
108 TRANSPORTATION RESEARCH RECORD 1365

Signal Timing Determination Using
Genetic Algorithms

MARK D. FoY, RAHIM F. BENEKOHAL, AND DAVIDE. GOLDBERG

The implementation of a genetic algorithm (GA) (an artificial
intelligence technique) to produce optimal or near-optimal in
tersection traffic signal timing strategies is described. The focus
is on examining this application within a simple traffic situation,
giving the reader a clear understanding of how the genetic al
gorithm is used. The problem involves finding a signal timing
strategy that produces the smoothest traffic flow with the least
average automobile delay. The problem domain has many ten
tative solutions. Therefore, signal timing design is expected to
benefit from the parallel, global, and robust search characteristics
of GAs. This gain is realized on a simulated four-intersection
traffic network in the current implementation. The GA, by con
sidering how traffic moves among multiple intersections (through
simulation), can find a logical, near-optimal timing configuration.
When this timing configuration is used in the corresponding
real-world traffic situation, minimal total automobile delay
is expected.

Many motorists are frustrated with traffic signal timings and
believe that they can be greatly improved to allow better
traffic flow. This is where computers can be useful in the
traffic environment. Computers can improve signal timings
and therefore improve travel times, personal attitudes, fuel
efficiency, pollution, and safety.

This paper presents ideas relating to the use of computers
in an automobile traffic environment, specifically ideas to
achieve demand-responsive control. The focus is on the use
of a genetic algorithm (GA) to control traffic signals and the
benefits that can be attained from its use. The implementation
discussed in this paper, which uses a GA to control traffic
signals, will be called the Traffic GA.

The goal of the Traffic GA is to find near-optimal traffic
signal-timing strategies. To achieve this goal, a simplistic traffic
flow simulation model was used. The traffic simulation model
is sufficient for the purposes of this study; however, it is not
intended to be immediately ready for real-world use (i.e.,
capacity analysis, comparison of actual versus computed de
lay, etc.). On the other hand, it is possible to improve the
current simulation or insert another, more realistic simulation
model into the existing GA and use this system to find near
optimal timing strategies by the techniques described in this
paper. By making the simulation model more realistic, it would
be possible to compare actual traffic conditions with the Traffic
GA's simulation module. A simple simulation model was used
because the focus of this research was on the application of
a GA to improve traffic flow, not the design of a new, more
realistic simulation system. Efforts to make the simulation
more realistic are essential in model calibration. However,
this paper does not deal with these issues.

University of Illinois at Urbana-Champaign, Urbana, Ill. 61801.

MOTIVATIONS

Traffic control today is in need of an intuitive, robust system
to continually optimize traffic signal timings. Intelligent com
puter traffic control systems are needed to dynamically handle
changing traffic conditions.

In pretimed controllers, traffic signal timings are fixed at
what is determined to be the most effective timing strategy.
Timing determination involves either extensive analysis of
traffic data or observations of traffic trends, making it a fairly
time-consuming task. Because of the time constraints, timing
determinations are done infrequently, making the pretimed
control method a static model. Therefore with this method
signal cycle times and offset times are c~lculated once fo; ,
current conditions, and are then set into the individual traffic
signals for an extended period of time (i.e., months). The
signal cycle timings do not change with demand. This static
characteristic is a clear disadvantage and motivates the de
velopment of more dynamic methods.

Demand-responsive controllers offer more flexibility than
pretimed controllers because traffic signals can have their
timings adjusted on the basis of current demand. In addition,
flexibility is gained from the capability of each signal of gath
ering data continually and automatically, allowing continuous
analysis of current situations. In the network of demand re
sponsive intersections, a central computer is necessary to
(a) read traffic data continuously from the entire network,
(b) process the network data to produce traffic signal timings
for all network intersections, and (c) operate the traffic signals
in a demand-responsive mode. These applications allow an
intersection's traffic signal times to be calculated using data
from that intersection as well as from adjacent intersections
since all data are aggregated in the central computer.

The commonly known full-actuated and semiactuated traffic
controllers, as well as the traffic-adaptive control approaches
suggested by Gartner (J) and Lin (2), are all grouped in the
demand-responsive category. In this category of traffic con
trollers, the signal timings are changed depending on the de
mand, although the nature of these changes is different. The
actuated controllers and the traffic-adaptive approach are based
on the traditional programming methods, whereas other ap
proaches, like the one described in this paper, use artificial
intelligence (AI) techniques.

