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Signal Timing Determination Using 
Genetic Algorithms 

MARK D. FoY, RAHIM F. BENEKOHAL, AND DAVIDE. GOLDBERG 

The implementation of a genetic algorithm (GA) (an artificial 
intelligence technique) to produce optimal or near-optimal in 
tersection traffic signal timing strategies is described. The focus 
is on examining this application within a simple traffic situation, 
giving the reader a clear understanding of how the genetic al­
gorithm is used. The problem involves finding a signal timing 
strategy that produces the smoothest traffic flow with the least 
average automobile delay. The problem domain has many ten­
tative solutions. Therefore, signal timing design is expected to 
benefit from the parallel, global, and robust search characteristics 
of GAs. This gain is realized on a simulated four-intersection 
traffic network in the current implementation. The GA, by con­
sidering how traffic moves among multiple intersections (through 
simulation), can find a logical, near-optimal timing configuration. 
When this timing configuration is used in the corresponding 
real-world traffic situation, minimal total automobile delay 
is expected. 

Many motorists are frustrated with traffic signal timings and 
believe that they can be greatly improved to allow better 
traffic flow. This is where computers can be useful in the 
traffic environment. Computers can improve signal timings 
and therefore improve travel times, personal attitudes, fuel 
efficiency, pollution, and safety. 

This paper presents ideas relating to the use of computers 
in an automobile traffic environment, specifically ideas to 
achieve demand-responsive control. The focus is on the use 
of a genetic algorithm (GA) to control traffic signals and the 
benefits that can be attained from its use. The implementation 
discussed in this paper, which uses a GA to control traffic 
signals, will be called the Traffic GA. 

The goal of the Traffic GA is to find near-optimal traffic 
signal-timing strategies. To achieve this goal, a simplistic traffic 
flow simulation model was used. The traffic simulation model 
is sufficient for the purposes of this study; however, it is not 
intended to be immediately ready for real-world use (i.e., 
capacity analysis, comparison of actual versus computed de­
lay, etc.). On the other hand, it is possible to improve the 
current simulation or insert another, more realistic simulation 
model into the existing GA and use this system to find near­
optimal timing strategies by the techniques described in this 
paper. By making the simulation model more realistic, it would 
be possible to compare actual traffic conditions with the Traffic 
GA's simulation module. A simple simulation model was used 
because the focus of this research was on the application of 
a GA to improve traffic flow, not the design of a new, more 
realistic simulation system. Efforts to make the simulation 
more realistic are essential in model calibration. However, 
this paper does not deal with these issues. 
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MOTIVATIONS 

Traffic control today is in need of an intuitive, robust system 
to continually optimize traffic signal timings. Intelligent com­
puter traffic control systems are needed to dynamically handle 
changing traffic conditions. 

In pretimed controllers, traffic signal timings are fixed at 
what is determined to be the most effective timing strategy. 
Timing determination involves either extensive analysis of 
traffic data or observations of traffic trends, making it a fairly 
time-consuming task. Because of the time constraints, timing 
determinations are done infrequently, making the pretimed 
control method a static model. Therefore with this method 
signal cycle times and offset times are c~lculated once fo; , 
current conditions, and are then set into the individual traffic 
signals for an extended period of time (i.e., months). The 
signal cycle timings do not change with demand. This static 
characteristic is a clear disadvantage and motivates the de­
velopment of more dynamic methods. 

Demand-responsive controllers offer more flexibility than 
pretimed controllers because traffic signals can have their 
timings adjusted on the basis of current demand. In addition, 
flexibility is gained from the capability of each signal of gath­
ering data continually and automatically, allowing continuous 
analysis of current situations. In the network of demand re­
sponsive intersections, a central computer is necessary to 
(a) read traffic data continuously from the entire network, 
(b) process the network data to produce traffic signal timings 
for all network intersections, and ( c) operate the traffic signals 
in a demand-responsive mode. These applications allow an 
intersection's traffic signal times to be calculated using data 
from that intersection as well as from adjacent intersections 
since all data are aggregated in the central computer. 

The commonly known full-actuated and semiactuated traffic 
controllers, as well as the traffic-adaptive control approaches 
suggested by Gartner (J) and Lin (2), are all grouped in the 
demand-responsive category. In this category of traffic con­
trollers, the signal timings are changed depending on the de­
mand, although the nature of these changes is different. The 
actuated controllers and the traffic-adaptive approach are based 
on the traditional programming methods, whereas other ap­
proaches, like the one described in this paper, use artificial 
intelligence (AI) techniques. 

