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Foreword 

The papers in this volume are reports on research topics chosen by graduate students selected for 
awards from a nationwide competition under the Seventh Graduate Research Award Program on 
Public-Sector Aviation Issues (1992-1993). The program is sponsored by the Federal Aviation 
Administration and administered by the Transportation Research Board. Its purpose is to stimulate 
thought, discussion, and research by those who may become managers and policy makers in aviation. 
The papers were presented at the 73rd Annual Meeting of TRB in January 1994. The authors, their 
university affiliations, faculty research advisors, and TRB monitors are as follows. 

Leola B. Ross, a Ph.D. candidate in economics at Southern Methodist University, made a dynamic 
analysis of oligopolistic behavior in the domestic airline industry. Her faculty research advisor was 
Kathy J. Hayes of the Department of Economics, Southern Methodist University. TRB monitors 
were Francis P. Mulvey of the U.S. General Accounting Office and John W. Fischer of the Con­
gressional Research Service, Library of Congress. 

Ila Semenick, a Ph.D. candidate in economics at Rice University, analyzed domestic airline tech­
nical efficiency scores and their implications for future industry structure. Her faculty advisor was 
Robin C. Sickles of the Department of Economics, Rice University. TRB monitors were Gerald S. 
McDougall of Southeast Missouri State University and J. Bruce McClelland of Dornier Aviation 
(North America, Inc.). 

Guy M. Smith, a Ph.D. candidate in education at Montana State University, evaluated self-analysis 
as a strategy for learning crew resource management in undergraduate flight training. His faculty 
advisor was John W. Kohl, Department of Education, Montana State University. TRB monitors were 
Lemoine V Dickinson, Jr., of Failure Analysis Associates, Inc., and Richard F. Pain of TRB. 

James R. Valentine, a Ph.D. candidate in mechanical engineering at the University of Utah, studied 
airfoil performance in heavy rain. His faculty advisor was Rand Decker, Civil Engineering Depart­
ment, the University of Utah. TRB monitors were Hubert C. Smith of the Pennsylvania State 
University and C. W. Kauffman of the University of Michigan. 

v 
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Dynamic Analysis of Oligopolistic 
Behavior in the U.S. Airline Industry 

LEOLA B. Ross 

The recent history of the airline industry has exhibited relentless price 
wars of national proportion begun by failing airlines desperate to fill 
their planes. However, price reductions and sporadic discounting are 
often observed intermittently on scattered routes from time to time. If 
substantial discounts are offered, these episodes may also be classified 
as less publicized (or covert) price wars. An arbitrary rule is described 
that classifies the most traveled routes between the second quarter of 
1990 and the third quarter of 1992 as experiencing or not experiencing 
a price war on the b~sis of distribution of prices. The classification 
scheme is helpful in characterizing market behavior during price wars 
and normal periods. The causes and effects of price wars are assessed, 
and special attention is given to the relationship between price wars 
and concentration. The analyses are conducted in the context of an 
economic theory that depicts price wars as a normal reaction to chang­
ing market conditions when a specific type of equilibrium character­
izes an industry. The most profound result is that price wars do not 
increase market concentration as successfully as more cautious price 
reductions taken during normal periods. 

The recent history of domestic airlines has been marked by merg­
ers, takeovers, failed airlines, volatile ticket prices, and price wars. 
Whereas the airline industry is among the most studied in the past 
decade, domestic airline price wars have not been the central focus 
of economic research. Examination of these price wars during the 
early 1990s is timely and significant with regard to both the ec­
onomic literature and the political arena. 

Past economic studies focused largely on st~tic models aimed 
at describing airline industry behavior at a point in time. For ex­
ample, Borenstein (1) links airport dominance and route concen­
tration to high fares and argues that increased concentration of 
this nature should lead to even higher fares. The General Ac­
counting Office (2) published a similar, more detailed static model 
seeking to capture the effects of certain barriers to entry, market 
share, and congestion on airfares. It found that a single variable 
does not a have a large effect on prices but that in combination 
the factors studied can significantly increase airfares. That study 
enjoyed the contribution of a tremendous amount of data, which 
enriched the explanatory power of the results substantially. A re­
cent study, which was more parsimonious in its use of data, was 
done by Evans and Kessides (3). They found evidence that airport 
concentration was a strong determinant of fares on a given route. 
They further concluded that for the quarter they studied route 
dominance was relatively unimportant in explaining higher prices. 
The contrasting results of these studies affirm the need for a dy~ 
namically based model to explain pricing behavior. In a later sec­
tion of the paper, reference is made to a Chow test of structural 
change across time periods. This test confirms that pricing behav­
ior has not been the same across time, which suggests a possible 
explanation for differing results in previous papers. 

Department of Economics, Southern Methodist University, Dallas, Tex. 
75275-0496. 

Economic studies focusing on the evolving nature of the airline 
industry are less numerous than single-period studies. Morrison 
and Winston ( 4) study entry and exit patterns as affected by hub­
bing and route fares. They find that airlines tend to shy away from 
airports where other airlines have hubs because of limited gates. 
They, like Evans and Kessides, find a strong correlation between 
airport concentration and high prices. However, they predict that 
hubbing should eventually decrease fares, since hubs allow in­
creased airline connectedness and contact with competitors so that 
airlines should be able to compete with each other more effec­
tively. Kim and Singal (5) examined the dynamic nature of prices 
during the merger wave of the mid-1980s. They identify the price 
changes on routes affected by specific mergers, compare them 
with price changes on routes unaffected by those mergers, and 
find that the elimination of the noncooperative failing airline al­
lows the remaining airlines to collude more successfully. Further­
more, they suggest that multirnarket contact helps airlines main­
tain a less-than-competitive arrangement and that the competition 
observed shortly after deregulation is less likely under the evolv­
ing market structure. However, since 1988, the airlines seem to 
have entered a new era of short-term price wars and collusive 
periods, in contrast to the predictions of Kim and Singal. Why 
has the stability they predicted broken down? Or does this recent 
trend actually reflect a different kind of equilibrium that has until 
now not been considered? 

The model described here will show that pricing behavior varies 
not only over time but over routes. The causes and effects of price 
wars are modeled and evaluated to demonstrate that the airlines 
reflect both competitive and collusive behavior at various times 
and on various routes. It is shown that, regardless of hub and route 
dominance, lagging demand can trigger destructive competition 
and that certain types of routes will be more prone to prke wars 
than others. Furthermore, there are clear winners and losers from 
price wars, and the toughest battles are fought on the routes with 
the most at stake. 

PRICE WAR EQUILIBRIUM 

A growing theoretical literature has been devoted to explaining 
the dynamic nature of imperfect markets. It has been recognized 
since Stigler (6) that the static models of collusive cartel, Cournot­
Nash equilibrium, or Bertrand competition do not sufficiently ex­
plain the behavior of firms existing in such markets. Whereas we 
know that a cartel is an unstable arrangement at best, empirically 
we observe that highly concentrated industries are likely to behave 
like any one of these classic models (including cartel) at some 
time. In the past decade, game theorists have developed dynamic 
models to portray more realistically the actions of oligopolists 
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who learn from the past and plan for an uncertain future. The 
Green and Porter model (7) is particularly applicable to recent 
airline behavior, since it describes an oligopoly that goes through 
periods of sustained collusion and intense competition. They de­
scribe a "Nash equilibrium" (the most profitable choice for a 
firm, given the most likely reactions of its competitors) of strat­
egies that determine a firm's behavior over an infinite time hori­
zon. In their model each firm will price at a normal (or collusive) 
level unless sales drop too low. If this happens, the firms will 
assume that some other firm is cheating (or discounting too much) 
and will respond by dropping prices to punish the cheating firm 
for some time. Thus, the dynamics of the industry will be char­
acterized by firms bouncing back and forth between normal be­
havior and price wars. Green and Porter point out that a drop in 
sales need not be the result of a cheating party; it could be caused 
by a drop in consumer demand or some other factor. Thus, the 
price wars recently exhibited by the airlines could be based on 
the pricing practices of various airlines (perhaps, for example, the 
value pricing scheme of American Airlines) or simply a shrinking 
consumer demand for travel. 

The primary difference between the Green and Porter model 
and the structure of the airline industry is the multimarket nature 
of the airlines. Recall that Kim and Singal suggested that such 
multimarket contact should allow the airlines to maintain collusive 
behavior without the threat of excessive competition, whereas 
Morrison and Winston indicated that this multimarket countact 
should, in fact, increase the competitiveness of the airlines. Add­
ing multimarket contact to the Green and Porter model compli­
cates matters somewhat. If an airline lowers prices on one route, 
what is to prevent the other airlines from abandoning that route 
altogether and lowering prices on some other route where it has 
a comparative advantage? Such behavior would lead to market 
segmentation, and then both firms would emerge as monopolists 
(or at least dominant carriers) in their respective markets. Casual 
empiricism suggests that this does not frequently occur, or does 
it? Southwest Airlines has successfully carved a niche by forcing 
other carriers to lower prices substantially or drastically reduce 
service on Southwest's routes. Whereas it is not clear that every 
airline could be a Southwest, it is curious that more have not tried 
to copy the success of their most profitable adversary. 

A rigorous examination of the Green and Porter model, ex­
tended to multiple markets, reveals that though each airline could 
be more profitable as a monopolist, the lure of invading other 
routes may be too strong for a segregated market to be sustained. 
This is true if the markets still show some evidence of contesta­
bility in this industry and the only defense against an invasion by 
a competitor is limit pricing. Therefore, once a price war erupts, 
a spillover into another market only serves to extend the price war 
rather than to segregate the market or drive out competitors. The 
resulting equilibrium (not unlike the one described above) is a 
sequence of normal prices occasionally interrupted by an indus­
trywide price war. 

Since this theory predicts that price wars are not likely to dis­
appear, where they are likely to occur and how they affect market 
structure are important issues in developing public policy or as­
sessing market performance. 

FREQUENCY ANALYSIS 

The previously described theoretical model does not indicate 
whether price wars should lead to increased or decreased market 
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concentration. It might seem counterintuitive that a price war 
would leave a market in the same condition in which it began. If 
no airline gains customers at the expense of a competitor, then 
one might question the rationality of starting a price war. To mo­
tivate the empirical model and to make explicit the effects of a 
price war on market concentration, consider a simple comparison 
of changes in concentration in price wars and in "normal" 
periods. 

To analyze the frequency of anything concerning price wars, 
one must first define a price war. A price war may be characterized 
by public announcements by the airlines and newspaper headlines, 
or they may be more obscure. In fact, a price war may occur on 
only one or two routes for several time periods or half of the 
domestic routes for a single time period. With this in mind, the 
nature of the distribution of prices for a particular route should 
be analyzed to confirm or deny that a price war is occurring. 
Unfortunately, to ask this of the data, a "rule" must be imposed 
as to the inclusion or exclusion of a particular route at a particular 
time, and this rule will be unavoidably arbitrary. The rule chosen 
is as follows: 

1. Calculate, by route and date, the maximum price charged and 
divide by 5 to determine the percentage of tickets sold below 20 
percent of the maximum price. 

2. Compare this percentage in each period with the percentage 
in the previous period to determine the percent change in the 
percentage. 

3. Conclude that a price war is in effect if the percent change 
is more than 25 percent. 

4. Conclude that the price war is still in effect if there was a 
price war last period and the percent change this period does not 
"substantially" change (does not decrease any more than 10 
percent). 

5. Call the period ''normal'' if a price war is not in effect by 
the preceding two steps. 

To measure route concentration, the Theil coefficient (an 
~ntropy-based measure), TC = ~asaln sa, is calculated for each 
route at each time period in the sample (where the market share 
of Airline a on a route is sa)· TCs were calculated with all the data 
for the 100 most traveled airports. The measure more commonly 
used for industry case studies is the Herfindahl index, HI = 
~a s;, since it is more widely known and understood. Both of 
these. indices possess some properties relating them to economic 
theory. For example, HI may be linked to a firm's ability to price 
above marginal cost in a particular setting, and TC may be used 
to draw some conclusions about the detachment of upper man­
agement from the actual production process [a more detailed de­
scription of these properties is given by Hannah and Kay (8, 
p. 27)]. However, both of these relationships are shaky at best, 
and neither lends itself to a reduced form regression. From a prac­
tical perspective, the difference between the two measures is that 
HI places most of its weight on the largest firm share on the route 
or airport or industry in question, whereas TC places its emphasis 
on the dispersion of the firm's.respective shares. [For a description 
of these properties see Theil (9).] 

TC is distinguished from an arbitrary index such as the Herfin­
dahl by virtue of its origins in statistics and information theory 
[for a discussion of these origins see Slottje (10, pp. 63-66)]. The 
entropy class of indices measures the deviation of a particular 
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distribution (in this case the distribution of firm shares) from a 
hypothesized null distribution (in the case of concentration the 
implied null is a symmetric market). If market shares are insig­
nificantly different from the null distribution, TC will be distrib­
uted x2 with number of firms less two degrees of freedom (11). 
Hence, divergence of a TC from its null is governed by a well­
known distribution, so that statistical inference is possible and its 
usefulness is maximized. Further, Hayes and Ross (12) show that 
these properties may also be used to construct a directed diver­
gence statistic for conducting inference test of the similarities of 
concentration among routes and time periods. 

our definition (requiring from a 5 to a 50 percent increase in 
concentration), it is clear that the occurrence of a price war does 
not increase the probability of large changes in concentration ei­
ther but exhibits a consistent difference. Clearly, this analysis is 
based on our arbitrary price war rule, and we have no confidence 
intervals to substantiate these conclusions. However, the similar­
ities in percentages between price wars and normal periods appear 
to be robust to the percent increase in concentration. These sim­
ilarities can be easily observed in Figures 1 and 2. 

The calculated frequency of increased concentration during 
price wars and normal periods is given in Table 1. In the first 
column, restrictions are placed on the percent increase in concen­
tration. We begin by considering the event of any increase at all 
during and after price wars and find that an increase occurs in or 
out of a price war with almost equal probability. As we tighten 

DATA 

The data used for the construction of this frequency analysis and 
the model to follow have been extracted from two data banks 
maintained by the Department of Transportation-the Origin and 
Destination Survey (Data Bank lA or DBlA) and the TJOO Do-

TABLE 1 Frequency Analysis of Price Wars and Increases in Concentration by 
Route 

Frequency of Increased 
Concentration 
(this periods behavior) 

% Increase in During Price War Normal Period 
Concentration (% t (% t 

0 3039 3724 
(53.86) ( 47.48) 

5 2159 2555 
(38.27) (32.57) 

10 1610 1812 
(28.54) (23.10) 

15 1217 1361 
(21.57) (17.35) 

22 992 1080 
(17.58) (13.77) 

25 817 887 
(14.48) (11.31) 

50 382 404 
(6.77) (5.15) 

0 Percent based on routes exhibiting a price war. 
b Percent based on routes not exhibiting a price war. 
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2336 4427 
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1611 3103 

(34.46) (35.22) 
1193 2229 

(25.52) (25.30) 
894 1684 

(19.12) (19.11) 
714 1358 

(15.27) (15.41) 
583 1121 

(12.47) (12.72) 
234 .'552 

(5.01) (6.27) 

20% 25% 50% 

Increase in Concentration 

I a Price War DNormal I 

FIGURE 1 Frequency of increased concentration during a price war. 
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mestic Segment Data (Data Bank 28DS or TlOO). These data 
banks are available from the Volpe National Transportation Sys­
tems Center in Cambridge, Massachusetts, or from the National 
Archives in Washington, D.C., for older data. The DBlA is a 
random 10 percent survey of all tickets issued for flights within 
the United States and is published on a quarterly basis. The TlOO 
contains data reported by U.S. carriers operating nonstop service 
within the United States and is published monthly. The following 
types of tickets are removed from the sample: 

1. Any ticket with one or more segments of first-class travel, 
2. ·Any tickets that are not either one-way or round-trip, 
3. Any tickets with more than one change of plane per direction 

of travel, 
4. Tickets with any origin or destination outside the United 

States, 
5. Interline tickets (tickets where services are provided by more 

than one carrier), and 
6. Any tickets that were less than $10 or more than $750 each 

way (or $20 and $1,500 round-trip, respectively) (these are as­
sumed to be frequent flier tickets, chartered flights, or input 
errors). 