One of the advantages of AI techniques is that they can
be easily designed to perform demand-responsive control on
a network of intersections. This paper concentrates on a
genetic optimization search algorithm, called a GA. Other
applications of AI to intersection traffic control are given
elsewhere (3,4).

Foy et al.

When con idering a large number of multiphase traffic sig
nals, the number of po · ibl traffic sign.al-timing trategies
can be very large. For example, for a network of 100 inter-
ections, with a cycle length varying from 30 to 150 ec, the

number of phases varying from 2 to 5, and the green time
all cation · varying al increments of I sec, the number of
possible ignal settings i enormous. If a search for the best
timing strategy i r pealed every few minutes to update the
ignal e t tings and a blinds arch method were used the num

ber o[computations could easily become prohibitive. On the
other hand an intdligent search and 01 limization sy tem h uld
be able to avoid nonoptimal region and lea rn from it pa t
experienc . Thi should reduce the number solutions searched
and allow the system to converge to a near-optimal . lution
in much le s time. Jn addition , uch a system can be put on
line to overcome some of the limitations of traditional signal
optimization techniques .

The que tion now i whe ther GAs can find near-01 timal
signal-timing lrategies that improve traffi flow. An answer
to this question will be given for a mall te t problem c n
sisting of a four-inter ection treet network , but fir ta more
detailed description of GA will be given.

DESCRIPTION OF GAs

GAs are a lgorith m. that sea rch by manipulating populations
of structures (i.e. , binary strings repre nling data tructures
that . ymbol.ize possible solution to a problem) into new so
lution populations u ing operators patterned <1fler nawral ge
netic operations. These operators may include reproduction ,
cros ov r mutati n , and others. The three simple GA op
erators will be di cussed late r.

GA ·component can be split into two parts: application
dependent component. and application-independent com
ponents (sucb as the GA operators described later). GA only
require two application-dependent components: a procedure
lo e ncode bit string. (chromosomes) into olution to the
probl m and an eva luation function that will accept a olution
co a problem and eval uat it fitness or rating (this function
is often called a black box becau the GA doe not need to
know anything pecific abou t this function). The evaluation
function , which is al o called the fitnes function i imilar
to the objective function in traditional earch problems. It
purpo e i · to give the GA a numerical evaluation of a possible
o lution in the same way that an objective function give a

numerical evaluation of a point in space. A GA use an eval
uation function to l.ocate an optimal olution.

GA Evolutionary Process

GAs begin with a population of randomly generated mem
bers. T he GA then reque t that each individual member in
lhe population have its fitness evaluated. The evaluation i
done in the fitnes function and the fimes value is returned
lo tbe GA . Once 11 GA has a completely evaluated population,
the GA operates on the e members to form a new population .
This can be thought of a a generation of parents producing
a generation of chi ld ren. Although the new population con-

109

tains characteri tics f the o.ld population , a ll the new mem
bers are diff rent from the members of the last population,
so a ll of its new members mu t now be evaluated. As thi
process continues with fitness evaluation and execution of GA
operators , new generations of members are created. The new
populations are generally more fit (that is, they have higher
fitn ess values) than earlier populations becau e evolution fa.
vor stronger, more fit individuals. This characteri tic can be
bette r understood by examining the three basic GA operators.

The Three Simple GA Operators

The GA used in the project discussed here is a simple genetic
algorithm consisting of the three basic GA operator .

Fir t , reproduction is respon ible for choo ing the members
that will be allowed to reproduce during the current gener
ation. These m mbers are selected on the basis of their fitness
value . All reproduction operators are biased to cho e higher
fitness members ve r lower-fitne · members, so high fitnes
characteristics are passed on to [uture generations. After the
required number f population member has been elected
for reproduction (ome duplicates in lhi election probably
will exi t) , the next operator, cro sover, can proceed.

ll1e cro over operator randomly elect two members (i.e.,
bit strings) from the new ·ubpopulation. Then a location within
these two bit string is selected at random. The location is
used as lhe ·wapping point C r the two trings . that i all bits
to the right of this location on the fir t , tring are exchanged
wilh all bits to the right of thi · location on the second string.
For example, suppose the two following string were selected
for reproduction: StriJJg A = 0 000 00 a.nd String B =
1111111 1. Then uppose the random bit location wa selected
a 5, causing the two trings to sptit after Bh 5. This would
result in two new strings, String = 00000111 and tring D
= 11111000. Afte r the new population has been filled with
cros eel-over members, mutation can take place.