One of the advantages of AI techniques is that they can 
be easily designed to perform demand-responsive control on 
a network of intersections. This paper concentrates on a 
genetic optimization search algorithm, called a GA. Other 
applications of AI to intersection traffic control are given 
elsewhere (3,4). 
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When con idering a large number of multiphase traffic sig­
nals, the number of po · ibl traffic sign.al-timing trategies 
can be very large. For example, for a network of 100 inter-
ections, with a cycle length varying from 30 to 150 ec, the 

number of phases varying from 2 to 5, and the green time 
all cation · varying al increments of I sec, the number of 
possible ignal settings i enormous. If a search for the best 
timing strategy i r pealed every few minutes to update the 
ignal e t tings and a blinds arch method were used the num­

ber o[ computations could easily become prohibitive. On the 
other hand an intdligent search and 01 limization sy tem h uld 
be able to avoid nonoptimal region and lea rn from it pa t 
experienc . Thi should reduce the number solutions searched 
and allow the system to converge to a near-optimal . lution 
in much le s time. Jn addition , uch a system can be put on­
line to overcome some of the limitations of traditional signal 
optimization techniques . 

The que tion now i whe ther GAs can find near-01 timal 
signal-timing lrategies that improve traffi flow. An answer 
to this question will be given for a mall te t problem c n­
sisting of a four-inter ection treet network , but fir ta more 
detailed description of GA will be given. 

DESCRIPTION OF GAs 

GAs are a lgorith m. that sea rch by manipulating populations 
of structures (i.e. , binary strings repre nling data tructures 
that . ymbol.ize possible solution to a problem) into new so­
lution populations u ing operators patterned <1fler nawral ge­
netic operations. These operators may include reproduction , 
cros ov r mutati n , and others. The three simple GA op­
erators will be di cussed late r. 

GA ·component can be split into two parts: application­
dependent component. and application-independent com­
ponents (sucb as the GA operators described later). GA only 
require two application-dependent components: a procedure 
lo e ncode bit string. (chromosomes) into olution to the 
probl m and an eva luation function that will accept a olution 
co a problem and eval uat it fitness or rating (this function 
is often called a black box becau the GA doe not need to 
know anything pecific abou t this function). The evaluation 
function , which is al o called the fitnes function i imilar 
to the objective function in traditional earch problems. It 
purpo e i · to give the GA a numerical evaluation of a possible 
o lution in the same way that an objective function give a 

numerical evaluation of a point in space. A GA use an eval­
uation function to l.ocate an optimal olution. 

GA Evolutionary Process 

GAs begin with a population of randomly generated mem­
bers. T he GA then reque t that each individual member in 
lhe population have its fitness evaluated. The evaluation i 
done in the fitnes function and the fimes value is returned 
lo tbe GA . Once 11 GA has a completely evaluated population, 
the GA operates on the e members to form a new population . 
This can be thought of a a generation of parents producing 
a generation of chi ld ren. Although the new population con-
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tains characteri tics f the o.ld population , a ll the new mem­
bers are diff rent from the members of the last population, 
so a ll of its new members mu t now be evaluated. As thi 
process continues with fitness evaluation and execution of GA 
operators , new generations of members are created. The new 
populations are generally more fit (that is, they have higher 
fitn ess values) than earlier populations becau e evolution fa. 
vor stronger, more fit individuals. This characteri tic can be 
bette r understood by examining the three basic GA operators. 

The Three Simple GA Operators 

The GA used in the project discussed here is a simple genetic 
algorithm consisting of the three basic GA operator . 

Fir t , reproduction is respon ible for choo ing the members 
that will be allowed to reproduce during the current gener­
ation. These m mbers are selected on the basis of their fitness 
value . All reproduction operators are biased to cho e higher­
fitness members ve r lower-fitne · members, so high fitnes 
characteristics are passed on to [uture generations. After the 
required number f population member has been elected 
for reproduction ( ome duplicates in lhi election probably 
will exi t) , the next operator, cro sover, can proceed. 

ll1e cro over operator randomly elect two members (i.e., 
bit strings) from the new ·ubpopulation. Then a location within 
these two bit string is selected at random. The location is 
used as lhe ·wapping point C r the two trings . that i all bits 
to the right of this location on the fir t , tring are exchanged 
wilh all bits to the right of thi · location on the second string. 
For example, suppose the two following string were selected 
for reproduction: StriJJg A = 0 000 00 a.nd String B = 
1111111 1. Then uppose the random bit location wa selected 
a 5, causing the two trings to sptit after Bh 5. This would 
result in two new strings, String = 00000111 and tring D 
= 11111000. Afte r the new population has been filled with 
cros eel-over members, mutation can take place. 