There are 1,226 routes selected from these two data sets to use 
for these analyses. These are the only routes that are present in 
both data sets for all the time periods among the top 100 airports 
in the United States and represent roughly 30 percent of all tickets 
in the DBlA. The use of the TlOO somewhat restricts the choice 
set of routes since it is a segment-based data source. For an ob­
servation to occur on TlOO there must be a nonstop flight between 
the endpoints. The use of the hub-and-spoke system by most ma­
jor carriers has reduced the number of airports having nonstop 
flights between them. Thus, to ensure a balanced panel of routes, 
the data set is reduced. Conversely, the DBlA has observations 
on ~lmost any combination of segments imaginable between var­
ious endpoints. If the statistical tests were restricted to variables 
extracted from DBlA, the number of routes in the sample would 
be considerably larger. However, information such as number of 
flights scheduled and load factor is only available from the TlOO. 

% 

R 
0 

u 

e 
s 

100 

80 

60 

40 

20 

0 

0% 5% 10% 

TRANSPORI'ATION RESEARCH RECORD 1428 

These variables enlarge the set of independent variables and 
should not be ignored when analyzing pricing behavior. However, 
inconsistencies in the interpretation of the variables extracted from 
these data sets may arise, given their differences. 

The most recent 11 quarters of data were used for the analysis 
(1990:1 through 1992:3). The price equation below was estimated 
by route pair and time .. (A route pair is listed in alphabetical order 
such that, for example, flight DFW-LGA is the same as LGA­
DFW and is called DFWLGA. This is common in the literature 
and is necessary to prevent duplication of observations in light of 
the high percentage of round-trip tickets purchased.) 

EMPIRICAL MODEL 

The frequency analysis gave insight into the effects of price wars 
on some minimum change in concentration. To more thoroughly 
examine the influence of route characteristics on market behavior, 
a system of equations describing changes in the bottom quintile 
of prices, changes in concentration, and the absolute price level 
is defined. All three of these may be determined by the charac­
teristics of the route and market. Price levels are defined by a 
reduced form of demand and supply conditions. Price changes are 
often responses to slackening demand or the behavior of compet­
itors (both are suggested by our theory). Finally, route concentra­
tion changes may be the result of price changes, shifts in con­
sumer demand, or the concentration of the endpoints of travel. 
Therefore, the following system of equations is suggested: 

PERCHANGil = 13 10 + 13 11LNSCHEDil + !312LNPRICEi, 

+ !313ROUfHEILil + !3w~PTHEIL;, 

ROUCHANGil = 1316 + 13 11PERCHANGil + !3w~PTHEILi, 

+ !322LNSCHEDil 

15% 20% 25% 50% 

(1) 

(2) 

Increase in Concentration 

I mPrice War ONormal I 

FIGURE 2 Frequency of increased concentration after a price war. 
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LNPRICE;, = ~23 + ~24LNPASSu + ~25PERSTOPu 

The endogenous variables are as follows: 

• PERCHANGu (PERCENTu PERCENT;,-1)/PER-
CENT;,-i. where PERCENTu is the percentage of tickets sold at 
20 percent or less than the maximum price, is a measure of price 
volatility and is expected to increase ROUCHANG in price wars 
and normal periods (source DBlA). 

• ROUCHANG;, (ROUTHEIL;, ROUTHEIL;,- 1)/ 

ROUTHEIL;,_ 1 is a measure of market structure volatility 
(ROUTHEIL is defined later) (source DBlA). 

• LNPRICE;, is the natural logarithm of the average price of a 
ticket on route i at time t. The predicted effect of this variable on 
PERCHANG is positive in normal periods and negative during 
price wars (source DBlA). (Since all variables henceforth, except 
LNDIST, are indexed over route and time, the subscripts will be 
dropped from the following descriptions.) 

The exogenous variables are as follows: 

• LNSCHED is the natural logarithm of the total number of 
nonstop flights scheduled for a route. This variable is related to 
the frequency of fights and thus reflects the possibility that a route 
may be rather competitive and, thus, exhibit more activity over 
time. It is expected to increase both PERCHANG and ROU­
CHANG during normal periods and price wars (source TlOO). 

• ROUTHEIL is the Theil concentration index of the route trav­
eled, La s)n sa, where sa is the proportion of passengers Airline 
a serves on the route. This is a measure of route concentration 
and is expected to positively affect LNPRICE and decrease PER­
CHANG at all times (source DBlA). 

• APTHEIL (APl THEIL + AP2THEIL)/2, where 
APl THEIL is the Theil concentration index of the airport first 
listed in the route pair and AP2THEIL is the Theil concentration 
index of the airport listed second in the route pair, measures con­
centration and is expected to increase LNPRICE and ROU­
CHANG and decrease PERCHANG at all times (source DBlA). 

• LFLAG = LOADF,_i. where LOADF (load factor) is the per­
centage of available seats occupied on nonstop flights. This var­
iable reflects both past and current demand. The lagged load factor 
is expected to be instrumental in stirring activity when planes are 
empty, thus decreasing both PERCHANG and ROUCHANG in 
normal periods, but it might have an opposite effect on ROU­
CHANG during price wars. The effect of the current load factor 
on LNPRICE should be negative during normal periods and price 
wars (source TlOO). 

• LNPASS is the natural logarithm of the total number of pas­
sengers in the sample flying the route. This is an indicator of 
highly established routes thus decreasing ROUCHANG; newer, 
less-traveled routes are likely to be more contestable. However, 
since it might also imply economies of scale, it might decrease 
LNPRICE (source DBlA). 

• PERSTOP is the percentage of passengers experiencing a 
change of planes. This indicates a route that is starting or ending 
at a nonhub airport and, thus, is expected to increase costs and 
LNPRICE as well (source DBlA). 
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• PERROUND is the percentage of passengers flying round­
trip on a route. A large percentage of round-trip tickets might 
imply more pleasure travel as opposed to business travel and a 
more elastic price resulting in lower LNPRICE at all times (source 
DBlA). 

• LNDIST is the natural logarithm of the great circle distance 
in official statute miles between the origin and destination of air­
ports. Greater distance is expected to increase both costs and 
LNPRICE for both models (source TlOO). 

A monotonic logarithmic transformation of the variables (such 
as distance, total passengers, average price, and number of sched­
uled flights) with magnitudes out of line with the other variables 
is taken. 

There exists explicit simultaneity in the system of equations, 
and therefore three-stage least squares estimation is appropriate. 
The time-series nature of the data is ignored in the error structure 
for three reasons. Since the cross section (1226) is far greater than 
the time series (10 after lagging some variables), it is likely that 
the pooled sample closely resembles a cross-sectional data set. 
Whereas it is possible that some autocorrelation exists in the error 
structure of the LNPRICE equation, as prices are expected to have 
some inertia, it is doubtful that this is a problem in the first two 
equations, since a change in concentration or a price war in this 
period does not imply similar behavior next period. And finally, 
as will be explained shortly, the data set is split into two subsets 
that are independent of time and route. Therefore, to draw com­
parisons between the entire data set and the two subsets, one re­
gression technique must be used, and it is not possible to treat the 
two subsets as panel data when they are completely unbalanced. 
The balanced nature of the original data set, however, is essential 
for determining the values of lagged variables (PERCHANG, 
ROUCHANG, and LFLAG) and is instrumental in assessing the 
importance of dynamic change in the market structure. 

RESULTS 

The system of equations from the previous section was estimated 
three times. Initially, the model was estimated allowing for no 
variation in parameters across routes or periods. This is referred 
to as the combined model. Next, the data set was segregated by 
time period so that a general test for time-invariant behavior could 
be conducted. It is clear that this is not the case. Therefore, the 
conflicting results of previous studies, whiGh where discussed ear­
lier, may be partially explained by differences in the time periods 
used by the authors. Since this model was only estimated to dem­
onstrate this point and is not the focus of this research, the pa­
rameter estimates are not reported. However, the by-equation 
Chow test results are reported in Table 2 . .(This test for structural 
change is done by-equation since there is no Chow test defined 
for a system of equations. The residuals used for these tests are 
from the two-stage least squares step of the three-stage least 
squares procedure.) 

In the final estimation the pooled data set was separated into 
two categories: price war and normal. This separation disregards 
the panel nature of the data set since each route/period observation 
is categorized by the price war rule described in an earlier section 
of this paper. The regression results for these two models are 
reported with the combined model in Table 3. Again, a Chow test 
was conducted confirming that separating the data in this way 
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TABLE 2 Results of Chow Tests of Structural Change 

Ho: Time Invariant Structure 
F-Statistic 

Ho: Price War Invariant Structure 
F-Statistic 

(DF-num, DR-den, Critial Value) (DF-num, DR-den, Critial Value) 
Equation (1) 4.48 

(54, 12200, 1.32) 
Equation (2) 6.65 

(54, 12200, 1.32) 
Equation (3) 43.38 

(72, 12180 ,1.22) 

significantly improves the fit of the model. The F-statistics are 
also reported in Table 2. Since it is shown that the combined 
model is incorrect, a discussion of the results is unnecessary. They 
are reported so that one can observe how a model ignoring the 
effects of price wars can give results contrary to the segregated 
models. 

The results of the normal period and price war models are often 
conflicting and for some variables are counterintuitive. First, con­
sider the PERCHANG equation. LNSCHED leads to increases in 

119 
(6, 12248, 2.10) 

4.64 
(6, 12248, 2.10) 

52.88 
(8, 12244, 1.94) 

price volatility during normal periods, thus indicating a push to­
ward price wars. However, during a price war LNSCHED takes 
the opposite sign, indicating that price wars on frequently depart­
ing flights may be less severe. ROUTHEIL and APTHEIL are 
associated with decreasing PERCHANG in normal periods, indi­
cating an ability to sustain prices more effectively when concen­
tration is higher. Conversely, the positive coefficients during price 
wars indicate that if a price war breaks out it will be more severe. 
Perhaps this is an indication that these routes are contestable; this 

TABLE 3 Three-Stage Least Squares Estimation Results 

Expected During a Price Normal Period Combined Model 
{PW,N} War 

{1} PERCHANG 
INTERCEPT 40.99b 0.85h 16.94 

LNSCHED -0.30° 0.02b -0.2lh 

LNPRICE -4.26° -0.33b -l.47b 

ROUTHEIL 0.77 -0. l lb 0.48° 

APTHEIL 6.7lb -0.14h 3.07b 

LFLAG -4.89" 0.08b -2.27h 

{2} ROUCHANG 
INTERCEPT 2.36b 1.43" 0.29 

PER CHANG -0.06b 0.51° 0.09" 

APTHEIL 0.39° 0.27b -0.22 

LFLAG -0.35 0.17 0.39° 

LNPASS -0.23b -0.13b -0.17h 

LNSCHED 0.04 0.002 0.04" 

{3}LNPRICE 
INTERCEPT 4.68" 4.63" 4.62b 

LNPASS -0.05b -0. l lb -0.09" 

PERS TOP 0.1 lb 0.03b 0.19b 

PERROUND 0.07° 0.44b 0.32" 

ROUTHEIL -0.12b -0.19b -0.16" 

AP THEIL 0.1 lb 0.19" 0.17b 

LOADF -0.16b -0.6lb -0.43b 

LNDIST 0.13b 0.20b 0.18b 

Cross Model 
Correlation 
(1) & (2) 0.245 -0.098 -0.343 
(1) & (3) -0.014 0.233 -0.233 

{22 & {32 -0.050 -0.019 -0.019 
0 Significant at the 5% level. 
,,Significant at the 1 % level. 
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is consistent with the theory described above. The positive coef­
ficient on LFLAG is counterintuitive because it suggests that fuller 
planes exhibit more discounted fares during normal periods. How­
ever, we intuitively observe that empty planes increase the seve~­
ity of a price war should it erupt. Again, this is consistent with 
the theory in the second section. LNSCHED and LFLAG exhibit 
similar effects on ROUCHANG. 

The negative coefficient on PERCHANG in the ROUCHANG 
equation is curious. This seems to indicate that price wars slightly 
increased market shares for smaller airlines at the expense of the 
larger airline, creating a more symmetric market. The positive 
coefficient during normal periods suggests that covertly discount­
ing some fares without starting a price war gives more market 
share to the larger airlines. Put simply, price wars do not increase 
market concentration. This is consistent with the simple frequency 
analysis described earlier, but the relationship is not revealed so 
explicitly. These results suggest that if a relatively small airline 
tries to increase its market share by starting a price war, it may 
have some minimal success, and these price wars may be a useful 
market mechanism for keeping the dominant carriers in check. 

The most surprising results, from an economic perspective, are 
in the LNPRICE equation. For example, PERROUND was ex­
pected to decrease prices because of pleasure travel. However, we 
show that an increase is actually the case. Perhaps one-way tickets 
are dominated by lower-priced commuter flights (consider the 
New York, Boston, Washington shuttles as an example). Further, 
the negative impact of ROUTHEIL on prices seems unusual. Is it 
possible that this is an indication of limit pricing on highly con­
centrated routes? This explanation is consistent with the theory 
given earlier. 

As a whole, the results of this regression are informative. Fac­
tors that reduce discounting in normal periods imply increased 
intensity when price wars occur. Similarly, factors that increase 
discounting in normal periods imply less intense price wars. It is 
also apparent that small, covert reductions in price during normal 
periods will increase route shares for the larger airlines better than 
rapid changes that set off price wars, whereas smaller carriers can 
gain some market share during price wars. 

CONCLUSIONS 

The use of a system of simultaneous equations is particularly in­
structive in evaluating the causes and effects of volatile prices in 
the airline industry. We have confirmed that what pushes a route 
into a price war, such as frequently departing flights that fill up 
quickly, may also act to reduce the severity of a price war. Char­
acteristics that reduce normal-period price discounting, such as 
dominance of routes and at airports, may intensify a price war. 
Most significant, (he advantages of covert price reductions by 
larger airlines are affirmed by the changing sign of PERCHANG 
when regressed on ROUCHANG. This demonstrates that the in­
centive to cheat in normal periods is very strong for small airlines 
seeking to improve their market share. 

Many aspects of economic theory have been affirmed, indicat­
ing that perhaps the airlines are, in fact, in an equilibrium that is 
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characterized by both collusive and competitive behavior. The 
suggestion that the multimarket contact can successfully reduce 
competition is as correct as the alternative. In this sense, past 
research that focused on dynamic change in the airlines is cer­
tainly superior to static reduced-form models that ignore the im­
portance of change in this industry. However, one must appeal to 
economic theory to successfully interpret empirical results. The 
results of this research indicate that price wars are likely to occur 
for some time and that market concentration may go up or down 
on the basis of the frequency of these price wars and the ability 
of the airlines to stay in the game. Since this industry is so sen­
sitive to demand conditions, price wars may become less common 
if consumer demand becomes stronger. If demand improves, the 
traveling population will look forward to higher fares and a less 
competitive market. 
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Movements of Domestic Airline 
Technical Efficiency Scores over Time: 
Implications for Future Industry Structure 

ILA SEMENICK 

The volatile nature of the domestic airline industry has received much 
attention since deregulation in 1978. The large number of failures, 
mergers, bankruptcy filings, and operating loss reports has raised con­
cerns that the future is bleak in terms of the number of carriers that 
will survive and prosper. Economic theory suggests that it is 
vital for firms to operate efficiently to compete. To avoid falling be­
hind competitors, firms need to imitate any advances in efficiency­
enhancing technology made by others in the industry. A panel data 
set of 11 domestic airlines, followed quarterly from 1970 to 1990, 
and three methods that are currently being pursued in the efficiency­
measurement literature are used to explore the movements of technical 
efficiency over time in the industry. The analysis indicates that the 
efficiency scores of the carriers in the sample exhibit long-term rela­
tionships and move closer together over time. 