The mutation operator is imple: with a small probability,
a b,it will be selected within a tring, and it will be flipped
(i .e., a 0 would become al and al would become a 0) . Then
these final member make up the new population , and all old
member from befor reproduction , are thrown out. Because
we now have a new population with new members , each mem
ber must have its fitneJ evaluated so this evolutionary process
can continue.

These are the three basic GA operator , but many varia
tions on these and other operator exi t. A description of
other operator and further details about GAs are gi en e l e
where (5 -8) .

PROBLEM DESCRIPTION

The problem addressed in this study entails finding a near
optimal traffic signal timing configuration at all intersections
given the current intersection characteristics. The current
characteristics consist of the current number of cars at each
lane of each intersection and the external arrival volumes. It
is anticipated that after the GA converges, the output will be
a near-optimal timing configuration for north/south green phase

110

and east/west green phase for the current conditions for all
the intersections in the network. A will b discussed later in
this paper, the Traffic GA can be run repeatedly (e.g. every
10 min), where each run takes the newe t traffic data and
produces new traffic signal timings that are better suited to
the current traffic conditions. First the input and outputs
for running the Traffic GA will be defined .

Input and Output

The preceding perspective allows the problem of traffic con
trol to be considered a function of two vectors. The first is

(input.I) n,.ik (1)

where nijk is the number of cars on Lane k of Approach j of
Intersection i (in this example, i = 1 to 4, j = 1 to 4, and k

1 to 3. The second is

(input.2) (2)

where v11 i the arrival volume on Approach j of lntersection
i. In th.is example, i = 1 to 4 and j =: l to 4.

The re ult of evaluating these two vectors through the Traffic
GA will be one integer value , one binary vector, and one real
number vector.

(output.l) = [tgt] (3)

where tgt i total green time given to each intersection for
one full cycle. The ame total green tim is used for all in
ter ections in the current Traffic GA, but there i no rea on
this cannot be changed.

(output.2) (4)

where d; is the direction in which the first green phase will
allow traffic to flow at Intersection i, either north and south
or east and west. In this example, i = 1 to 4.

TRANSPORTATION RESEARCH RECORD 1365

N Wij1560
RTL

LJ1560
RTL L

R
T

L 1 L L
288 T T

R R

~RTL LTAD
L

288 T

I
A
T

3 L L
T
A LTAn

1560

R
T 288

2 L

RTL

LTAC
A
T 288

4 L

LTAI
1560

FIGURE 1 Street network configuratiou (intersections
numbered Crom 1 to 4; L = turning left R = turning
right T = going straight through). Numbers appearing
at external components are arrival volume in ca1·s per
hour.

(output.3) nsgt; (5)

where nsgt; is the proportion of total green time (output. I)
that will be allocated for the north/south green phase at In
tersection i. In this example, i = 1 to 4.

Test Domain

To facilitate simulation and understanding, a typical traffic
ituation was constructed that was both manageable and com

prehensive. The treet network ha four intersections shaped ·
in a square configuration, each intersection being connected
to two other intersections by perpendicular roadway . AU GA
imulation discussed in this paper were performed using this

configuration, shown in Figure 1.

IMPLEMENTATION

The first stage of implementation involved developing a
imulation program that could accept both traffic condition

(input. l and input.2) and a proposed ignal-timing ·trategy
(output value output.l and output vector output.2 and out
put.3) and produce an evaluation of thi ignal-cirning strategy
under the given traffic conditions. This imulation is needed

Foy et al.

by the Traffic GA-it is the fitness evaluation black box. This
simulation executes cars through the network (see Figure 1).

The simulation is done on a micrograined scale, where all
cars are considered separate entities. A car's actions are
individually considered at every simulation time step (ap
proximately 3 sec of traffic time), leading to a more accurate
real-world representation and increased computational effort.
This simulation has limited capabilities and is used only to
illustrate the potential that GAs have in locating near-optimal
timing strategies. Other simulation models, such as TRAF
NETSIM, are much more complex and can handle a much
more diverse set of roadway conditions (9).