The mutation operator is imple: with a small probability, 
a b,it will be selected within a tring, and it will be flipped 
(i .e., a 0 would become al and al would become a 0) . Then 
these final member make up the new population , and all old 
member from befor reproduction , are thrown out. Because 
we now have a new population with new members , each mem­
ber must have its fitneJ evaluated so this evolutionary process 
can continue. 

These are the three basic GA operator , but many varia­
tions on these and other operator exi t. A description of 
other operator and further details about GAs are gi en e l e­
where (5 -8) . 

PROBLEM DESCRIPTION 

The problem addressed in this study entails finding a near­
optimal traffic signal timing configuration at all intersections 
given the current intersection characteristics. The current 
characteristics consist of the current number of cars at each 
lane of each intersection and the external arrival volumes. It 
is anticipated that after the GA converges, the output will be 
a near-optimal timing configuration for north/south green phase 



110 

and east/west green phase for the current conditions for all 
the intersections in the network. A will b discussed later in 
this paper, the Traffic GA can be run repeatedly (e.g. every 
10 min), where each run takes the newe t traffic data and 
produces new traffic signal timings that are better suited to 
the current traffic conditions. First the input and outputs 
for running the Traffic GA will be defined . 

Input and Output 

The preceding perspective allows the problem of traffic con­
trol to be considered a function of two vectors. The first is 

(input.I) n,.ik (1) 

where nijk is the number of cars on Lane k of Approach j of 
Intersection i (in this example, i = 1 to 4, j = 1 to 4, and k 

1 to 3. The second is 

(input.2) (2) 

where v11 i the arrival volume on Approach j of lntersection 
i. In th.is example, i = 1 to 4 and j =: l to 4. 

The re ult of evaluating these two vectors through the Traffic 
GA will be one integer value , one binary vector, and one real 
number vector. 

(output.l) = [tgt] (3) 

where tgt i total green time given to each intersection for 
one full cycle. The ame total green tim is used for all in­
ter ections in the current Traffic GA, but there i no rea on 
this cannot be changed. 

(output.2) (4) 

where d; is the direction in which the first green phase will 
allow traffic to flow at Intersection i, either north and south 
or east and west. In this example, i = 1 to 4. 
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FIGURE 1 Street network configuratiou (intersections 
numbered Crom 1 to 4; L = turning left R = turning 
right T = going straight through). Numbers appearing 
at external components are arrival volume in ca1·s per 
hour. 

(output.3) nsgt; (5) 

where nsgt; is the proportion of total green time (output. I) 
that will be allocated for the north/south green phase at In­
tersection i. In this example, i = 1 to 4. 

Test Domain 

To facilitate simulation and understanding, a typical traffic 
ituation was constructed that was both manageable and com­

prehensive. The treet network ha four intersections shaped · 
in a square configuration, each intersection being connected 
to two other intersections by perpendicular roadway . AU GA 
imulation discussed in this paper were performed using this 

configuration, shown in Figure 1. 

IMPLEMENTATION 

The first stage of implementation involved developing a 
imulation program that could accept both traffic condition 

(input. l and input.2) and a proposed ignal-timing ·trategy 
(output value output.l and output vector output.2 and out­
put.3) and produce an evaluation of thi ignal-cirning strategy 
under the given traffic conditions. This imulation is needed 
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by the Traffic GA-it is the fitness evaluation black box. This 
simulation executes cars through the network (see Figure 1). 

The simulation is done on a micrograined scale, where all 
cars are considered separate entities. A car's actions are 
individually considered at every simulation time step (ap­
proximately 3 sec of traffic time), leading to a more accurate 
real-world representation and increased computational effort. 
This simulation has limited capabilities and is used only to 
illustrate the potential that GAs have in locating near-optimal 
timing strategies. Other simulation models, such as TRAF­
NETSIM, are much more complex and can handle a much 
more diverse set of roadway conditions (9). 