The past two decades have proven highly disruptive to the Amer­
ican airline industry. The impetus behind the trend toward a more 
concentrated market structure was economic deregulation of the 
airline industry in 1978 by the Civil Aeronautics Board (CAB). 
Under regulation, firms had an incentive to select an inefficient 
combination of inputs, since the only means of competition was 
through service, which often meant "too many planes on too 
many routes" (1). It was widely believed that once the barriers 
to entry instituted by regulation were removed, such distortions 
would be eliminated and industry performance and efficiency 
would improve. Thus, whereas overcapitalization may have been 
the correct decision during regulation, on deregulation carriers 
found themselves with fleet configurations and labor commitments 
that were no longer optimal and had to be modified because of 
the intensified level of competition. The structure of fares, quality 
of service, and pace of modernization of airline capital have, 
therefore, changed dramatically. 

Furthermore, substantial changes are likely to continue during 
the coming decade. One powerful force that will propel further 
change is the enormous growth of demand for airline services. 
Airlines have become a vital component of the world travel in­
dustry with passenger travel doubling since the U.S. airline in­
dustry was deregulated. A second stimulus to change is the in­
creasingly competitive international market. For example, the 
prospect of integration of the European Community will remove 
current economic barriers in Europe; this deregulation will affect 
the airline industry and lead to the negotiation of new international 
agreements and the possibility of trans-Atlantic mergers. 

In the light of these domestic and international challenges, the 
ability of U.S. carriers to operate efficiently is critical to their 
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prospects for prosperity or survival. The goals of this research are 
to evaluate the performance of each domestic airline in the sample 
over time using alternative measures of relative technical effi­
ciency and to use these measures to address the question of future 
industry composition. The identification of efficiency differentials 
among American carriers provides a means of ranking the airlines 
relative to one another through time. The ranking provides a way 
of ascertaining which carriers may be headed for trouble. In ad­
dition, at the managerial level, these measures indicate the suc­
cess, or lack thereof, in performance enhancement. At the industry 
level, the hypotheses of cointegration and convergence of these 
efficiency scores over time can be tested to predict future industry 
movements. 

Cointegration occurs when two variables do not move too far 
from one another although individually they move unpredictably 
through time. Convergence occurs when two variables move 
closer together over time. Theory suggests that the time series of 
efficiency scores for the airlines should move together ( cointegra­
tion) or closer together (convergence) as technological advances 
become diffused throughout the industry. This argument is based 
on the assumption that the efficiency advances made by one car­
rier can be adopted by another; namely, improved technology is 
a public good available to any firm wishing to use it. Failure to 
exhibit cointegration or convergence would be indicative of a 
firm's inability to capitalize on this public good. Rigorous iden­
tification of the underlying reasons for differences in efficiency 
and the presence or absence of cointegration-convergence between 
carriers is the subject of future research. 

DATA 

The original Good-Sickles data set has been updated and consists 
of quarterly observations of 11 domestic carriers from 1970 to 
1990 with a Department of Transportation (DOT) Group III clas­
sification. This category consists of certified carriers with the larg­
est total annual operating revenues. Smaller carriers are catego­
rized as Group I or Group II. The sample includes American (AA), 
Continental (CO), Delta (DL), Eastern (EA), Frontier (FL), Ozark 
(OZ), Piedmont (PI), Trans World Airlines (TW), United (UA), 
USAir (~S), and Western (WA). The primary source of the data 
is the CAB Form 41 reports. The DOT's reporting requirements 
are extensive, and as of 1970 the data are rigorously audited to 
maintain a high degree of accuracy. Form 41 is therefore a rich 
and definitive source of data for industry analysis. 

The input and output accounts of the Form 41 schedules were 
aggregated into four broad input indices and one output index (2). 
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The input indices are capital (K, the number of aircraft), labor (L, 
an aggregate of pilots, flight attendants, mechanics, passenger and 
aircraft handlers, and other labor), energy (F, gallons of aircraft 
fuel), and a residual designating materials (M, which includes 
items such as advertising, supplies, outside services, passenger 
food, and maintenance materials). The aggregate output variable 
available for use is the quantity of revenue output (RTM, revenue 
ton-miles, which includes both passenger and cargo operations). 

1\vo airline output and two capital stock characteristics are also 
calculated. The former characteristics are aircraft stage length 
(STAGE), which describes the average length of route segments 
(obtained by dividing aircraft miles- by flights); and load factor 
(LOADF), which provides a measure of service quality and is 
often used as a proxy for service competition. A small average 
stage length means the carrier's aircraft spend only a short part 
of each flight at an efficient altitude. A low load factor, indicative 
of a large number of planes on a particular route, indicates high 
service quality. Deregulation has switched the focus from service 
quality (i.e., large number of flights) to price competition, causing 
load. factor to increase as service has declined. The latter charac­
teristics are the average size -of the carrier's aircraft (KSIZE) and 
the percentage of a carrier's fleet that is jet (PJET). These two 
variables provide measures of the potential productivity of capital. 
For example, as the average size of a carrier's aircraft increases, 
more services can be provided without a proportionate increase in 
resources such as flight crews, passenger and aircraft handlers, 
and landing slots. On the other hand, the percentage of jets pro­
vides a measure of aircraft speed. Jets require proportionately less 
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(output) 

(iii) 
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(output) 
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•f 

x (input) 

x (input) 
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flight crew resources than turboprops because jets fly approxi­
mately three times as fast. 

METHODS 

Three methods currently pursued in the efficiency-measurement 
literature will be used to model technical inefficiency. The first 
two approaches, data envelopment analysis (DEA) and a variant 
of DEA called free disposable hull (FDH), differ from the third 
methodology, stochastic frontier analysis (SPA), in that the latter 
is based on statistical regression techniques. 

Efficiency Measurement 

Assume a panel data set where, for each time t = 1, ... , T, there 
are n = 1, ... , N firms in the sample each consuming j = 1, ... , 
J different _inputs to produce k = 1, ... , K different outputs. As­
sume that there exists a production set that can be constructed 
using all input and output observations from all time periods. The 
production technology, S, is thus defined as all possible combi­
nations of inputs and outputs that are feasible, where feasibility 
means that the inputs can produce the outputs. For example, as­
suming only one time period and a one-input, one-output activity, 
a set S may be shown as in Figure 1 (i); Points a through f are 
input-output combinations observed of hypothetical firms. 

(ii) 

y 

(output) 

A 

(iv) 

y 

(output) 

•f 

x (input) 

x (input) 

Points a-fare hypothetical firms in a one-input, one-output industry. 

FIGURE 1 Hypothetical example of different frontiers: (i) production technology, 
S; (ii) DEA frontier (constant returns to scale); (iii) FDH frontier; and (iv) SFA 
regression (constant returns to scale). 
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Efficiency measures are calculated as the distance from a pro­
duction frontier. In general this distance is calculated in one of 
two ways in input-output space: either "horizontally," called 
input-based measurement since outputs are held constant, or "ver­
tically," called output-based me~surement since inputs are held 
constant. An output-based distance function holds inputs constant 
and expands outputs as much as possible without exceeding the 
boundaries or frontier of S. Similarly, an input-based function 
holds outputs constant and contracts inputs as much as possible 
without exceeding the boundaries of S. Under constant returns to 
scale, it. does not matter which approach is chosen, since the val­
ues obtained from these ·two approaches are simply reciprocals. 
This study assumes constant returns to scale, which occur when 
outputs can be doubled by doubling inputs, since research on re­
turns to scale in the airline industry has found that they satisfy 
this condition (3). 

. The next step is to define the boundary of S by using DEA, 
FDH, or SFA. 

DEA 

The first method, DEA, was introduced to economics by Charnes 
et al. ( 4) and has since found a multitude of applications including 
banks (5-7), the military ( 8), public schools (9), and hospitals 
(10). One reason for the proliferation of DEA applications is that 
it is a linear programming method that does not require price 
information. This is an empirical advantage since often the only 
data available are physical units of inputs and ·outputs. Other rea­
sons for its widespread appeal are that it requires neither the as­
sumption of cost minimization or profit maximization nor the 
specification of a production function. Furthermore, the compu­
tation of the relative efficiency for each firm under study, which 
may have multiple inputs and outputs, is easily executed on any 
computer with linear programming capabilities. 

DEA, as its name suggests, creates an "envelope" of observed 
production points. It provides for flexible piecewise linear ap­
proximations to model the "best-practice" reference technology. 
Its flexibility lies in the ability to place constraints on the linear 
program to account for constant, decreasing, increasing, or vari­
able returns to scale. Measures of technical efficiency levels are 
then developed for firms that operate inside this data envelope. 

The output-based efficiency score for an observation of inputs 
and outputs for a firm at a particular time is obtained from a linear 
programming operation carried out for every carrier in every time 
period. In the simple hypothetical one-period, ·one-input, one­
output, six-firm example, this process creates a production tech­
nology frontier as shown in Figure 1 (ii). Firms b and e are effi­
cient and have scores of 1; the other firms are inefficient and have 
scores less than 1. For example, Firm a's output-based score will 
be its vertical distance from the frontier given by the ratio 
ONOB < 1. 

FDH 

FDH was recently developed by Deprins et al. (11). FDH has an 
additional advantage over DEA because it imposes one less re­
striction on the data: it does not require that convex combinations 
of every observed production plan be included in the production 
set. Therefore, whereas DEA creates a piecewise linear best-
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practice frontier, FDH creates a best-practice frontier resembling 
a staircase. 

Figure 1 (iii) shows an FDH production frontier. Because linear 
combinations of observed productions are not allowed under FDH, 
Firm a's technology is now compared with only Firm b's tech­
nology rather than with a combination of Firm b and Firm e tech­
nology. As a result, Firm a's output-based score is given by the 
ratio ONOC < 1. Note that under FDH (as compared with DEA) 
more firms are efficient (Firms b, c, e, and f are all now on the 
frontier and have scores of 1) and inefficient firms' scores are 
nearer to 1 because they are closer to the FDH frontier. In other 
words, firms do better using the FDH rather than the DEA 
framework. 

Deprins et al. (11) claim that FDH is more valuable for man­
agerial decision making than either DEA or SFA. This assertion 
is based on the fact that an FDH efficiency measure is relative to 
an observed point on the frontier. DEA and SFA allow the measure 
to be relative to a hypothetical point on the frontier, since both 
the DEA and SFA techniques allow for convex combinations of 
observed points to be included in the production set. Hence man­
agers can look at. an actual rather than a theoretically possible 
alternative to modify current practices and improve performance. 

SFA 

SFA, the classical statistical approach, specifies efficiency relative 
to a stochastic production function. Unlike the linear programming 
techniques that have no particular functional form to describe their 
boundary, SFA requires an a priori specification of the technology 
(12-14). Furthermore, this measure of efficiency is fundamentally 
different from the preceding linear programming techniques be­
cause, rather than comparing a firm with a best-practice or effi­
cient frontier, it compares a firm with an average technology. 
Schmidt (15) labels this result "paradoxical" given the usual def­
inition of a production function as maximizing output given a set 
of inputs. He points out, however, that this approach may be pre­
ferred because it allows standard types of statistical inference. In 
this respect, SFA provides a useful counterpart to the linear pro­
gramming approaches. 

The technology is specified as a Cobb-Douglas stochastic fron­
tier production function (14). Using data from all time periods 
and for all firms, the natural logarithm of output is regressed on 
the natural logarithms of inputs, firm characteristics, and firm­
specific dummies as well as a random error term. Firm-specific 
dummies (variables that have the value 1 for a particular firm and 
0 for all other firms) are also interacted with time to capture var­
iation over time. The coefficients of the dummies capture the firm­
specific effects and are used to calculate the relative technical 
efficiency scores. 

Figure 1 (iv) shows the production function under this ap­
proach. Since a regression, by definition, runs through the mean 
of the data and does not lie atop the observed points, it is not a 
frontier in the same sense as DEA and FDH; rather it can be 
thought of as a "statistical frontier" (15). Efficiency scores are 
calculated by determining the most efficient firm [Firm e in Figure 
1 (iv)] and then measuring the other firms relative to it. This is 
achieved by shifting the estimated frontier up to the most efficient 
firm. In Figure 1 (iv) this shifted line is dotted and passes through 
Point e. Thus, Firm a's output-based score will be ONOD < 1. 
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Cointegration 

Once the various efficiency scores are obtained, the next step is 
to test whether they exhibit cointegration or convergence. Coin­
tegration analysis examines the existence of long-term relation­
ships between two variables each of which moves unpredictably 
through time. Such variables are called nonstationary. Cointe­
grated variables cannot move too far from one another. In contrast, 
a lack of cointegration suggests that the variables have no long­
term link. To remain competitive, carriers would attempt to follow 
each other's efficiency advances, and as a result the efficien~y 
scores should follow each other in the long run. Lack of cointe­
gration of a firm's efficiency scores with those of its counterparts 
may indicate the firm's inability to capitalize on technology that 
the other carriers are using. 

Before testing for cointegration it is necessary to test whether 
each carrier's time series of efficiency scores is nonstationary, 
since this analysis is not relevant if the series is stationary. Given 
nonstationarity, the cointegrating regression is estimated. Specifi­
cally, one carrier's efficiency score time series is regressed on a 
constant and another carrier's efficiency score time series. If the 
two time series are cointegrated, any linear combination of them 
will be stationary, and the residuals from the regression will also 
be stationary. 

Engle and Granger (16) considered several tests to evaluate the 
null hypothesis of no cointegration and recommended two. One 
approach, popular because of its simplicity, is the Cointegrating 
Regression Durbin-Watson (CRDW), which tests whether the 
Durbin-Watson statistic of the cointegrating regression is signifi­
cantly different from 0. It is a characteristic of a regression in 
which the residuals are nonstationary to have a DW statistic near 
0. Thus, if a calculated DW exceeds the critical value, the null 
hypothesis of no cointegration is rejected in favor of cointegration. 

The second test involves applying the augmented Dickey-Fuller 
method to the residuals obtained from a cointegrating regression. 
The simplest form of this test is based on the regression E, -

E, _ 1 = a + b * E, _ 1, where E, is the error term in period t. If the 
coefficient of the lagged error term, b, is statistically significant, 
the error series is stationary, and a long-term relationship exists 
between the two variables in the cointegrating regression. Thus, 
the null hypothesis of no cointegration (Ho: b = 0) can be rejected 
in favor of cointegration. 

Convergence 

Whereas cointegration tests determine whether two nonstationary 
variables are tied together in a long-run equilibrium relationship, 
convergence tests determine whether there is a closing of the gap 
over time between inefficient and efficient carriers. Convergence 
theories are currently being pursued in the economic growth lit­
erature to determine whether productivity growth rates among 
countries have been converging over time. This theory can be 
extended to test how efficiency in the domestic airline industry 
has proceeded over the past two decades. 