The simulation module of the Traffic GA at this point should
not be compared with other simulation models because the
purpose of the Traffic GA is to show how this optimization
technique is applied to a traffic situation. The simulation model
used here is simplistic at this stage and may not provide sim
ulations more realistic than existing traffic simulation models.
Those models have been field tested and validated to replicate
real-world traffic conditions, but the Traffic GA simulation
has not yet been tested . However, the Traffic GA has a dif
ferent purpose: to show that a GA can be successfully applied
to a traffic timing situation, even with a simplistic simulation
model.

The simulator has a number of aspects involving the
generation of random events. First, the arrival volumes are
specified by the probability of receiving input for any single
simulation time step and the bounds on the number of cars
coming into the network. The simulator chooses to add input
based on the probability and then selects an equally distrib
uted random real number between the given bounds. The
integer part of this real number is added as input, and one
additional car is added with probability equal to the decimal
part of the real number. Alternatively , the simulation could
be easily modified to accept single arrival volume values, and
the simulator could choose to add input based on the prob
abilities related to these volumes. Second, the destination of
cars is decided at random based on a probability distribution
of which lane a car will choose: the left lane {to turn left)
(0.15 probabi lity), the middle lane (to go straight through)
(0.70) , or the right lane (to turn right) (0.JS) .

Optimization Criteria

The simulation output consists of a value of merit describing
how well the cars were able to move through the street net
work using the given signal-timing strategy under the given
traffic conditions. Many different values of merit could have
been selected (individually or in combination), including total
delay, total number of stops, total linear combination of delay
and the number of stops, total cost of losses, total fuel con
sumption, total person delay, and sum of the squares of the
queue lengths (10). These criteria options are optimal when
they are minimized.

To consider multiple values of merit, an expression that
arithmetically combines a number of the individual values of
merit could be defined. For example, total delay and total
number of stops could be used to define the final value of

merit through an expression like

m = (kl)(td) + (k2)(ts)

where

m = final value of merit,
td = total delay,
ts = total number of stops, and

kl, k2 = specified constants.

111

(6)

In the Traffic GA, total delay, or what we called total
average wait time of a car in the street network, was chosen
as the preferred evaluation criterion because it is relatively
easy to calculate in the Traffic GA's simulation module .

In general, computing automobile delay is a complex pro
cess. This process is well documented in the Highway Capacity
Manual (11). The process used to compute delay in the sim
ulation discussed here is simple. However, this procedure is
sufficient for the purpose of this study-to examine the ap
plication of a GA to traffic signal optimization. The GA can
function in the same manner with more complex delay equa
tions. For this study, the delay is computed by counting the
total number of cars involved in the simulation and summing
the number of cars that were not moving for each simulation
time step. The expression for "total average wait time per
car" is

i = TTS

L W;
-L=.!__

TC

where

(7)

TTS total number of time steps executed in a complete
simulation,

w; number of cars waiting at Time Step i, and
TC = total number of cars in the network.

This expression indicates how long, on the average, a car will
be delayed between the time it enters the street network and
the time it exits the street network.

This evaluation expression needs to be modified slightly so
a GA can use it during reproduction. The GA's only require
ment from the simulation module is availability to an objective
function (that will produce a fitness value). This function
needs to be optimal at maximum values. Therefore, since the
evaluation criteria we chose above relates to a minimization
problem, it needs to be converted to a maximization problem.
This was done by using the inverse of the total average wait
time per car. Therefore, since we want to minimize the
wait time per car, we'll need to maximize the inverse of this
wait time.

Decision Variables

Specifically for the current implementation of the Traffic GA
there are nine decision variables: one global variable (total
green time) and two local variables for each of the four in
tersections. The two local variables are (a) the directions in

112

which the first green phase will allow traffic to flow (that is
the north/south traffic will be allowed to move first = 1 or
the east/west traffic will be allowed to move first = 0) and
(b) the proportion of the total green time allocated to the
north/south green phase (a real value between 0.0 and 1.0).
This results in a cycle consisting of two phases, a north/south
phase and an east/west phase where left-turning cars proceed
during traffic gaps (i.e., permitted). The directions of flow
for the first phase are determined from the variables above,
and the directions of flow for the second phase are assumed
to be the directions perpendicular to the first phase's direc
tions (e.g., if the first direction is east/west then the second
phase's direction is north/south). Therefore, the GA will not
have the opportunity to change the alternating nature of the
traffic signals but will be allowed to change which directions
get the green phase first .

Note that this choice of decision variables is not fixed.
Because of the adaptive nature of GA applications, other
decision variables could be easily implemented in the future.
For example, if a user wanted to add more than two phases
per intersection cycle or wanted to include offsets as decision
variables, only the bit string and the simulation would have
to be altered. The GA's overall structure would not have to
be changed.