The simulation module of the Traffic GA at this point should 
not be compared with other simulation models because the 
purpose of the Traffic GA is to show how this optimization 
technique is applied to a traffic situation. The simulation model 
used here is simplistic at this stage and may not provide sim­
ulations more realistic than existing traffic simulation models. 
Those models have been field tested and validated to replicate 
real-world traffic conditions, but the Traffic GA simulation 
has not yet been tested . However, the Traffic GA has a dif­
ferent purpose: to show that a GA can be successfully applied 
to a traffic timing situation, even with a simplistic simulation 
model. 

The simulator has a number of aspects involving the 
generation of random events. First, the arrival volumes are 
specified by the probability of receiving input for any single 
simulation time step and the bounds on the number of cars 
coming into the network. The simulator chooses to add input 
based on the probability and then selects an equally distrib­
uted random real number between the given bounds. The 
integer part of this real number is added as input, and one 
additional car is added with probability equal to the decimal 
part of the real number. Alternatively , the simulation could 
be easily modified to accept single arrival volume values, and 
the simulator could choose to add input based on the prob­
abilities related to these volumes. Second, the destination of 
cars is decided at random based on a probability distribution 
of which lane a car will choose: the left lane {to turn left) 
(0.15 probabi lity), the middle lane (to go straight through) 
(0.70) , or the right lane (to turn right) (0.JS) . 

Optimization Criteria 

The simulation output consists of a value of merit describing 
how well the cars were able to move through the street net­
work using the given signal-timing strategy under the given 
traffic conditions. Many different values of merit could have 
been selected (individually or in combination), including total 
delay, total number of stops, total linear combination of delay 
and the number of stops, total cost of losses, total fuel con­
sumption, total person delay, and sum of the squares of the 
queue lengths (10). These criteria options are optimal when 
they are minimized. 

To consider multiple values of merit, an expression that 
arithmetically combines a number of the individual values of 
merit could be defined. For example, total delay and total 
number of stops could be used to define the final value of 

merit through an expression like 

m = (kl)(td) + (k2)(ts) 

where 

m = final value of merit, 
td = total delay, 
ts = total number of stops, and 

kl, k2 = specified constants. 
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(6) 

In the Traffic GA, total delay, or what we called total 
average wait time of a car in the street network, was chosen 
as the preferred evaluation criterion because it is relatively 
easy to calculate in the Traffic GA's simulation module . 

In general, computing automobile delay is a complex pro­
cess. This process is well documented in the Highway Capacity 
Manual (11). The process used to compute delay in the sim­
ulation discussed here is simple. However, this procedure is 
sufficient for the purpose of this study-to examine the ap­
plication of a GA to traffic signal optimization. The GA can 
function in the same manner with more complex delay equa­
tions. For this study, the delay is computed by counting the 
total number of cars involved in the simulation and summing 
the number of cars that were not moving for each simulation 
time step. The expression for "total average wait time per 
car" is 

i = TTS 

L W; 
-L=.!__ 

TC 

where 

(7) 

TTS total number of time steps executed in a complete 
simulation, 

w; number of cars waiting at Time Step i, and 
TC = total number of cars in the network. 

This expression indicates how long, on the average, a car will 
be delayed between the time it enters the street network and 
the time it exits the street network. 

This evaluation expression needs to be modified slightly so 
a GA can use it during reproduction. The GA's only require­
ment from the simulation module is availability to an objective 
function (that will produce a fitness value). This function 
needs to be optimal at maximum values. Therefore, since the 
evaluation criteria we chose above relates to a minimization 
problem, it needs to be converted to a maximization problem. 
This was done by using the inverse of the total average wait 
time per car. Therefore, since we want to minimize the 
wait time per car, we'll need to maximize the inverse of this 
wait time. 

Decision Variables 

Specifically for the current implementation of the Traffic GA 
there are nine decision variables: one global variable (total 
green time) and two local variables for each of the four in­
tersections. The two local variables are (a) the directions in 
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which the first green phase will allow traffic to flow (that is 
the north/south traffic will be allowed to move first = 1 or 
the east/west traffic will be allowed to move first = 0) and 
(b) the proportion of the total green time allocated to the 
north/south green phase (a real value between 0.0 and 1.0). 
This results in a cycle consisting of two phases, a north/south 
phase and an east/west phase where left-turning cars proceed 
during traffic gaps (i.e., permitted). The directions of flow 
for the first phase are determined from the variables above, 
and the directions of flow for the second phase are assumed 
to be the directions perpendicular to the first phase's direc­
tions (e.g., if the first direction is east/west then the second 
phase's direction is north/south). Therefore, the GA will not 
have the opportunity to change the alternating nature of the 
traffic signals but will be allowed to change which directions 
get the green phase first . 