This hypothesis is tested two ways. The first measures the dis­
persion of the efficiency scores over time using the coefficient of 
variation. If convergence is present, the carriers' scores should 
cluster together more closely as time progresses. The second re­
gresses the carriers' average growth rates in technical efficiency 
on a constant and the carriers' efficiency scores at the beginning 
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of the sample period. An inverse correlation between the growth 
rate and the original efficiency score indicates convergence. In 
other words, the higher a firm's original 1970 level of efficiency, 
the slower that level should grow. The reason for this phenomenon 
again lies in the public good nature of technology, which means 
that there are spillover effects from leader carriers to follower 
carriers as the laggards learn from the innovators (17). 

Efficiency Score Computation 

The DEA and FDH linear programming computations were car­
ried out using quarterly data from 1970 to 1990. The four inputs 
(K, L, M, and F) and one output (RTM) were used. Raw distance 
scores from each technique were then regressed on the character­
istic variables (STAGE, LOADF, KSIZE, and PJET) as well as 
the dummies used in the SFA regression. Predicted values were 
obtained from each of these two regressions and normalized. Nor­
malization is necessary to obtain values between 0 and 1 and is 
achieved by determining the largest precjicted score from each 
time period and dividing it into the predicted scores for all airlines 
in that time period. This two-step procedure is necessary to control 
for differences in input and output characteristics that the sto­
chastic frontier model includes as additional regressors (18). This 
modification allows for the comparison between the linear pro­
gramming and stochastic frontiers results. The SFA regression was 
also carried out and the normalized scores determined. 

Figure 2 shows the values of all three approaches for each air­
line over time. The notation on the time axis is year and quarter; 
for example, 70! refers to the first quarter of 1970. Not all graphs 
span the entire time period: Frontier ends 8611 because it merged 
into People Express in 1985, which merged into Continental in 
1987; Ozark ends 86111 because it merged into TWA in September 
1986; Piedmont and Western end 86IV because the former was 
absorbed by USAir in 1989 whereas the latter was acquired by 
Delta in December 1986. In some cases the data end before the 
actual mergers (several years for Piedmont) because after merger 
announcements are made, data reporting accuracy sometimes de­
clines, and it was decided that a more conservative approach to 
data collection should be adopted. 

RESULTS 

General Observations 

The SFA lines are much less volatile than the DEA and FDH plots 
because they are based solely on a linear regression. Furthermore, 
SFA consistently has only two break points for all carriers: one at 
8211 and one at 86IV. The first break point occurs when the in­
dustry leader, in terms of SFA efficiency measurement, switches 
from Frontier to Ozark. The second occurs when Ozark is ab­
sorbed by TWA leaving USAir the industry efficiency leader. 

Whenever one carrier leapfrogs another to become industry 
leader under SFA, a break point will result because of the linear 
nature of the method and because the efficiency scores are now 
measured relative to a different airline. Frontier has the highest 
raw SFA efficiency score in each period until 8211 and therefore 
has a normalized score of 1 in each of these periods. However, 
Frontier's raw score declines during this period, allowing other 
carriers' normalized efficiency scores to rise relative to it. Even-
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(continued on next page) 

tually Ozark catches up to and becomes more efficient than Fron­
tier in Period 8211. After this Ozark's raw efficiency score grows 
much faster than its competitors, so their relative scores drop off. 
Frontier's and USAir's SFA lines drop off more quickly than the 
other carriers because their raw efficiency scores are declining 
over time. 

In addition, the downturn in the SFA scores beginning in 1982 
would probably not have occurred if capacity ton-miles instead of 
revenue ton-miles were used as the measure of output. The carriers 
were still moving approximately the same number of seats the 
same number of miles, so capacity was constant, but the percent­
age of seats filled declined, causing revenue ton-miles to fall. The 
carriers may have been operating as efficiently as before with 
respect to capacity ton-miles, but with respect to revenue ton­
miles they were producing much less output with the same amount 
of input. 

Finally, when Ozark merged with TWA, USAir became the 
leader in 86111 because its raw scores were the highest among the 
remaining carriers. With USAir as the new leader, an upward­
sloping line results as was the case under Frontier's leadership. 
Again, this occurs because USAir's raw scores are declining while 

the other carriers' raw scores are increasing over time, causing 
the other carriers' normalized scores to grow very quickly between 
86111 and 90IV. 

A possible explanation for the declining raw efficiency scores 
of Frontier and USAir can be found in the convergence hypoth­
esis, which states that laggards grow faster than leaders because 
it is easier to imitate than to innovate. As a result, firms like 
Frontier and USAir, which start out with the highest levels of SFA 
raw efficiency, grow more slowly or decline because the others in 
the sample are merely catching up to those with the more efficient 
technology. 

Now consider the DEA and FDH plots, which follow each other 
much more closely than SFA because they are both based on lin­
ear programming. Correlation analysis reveals a relatively strong 
positive relationship between DEA and FDH (correlation coeffi­
cient = 0.369) compared with the relationship between DEA and 
SFA (correlation coefficient= -0.521) and between FDH and SFA 
(correlation coefficient = 0.134). Table 1 presents the correlation 
between each pair of methods for each airline and indicates the 
strong positive relationship between DEA and FDH. Associations 
between DEA and SFA and between FDH and SFA are much more 
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unpredictable from carrier to carrier. The linear programming, 
best-practice frontier techniques are apparently measuring tech­
nical efficiency in a different way from the statistical, average 
technology approach. 

Some overall trends among the various lines are illuminating. 
The Big Three carriers-American, Delta, and United-are per­
forming well. All three methods indicate that American's effi­
ciency has been improving and that United's performance has re­
mained strong throughout the past two decades. According to 
FDH and SPA, Delta's performance has remained steady or has 
improved, whereas DEA indicates only a slight downward trend. 
Another interesting result is apparent in the graph for Eastern, the 
only airline in the sample to fail. Both DEA and FDH indicate a 
deterioration in efficiency starting In the late 1970s. At that time 
Eastern began to experience labor unrest, which continued until 
Eastern's demise in early 1991. 

Consider also the trends of the four firms that were merged or 
were facing merger into larger carriers in 1986. In general the 
scores for Frontier, Ozark, Piedmont, and Western were high or 
increasing, or both, just before this period. Ozark was recognized 
as the most profitable and best-managed carrier in the industry 
while it was operating, and this would have made it attractive to 
its competitors. Another influential factor in these mergers was 
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the recession, during which carriers were not able to fill their 
planes because demand was no longer increasing as fast as it had 
in the past. Ozark and the other three carriers, however, had fleets 
of smaller aircraft and were not as adversely affected as the larger 
carriers. Thus, they would have been attractive to the larger car­
riers, who wanted to acquire the smaller carriers' capital 
equipment. 

Cointegration 

Since cointegration analysis can only be performed on nonsta­
tionary time series, tests for this characteristic are first performed 
on each carrier's time series of efficiency scores. The time series 
were found to be nonstationary for all carriers under all three 
methods with four exceptions: United and USAir DEA scores and 
Continental and Western FDH scores. 

For the cointegration analysis of the SPA series, 110 cointe­
grating regressions are performed (each of the 11 carriers is re­
gressed on one of the other 10 carriers). The simplest test for 
cointegration, the CRDW, indicates that cointegration does not 
exist between any two carriers. The second cointegration test also 
indicates no long-term relationships between most of the pairs of 
carriers with ohe exception: a pattern of cointegration exists be­
tween Ozark and the other carriers. This suggests that there was 
a leader-follower relationship between Ozark and the other carriers 
(consistent across all three efficiency-measuring technologies) that 
wished to emulate Ozark's position as the most profitable in the 
industry. 
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TABLE 1 Spearman Correlation Coefficients 

American: Continental: Delta: 
FDH SEA FDH SEA FDH SEA 

DEA 0.773 0.570 0.400 0.497 0.674 -0.672 
(0.0001) (0.0001) (.0002) (.0001) (.0001) (.0001) 

FDH 0.898 -0.382 -0.138 
(0.0001) (.0003) (.2112) 

Eas~rn: FrQntier: Ozark: 
FDH SEA FDH SEA FDH SEA 

DEA 0.744 0.247 0.580 -0.305 0.739 0.601 
(0.0001) (0.0235) (.0001) (.0128) (.0001) (.0001) 

FDH 0.728 -0.200 0.231 
(0.0001) (.1068) (.0595) 

Piedmont: Trans World Airlines: United Air: 
FDH SFA FDH 

DEA 0.534 -0.663 0.859 
(0.0001) (0.0001) (.0001) 

FDH -0.600 
(0.0001) 

US Air· W~st~m: 
FDH SEA FDH 

J2EA 0.165 -0.064 0.664 
(0.1341) (0.5626) (.0001) 

FDH -0.335 
(0.0018) 

(Probability > IRI under H0 : Rho = 0.) 

These results are particular to the SFA method because of its 
linear nature. The SFA time series do not change direction often 
enough (only twice in our analysis) to determine whether the car­
riers are indeed following each other .. Furthermore, the linear na­
ture means that even the slightest difference in slope will reject 
the existence of comovement. 

DEA and FDH, however, present the opposite conclusion. There 
are 72 pairs of carriers if United and USAir are excluded from 
the cointegration analysis of the DEA series. The two cointegra­
tion tests find 70 and 65 long-term relationships, respectively. If 
a 10 percent significance level is adopted instead of a 5 percent 
level, the second test yields 69 cointegrated pairs out of 72. Sim­
ilarly, for FDH, omitting Continental and Western, the two tests 
yield 56 and 57 cointegrated pairs out of the possible 72. This is 
an overall acceptance rate of 86 percent. 

Convergence 

The convergence results also support the theory that technological 
advances become dispersed throughout the industry. Table 2 gives 
the coefficient of variation for each year and each method. For 
each of the three methods the amount of dispersion in 1990 is 
less than in 1970, which indicates convergence in technical effi­
ciency. However, the coefficients for both DEA and FDH reach 
their lowest value in 1987 before rising through the remaining 
periods. This result may be attributable to the loss in 1986 of four 
carriers in the sample. The absorption of these competitors may 
have reduced the pressure among the survivors to continue their 
efforts to keep up with each other. 

The second test of convergence involves the regression of 
growth rates on a constant and the initial efficiency levels. This 

SFA FDH SEA 
0.639 0.289 0.024 

(.0001) (.0076) (.8254) 

0.862 0.818 
(.0001) (.000 I) 

.s.EA 
0.566 

(.0001) 

0.175 
. (.1527) 

also supports convergence. Figure 3 shows the carriers' average 
growth rates versus their initial levels. A negative relationship can 
be detected for all three methodologies. When a regression line is 
estimated for each method, the slope is negative and significantly 
different from 0 in all cases. 

CONCLUSIONS 

Economic theory suggests that, as an industry becomes more com­
petitive, it becomes more important for a firm within that industry 

TABLE 2 Coefficients of Variation 

Year DEA: FDH: SFA: 
1970 15.32 12.06 26.73 
1971 14.64 10.83 25.78 
1972 14.28 9.02 24.86 
1973 15.53 8.34 23.96 
1974 15.19 7.26 23.09 
1975 18.09 7.57 22.25 
1976 17.23 6.71 21.44 
1977 17.23 6.47 20.67 
1978 17.62 6.31 19.94 
1979 15.57 5.03 19.26 
1980 16.78 5.27 18.62 
1981 16.87 5.59 18.04 
1982 16.95 6.10 17.50 
1983 15.87 5.97 17.04 
1984 14.50 6.45 16.64 
1985 13.20 6.19 16.31 
1986 12.23 6.01 15.55 
1987 9.89 5.39 12.30 
1988 12.20 7.30 11.75 
1989 11.21 7.36 11.23 
1990 12.65 8.37 10.77 
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to perform efficiently relative to other firms if it is going to sur­
vive. This theory suggests two time patterns. First, the efficiency 
scores of the firms within the industry should not move too far 
from one another. If efficiency-enhancing technological advances 
made by one firm are not adopted by another firm, the two firms' 
efficiency scores will move apart. As a result, the firm that fails 
to follow innovations will eventually be driven out of the industry 
because its inputs are not being efficiently converted into outputs. 
Thus there is an incentive to keep up with movements of effi­
ciency exhibited by other firms. This phenomenon is called coin­
tegration. Second, the efficiency scores of the firms within the 
industry should also exhibit convergence over time. In other 
words, the scores should move closer together as firms realize that 
success in an increasingly competitive environment requires that 
th~y close efficiency gaps and become more alike in technical 
efficiency. To determine whether domestic airline carriers exhibit 
these two characteristics, three methods of measuring technical 
efficiency were performed. In general the hypotheses of cointe­
gration and convergence were supported, indicating that the car­
riers are adopting efficiency advances made within the industry. 
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These results are suggestive with respect to the direction of 
future industry structure. First, conventional wisdom holds . that 
the firms remaining in the industry were able to do so because 
they adjusted to the increasing competitive pressure, whereas 
those that failed were not able to adapt. This observation is sup­
ported by the empirical evidence presented here. For· example, 
Eastern's efficiency scores declined sharply before its demise in 
1991. In addition, smaller carriers that exhibited strong or im­
proving efficiency in 1986 were absorbed by the larger carriers, 
which.found their performance and fleet configurations attractive. 
Finally, each of the remaining carriers has a general time pattern 
that is steady or increasing over time, and each of these carriers 
is still in the industry. 

Furthermore, it is generally accepted that deregulation has led 
to more efficient use of resources in the industry. The evidence 
of cointegration and convergence provides empirical evidence to 
support this belief. As the firms have followed one another and 
become more alike, the industry's efficiency level has improved. 
The average efficiency under DEA was 0.789 in 1970, compared 
with 0.862 in 1990. For FDH the values are 0.882 and 0.917, 
respectively, and for SFA the values are 0.653 and 0.829, respec­
tively. It can be argued that this is a positive effect of deregulation 
that most likely will continue into the future. 

A final point concerns the applicability of this analysis to other 
industries. In particular, other transportation sectors such as truck­
ing could be similarly studied. 
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Evaluating Self-Analysis as a Strategy for 
Leaming Crew Resource Management in 
Undergraduate Flight Training 

GUY M. SMITH 

College aviation programs are in a unique position to provide crew 
resource management (CRM) training to meet industry demands for 
pilots with a high degree of competence in interpersonal skills. CRM 
training is usually a student's first exposure to crew operations, re­
quiring the college to modify airline training to create meaningful 
learning for inexperienced pilots. Research with airline pilots has 
found that line-oriented flight training (LOFI) was most effective for 
teaching CRM. LOFf is best when airline crews debrief themselves 
using self-analysis to evaluate their CRM performance. The study 
investigated whether undergraduate flight students could effectively 
learn CRM skills by using self-analysis of LOFT as a debriefing strat­
egy, despite their inexperience with crew operations. Eight men and 
two women completed CRM and LOFT training. Self-analysis was 
randomly inserted into their training using an alternating treatments 
research design. Crew effectiveness was assessed by measurements of 
crew attitudes, observations by trained observers, crew reflections on 
their performance, and communications analysis. It was found that at 
least one self-analysis session was effective for each crew, and overall 
gains were noted for two of the five crews. Self-analysis was effective 
when crews had the prereq~isite technical skills and was ineffective 
if technical skills were lacking or if the scenario was too complex. 
Results suggest that self-analysis should not be applied universally in 
undergraduate flight training, but it is a valuable supplementary strat­
egy to focus attention on personalities, roles, team dynamics, or spe­
cific CRM skills. 

Sophisticated machines demand master operators with finely tuned 
motor skills, the ability to execute complex procedures, and an 
extensive information base. Modern aircraft require that profes­
sional pilots stretch far beyond these technical skills into the mi­
lieu of cognitive, behavioral, social, and organizational psychol­
ogy, where interpersonal skills and teamwork are equally 
important. Statistics indicating that 70 percent of worldwide ac­
cidents in the public air transport sector are caused by flight crew 
actions (1) affirm that team skills are vital. The ideal airline can­
didate is a technical expert and a master of teamwork. For most 
of this century, however, pilot selection and training were based 
on technical proficiency alone. Airlines recognized this deficiency, 
poured substantial investments into human factors research, and 
developed advanced training programs such as crew resource 
management (CRM). 