Constraints

These decision variables have been established so that almost
no external constraints are needed. The only constraints on
the variables are the strict limitations on the range of values
they may use. First, the direction can only take on binary
values because there are only two phases implemented in the
current traffic simulation module. Second, the individual green
phase times may not be less than 6 sec because times less than
this would barely allow any cars to get through an intersection.

Bit String Coding

A direct coding of these nine decision variables was chosen.
The global variable, total green time, was coded into a four
bit string mapped between the minimum total green time (24
sec) and the maximum total green time (2 min). The first
phase directions are coded directly from a single bit as stated
above. The variables that represent the proportion of total
green time allocated for north/south green phase are coded
into four-bit strings. The four bits are converted to an actual
time value by transforming to an integer value between 0 and
15, dividing the number by 15 (to get the number between
0.0 and 1.0), and then mapping it to an integer between min
imum green time (6 sec) and total green time (calculated
above) - minimum green time (6 sec) .

The nine decision variables result in a 4 + (1 + 4) * 4 =
24 bit string. This string is ordered as follows: the total green
time and then the two variables for each intersection are
grouped together, and then strung together from Intersections
1 to 4, as shown in Figure 2. This ordering was selected so
that intersection characteristics would be adequately near one
another, so the GA would have a higher probability of de
veloping tight linkage between the relevant bits (5) .

TRANSPORTATION RESEARCH RECORD 1365

0000 0 0000 0 0000 0 0000 0 0000

r '"l." }~,.'" \ of total
for effective total

intersection 4

for
intersection 3

green time
allocated to

the N/S

for
intersection 2

for
intersection 1

FIGURE 2 Bit string mapping (read right to left).

Traffic GA-Step by Step

effective
green
time

As discussed earlier, most simple GAs operate similarly to
what is described here, with only the fitness function varying
from application to application. Figure 3 is a flow chart of
the steps executed by the Traffic GA to find a near-optimal
traffic signal-timing configuration for given traffic conditions.

The three main steps involved in the Traffic GA are shown
in Figure 3. First , the traffic simulation and the GA are ini
tialized. The initialization of the traffic simulation involves
establishing the street configuration and the traffic conditions
within the computer program. The simulation need not be
reinitialized later in this procedure because all simulations
start at these same common conditions. The initialization of
the GA involves establishing an initial, completely random
population of bit strings. The bit strings symbolize traffic sig
nal timing strategies as described earlier.

The second main step in the Traffic GA is the fitness com
putation. This involves taking each GA population member
and executing a simulation using the timing strategy repre
sented by this member. The fitness evaluation step is executed
many times because new population members are continually
being generated by the GA. Fitness evaluation is usually con
tinued until the GA has converged; this point is generally
defined by the user .

The last main step is the evolution of the GA population.
This involves manipulations on the bit strings (i.e . , operations
on the population members). The three manipulations, or
operators, used in the Traffic GA are reproduction, crossover,
and mutation, which were described earlier.

The Traffic GA may be run either off-line or on-line. If it
is run off-line , the Traffic GA finds a near-optimal signal
timing strategy for any given traffic condition. If it is run
on-line, traffic information is continuously gathered from de
tectors placed on all approaches to all intersections, and the
Traffic GA is periodically executed. It is possible to specify
very short time intervals between execution , but this would
probably not be desirable. To execute, the Traffic GA would
be given the most recent traffic data, and then it would be
expected to find a near-optimal signal-timing strategy that
promoted smooth traffic flow. The new signal-timing strategy
would be used in the real traffic signals until the Traffic GA
was executed again with new, updated traffic information.

Foy et al. 113

INITIALIZE· CURRENT TRAFFIC CONDITIONS

, ...

I
initialize traffic simulation I

(street configuration/traffic condtions)

~

initialize genetic algorithm (GA) population with
random members (members = bit strings =

traffic signal timing configurations)

COMPUTE FITNESS OF EACH TIMING
STRATEGY IN THE GA POPULATION: I ...

I convert the signal timing I,,
strategy from a bit string I'

~

I
run the simulation using the I signal timing strategy

~\
compute average wait time per carj

~

I
calculate the fitness of this I
strategy using the wait time

/£,..

do more members
need to have their -yes
fitness computed?