Note that this choice of decision variables is not fixed. 
Because of the adaptive nature of GA applications, other 
decision variables could be easily implemented in the future. 
For example, if a user wanted to add more than two phases 
per intersection cycle or wanted to include offsets as decision 
variables, only the bit string and the simulation would have 
to be altered. The GA's overall structure would not have to 
be changed. 

Constraints 

These decision variables have been established so that almost 
no external constraints are needed. The only constraints on 
the variables are the strict limitations on the range of values 
they may use. First, the direction can only take on binary 
values because there are only two phases implemented in the 
current traffic simulation module. Second, the individual green 
phase times may not be less than 6 sec because times less than 
this would barely allow any cars to get through an intersection. 

Bit String Coding 

A direct coding of these nine decision variables was chosen. 
The global variable, total green time, was coded into a four­
bit string mapped between the minimum total green time (24 
sec) and the maximum total green time (2 min). The first 
phase directions are coded directly from a single bit as stated 
above. The variables that represent the proportion of total 
green time allocated for north/south green phase are coded 
into four-bit strings. The four bits are converted to an actual 
time value by transforming to an integer value between 0 and 
15, dividing the number by 15 (to get the number between 
0.0 and 1.0), and then mapping it to an integer between min­
imum green time (6 sec) and total green time (calculated 
above) - minimum green time (6 sec) . 

The nine decision variables result in a 4 + (1 + 4) * 4 = 
24 bit string. This string is ordered as follows: the total green 
time and then the two variables for each intersection are 
grouped together, and then strung together from Intersections 
1 to 4, as shown in Figure 2. This ordering was selected so 
that intersection characteristics would be adequately near one 
another, so the GA would have a higher probability of de­
veloping tight linkage between the relevant bits (5) . 
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FIGURE 2 Bit string mapping (read right to left). 

Traffic GA-Step by Step 

effective 
green 
time 

As discussed earlier, most simple GAs operate similarly to 
what is described here, with only the fitness function varying 
from application to application. Figure 3 is a flow chart of 
the steps executed by the Traffic GA to find a near-optimal 
traffic signal-timing configuration for given traffic conditions. 

The three main steps involved in the Traffic GA are shown 
in Figure 3. First , the traffic simulation and the GA are ini­
tialized. The initialization of the traffic simulation involves 
establishing the street configuration and the traffic conditions 
within the computer program. The simulation need not be 
reinitialized later in this procedure because all simulations 
start at these same common conditions. The initialization of 
the GA involves establishing an initial, completely random 
population of bit strings. The bit strings symbolize traffic sig­
nal timing strategies as described earlier. 

The second main step in the Traffic GA is the fitness com­
putation. This involves taking each GA population member 
and executing a simulation using the timing strategy repre­
sented by this member. The fitness evaluation step is executed 
many times because new population members are continually 
being generated by the GA. Fitness evaluation is usually con­
tinued until the GA has converged; this point is generally 
defined by the user . 

The last main step is the evolution of the GA population. 
This involves manipulations on the bit strings (i.e . , operations 
on the population members). The three manipulations, or 
operators, used in the Traffic GA are reproduction, crossover, 
and mutation, which were described earlier. 

The Traffic GA may be run either off-line or on-line. If it 
is run off-line , the Traffic GA finds a near-optimal signal­
timing strategy for any given traffic condition. If it is run 
on-line, traffic information is continuously gathered from de­
tectors placed on all approaches to all intersections, and the 
Traffic GA is periodically executed. It is possible to specify 
very short time intervals between execution , but this would 
probably not be desirable. To execute, the Traffic GA would 
be given the most recent traffic data, and then it would be 
expected to find a near-optimal signal-timing strategy that 
promoted smooth traffic flow. The new signal-timing strategy 
would be used in the real traffic signals until the Traffic GA 
was executed again with new, updated traffic information. 
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FIGURE 3 Traffic GA procedural flowchart. 

COMPUTATIONAL RESULTS 

The results of running this GA on typical traffic situations 
can vary depending on the simulation settings used. All runs 
performed during the writing of this paper show steady im­
provement in the average population fitness as the GA pop­
ulation evolves from generation to generation. 

