject to: 

w,,lt;?: Q 

a a I 

LL W,,Ir * p(xr = kll1 );?: PM/Nk 
a I 

LL W,,1r * P( x1 = klI1 )::; PMAXk 
a l 

LL [L c( a, k) * P( xt =kilt)] * w,,lt ;?: BM/NI 
a l k 

LL [L <:( u, k) * P( Ar =kill)]* w,,lt ::; BMAXt 
a l k 

where: 

'va,l,t 

"it 

'vJ,t 

'vk,t 

'vk,t 

"it 

"it 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Walt= the fraction of facilities in information state I receiving activity a in time t, 
PM/Nk = minimum fraction of facilities allowed in condition state k, 
PMAXk = maximum fraction of facilities allowed in condition state k, 
BMAX1 = budget maximum for time period t, 
BMIN1 = budget minimum for time period t. 

The objective function (10) minimizes the total expected cost to both the agency 
and the users by selecting the optimal values of the decision variables, Wau, over the 
planning horizon T. 

The first constraint (11) limits all decision variables to non-negative values. The 
unity constraint (12) defines each Wa11 as a fraction of the total number of facilities in the 
network. The Chapman-Kolmogorov equations (13) provide for conservation of facilities 
over time, where facilities move from one information state / 1 to another state lr+t with 
transition probabilities P( l 1+i!I1, a1). 

Additional constraints (14-17) impose network-level restrictions on the optimal 
solution. Performance level constraints (14,15) set acceptable ranges for the fractions of 
facilities in the best and the worst condition states. Agency budget constraints (16,17) 
require yearly expenditures to fall within a specified budget. 

EXTENSION TO THE NETWORK LEVEL PROBLEM: 
THE INFINITE HORIZON CASE 

It is desirable, from the highway agency's perspective, to achieve a constant distribution of 
network conditions and M&R expenditures. To satisfy this objective, a steady-state 
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formulation of the network level LMDP is used. In this formulation, it is assumed that 
after an initial transient period, an optimal steady-state distribution of network conditions 
and activity mix will be reached. A steady-state distribution of network conditions can be 
reached if the optimal policies used produce a probabilistic evolution of states that 
corresponds to an ergodic Markov chain (Gallager 1995). Therefore, an infinite planning 
horizon formulation is used, in which the objective is to minimize the expected cost per 
time period (Kulkarni 1984). In this infinite horizon case, the fractions of facilities in each 
information state that receives a given activity do not vary from year to year. The resulting 
Linear Program can be written without time indices. The formulation of the LP reduces to: 

minLL[L(c(a,k)+ u(k)) * p(x = kl/)] * W,,, 
a I k 

Subject to: 

w,,, ;?:0 

L W,,1 = LL W,,, *P(JII,a) 
a a I 

LL W,,, * p(x = kjl);?: PMINk 
a I 

LL W,,, * p(x = kjl) ~ PMAXk 
a I 

L L[L c( a, k) * p( X =kl!)]* w,,I ;?: BMIN 
a I k 

L L[L c( a, k) * p(x =kl!)]* w,,I ~ BMAX 
a I k 

"ia, I 

',;jj 

Vk 

Vk 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The objective function (18) in the infinite horizon formulation minimizes the total 
expected cost for one year, since expenditures will be equal in each year in the steady-state. 
Again, decision variables are non-negative and must sum to one. With the absence of time 
indices, the Chapman-Kolmogorov equations (21) guarantee that the distribution of facilities 
will remain constant, although individual facilities may change states over time. Network 
level constraints (22-25) set the range of acceptable annual performance and budget levels. 

CASE STUDY 

Combining the finite and infinite horizon formulations, the network-level LMDP offers a 
complete methodology for optimizing M&R and inspection activities for a network of 
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facilities in the presence of measurement and forecasting uncertainty. The methodology 
was used to evaluate the expected life cycle cost reduction that results from a reduction in 
the uncertainty in the measurement output used in facility inspection. 

Specification 

In this case study, both transient and steady-state optimal M&R and inspection policies 
were determined for a network of highway pavements. Facility condition is represented by 
a set of three discrete states: 1, 2, and 3 (3 being the best condition). The M&R activities 
consisted of no action, routine maintenance and resurfacing. Associated with each M&R 
activity was a set of costs which varied by condition state and a set of condition state 
transition probabilities. These costs and transition probabilities are presented in Tables 1 
to 4. At each time period, the M&R activity for the current period and the inspection 
decision for the next period are jointly selected. Table 4 presents the cost of inspection as 
well; this cost was assumed to be independent of measurement accuracy. 