I
n9

are more GA

u~o generations
needed?

SELECT MAXIMUM FITNESS
yes~

MEMBER OF THE LAST GA Evolve GA population

GENERATION AND SEND THE through reproduction,
SIGNAL TIMINGS OUT TO crossover, and mutation -

THE REAL SIGNALS (new population now exists)

FIGURE 3 Traffic GA procedural flowchart.

COMPUTATIONAL RESULTS

The results of running this GA on typical traffic situations
can vary depending on the simulation settings used. All runs
performed during the writing of this paper show steady im
provement in the average population fitness as the GA pop
ulation evolves from generation to generation.

Simulator Parameter Settings

In the case examined here, the GA simulations used typical
parameter settings: four intersections configured in a square
(see Figure 1); yellow time of 3 sec; the probability of a car
going straight = 0.70, left = 0.15, and right = 0.15. The
average rate at which cars enter an intersection on a green
phase was as follows: for cars going straight, one car every 2
sec, right, 1 car every 2 sec, and left, one car every 6 or 12
sec (permitted to enter depending on the arrival volumes of
the opposing traffic). The length of time for a car to get from
one intersection to another was 24 sec (translates into a dis
tance between all adjacent intersections of 1,000 ft and a

constant traveling speed of 28 to 30 mph). The simulation
time was 5 min (equal to 100 simulation time steps). The
minimum green phase time was 6 sec; the maximum green
phase time was 114 sec. The minimum cycle time was 30 sec,
and the maximum cycle time was about 126 sec.

Traffic Environment

A common traffic environment was used for all GA runs
discussed in this paper. The input.1 vector, the number of
cars at all locations, was initialized with typical numbers. This
situation was initialized with typical numbers since no partic
ular real-world situation was involved. The task of modifying
the code to read in current traffic conditions from detectors,
so that real-world problems could be solved, would be very
simple. The second input vector, specifying arrival volumes,
was set to the values corresponding to the volumes given in
Table 1. The north and south approaches were given 5 to 6
times as much traffic as east and west directions. This situation
is common in street networks where two opposing directions
have considerably higher traffic volumes than the perpendic-

114

TABLE 1 Arrival Volumes for the Traffic GA Test Run

Approaching

from North to Intersection 1
from West to Intersection 1
from North to Intersection 2
from East to Intersection 2
from South to Intersection 3
from West to Intersection 3
from South to Intersection 4
from East to Intersection 4

Arrival Volume
(cars/hour)

1560
288

1560
288

1560
288

1560
288

ular directions because of a busy central business district. For
example, if this block of intersections is directly north of a
shopping mall, the highest traffic volumes will occur for cars
traveling south, into the mall area, and north, out of the mall
area.

Traffic GA Results

To obtain a stable, unbiased, average result for this report,
five Traffic GA runs with different initial GA populations
were executed. Each run was executed for 60 GA generations
with a GA population of 50. This means that for each run,
the fitness function (the 5-min-of-traffic-time simulation) was
executed 3,000 times. At each generation, the average fitness
of the generation is calculated and the member in the pop
ulation with the best fitness value (that is, the shortest wait
time) is identified. To produce Figure 4, the average fitnesses
of each GA generation (from Generation 0 to 60) of each of
the five Traffic GA runs were then averaged together. This
produced the "average wait time of population" line. The
"minimum wait time of population" was produced in the same
manner by averaging the fitnesses of the best-of-generation
members for each of the five Traffic GA runs. Figure 4 shows
how the GA starts with bad solutions (that is, solutions that
produce on-average high wait times) and locates good solu-

70

Ci) 65
0
z 60 0
0
LU 55
~
LU
::::?: 50
i=
I- 45
:ex:
~ 40

35
0

-a-AVERAGE WAIT TIME OF POPULATION
- -o- MEMBER WITH MINIMUM WAIT TIME

' -, ,.·-0 ,. ..

10

' .. ,o-- ,_o ... ,· o, ,. _ .. '' ..
' ., '· "" 0 .. , ..

20 30 40 50

GENERATION
60

FIGURE 4 Average of five traffic GA runs [best-of-generation
(minimum wait time) and generation average (average wait
time) results].

TRANSPORTATION RESEARCH RECORD 1365

tions (that is, solutions that produce on-average short wait
times).