Simulator Parameter Settings 

In the case examined here, the GA simulations used typical 
parameter settings: four intersections configured in a square 
(see Figure 1); yellow time of 3 sec; the probability of a car 
going straight = 0.70, left = 0.15, and right = 0.15. The 
average rate at which cars enter an intersection on a green 
phase was as follows: for cars going straight, one car every 2 
sec, right, 1 car every 2 sec, and left, one car every 6 or 12 
sec (permitted to enter depending on the arrival volumes of 
the opposing traffic). The length of time for a car to get from 
one intersection to another was 24 sec (translates into a dis­
tance between all adjacent intersections of 1,000 ft and a 

constant traveling speed of 28 to 30 mph). The simulation 
time was 5 min (equal to 100 simulation time steps). The 
minimum green phase time was 6 sec; the maximum green 
phase time was 114 sec. The minimum cycle time was 30 sec, 
and the maximum cycle time was about 126 sec. 

Traffic Environment 

A common traffic environment was used for all GA runs 
discussed in this paper. The input.1 vector, the number of 
cars at all locations, was initialized with typical numbers. This 
situation was initialized with typical numbers since no partic­
ular real-world situation was involved. The task of modifying 
the code to read in current traffic conditions from detectors, 
so that real-world problems could be solved, would be very 
simple. The second input vector, specifying arrival volumes, 
was set to the values corresponding to the volumes given in 
Table 1. The north and south approaches were given 5 to 6 
times as much traffic as east and west directions. This situation 
is common in street networks where two opposing directions 
have considerably higher traffic volumes than the perpendic-
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TABLE 1 Arrival Volumes for the Traffic GA Test Run 

Approaching 

from North to Intersection 1 
from West to Intersection 1 
from North to Intersection 2 
from East to Intersection 2 
from South to Intersection 3 
from West to Intersection 3 
from South to Intersection 4 
from East to Intersection 4 

Arrival Volume 
(cars/hour) 

1560 
288 

1560 
288 

1560 
288 

1560 
288 

ular directions because of a busy central business district. For 
example, if this block of intersections is directly north of a 
shopping mall, the highest traffic volumes will occur for cars 
traveling south, into the mall area, and north, out of the mall 
area. 

Traffic GA Results 

To obtain a stable, unbiased, average result for this report, 
five Traffic GA runs with different initial GA populations 
were executed. Each run was executed for 60 GA generations 
with a GA population of 50. This means that for each run, 
the fitness function (the 5-min-of-traffic-time simulation) was 
executed 3,000 times. At each generation, the average fitness 
of the generation is calculated and the member in the pop­
ulation with the best fitness value (that is, the shortest wait 
time) is identified. To produce Figure 4, the average fitnesses 
of each GA generation (from Generation 0 to 60) of each of 
the five Traffic GA runs were then averaged together. This 
produced the "average wait time of population" line. The 
"minimum wait time of population" was produced in the same 
manner by averaging the fitnesses of the best-of-generation 
members for each of the five Traffic GA runs. Figure 4 shows 
how the GA starts with bad solutions (that is, solutions that 
produce on-average high wait times) and locates good solu-
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FIGURE 4 Average of five traffic GA runs [best-of-generation 
(minimum wait time) and generation average (average wait 
time) results]. 
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tions (that is, solutions that produce on-average short wait 
times). 

The graph shows that the population seems to converge to 
the optimum or near-optimum member by the 20th or 30th 
generation. Therefore, it is possible to terminate the GA after 
20 generations instead of after 60 generations and still obtain 
a near-optimal solution. This reduced-generation scenario would 
reduce the number of simulations from 3,000 to 1,000. The 
graph also shows that typical minimum wait time values were 
around 40 sec for these traffic conditions. After the last gen­
eration, which in this case was the 60th, the member with the 
maximum fitness (minimum wait time) can be selected as the 
best signal-timing configuration and called the solution from 
the Traffic GA. Then, if this Traffic GA run was performed 
using real traffic data, the solution could be used to time the 
real traffic signals to promote smooth traffic flow. 