It is argued that CRM is advanced training and is not appro­
priate for beginning students, who should concentrate on ''stick 
and rudder" skills. Others contend that teamwork is an indispen­
sable pilot skill and that it is a disservice to students to postpone 
crew training until they reach the airlines (2). European ab initio 

Department of Education, Montana State University, Bozeman, Mont. 
59717. Current affiliation: Department of Aviation, Rocky Mountain Col­
lege, 1511 Poly Drive, Billings, Mont. 59102. 

programs, in which nonpilots are taught from the beginning to be 
airline pilots, have successfully included CRM in initial flight 
training for years (3). College aviation programs are in a unique 
position to develop effective CRM training for initial flight 
students. 

LINE-ORIENTED FLIGHT TRAINING 

The Federal Aviation Administration ( 4) developed three guide­
lines for an effective CRM program for airlines operating under 
Federal Aviation Regulations (FAR) Parts 121 and 135: 

• The course content should emphasize CRM skills. 
• Students should experience and practice these skills. 
• Students should get feedback on their CRM performance. 

To make these guidelines applicable to undergraduates, a content 
model, concerned with transmitting information and skills, was 
insufficient. An experiential or process model, concer~ed with 
providing resources to help learners acquire CRM skills, was re­
quired. Moreover, to evaluate the outcomes of this model, the 
primary effectiveness measure had to be performance. 

There are many CRM instructional methods to choose from. Of 
the 16 listed by Sams (5), the most effective for airline pilots was 
line-oriented flight training (LOFT), an experiential learning 
method in which flight crews fly a complete scenario in a high­
fidelity simulator in real time. Airlines achieved striking results 
with LOFT, but systematic research was necessary to ensure that 
LOFT is also effective in teaching CRM to undergraduate 
students. 

Self-analysis is a discov_ery learning strategy based on the the­
ory of objective self-awareness (6). It proposes that self-focusing 
stimuli often force objective appraisals of oneself that may lead 
to attitude and behavior changes. Self-analysis of LOFf, ~n which 
the debriefing is led by the crew themselves, has been a highly 
effective technique for improving CRM performance in airline 
pilots (7). For college crews, self-analysis could give powerful 
insights into CRM performance, offsetting some of their inexpe­
rience (8). 

DEVELOPMENT OF AN EFFECTIVE COLLEGE 
CRMPROGRAM 

For most undergraduates, LOFT is their first exposure to nonrou­
tine, high-stress, high-work load, and emergency situations re-
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quiring teamwork. To expand technical skills into higher-order 
CRM skills, students must be a_ctively involved in each stage of 
the learning process (9). Active learning strategies gave direction 
to a coilege CRM program that progressed through three distinct 
phases: learning sessions where CRM skills were introduced, 
practice sessions where CRM skills were exercised, and feedback 
sessions where behaviors were reinforced or corrected. 

Learning sessions were content sessions that used an active co­
operative learning method called jigsaw (10). Students read as­
signed material and then share information with their crew mem­
ber by discussing case studies, analyzing accident reports, and 
writing team response papers. 

Practice sessions were LOFT simulator exercises that required 
students to actively use CRM skills in an operational environment. 
They were flown in real time without assistance and were video­
taped from start to finish. 

Feedback sessions were debriefing periods during which two 
distinct methods were used: conventional debriefing and self­
analysis. Conventional debriefing was not an active learning strat­
egy; feedback was immediate, quantifiable, and objective. Instruc­
tors provided most of the input (11). Self-analysis debriefing, as 
an active learning strategy, gave students responsibility for their 
own debriefing. Self-analysis debriefings were postponed for 2 
days while videotapes, verbatim transcripts, and communications 
analysis were being prepared as objective material for their 
exploration (9). 

RESEARCH DESCRIPTION AND METHODOLOGY 

Objectives 

The purpose of this study was to determine whether undergraduate 
flight students could effectively learn CRM by using self-analysis 
of LOFT as a debriefing strategy, despite their inexperience with 
crew operations. Performance was selected as the measure of ef­
fectiveness. The jigsaw learning sessions and LOFT practice ses­
sions were common to all crews, but debriefing sessions ( conven­
tional or self-analysis) were distinctive so that differences in CRM 
performance could be measured. 

Design 

The research design was an alternating treatments design (12), a 
type of single-subject design. Subjects were alternately exposed 
to a nontreatment (conventional debriefing) and a treatment (self­
analysis of LOFf training). Repeated measurements of attitudes, 
effectiveness, performance, and self-reporting were taken to- de­
termine whether differences in performance could be noted. The 
alternating treatments design was selected because the population 
was small (five crews). The performance of each crew was ana­
lyzed independently, and any comparisons between crews were 
speculative and noninferential. There was no attempt to generalize 
from this research to any other population. 

Subjects 

The subjects were 12 students enrolled in the CRM course in 
spring 1993. Before any CRM instruction, each student completed 
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a questionnaire to document pilot experience, education, and ex­
posure to CRM. They were instructed in the LOFf simulator in­
dividually and evaluated on their technical flying skills. Students 
of equal skills were assigned to permanent crews to balance the 
crew technical skill level. Of the 12 students, 9 were fully qual­
ified to be research subjects, 2 were unqualified and excluded, and 
1 (Ed) was marginally qualified and included because each crew 
requires two people. Eight men and two women were teamed as 
follows: 

•One crew with above-average skills (Alex/Art), 
• 1\vo crews with average skills (Betty/Bob and Carl/Cathy), 
• One crew with mixed skills (Dan/Dave), and 
•One crew with below-average skills (Ed/Eric). 

Each crew completed five sessions of CRM and LOFf training; 
two sessions of self-analysis debriefing were randomly inserted 
into their training. 

LOFT Scenarios 

The LOFfs were flown in a Frasca model 142 twin-engine flight 
simulator with scenarios based on FAR Parts 91 and 135 opera­
tions requiring commercial pilot skills. Instrument flight rules 
were required throughout. No scenario forced students to choose 
a solution that would violate regulations. Flights took place in the 
United States intermountain Northwest, an area that requires ex­
treme vigilance because of mountainous terrain and intermittent 
radar coverage. Unfamiliar airports and routes were chosen. 
Flights were designed to last 45 min, including 15 min of normal 
work load followed by an occurrence triggering a high-work load 
phase. 

LOFf 1 was designed as a crew training session because it was 
their first crew experience. The scenario required normal crew 
interactions for instrument flight; there were no critical occur­
rences. There were two similar legs allowing each student the 
opportunity to fly as captain. 1\vo crews (Alex/ Art and Carl/ 
Cathy) received self-analysis debriefing. 

LOFf 2 was a communications exercise concentrating on the 
CRM skill of advocacy. The scenario was a medical support flight 
that was requested to divert because of an urgent need for blood 
replacements. It required crew interaction and radio communica­
tion to choose a divert airport that was above weather minimums 
and could deliver the required blood. Self-analysis debriefing was 
used for Betty/Bob, Dan/Dave, and Ed/Eric. 

LOFf 3 was a decision-making exercise focusing on the CRM 
skills of prioritizing and analyzing alternatives. The crew was on 
a long-distance flight that encountered arrival deadlines, departure 
delays, and unsuitable weather at the destination. It required con­
sideration of operational commitments, weather complications, 
and fuel constraints. Self-analysis debriefing was used for Alex/ 
Art and Carl/Cathy. 

LOFf 4 was designed as a situational awareness exercise to 
emphasize the CRM skills of situation monitoring and cross­
checking. While transporting high-priority medical supplies, mi­
nor mechanical difficulties progressively developed into a total 
loss of electrical power. The scenario required attentive monitor­
ing of the aircraft's capabilities and awareness of external factors: 
weather, operational requirements, navigation capabilities, and al­
ternatives. Communication with air traffic control and radar 
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services was lost about 30 min after takeoff. -Self-analysis debrief­
ing was used for Betty/Bob, Dan/Dave, and Ed/Eric. 

LOFf 5 was a team management exercise highlighting the 
CRM skills of work load assessment and management. The crew 
was exposed to operations in a high-density (Class B airspace) 
environment where the weather was unsuitable for the destination 
but above minimums for several nearby alternatives. The crew lost 
communication with air traffic control, requiring crew interaction 
and leadership skills to select a course of action from a large 
number of alternatives. Because of the complex airspace, marginal 
weather, and faulty radios, LOFf 5 became known as the "LOFf 
from Hell.'' 

Analytical Instruments 

A repeated measures strategy was used to evaluate crew effect­
iveness via converging sources of data (13). Each measurement 
used five evaluation methods to assess different aspects of effect­
iveness. Reliability was maximized by collecting data from these 
five sources and establishing that they converged on a global 
measure of effectiveness (13). 

The cockpit management attitudes questionnaire (CMAQ) is a 
25-item Likert scaled instrument measuring attitudes that are an 
indirect indication of crew performance (14). It was completed by 
each crew (scored by consensus) after each LOFf as a measure 
of the effectiveness of the strategy (conventional or self-analysis). 
The CMAQ was factored into three subscales: communication and 
coordination, command responsibility, and recognition of stressor 
effects (15). 

The LINE/LOS checklist (LLC) is an evaluation of a crew's 
performance of CRM skills by trained observers (16). It was 
scored immediately after each LOFT by two instructors who used 
extensive field notes and deliberations to reach consensus scores. 
The checklist consists of two global ratings and eight crew ef­
fectiveness markers that are indicators of crew performance (17). 

Communications analysis is a measure of crew interaction and 
coordination that reflects trends in flight crew performance 
(18,19). Communications analysis started at the beginning of the 
high-work load phase and lasted for exactly 30 min. Using a 
procedure adapted from Foushee and Manos (18), cockpit com-
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munications were transcribed verbatim, and each statement or 
phrase was coded into 1 of 20 categories of communication. 1\vo 
coders worked independently on all of the transcripts, and a point­
by-point comparison established an interrat_er reliability of 81 per­
cent. Four categories that have been related to performance were 
used as measures of crew effectiveness: total communications, 
commands by the captain, acknowledgments by the first officer, 
and observations by both crew members (20). 

The CRM survey is a survey of crew reactions to their training 
experience that was completed by consensus after each LOFT. 
Responses were factored into six categories to obtain students' 
views on the value of LOFT as a training technique, the quality 
of the LOFT scenario, the work load imposed by the LOFT sce­
nario, the ratings of the LOFT instructor, a self-evaluation of over­
all performance, and a self-report on use of CRM skills (21). 

The lessons learned is another crew report of 10 lessons that 
they learned from each training phase. Students reflected on the 
entire experience, listed their CRM lessons learned, and specified 
the source of learning for each lesson. 

RESEARCH FINDINGS 

Data analysis in this single-subject design involved inspection and 
analysis of graphic presentations (12). To summarize the graphs, 
a variant of the nonparametric sign test was used to show mag­
nitude and direction of a change (22). Tables of findings list only 
those factors that showed gains for self-analysis that were more 
than one standard deviation higher than the preceding conven­
tional session. 

Alex/Art 

Table 1 gives factors exhibiting measurable gains in performance 
for Alex/Art after self-analysis sessions. The Alex/Art crew was 
above average in technical skills and well matched. There was, 
however, a significant difference in experience; Art was a low­
time private pilot, whereas Alex was an active flight instructor. 
Alex struggled with role definition, thinking of himself as a flight 
instructor and recognizing that he was expected to perform as a 

TABLE 1 Gains After Self-Analysis Sessions (Alex/Art) 

LINE/LOS CHECKLIST 
OVERALL TECHNICAL EFFECTIVENESS 
OVERALL CREW EFFECTIVENESS 

CRM SURVEY 
SCENARIO QUALITY 
WORKLOAD IMPOSED 
INSTRUCTOR RATING 

COMMUNICATIONS ANALYSIS 
TOTAL COMMUNICATIONS 
COMMANDS (BY CAPT) 
ACKNOWLEDGEMENTS (BY FO) 
OBSERVATIONS (CAPT & FO) 

lST 
SELF-ANALYSIS 
(~FT f2) 

+ 
nc 

+++ 
++ 
++ 

+++ 
+ 
+ 
++ 

Standard deviations since the previous observation: 

2ND 
SELF-ANALYSIS 
(LOFT #4) 

++ 
++ 

+ 
++ 

+ 
+++ 
++ 
+ 

<-2, -l<-2, 0<-1, nc = no change, 
+ = 0>1, + + = 1>2, + + + = 2>3 
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crew member. The crew grappled with role definition in both self­
analysis sessions, resulting in keener awareness of CRM issues. 
Their LLC showed that self-analysis increased both technical and 
CRM skills, consistent with their concern for "looking good." 
The CRM survey showed that self-analysis imposed greater work 
loads but resulted in higher-quality scenarios. Their ratfog of in­
structors decreased after the second self-analysis session, indicat­
ing that they preferred conventional debriefing. Communications 
analysis showed gains in all four categories in both sessions, the 
strongest evidence that self-analysis motivated this crew. Lessons 
learned focused on team building, though that CRM skill was not 
formally taught until LOFT 5. They recorded their principal learn­
ing sources as LOFT and self-analysis. It appears that self-analysis 
made an important contribution to their learning experience. 

Betty/Bob 

Table 2 gives factors exhibiting measurable gains in performance 
for Betty/Bob after self-analysis sessions. The Betty/Bob crew had 
difficulty disregarding the research and concentrating on learning. 
They were also ·reluctant to "suspend reality" and accept the re­
alism of the simulator. More important, crew dynamics was a 
possible hindrance to their learning. Bob was confident, capable, 
and occasionally patronizing. Betty was equally capable but more 
acquiescent; her voice inflections exhibited some sensitivity to his 
manner. Evidently, these dynamics were more apparent to the in­
structors and were not a concern the crew discussed in self­
analysis sessions. Their first self-analysis session was very suc­
cessful, with every item on the LLC and three CRM survey items 
showing strong gains. Their progress was strongly supported by 
two communications analysis items. These gains contrasted 
sharply with a significant decline in the second self-analysis ses­
sion. There was no link between these declines and self-analysis, 
who was captain, or responses on the CRM survey. However, 
lessons learned gave evidence that the crew was struggling with 
crew dynamics: 

• "Do not assume that your partner knows what you mean." 
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•"Share decision making. Don't let captain override the 
crew.'' 

• ''The need for CRM skills was not practiced. We used a lot 
of nonverbal communication and that was a mistake.'' 

• ''First officer learned to wait for captain decisions or make 
verbal suggestions before taking action.'' 

They showed gains in communications analysis, contrary to the 
other measures, suggesting that perhaps they were making im­
provements in crew dynamics. Betty /Bob concentrated their les­
sons learned on situational awareness and communication. They 
primarily learned from LOFT; only 10 percent of their learning 
was attributed to self-analysis. The data suggest that self-analysis 
had limited value for this crew in learning CRM skills. 

Carl/Cathy 

Table 3 gives factors exhibiting measurable gains in performance 
for Carl/Cathy after self-analysis sessions. The Carl/Cathy crew 
was matched in skills and compatible in personality, performing 

. well as a male/female crew. Preoccupation with technical details 
such as crew coordination, radio communication, and checklists 
limited their ability to absorb CRM skills. After the first self­
analysis session the LLC indicated negative results for their com­
prehension of crew concepts. Contrary to this outcome, the crew 
recorded an increase in usage of CRM skills in the CRM survey. 
Their perceived gains were mostly in technical areas, confirming 
that they were unable to recognize CRM skills at that point. Com­
munications analysis showed a notable increase in total commu­
nications, usually an indication of increased performance. Foushee 
and Manos (18) warn that more communication among :flight crew 
members does not necessarily translate into better performance. 
The crew worked hard but did not know what to do. Initially, self­
analysis provided few answers; the crew needed an explicit role 
model, someone with considerable experience in crew operations 
to demonstrate effective crew performance. 