The graph shows that the population seems to converge to
the optimum or near-optimum member by the 20th or 30th
generation. Therefore, it is possible to terminate the GA after
20 generations instead of after 60 generations and still obtain
a near-optimal solution. This reduced-generation scenario would
reduce the number of simulations from 3,000 to 1,000. The
graph also shows that typical minimum wait time values were
around 40 sec for these traffic conditions. After the last gen
eration, which in this case was the 60th, the member with the
maximum fitness (minimum wait time) can be selected as the
best signal-timing configuration and called the solution from
the Traffic GA. Then, if this Traffic GA run was performed
using real traffic data, the solution could be used to time the
real traffic signals to promote smooth traffic flow.

A typical maximal fitness member, actually found by one
of the GA runs executed on the traffic environment described
in Table 1, is given in Table 2. Note that for all intersections,
the green phase time for the north/south (N/S) directions was
considerably longer than for the east/west (E/W) directions.
Observe that total cycle times are equal because the bit string
contains only one field to represent total green time, but again
the bit string and simulation could be easily modified to allow
different total cycle times. The Traffic GA selected a total
cycle time of 60 by itself; this number is not programmed into
the GA. The GA found a strategy that used very similar green
phase times for the north/south directions and also for the
east/west directions. We expect this behavior because similar
green phase times often allow the best flow of traffic because
cars can move through the network with fewer stops if there
is some type of synchronized cycle time (10). Finally, the GA
could have given green phase times up to 114 sec but only
went as high as 45 sec. This is because the GA was searching
for a strategy that would minimize wait time, and if it were
to allocate more green phase time to north and south direc
tions, the wait times for cars coming from the east and west
would increase too dramatically to make this beneficial. This
solution provides a 33-sec green band for northbound traffic
of Intersections 1 and 3 and another 33-sec green band for
southbound traffic of Intersections 2 and 4.

Run Time

One entire GA run, which amounts to a total of 3,000 sim
ulations and 60 generations of a GA, took 2.0358 system CPU
sec on a supercomputer (Cray 2 with four processors). This
is a reasonably long job time considering that this time would
be greater on more readily available processors. On the other

TABLE 2 GA's Maximum Fitness (Minimum Wait Time) Timing
Strategy

Green Green Total
Intersection First Time Second Time Cycle Time
Number Direction (sec) Direction (sec) (sec) a

1 E/W 12 N/S 42 60
2 N/S 36 E/W 18 60
3 N/S 42 E/W 12 60

E/W 9 N/S 45 60

a Total Cycle Times have two yellow phases of 3 seconds each
added, in addition to the two green time3.

Foy et al.

hand, if the number of generations were cut by two-thirds to
20 as suggested earlier, the CPU time would be cut by two
thirds because the simulation takes up almost all of the CPU
time, whereas the GA operators use very little. Depending
on how often a user wants to recalculate a signal-timing strat
egy and for how many intersections, the required processing
time may increase or decrease. It is possible that the required
computational effort could be too large, preventing use of the
Traffic GA to calculate signal timings in very short time
intervals.

Performance

Though this run is only one case, it is expected that the Traffic
GA will always converge to a reasonable timing strategy .

Reasonable timing strategies have been found in many dif
ferent cases not reported in this paper. For example, when
arrival volumes were increased to a point of oversaturation,
the GA responded by finding signal-timing strategies with
longer cycle times, something a traffic engineer also would
do if it were possible to have constant human monitoring of
traffic signals.

Furthermore , most GA researchers agree that the theory
of convergence for simple GAs has become fairly well de
veloped, indicating that the performance reported earlier is
typical of GA behavior. The critical components of this theory
focus on building blocks (5,12), building block growth (12),
the possibility of being misled by building blocks (13-15),
and mixing and statistical decision making (16) .

Therefore, overall Traffic GA results (including the cases
not reported here) and the theory of convergence indicate
that GAs may be able to solve more difficult problems than
traditional control strategies and search methods. GAs seem
to be better on both accuracy and convergence time. Finally,
the advantages of demand-responsive control over other forms
of traffic control include the capacity to constantly examine
situations and respond to them with no traffic knowledge and
no human attention.

CONCLUSIONS

This paper reported on an application of a genetic algorithm
to produce near-optimal traffic signal-timing strategies for a
network of intersections. Examples and simulation parame
ters were included for illustrative purposes and to demonstrate
the roll a GA could play in signal-timing determination. The
Traffic GA produced reasonable traffic signal-timing plans.
The results suggest that this method of searching for an op
timal signal-timing strategy has the potential to improve ex
isting traffic control techniques. It is especially encouraging
that the GA could find balanced conditions of green phase
times and a reasonable cycle length as a function of traffic
demand.