A typical maximal fitness member, actually found by one 
of the GA runs executed on the traffic environment described 
in Table 1, is given in Table 2. Note that for all intersections, 
the green phase time for the north/south (N/S) directions was 
considerably longer than for the east/west (E/W) directions. 
Observe that total cycle times are equal because the bit string 
contains only one field to represent total green time, but again 
the bit string and simulation could be easily modified to allow 
different total cycle times. The Traffic GA selected a total 
cycle time of 60 by itself; this number is not programmed into 
the GA. The GA found a strategy that used very similar green 
phase times for the north/south directions and also for the 
east/west directions. We expect this behavior because similar 
green phase times often allow the best flow of traffic because 
cars can move through the network with fewer stops if there 
is some type of synchronized cycle time (10). Finally, the GA 
could have given green phase times up to 114 sec but only 
went as high as 45 sec. This is because the GA was searching 
for a strategy that would minimize wait time, and if it were 
to allocate more green phase time to north and south direc­
tions, the wait times for cars coming from the east and west 
would increase too dramatically to make this beneficial. This 
solution provides a 33-sec green band for northbound traffic 
of Intersections 1 and 3 and another 33-sec green band for 
southbound traffic of Intersections 2 and 4. 

Run Time 

One entire GA run, which amounts to a total of 3,000 sim­
ulations and 60 generations of a GA, took 2.0358 system CPU 
sec on a supercomputer (Cray 2 with four processors). This 
is a reasonably long job time considering that this time would 
be greater on more readily available processors. On the other 

TABLE 2 GA's Maximum Fitness (Minimum Wait Time) Timing 
Strategy 

Green Green Total 
Intersection First Time Second Time Cycle Time 
Number Direction (sec) Direction (sec) (sec) a 

1 E/W 12 N/S 42 60 
2 N/S 36 E/W 18 60 
3 N/S 42 E/W 12 60 

E/W 9 N/S 45 60 

a Total Cycle Times have two yellow phases of 3 seconds each 
added, in addition to the two green time3. 



Foy et al. 

hand, if the number of generations were cut by two-thirds to 
20 as suggested earlier, the CPU time would be cut by two­
thirds because the simulation takes up almost all of the CPU 
time, whereas the GA operators use very little. Depending 
on how often a user wants to recalculate a signal-timing strat­
egy and for how many intersections, the required processing 
time may increase or decrease. It is possible that the required 
computational effort could be too large, preventing use of the 
Traffic GA to calculate signal timings in very short time 
intervals. 

Performance 

Though this run is only one case, it is expected that the Traffic 
GA will always converge to a reasonable timing strategy . 

Reasonable timing strategies have been found in many dif­
ferent cases not reported in this paper. For example, when 
arrival volumes were increased to a point of oversaturation, 
the GA responded by finding signal-timing strategies with 
longer cycle times, something a traffic engineer also would 
do if it were possible to have constant human monitoring of 
traffic signals. 

Furthermore , most GA researchers agree that the theory 
of convergence for simple GAs has become fairly well de­
veloped, indicating that the performance reported earlier is 
typical of GA behavior. The critical components of this theory 
focus on building blocks (5,12), building block growth (12), 
the possibility of being misled by building blocks (13-15), 
and mixing and statistical decision making (16) . 

Therefore, overall Traffic GA results (including the cases 
not reported here) and the theory of convergence indicate 
that GAs may be able to solve more difficult problems than 
traditional control strategies and search methods. GAs seem 
to be better on both accuracy and convergence time. Finally, 
the advantages of demand-responsive control over other forms 
of traffic control include the capacity to constantly examine 
situations and respond to them with no traffic knowledge and 
no human attention. 

CONCLUSIONS 

This paper reported on an application of a genetic algorithm 
to produce near-optimal traffic signal-timing strategies for a 
network of intersections. Examples and simulation parame­
ters were included for illustrative purposes and to demonstrate 
the roll a GA could play in signal-timing determination. The 
Traffic GA produced reasonable traffic signal-timing plans. 
The results suggest that this method of searching for an op­
timal signal-timing strategy has the potential to improve ex­
isting traffic control techniques. It is especially encouraging 
that the GA could find balanced conditions of green phase 
times and a reasonable cycle length as a function of traffic 
demand. 

The Traffic GA produced logical signal timings using simple 
GA operators and a simple simulation model. Changing the 
GA may be warranted if this problem were scaled up to handle 
many more intersections. Future work on the simulation would 
be required to make the Traffic GA more realistic and capable 
of handling more complex intersection flow conditions. 
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Computer traffic control deserves attention because of the 
possible benefits from improving traffic flow. An adequate 
solution to this problem would increase roadway efficiency, 
reduce travel time, make travel time more predictable, im­
prove safety, cut down on harmful emissions, decrease fuel 
consumption, and increase driver comfort. 
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