For computational simplicity, the information state space was discretized using an 
interval of 0.25. The allowable values of the conditional probabilities p(x = kJI) were 
therefore limited to the following: 1.0, 0.75, 0.5, 0.25, and 0. As a result, there were only 

Table 1: Deterioration Transition Matrix ("Do Nothing" Alternative) 

I ;;:;o 
I l 1~5 1~; 1;5 

Table 2: Routine Maintenance Transition Matrix 

I ;):; I) 

I~ 1~, 1~: 1~2 

Table 3: Resurfacing Transition Matrix 

2 

I *+I) I ' IL 1:2 I I x(t) 

1 0.6 0.4 -

Table 4: Costs of M&R Alternatives and Inspection (in Dollars per Square Yard) 

State Routine Maintenance Resurfacing Inspection 
3 5 20 0.1 
2 8 20 0.1 
1 15 20 0.1 
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15 points in the grid of the state space, PII, in each time period. Each information vector 
computed by using equation (8) was mapped to the numerically closest of the fifteen 
predetermined information states. As a result, several of the actual information states are 
aggregated into a single point in the grid. This aggregation leads to a substantial reduction 
in computational costs, albeit at the cost of some loss of computational accuracy. 

For the finite time horizon case, a planning horizon (T) of 15 years was used. The 
initial distribution of facilities reflects a fairly new network of pavements: 90% of 
facilities were in state 3, 9.75% in state 2 and 2.25% were in state 1. The maximum 
performance level constraint specified that, over all possible actions and information 
states, the probability of facilities being in state 3 must be at least 45%. The minimum 
performance constraint limited the probability of facilities being state 1 over all activities 
and information states to, at most, 5%. The range of acceptable budget levels and user 
costs was predetermined. In the finite planning horizon, these constraints were relaxed to 
allow for greater flexibility in the short term solution. 

The optimal M&R policies were obtained for four levels of measurement accuracy. 
Measurement errors were assumed to be normally distributed with a mean of zero and four 
possible standard deviations: 0, 0.375, 0.75, and 1.125. Standard deviations are in units of 
condition states. Table 5 presents the four levels of accuracy evaluated in this case study. 

Results 

The Linear Program wa~ solved with AMPL, a mathematical programming language, for 
both the finite and infinite horizon cases and the results are shown in Figures 1 and 2, 
respectively. Figure 1 shows the effect of measurement uncertainty on the minimum total 
expected cost for the transient problem, using a planning horizon of 15 years. Figure 2 
shows the effect of measurement uncertainty on the minimum expected cost per year for 
the steady-state problem with an infinite planning horizon. The results show that, in both 
cases, the expected costs increase as measurement uncertainty increases. The slope of the 
expected cost curve yields a marginal benefit from decreasing measurement uncertainty. 
From these figures, one can quantify the value of better measurement uncertainty for both 
the short and long term planning horizons. 

CONCLUSIONS 

In this paper, we have presented a network-level extension of the Latent Markov 
Decision Process (Madanat and Ben-Akiva 1994). This extension is based on a Linear 

Table 5: Precision of Measurement 

Standard deviation q(x = j-llx = j) q(x=jlx=j) q(x = j + llx = j) 
0 0 I 0 
0.375 0.0925 0.815 0.0925 
0.750 0.24 0.52 0.24 
1.125 0.33 0.34 0.33 
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0.375 0.75 1.125 

Standard Deviation of Measurement (Discrete condition states) 

Figure 1: Rise in minimum expected cost with increase in measurement 
uncertainty (Finite Planning Horizon). 

Programming formulation that uses randomized policies in conjunction with network 
level constraints, such as budget constraints and condition standards. 

Two complementary versions of the joint optimal inspection and M&R policies 
problem were presented: a transient, finite-horizon formulation and a steady-state, infinite 
horizon formulation. An agency would use this methodology in the following manner: 

• first, the infinite horizon problem would be solved to obtain the optimal steady­
state distribution of facilities in each information state receiving each of the activities; 

• then, using this optimal steady-state distribution as a target to be reached in T 
periods, the finite horizon problem would be solved to obtain the optimal transient 
distributions of facilities in each information state receiving each of the activities for each 
period from t = 0 to T. 

A case study was performed to evaluate the effect of increasing the uncertainty in 
facility condition measurement on the minimum expected cost of both the finite horizon 
and infinite horizon problems. The results of the case study concur with earlier results in 

'o 
!;;. 20.6 

g" 20.5 
~ 20.4 

~ 20.3 
0 20.2 
'ti 
.! 20.1 

l 20 
in 19.9 

§ 19.8 
E 19.7 
·2 
:i 19.6 

0 0.375 0.75 1.125 

Standard Deviation of Measurement (Discrete condition states) 

Figure 2: Rise in minimum expected cost with increase in measurement 
uncertainty (Infinite Planning Horizon). 
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the literature (Madanat 1993, Madanat and Ben-Akiva 1994) and with a priori 
expectations; even limited reductions in measurement error are expected to yield 
significant savings in the life cycle costs of a network of highway pavements. These 
results underscore the importance of improving the accuracy of infrastructure facility 
inspections. 
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