The Traffic GA produced logical signal timings using simple
GA operators and a simple simulation model. Changing the
GA may be warranted if this problem were scaled up to handle
many more intersections. Future work on the simulation would
be required to make the Traffic GA more realistic and capable
of handling more complex intersection flow conditions.

115

Computer traffic control deserves attention because of the
possible benefits from improving traffic flow. An adequate
solution to this problem would increase roadway efficiency,
reduce travel time, make travel time more predictable, im
prove safety, cut down on harmful emissions, decrease fuel
consumption, and increase driver comfort.

ACKNOWLEDGMENTS

Mark Foy would like to thank Chad Hall for the initial mo
tivation to examine traffic flow and traffic control strategies.
Thanks go to the National Center for Supercomputing Ap
plications (NCSA) at the University of Illinois at Urbana
Champaign for providing the computer time to run the
Traffic GA.

David Goldberg acknowledges support by the National Sci
ence Foundation.

REFERENCES

1. N. H. Gartner . O'PA · A Demand-Re ponsive Strategy for Sig
nal Control. In Transportation Research Record 906, TRB, Na
tional Research Council, Washington, D.C., 1983, pp . 75-81.

2. F.-B. Lin and S. Vijayakumar. Adaptive Signal Control at Iso
lated Intersections. Journal of Transportation Engineering, Vol.
114, No. 5, Sept. 1988, pp. 555-573.

3. J. S. Linkenheld, R. F. Benekohal, and J . H. Garrett , Jr. A
Knowledge-Based System for the Design of Signalized Intersec
tions. ASCE Journal of Transportation Engineering, Vol. 118,
No. 2, March 1992, pp. 241-257.

4. D . P. Mital. An Intelligent Urban Traffic Network Controller
and Simulator. IETE Technical Review, Vol. 7, No. 1, Jan. 1990,
pp. 52-62.

5. D . E. Goldberg. Genetic Algorithms in Search, Optimizatio11,
mu/ Mad1ine Lt!ami11g. Addison-We Icy, Reading, Ma . , 1989.

6. Proc., 1111emation11I Co11fere11ce 011 Genetic Algorithms and 'f11eir
Applications (Jolm J . Grefenstettc , ed.). Carnegie-Mellon Uni
vcr ity 1985.

7. Proc., Second J11remario11al Conference on Genetic Algorithms
(John J . Grefenstette, ed.). Massachusetts Institute of Technol
ogy, 1987.

8. Proc., Third !11rematio11al Conference on Genetic Algorithms
(1. David chaffer ed.). George Ma on niversity , '1989.

9. TRAF-NETSIM U.'ver's Manual. Federal Highway Administra
tion, U .. Department of Transportation , 1989.

10. S. Reljic . TRAFSIG: A Computer Program for Signal Sctlings
at an Isolated, Under- or Ovcrsaturated, Fixed-Time Controlled
Intersection . Traffic Engineering and Control, Vol. 29, No. 11,
Nov. 1988, pp. 562-566.

11. Special Report 209: Highway Capacity Manual. TRB, National
Research Council , Washington , D .C., 1985 .

12. J . H. Holland. Adaptation in Natural and Artificial Systems. Uni
versity of Michigan Press, Ann Arbor, 1975.

13. D. E. Goldberg. Simple Genetic Algorithms and the Minimal, ·
Deceptive Problem. In Genetic Algorithms and Simulated An
nealing (L. Davis , ed.), Morgan Kaufmann, Los Altos, Calif.,
1987, pp. 74-88.

14. D. E. Goldberg. Genetic Algorithms and Walsh Functions: Part
I. A Gentle Introduction. Complex Systems, Vol. 3, No. 2, 1989,
pp. 129-152.

15. D. E. Goldberg. Genetic Algorithms and Walsh Functions: Part
II. Deception and its Analysis. Complex Systems, Vol. 3, No . 2,
1989, pp. 153-171.

16. D. E. Goldberg, K. Deb, and B. Korb. Mes y Genetic Algo
rithms Revisited: Studies in Mixed Size and Scale. Complex Sys
tems, Vol. 4, No . 4, 1990, pp. 415-444.

Publication of this paper sponsored by Committee on Traffic Flow
Theory and Characteristics.