Deliberately modifying procedures, the instructor closely mon­
itored their second self-analysis session to circumvent digressions 
into technical discussions. It became a hybrid between self-

TABLE 2 Gains After Self-Analysis Sessions (Betty/Bob) 

lST 
SELF-ANALYSIS 
(LOFT #3) 

LINE/LOS CHECKLIST 
COMMUNICATIONS/DECISION-BEHAVIOR +++ 
TEAM BUILDING AND MAINTENANCE +++ 
WORKLOAD MGMT/SITUATION AWARENESS +++ 
OVERALL TECHNICAL EFFECTIVENESS ++ 
OVERALL CREW EFFECTIVENESS +++ 

CRM SURVEY 
SCENARIO QUALITY ++ 
SELF-EVAL OF PERFORMANCE ++ 
SELF-REPORT ON CRM SKILLS +++ 

COMMUNICATIONS ANALYSIS 
TOTAL COMMUNICATIONS 
COMMANDS (BY CAPT) +++ 
OBSERVATIONS (CAPT & FO) +++ 

Standard deviations since the previous observation: 

2ND 
SELF-ANALYSIS 
(LOFT #5) 

+++ 

++ 

<-2, -l<-2, 0<-1, no = no change, 
+ = 0>1, + + = 1>2, + + + = 2>3 
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analysis and conventional debriefing, herein referred to as guided 
self-analysis. Guided self-analysis manifested strong gains in the 
LLC and in communications analysis, indicating that it was an 
effective learning method. The crew reported lessons learned in 
situational awareness and in technical areas. They learned mostly 
from LOFT debriefings and self-analysis. Although self-analysis, 
as designed for this research, indicated marginal gains for this 
crew, guided self-analysis was more effective. 

Dan/Dave 

Table 4 gives factors exhibiting measurable gains in performance 
for Dan/Dave after self-analysis sessions. The Dan/Dave crew was 
mismatched in skills; Dan was above average and Dave was below 
average. They had steady gains in effectiveness for both self­
analysis sessions, regardless of who was captain. However, they 
disliked self-analysis and sometimes requested conventional de­
briefing with the instructor. The CMAQ showed gains in recog­
nizing stressors, and their LLC gave the most persuasive confir­
mation that self-analysis was effective. In the CRM survey they 
rated self-analysis high, despite their stated dislike of the method. 

·Communications analysis supported the gains of the first self­
analysis session. In the lessons learned, the crew documented the 
best variety of lessons: decision making, situational awareness, 
teamwork, and communications. Their learning sources were pre­
dominantly LOFT and self-analysis. Self-analysis was noticeably 
effective as a learning agent for this crew. 

Ed/Eric 

Table 5 gives factors exhibiting measurable gains in performance 
for Ed/Eric after self-analysis sessions. The Ed/Eric crew had a 
positive attitude and were exceptionally conscientious. Both had 
excellent academic records but below-average technical skills. In 
the first self-analysis session, the crew realized that their com­
munication was poor; subsequently they focused exclusively on 
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communication and registered partial gains in the CMAQ, the 
LLC, and the CRM survey. Communications analysis strongly 
corroborated their concentration on communication and indicated 
considerable progress in that area. Beginning in LOFT 4, the crew 
experienced scenario complexity that was beyond their technical 
ability. As difficulty increased, effectiveness measurements, par­
ticularly communications analysis, document a laborious and 
mostly futile journey from textbook knowledge (theory) to prac­
tical skills. LOFTs 4 and 5 were "lost communications" inci­
dents, in which they did not use CRM skills because they were 
"in over their heads" with scenarios that were too difficult for 
their skill level. The lessons learned for Ed/Eric focused on com­
munication and team building. They reported that most of their 
lessons were learned from LOFT; self-analysis accounted for only 
14 percent of lessons learned. Self-analysis was effective in the 

. first session but proved ineffectual when their technical skills were 
deficient. 

SUMMARY OF LESSONS LEARNED 

Tabk 6 is a compilation of lessons learned for all crews. Each 
crew focused lessons learned on a specific CRM skill, and four 
crews had a CRM skill they neglected: 

Crew 

Alex/Art 
Betty/Bob 
Carl/Cathy 
Dan/Dave 
Ed/Eric 

Focus 

Team building 
Situational awareness 
Situational awareness 
Decision making 
Communication 

Area of Neglect 

None 
Team building 
Team building 
Communication 
Decision making 

Crews were asked to name the source of learning for each lesson 
learned. Without exception, LOFT proved to be a valuable learn­
ing source, an indication that these students learned CRM by do­
ing it. Self-anaiysis was a valuable learning source for three crews, 
indicating that it also had value. The strongest support for self­
analysis came from Dan/Dave, who frankly acknowledged that 
they did not like doing self-analysis but attributed 40 percent of 
their learning to it. 

TABLE 3 Gains After Self-Analysis Sessions (Carl/Cathy) 

LINE/LOS CHECKLIST 
COMMUNICATIONS/DECISION BEHAVIOR 
TEAM BUILDING AND MAINTEN~CE 
WORKLOAD MGMT/SITUATION AWARENESS 
OVERALL TECHNICAL EFFECTIVENESS 
OVERALL CREW EFFECTIVENESS 

CRM SURVEY 

lST 
SELF-ANALYSIS 
(LOFT #2) 

SCENARIO QUALITY ++ 
WORKLOAD IMPOSED ++ 
SELF-REPORT ON CRM SKILLS ++ 

COMMUNICATIONS ANALYSIS 
TOTAL COMMUNICATIONS +++ 
COMMANDS (BY CAPT) 

Standard deviations since the previous observation: 

2m>! 
SELF-ANALYSIS 
(LOFT #4) 

+++ 
+++ 
+++ 
+++ 
++ 

++ 
+ 
nc 

+++ 

- - - = <-2, - - = -l<-2, ·0<-1, ne = no change, 
+ = 0>1, + + = 1>2, + + + = 2>3 

!!Guided self-analysis session. 
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TABLE 4 Gains After Self-Analysis Sessions (Dan/Dave) 

CMAQ 
RECOGNITION OF STRESSOR EFFECTS 

LINE/LOS CHECKLIST 
COMMUNICATIONS/DECISION BEHAVIOR 
TEAM BUILDING AND MAINTENANCE 

lST 
SELF-ANALYSIS 
(LOFT #3) 

nc 

+ 
++ 

2ND 
SELF-ANALYSIS 
(LOFT #5) 

++ 

++ 
++ 

WORKLOAD MGMT/SITUATION AWARENESS ++ ++ 
OVERALL TECHNICAL EFFECTIVENESS ++ 
OVERALL CREW EFFECTIVENESS + +++ 

CRM SURVEY 
WORKLOAD IMPOSED ++ 
SELF-EVAL OF PERFORMANCE ++ ++ 
SELF-REPORT ON CRM SKILLS ++ 

COMMUNICATIONS ANALYSIS 
ACKNOWLEDGEMENTS "(BY FO) ++ 
OBSERVATIONS {CAPT & FO) +++ + 

Standard deviations since the previous observation: 
<-2, -l<-2, 0<-1, nc = no change, 

+ = 0>1, + + = 1>2, + + + = 2>3 

DISCUSSION OF RESULTS 

For every crew, the CMAQ had only slight variability and pro­
vided essentially no evidence ·for effectiveness of self-analysis. 
Relationships between attitudes and performance have been vali­
dated for airline crews (23), but the instrument may be unsuitable 
for undergraduates because they lack crew experience on which 
to base attitudes. Also, the CMAQ was scored by a crew as a 
consensus measure of crew attitude, though it was designed as an 
individual instrument. A "crew attitude" may not even exist. It 
is also conceivable that the CMAQ showed small variations be­
cause it was completed so often (every 2 weeks) and crews re­
membered previous responses. For these reasons, the CMAQ did 
not render an acceptable measure of self-analysis effectiveness. 

The LLC was probably the most objective measure of effect­
iveness because it required systematic data collection of CRM 
skills distinct from technical performance. Consensus grading 
compelled justification for every grade and reduced the possibility 
of grading by instinct, crew reputation, or preferred results. Of all 
the measurements taken, the LLC is the best summary of the 

study. It shows significant gains in 5 of the 10 self-analysis 
sessions. 

The CRM survey was designed as a self-analysis instrument. 
One factor in the survey, self-report on CRM skills, is probably 
the most direct measure of self-analysis. Three of the five crews 
showed a step increase in this factor after the first application of 
self-analysis, but none reported gains in the second session. It 
appears that crews became more discerning and critical as they 
gained awareness of CRM skills. For self-analysis sessions, two 
other trends were evident in the survey: instructor ratings declined 
and work load imposed increased. Crews apparently preferred 
conventional debriefing with the instructor; the extra work was 
perceived as a negative feature of self-analysis. 

Multiple measures of effectiveness were used because each data 
source has its strengths and weaknesses. A data source has merit 
if it consistently validates or disproves the results from other 
measures. In communications analysis, frequencies are an equiv­
ocal measure of effectiveness because communication must be 
interpreted within a task, environment, or interpersonal context 
(24). In this study, three of the four communications categories 

TABLE 5 Gains After Self-Analysis Sessions (Ed/Eric) 

CMAQ 
COMMUNICATIONS AND COORDINATION 

LINE/LOS CHECKLIST 
TEAM BUILDING AND MAINTENANCE 

CRM SURVEY 
SCENARIO QUALITY 
WORKLOAD IMPOSED 

COMMUNICATIONS ANALYSIS 
COMMANDS (BY CAPT) 
ACKNOWLEDGEMENTS (BY FO) 
OBSERVATIONS {CAPT & FO) 

lST 
SELF-ANALYSIS 
(LOFT #3) 

++ 

++ 

++ 
++ 

++ 
+++ 
+++ 

Standard deviations since the previous observation: 

2ND 
SELF-ANALYSIS 
(LOFT #5) 

+ 

nc 

<-2, -l<-2, 0<-1, nc = no change, 
+ = 0>1, + + = 1>2, + + + = 2>3 
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confirmed results of other measures. However, "total communi­
cations" was not consistent as a measure of effectiveness. It ap­
pears that well-intentioned crews, in an effort to practice com­
munications skills, "talked" more but "communicated" less. 

The two women who participated in the study were as profes­
sional and competent as the men, indicating that women belong 
in aviation and should be encouraged to participate equally with 
men in all domains of the industry. Crews in this study found that 
the cockpit can be a confining and some_times emotional environ­
ment and that male/female relationships can add CRM issues that 
must be considered. Further research is needed to understand per­
ceptions of male dominance, male/female dynamics, and the sen­
iority of captains regardless of age, sex, and often skill. These 
issues are compelling reasons why CRM should be included in 
initial flight training: to educate men and women to the paradigm 
that men and women are equal and that performance, not gender, 
is the decisive factor. 

Because they involved "lost communication," LOFTs 4 and 5 
were particularly difficult, especially for the less skilled. All crews 
experienced some difficulty with lost communication, and two de­
liberately chose to violate regulations in a lost communication 
situation. All students were cognizant of textbook answers, but 
LOFT required them to convert their knowledge into appropriate 
action without assistance or feedback. LOFT elicits higher-order 
thinking, just as do life's situations, providing another argument 
for introducing LOFT in initial flight training. 

Reflection on the crews that struggled with role definition and 
crew dynamics reveals an important difference between airline 
CRM training and undergraduate training. Airline crews are ex­
pected to have resolved such issues beforehand, but these conten­
tions are natural learning encounters for college students. The out­
come for Alex/Art was positive because self-analysis made them 
aware of the role definition problem and they struggled with it, 
though it was nqt totally resolved. On the other ha~d, self-analysis 
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did not expose the crew dynamics issue to Betty/Bob, so it was 
not addressed forthrightly and the outcome is uncertain. It proved 
insufficient for the researcher to document the problem; education 
should have overridden research, and the issue should have been 
addressed so the students could resolve it. 

CONCLUSIONS 

None of the crews rated self-analysis highly, suggesting that they 
preferred conventional debriefing to self-analysis. Evidence 
weighed against self-analysis as a stand-alone strategy for teach­
ing CRM to undergraduate flight students. The results are char­
acteristic of initial flight students, who are accustomed to more 
guidance and rely heavily on feedback from instructors to evaluate 
their performance. However, there are sufficient data supportive 
of self-analysis, especially for experienced crews, that self­
analysis should not be rejected. Self-analysis seems to be more 
effective as a supplemental strategy to be used when certain con­
ditions exist. Further research is needed to determine the circum­
stances (personalities, team dynamics, experience, etc.) that would 
make it successful. Self-analysis appears to gain effectiveness as 
students accumulate experiences with crew operations. 

The LLC reported the observer's overall evaluation of both 
technical and CRM performance; the CRM survey reported each 
crew's self-evaluation of technical and CRM performance. Con­
cerning technical performance, crews' assessment of gain through 
self-analysis matched the observer's appraisal in 70 percent of 
cases. Concerning performance of CRM skills, crews' evaluation 
of gain through self-analysis matched the observer's assessment 
in only 50 percent of cases. Despite their focus on CRM skills, 
these students were more adept in evaluating their changes in 
technical performance than in assessing variations in crew 
effectiveness. 

TABLE 6 Summary of Lessons Learned for All Crews 

Lessons-Learned 

CREW commu- Decision Sit. Team 
nication Makinq Aware Buildinq 

A/A - - - ++ 

B/B + - ++ --
C/C - - ++ --
D/D -- ++ - -
E/E ++ -- - + 

Where Learned 

CREW Debrief Instructor LOFT Prefliqht 

A/A - - ++ -
B/B - - +++ -
C/C + - - ++ -
D/D - - +++ -
E/E - - +++ -
Standard deviations from the mean: 

0<-1 -1<-2 
+ = 0> 1 ++ = 1> 2 

Tech 

+ 

Rdqs 

+ 

-
--
-
-

+++ 

Self-
analysis 

+ 

-
+ 

+++ 

-

-2<-3 
2> 3 
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The objective of LOFf is to provide crew members with the 
opportunity to practice both technical and CRM skills in a realistic 
scenario. The scenarios for this research were created, field tested, 
and evaluated by experienced aviators on the basis of perceived 
skills of commercial pilots. "Realistic and reasonable" for de­
signers may not be viable for the students. In retrospect, two un­
anticipated factors may have influenced the results: students 
needed more low-work load time in all scenarios, and LOFfs 4 
and 5 were too difficult for most of the crews. With the exception 
of Dan/Dave, overall technical performance in LOFf 5 was de­
ficient, making it difficult to determine whether outcomes were 
attributable to self-analysis or to the scenario itself. Future re­
search should recognize that college students need acclimation to 
crew operations; scenarios should be uncomplicated and should 
include significant low-work load periods. Guidelines and sce­
narios developed for airline pilots may not be appropriate for un­
dergraduate flight students. 

Throughout this research the focus has been on CRM skills, 
leaving the impression that CRM skills are superior to or more 
desirable than technical skills. A high degree of technical profi­
ciency is essential for safe and efficient flight operations ( 4). In 
this study, crews with lower technical ability had considerable 
difficulty learning CRM skills. In 8 of 10 self-analysis sessions, 
differences in technical skills reflected analogous variations in 
CRM skills. CRM skills were not taught in isolation, confirming 
the conventional wisdom that mature technical skills are essential 
for developing CRM skills. This finding confirms the value of 
LOFf and self-analysis of LOFf as training technologies that in­
tegrate technical and CRM training. 

RECOMMENDATIONS 

Because one crew centered on technical discussions, guided self­
analysis, a combination of self-analysis and conventional debrief­
ing, was used. It produced strong gains for them in the LLC, 
suggesting that a research design using guided self-analysis may 
be more effective than self-analysis alone for undergraduate flight 
students. Research would be complicated; differences between 
guided self-analysis and conventional debriefing are less distinct. 

Participants in this study were sometimes frustrated because 
they did not always know "the right way" to do things. They 
had difficulty applying theory to practice in the LOFf, and self­
analysis did not furnish a standard for comparison. This inade­
quacy suggests that a research design in which self-analysis is 
preceded by role modeling to illustrate effective crew performance 
would be. more appropriate. Students could observe role niodels 
on videotapes or role plays, but the best training would be 
achieved by flying a LOFf scenario with a pilot experienced in 
crew operations. 

For thorough training, students swapped roles between captain 
and first officer in each scenario. This is an inferior design for 
research because crew performance could vary significantly with 
the captain. Assigning the more experienced crew member to be 
captain for the entire study would be better for research and would 
strengthen training because the concept of seniority would be es­
tablished. That option was not possible in this study because stu­
dents required exposure to both roles in a single-semester course. 
In further research, CRM could be taught in two semesters with 
beginner students flying first officer and experienced ones flying 
captain. A potential benefit is that experienced students could pro-
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vide a role model for novice students. Research should also de­
termine whether a student with one semester of LOFf experience 
is an adequate role model. 
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Airfoil Performance in Heavy Rain 

JAMES R. VA LENTINE 

In recent years microbursts have been implicated in several major 
aviation accidents. Since microbursts are often accompanied by heavy 
rainfall, an interest in airfoil performance in rain has arisen. As rain­
drops strike the leading edge of an airfoil, small droplets are splashed 
back into the airflow field, and an uneven water film forms on the 
airfoil surface. Both phenomena have been hypothesized to contribute 
to a degradation of airfoil performance in rain that may be manifested 
as a decrease in lift, an increase in drag, and premature stall. The 
splashed-back droplets are accelerated by the airflow field. Thus drop­
let drag acts as a momentum sink to deenergize the boundary layer, 
while the uneven water film effectively roughens the airfoil surface. 
A numerical, two-way momentum coupled, two-phase flow scheme 
for the evaluation of the effect of splashed-back droplets on a NACA 
64-210 airfoil section in cruise configuration is described. A thin-layer 
Navier-Stokes computational fluid dynamics code is coupled with a 
Lagrangian particle tracking scheme to determine the two-phase flow 
field in an iterative manner. Noninteracting, nondeforming, and non­
evaporating spherical particles representing statistical distributions of 
raindrops are tracked through the curvilinear body-fitted grid used by 
the airflow code. A simple model is used to simulate raindrop impacts 
and the resulting splashback on the airfoil surface. Results are com­
pared with wind tunnel test results. 

On July 9, 1982, Pan American World Airways Flight 757, a 
Boeing 727, encountered a microburst upon taking off from New 
Orleans International Airport and crashed, killing 153 persons. 
Estimates of rainfall rates encountered by the aircraft range up to 
144 mm/hr (1). Serious investigations of heavy rain effects on 
aircraft performance had begun only a few years earlier, and re­
searchers reported that significant airfoil performance penalties 
(decreased lift, increased drag, and earlier stall) may occur at rain­
fall rates of 150 mm/hr or greater (1). The primary cause of the 
accident was the microburst wind patterns, but it was unknown 
whether rain had also played some role. It is possible that a rain­
induced premature aerodynamic stall could occur before the air­
craft stall warning system was activated. Concern over this acci­
dent led to a Federal Aviation Administration (FAA) and National 
Academy of Sciences (NAS) study of the hazards of wind shear 
for aircraft that are landing or taking off (2). The study analyzed 
27 wind shear-related aircraft accidents and incidents that had 
occurred between 1964 and 1982 and concluded that the most 
dangerous types of wind shears are the downdraft and outflow 
microbursts associated with convective storms. Since these storms 
are often accompanied by heavy rainfall, one of the report's rec­
ommendations was the continued investigation of the aerodynamic 
performance of aircraft in heavy rain. The most recent analysis of 
aircraft performance in heavy rain (3) had been developed from 
experimental studies of rough airfoils and low-speed water drop 
splashes and had not been validated by wind tunnel simulations 
of airfoils or aircraft in rain. · 
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AIRFOIL AERODYNAMICS 

A typical streamline pattern around an airfoil at a relatively low 
angle of attack (a) is shown in Figure la. As a is increased, lift 
also increases until a maximum is reached at the stall angle of 
attack ( as1au). At stall, there is a rapid decrease in lift and an in­
crease in drag due to massive Separation of the flow on the upper 
surface of the airfoil, as shown in Figure lb. The airfoil shown 
in Figure 1 is in cruise configuration; for landing and taking off, 
leading edge slats and trailing edge flaps are extended to increase 
lift and to delay stall to a higher angle of attack. In this paper, 
lift and drag are measured in terms of the normalized (or nondi­
mensionalized) quantities, lift and drag coefficiencts (c1 and cd). 

Experimental results have indicated that an airfoil in heavy rain 
may be subject to a decrease in maximum lift, an increase in drag, 
and earlier onset of stall (at a lower a). These effects are most 
pronounced in high lift configurations with flaps and slats de­
ployed. Since high lift configurations are used in takeoffs and 
landings when there is little margin for error, the adverse effects 
of rain may have the most serious consequences in these cases. It 
is unlikely that heavy rain by itself will cause an accident. How., 
ever, it may be a contributing cause when other factors such as 
wind shears are present. 

MICRO BURSTS 

A microburst is a short-lived, thunderstorm-induced local down­
draft. As the vertical downdraft winds encounter the ground, a 
strong horizontal outflow is produced around the downdraft core. 
Initially, an aircraft encountering a microburst experiences a 
strong headwind and increases in airspeed and lift as it enters the 
outflow region, possibly prompting the pilot to decrease thrust or 
pitch or both. After the aircraft passes the downdraft area, how­
ever, the outflow becomes a tail wind, and the resultant decrease 
in airspeed causes a -decrease in lift, often with dire consequences 
if the aircraft is landing or taking off and especially if thrust or 
pitch was reduced on the initial headwind encounter. In a study 
of 75 microbursts the average change in wind velocity encoun­
tered by the aircraft was 47 knots, whereas a maximum of almost 
100 knots was measured ( 4). It was estimated that the aircraft 
experienced this velocity change over 20 to 40 sec. Microbursts 
are often accompanied by heavy rainfall. Thus flight through a 
microburst may be complicated by the adverse effects of rain on 
aircraft aerodynamics. 

HEAVY RAIN ACCIDENTS 

Other accidents and incidents in addition to the Pan American 
World Airways Flight 757 accident have occurred during very 
heavy rainfall. Several before 1982 are mentioned by Luers and 
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FIGURE 1 Streamline patterns for the flow 
around an airfoil in cruise configuration: (a) 
airfoil at low angle of attack (a), (b) stalled 
airfoil at high angle of attack (a). 

Haines (5) and two of these, an Eastern Airlines Flight 066 ac­
cident at JFK International Airport on June 24, 1975, and an East­
ern Airlines Flight 693 incident at William B. Hartsfield Atlanta 
International Airport on August 22, 1979, are analyzed. In both 
cases, Luers and Haines estimate that the aircraft involved may 
have encountered rainfall rates of 300 mm/hr. These rates could 
induce a significant aerodynamic performance penalty. However, 
in neither case did the National Transportation Safety Board 
(NTSB) report account for rain effects. Another accident occurred 
on August 2, 1985, when Delta Airlines Flight 191 crashed after 
encountering a microburst during an intense thunderstorm as it 
approached Dallas-Fort Worth International Airport for landing. 
Weather radar indicated a rainfall rate of up to 114 mm/hr, and 
witnesses described the aircraft as emerging from a wall or curtain 
of water immediately before ground impact (4). Brandes and Wil­
son (6) report that it is not uncommon for radar measurements of 
rainfall rates to be in error by more than a factor of two and found 
that in heavy rainfall radar may underestimate the rainfall rate. 
Thus, a rainfall rate of 114 mm/hr may be less than that actually 
encountered by the aircraft. 

Luers and Haines (5) suggest that pilots be made aware of the 
possibility that aerodynamic stall can occur in heavy rain above 
the usual stall speed and before the aircraft stall warning system 
activates. They advise that high angle of attack microburst recov­
eries, which sacrifice airspeed for altitude, be avoided in favor of 
an attempt to increase airspeed at a slower climb rate, thus avoid­
ing a rain-induced premature stall. Although they are somewhat 
controversial, such high angle of attack recoveries have been rec­
ommended to pilots of jet-powered aircraft in microburst encoun­
ters (7). 

PHYSICS OF AN AIRFOIL IN RAIN 

Several mechanisms have been hypothesized as contributing to 
the degradation of airfoil (or aircraft) performance in heavy rain. 
The main ones are the loss of aircraft momentum due to collisions 
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with raindrops, the effective roughening of the airfoil surface due 
to the presence of an uneven water layer, and the loss of boundary 
layer air momentum due to the splashback of droplets into the 
airflow field as raindrops strike the airfoil surface. Bilanin (8) has 
also considered the evaporation of droplets near the airfoil surface 
and concluded that this process does not significantly affect airfoil 
performance. 

This paper describes a numerical scheme to model the loss of 
boundary layer air momentum due to splashed-back droplets. As 
raindrops strike an airfoil, and "ejecta fog" of splashed-back 
droplets forms at the leading edge, as shown in Figure 2. It has 
been hypothesized that the acceleration of these droplets in the 
boundary layer by the airflow field may act as a momentum sink 
for the boundary layer, resulting in a decreased airflow velocity. 
Deceleration of the boundary layer can lead to a loss of lift, pre­
mature separation and stall, and an increase in drag. By evaluating 
the boundary layer momentum sink (or source) term, modifica­
tions of the boundary layer flow and the resulting change in airfoil 
performance can be evaluated. 

Beneath the ejecta fog layer, a thin water film forms on the 
airfoil surface because of the fraction of the raindrop that is not 
splashed back. The thickness of the water film has been measured 
in small-scale wind tunnel investigations to be of the order of 0.1 
mm or less (10) and has been estimated at full scale to be about 
1 mm or less (11). Raindrop impact craters and suface waves in 
the water film effectively roughen the airfoil surface. The adverse 
effect of this rougher surface on aerodynamic performance has 
been analyzed in detail by Haines and Luers (11). As the water 
film is carried downstream, rivulets form on the back portion of 
the airfoil. With increasing angle of attack, the extent of the water 
film decreases on the upper surface and increases on the lower 
surface. When stall is reached, the rivulets disappear and pooling 
of water occurs on the separated portion of the airfoil. 

CHARACTERISTICS OF RAIN 

Ground-level rainfall rates are generally measured in terms of mil­
limeters or inches of water accumulation per hour. The heaviest 
recorded ground rainfall occurred during an intense thunderstorm 
in Unionville, Maryland, on July 4, 1956, when a rainfall rate of 
1874 mm/hr was recorded for a period of approximately 1 min 
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FIGURE 2 A cruise-configured airfoil in 
rain showing the ejecta fog and water 
surface film (9). 
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(12). Typically, ground-level rainfall rates are much lower than 
this, with the heaviest rainfalls occurring for short periods of 30 
sec or less. Dunham (13) has estimated that at any location in the 
subtropical maritime southeastern United States, a total of ap­
proximately 2 min of 200 mm/hr or heavier rainfall can be ex­
pected during 1 year. 

During a thunderstorm, significantly higher rain intensities than 
those at ground level can be expected at a higher altitude. The 
rain measurement parameter used above ground level is liquid 
water content (LWC) or the mass of water per unit volume of air. 
LWC is also important in wind tunnel testing, since the same 
value must be used in small-scale tests as is measured in an actual 
rainstorm (8). Roys and Kessler (14) have taken airborne mea­
surements of LWC within several Great Plains thunderstorms and 
reported an average value of 8. 7 g/m3 and a peak value of 44 
g/m3

• At the time and location of the peak airborne measurement, 
however, ground-based radar indicated a rainfall rate of only 37.6 
mm/hr (corresponding to an LWC of about 1.14 g/m3

), possibly 
because of the small size of the region of extremely intense rain. 

The drop size distribution of ground-level rain can be approxi­
mated by the expression 

(1) 

where N(DP) is the number of raindrops of diameter DP (in mm) 
per cubic meter of air per diameter interval and N0 and A are 
empirically determined parameters dependent on· rainfall rate and 
the type of rainstorm. (15). Marshall and Palmer's (15) values of 
N0 = 8 X 103 m-3mm- 1 and A = 4.1 X R-0

·
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, where R is the 
rainfall rate (mm/hr), have been used commonly for continuous 
rain, but values of N0 = 1.4 X 103 m-3mm- 1 and A= 3.0 X R-0

-
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have been found more appropriate for heavy thunderstorm rain 
(16). Raindrop diameters generally range up to about 6 or 7 mm 
with the larger drop sizes most prevalent in heavier rainfalls. 

A relationship between LWC and ground-level rainfall rate can 
be derived by multiplying the raindrop diameter distribution given 
by Equation 1 by the mass of the raindrop, then integrating over 
the range of drop diameters. Assuming a maximum raindrop 
diameter of 7 mm, the average LWC of 8.7 g/m3 measured by 
Roys and Kessler (14) corresponds to a rainfall rate of about 546 
mm/hr at ground level. In experimental and analytical analyses of 
aircraft performance in heavy rain, LWCs corresponding to rain­
fall rates of 500 mm/hr to 2000 mm/hr are commonly used. 

IDSTORY OF AIRCRAFT HEAVY RAIN STUDIES 

The first study of heavy rain effects on aircraft flight was per­
formed by Rhode (17) in 1941. He concluded that the most severe 
performance penalty experienced by a DC-3 flying through a rain­
storm with LWC of 50 g/m3 was due to the loss of aircraft mo­
mentum caused by collisions with raindrops. It was estimated that 
this effect could result in a decrease in airspeed of up to 18 per­
cent, but the duration of the rain would not be sufficient to pose 
a significant hazard to an aircraft at a cruising altitude of 5,000 
ft. Aircraft landing and taking off in heavy rain were not consid­
ered; these operations were not routine at that time during low­
visibility conditions. Rhode recognized that the surface of the air­
craft may be effectively roughened by rain but noted that 
insufficient test data existed to evaluate this effect. 

The current interest in heavy rain effects began with reports by 
Luers and Haines (3,5,11) in 1982. Four mechanisms that could 
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potentially degrade aircraft or airfoil performance in heavy rain 
were identified: (a) the momentum lost by the aircraft due to col­
lisions with raindrops, (b) the added weight of a thin water film 
on the surface of the aircraft, ( c) the added roughness due to the 
uneven surface of the water film, and (d) a change in pitching 
moment caused by raindrops striking the aircraft unevenly. The 
first three were analyzed, and the third appeared to have the most 
effect on aircraft performance. The added weight of a water film 
was inconsequential, and the loss of aircraft momentum due to 
raindrop impacts may be measurable for an aircraft landing or 
taking off in a torrential rainfall but would not present a significant 
hazard by itself. However, an effectively rougher aircraft surface · 
due to an uneven water film could have a profound effect on the 
performance of the aircraft. Estimates of this effect on. the aero­
dynamic performance of a Boeing 747 for various rainfall rates 
were made. By assessing the roughness of the water layer and 
comparing the results with correlations for flat plates and airfoils 
with fixed roughness elements (which were not available at the 
time of Rhode's study), the increase in drag, decrease in maximum 
lift, and decrease in stall angle of attack were evaluated. Apprais­
als of aircraft performance penalties were made for rainfall rates 
varying from 100 to 2000 mm/hr. Estimates of drag increases 
ranged from 5 to 30 percent, decreases in maximum lift from 7 
to more than 30 percent, and decreases in stall angle of attack 
from 1 to 6 degrees. The highest penalties were predicted for the 
highest rainfall rates. 

During the last 10 years, wind tunnel investigations of heavy 
rain effects on airfoil performance in rain have been conducted. 
There have been two main categories of investigations: those in 
which the boundary layer on the dry airfoil is predominantly lam­
inar and those in which the boundary on the dry airfoil is tripped 
to turbulence near the leading edge. The rain effect on a laminar 
flow airfoil has been mimicked by tripping the boundary layer to 
turbulence on the dry airfoil, whereas the rain effect on an airfoil 
with a turbulent boundary layer appears to result from premature 
flow separation. 

An early laminar boundary layer test was conducted with a 
Rutan VariEze, a small canard-configured sport aircraft (18). Pilots 
of similar aircraft had reported control difficulties in rain (19). 
The canard surface is used for pitch control and is designed to 
promote laminar flow. It can be very sensitive to any surface 
roughness that may cause turbulence. In a full-scale wind tunnel 
investigation, it was discovered that the rain effect is appoximately 
equivalent to tripping the canard surface boundary layer to tur­
bulence without rain. 

Hansman and Barsotti (20) examined the performance of a 
small-scale laminar flow Wortmann FX67-Kl 70 airfoil (similar to 
those used on sailplanes) with various surface coatings of different 
wettability in simulated rain. A wettable surface is one on which 
water spreads out and forms a thin film, whereas an unwettable 
surface is one on which water tends to form beads. An unwettable 
surface should develop a larger effective roughness in rain because 
of the beading effect, and an airfoil with this surface could be 
expected to sufffer a larger performance penalty. In these experi­
ments, the performance of a waxed (low wettability) Wortmann 
FX67-Kl 70 airfoil suffered a larger decrease in lift and increase 
in drag in simulated rain than one with a more wettable unwaxed 
surface. The rain effect could be partially simulated by tripping 
the boundary layer to turbulence on the dry airfoil. However, there 
was also a rain-induced effective change in the camber of the. 
airfoil (evidenced by a decrease in the zero lift angle of attack) 
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that could not be duplicated with a turbulent boundary layer. This 
apparent change in airfoil shape may have been a result of the 
very small scale of the airfoil (6-in. chord length) and the inability 
to scale the surface film and splashback appropriately. 

Hansman and Craig (21) conducted small-scale tests of three 
airfoils at wind tunnel speeds low enough (low Reynolds num­
bers) that the boundary layer can be assumed predominantly lam­
inar. The three airfoils tested were a NACA 0012 airfoil similar 
to those used as horizontal stabilizers on general aviation aircraft, 
a NACA 64-210 airfoil characteristic of the type used for many 
modem transport aircraft, and a Wortmann FX67-Kl 70 airfoil. At 
low angles of attack, the performance of each airfoil was degraded 
in simulated rain, with the Wortmann FX67-Kl 70 airfoil, which 
is designed for laminar flow, suffering the largest penalty, a de­
crease in lift of up to 25 percent. This performance loss could be 
mimicked by tripping the boundary on the dry airfoil to turbu­
lence. The NACA 0012 and NACA 64-210 airfoils both exhibited 
a delayed stall in rain, a result that could be expected if the lam­
inary boundary layer was tripped to turbulence. 

There have also been wind tunnel tests of airfoils with turbulent 
boundary layers, a condition more closely resembling the actual 
flow around a general aviation or transport type airfoil. NACA 
0012, NACA 64-210, and NACA 23015 airfoil sections and wings 
have been used in experiments (9,13,22,23). The overall results 
of these tests indicate that an airfoil with a turbulent boundary 
layer in heavy rain may be subject to a decrease in maximum lift, 
an increase in drag, and premature stall. The effects are most 
pronounced in high-lift configurations with flaps and slats 
deployed. 

Typical results are those of Bezos et al. (9) for a NACA 
64-210 airfoil section in simulated wind tunnel rain. A 2.5-ft­
chordlength airfoil section mounted between two endplates was 
tested in both cruise and high-lift configurations, with the bound­
ary layer tripped to turbulence near the leading edge. In cruise 
configuration, simulated rain resulted in a decrease in maximum 
lift of up to 17 percent and an increase in drag at constant lift of 
up to 71 percent. In high-lift configurations with a leading edge 
slat and a double-slotted trailing edge flap deployed, a decrease 
in maximum lift of up to 18 percent, an increase in drag at con­
stant lift of up to 40 percent, and a decrease in stall angle 
of attack of up to 8 degrees were measured. The airfoil showed a 
greater sensitivity to rain in the high-lift configuration than 
in cruise configuration. In general, the largest performance pen­
alties were measured at the highest wind tunnel velocities (largest 
Reynolds numbers) and for the largest values of LWC. The effect 
of surface wettability was investigated in the high-lift configura­
tion, but no significant change in the performance penalty was 
measured, in contrast to the results of Hansman and Barsotti (20) 
for a laminar flow airfoil. 

Thus in turbulent boundary layer investigations the airfoil per­
formance penalty in rain is most severe at high angles of attack 
and appears to be due to a rain-induced premature boundary layer 
separation that can result from either (or both) an effectively 
rougher airfoil surface or boundary layer momentum loss to 
splashed-back droplets. The penalty is more pronounced in high­
lift configurations, in heavier rainfalls, and at higher air velocities. 

The primary value of small-scale wind tunnel experiments lies 
in the extrapolation of the results to full scale, and Bilanin (8) has 
examined scaling laws for this purpose. Geometric scaling prob­
lems were among several difficulties noted. In small-scale wind 
tunnel investigations the thickness of the water surface film and 

29 

the splashback process probably will not be scaled by the same 
factor as the airfoil itself. Thus the airfoil shape may be effectively 
changed, as was observed by Hansman and Barsotti (20). The 
water surface film will probably be too thick at small scale. Thus 
slots between flaps or flaps and the main body of the airfoil will 
be blocked more than at full scale, possibly resulting in a wind 
tunnel overprediction of the actual performance penalty in rain. 
Bilanin (8) has shown that the value of LWC must be conserved 
between small and full scale, but the drop diameters must be 
scaled. Scaling of drop diameters in a wind tunnel investigation 
reduces the downward velocity of the raindrops, and this in tum 
affects the incidence angles and locations where drops strike the 
airfoil. Because of these scaling difficulties, NASA has developed 
a facility for large-scale testing of a NACA 64-210 airfoil (with 
a chord length of 10 ft) at the Langley Research Center (24). 

In addition to the analytical and experimental studies of airfoil 
performance in heavy rain, there have been numerical investiga­
tions. Calarese and Hankey (25) added a body force term to the 
Navier-Stokes equations because of droplet drag and calculated 
the resulting pressure distribution on a NACA 0012 airfoil for the 
two limiting cases of very fine rain (small drop diameters) and 
very coarse rain (large drop diameters). The flow was treated as 
a continuous, homogeneous rain-air mixture with a set of conser­
vation laws for each phase. For coarse rain, no appreciable change 
in performance was determined, but for very fine rain, an increase 
in lift was predicted because of the increase in density of the 
mixture over that of air alone. This analysis neglected the effect 
of splashes and surface roughness, however. Kisielewski (26) 
added a force due to droplet drag to the Euler equations and used 
a flux vector splitting scheme to solve for the resultant flow field 
around a NACA 0012 airfoil section. He was unable to duplicate 
the performance penalty measured experimentally for similar rain 
conditions, however, and recommended that investigations of the 
effects of surface roughness and splashback be carried out. Don­
aldson and Sullivan (27) estimated the momentum sink experi­
enced by the boundary layer due to splashed-back droplet drag 
and added it to a boundary layer code. They concluded that a 
rainfall rate of 500 mm/hr may be sufficient to induce premature 
stall of a commercial transport aircraft. Bilanin et al. (28) also 
evaluated the effect of splashed-back droplet drag on the boundary 
layer and reached a similar conclusion-that this deenergization 
of the boundary layer could cause an early separation. However, 
they noted that the effectively rougher surface of the wet airfoil 
can also play a role in this process and that relative importance 
of these two mechanisms is unknown. 

NUMERICAL METHOD 

The numerical scheme used in this project models the two-phase 
flow of rain (particulate phase) and air (fluid phase) over an airfoil. 
Two approaches are commonly used to model fluid-particle flows. 
These models have been reviewed by Decker and Schafer (29) 
and Durst et al. (30), among others. The "two-fluid" or Eulerian 
model treats both the fluid and dispersed particle phases as con­
tinuous and solves the appropriate conservation equations for each 
flow. Interphase exchanges of mass, momentum, and energy are 
included as source terms in the appropriate conservation equa­
tions. This model is most easily implemented when particles are 
of a uniform size. 
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The ''tracking'' or Lagrangian approach involves solving a set 
of Eulerian conservation equations for the continuous fluid phase, 
then solving Lagrangian equations of motion to determine particle 
trajectories. A .one-way momentum coupled model assumes that 
.the particle motion is influenced by the fluid phase through drag 
but that the fluid flow field is unaffected by the presence of par­
ticles. A fully two-way coupled model, as used here, accounts for 
the two-way exchange of momentum (and mass and energy if 
applicable) between the particle and fluid phases through inclusion 
of source terms in the fluid conservation equations. 

The present model consists of a thin-layer Navier-Stokes code 
for the calculation of the airflow field and . a particle tracking 
scheme for determination of raindrop trajectories. The two-phase 
flow field is evaluated with a particle-source-in cell technique 
(31), as shown in Figure 3. The fluid and particle fields are ini­
tially calculated, then the fluid phase is updated, this time ac­
counting for particle effects, and the particle trajectories are re­
calculated in the new fluid flow field. The process is repeated until 
a stationary solution is reached. Interphase momentum coupling 
is through drag forces. Drag forces acting on particles influence 
the particle trajectories, and when sufficient numbers of particles 
move with velocities other than the fluid velocity, the fluid flow 
field is influenced by particle drag. Raindrop impacts on the airfoil 
surface and the resulting breakup and splashback of droplets into 
the airflow field are modeled in the particle-tracking algorithm. 

determine clean air 
flow field (no rain) 

calculate droplet trajectories 
and droplet drag effect on 

the air flow field 

redetermine the air flow 
field accounting for the 

most recently calculated 
droplet effects 

has flow field changed 
yes from the last iteration ? 

no 

stop 

FIGURE 3 Particle-source-in cell algorithm 
(31) for the determination of two-phase particle/ 
ftuid flows. Beginning with a clean airftow field 
(no particles), the particle trajectories and 
momentum source/sink terms for the airftow 
field are determined, then the airftow field is 
updated, accounting for the particle effects. The 
process is repeated until the fields are 
unchanged between successive iterations. 
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Airflow Field Determination 

The motion of the fluid (air) phase is governed by the incom­
pressible Navier-Stokes equations. The airflow field is determined 
with FMCl, a three-dimensional flux-splitting code for the thin­
layer approximation of these equations, the details of which have 
been reported previously (32). The code has been modified to 
account for interphase momentum coupling by adding a momen­
tum source term due to particle drag to the right-hand side of the 
Navier-Stokes equations. 

For numerical determination of the flow field around an arbi­
trary shape such as an airfoil, a grid that conforms to the body 
surface is generally used. In this case, an 0-H grid is used around 
a NACA 64-210 airfoil section, a spanwise cross section of which 
is shown in Figure 4. Grid dimensions are 45 normal to the surface 
Ct) by 3 spanwise (11) by 143 circumferential(~). This grid defines 
a curvilinear ~11~ coordinate system that is used to track particles. 
There is no variation of the flow field in the spanwise direction. 

Particle-Tracking Algorithm 

Raindrops are represented by nonevaporating (no mass coupling 
between the phases), noninteracting (no collisions between drops), 
and nondeforming spherical particles (drag on a sphere is easily 
determined) subject only to drag and gravity forces. In reality, 
raindrops will deform because of shear stresses as they enter the 
airfoil boundary layer, but, on the basis of a Weber number cri­
terion (33), breakup of. the drops should not occur. 

Particle trajectories are determined by Newton's second law of 
motion. The particle equation of motion can be written in non­
dimensional form as 

(2) 

~ x 

l;:-

FIGURE 4 Spanwise cross section of the computational 
grid around a NACA 64-210 airfoil. Grid dimensions are 
45 normal to the surface <e by 3 spanwise (11) by 143 
circumferential (t). y is spanwise. 
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where 

V and VP= air and particle velocity vectors, 
p and pP = air and particle material densities, 

rP = particle radius, and 
g = acceleration of gravity. 

The first term on the right-hand side of Equation 2 represents the 
drag force acting on a particle, and the second term represents the 
gravitational force. For consistency with the airflow field, the vari­
ables in Equation 2 are nondimensionalized · in the same manner 
as the Navier-Stokes equations; velocities are scaled by the free 
stream air velocity V "'" lengths by the airfoil chord length c, and 
time by c/V... The drag coefficient in Equation 2 can be repre­
sented over a wide range of particle Reynolds numbers by (34) 

. 24 
Co= max{0.44, - (1 + 0.lSRe/·687

)} 
Rep 

(3) 

where the particle Reynolds number is defined in terms of the 
nondimensional velocities V and VP as 

Rep = PIV .. (V - VP)l2rP 
µ 

(4) 

A second particle trajectory equation is a chain rule expression 
for the contravariant particle velocity 

(5) 

where ~P = (~P' 'r)p, ~P) is the particle position in the curvilinear 
coordinate system and uP, vP, and wP are the Cartesian components 
of the particle velocity. The metric vectors in Equation 5 are de­
fined as 

~ = (~, T\x, {.) (6) 

which are evaluated at the particle position through linear inter­
polation between the values at adjacent grid points. The subscripts 
x, y, and z in Equation 6 indicate partial differentiation with re­
spect to the subscripted variable. At grid points, the metrics ~. 
Ttx, {., ~Y, and so forth are evaluated with second-order· accurate 
finite differences as described by Anderson et al. (35). 

Equations 2 and 5 are two-vector, first-order ordinary differ­
ential equations that can be integrated to determi~e a particle tra­
jectory. Following the example of Crowe et al. (31), Equation 2 
is integrated analytically. Over a small time setup of particle 
travel, the fluid velocity and the particle Reynolds number are 
assumed approximately constant. Integration of Equation 2 then 
yields 

V;+I = vn - (Vn - v;) exp(-D"flt) 

+ _ c (1 -exp(-Dnilt)] 
g V! D" 

where superscripts refer to time level and 

D" = 3pcCo jVn - V;I 
Brppp 

(7) 

(8) 

31 

Equation 5 is integrated numerically with a modified Euler 
scheme (36). The contravariant particle velocity, dtf dt, is first 
calculated at the current particle position and the current time level 
n and then is used to predict the next particle position and con­
travariant velocity at time level n + 1. The particle position is 
advanced using the average of the two velocities 

~;+I : ~; + (d~p) flt 
dt ave 

(9) 

with a time step based on a particle residence time of four steps 
in the current cell. 

Modeling of Rain 

The drop size distribution of natural rain can be approximated by 
Equation 1. For modeling purposes, this continuous spectrum of 
drop diameters is divided into four discrete intervals each of 
length ilDp,i· The number density of raindrops in each interval, 
N(ilDp,;), can be calculated by integrating Equation 1 over the 
interval. Then the average diameter of raindrops in the interval, 
Dp,i• can be determined. 

Particles are entered into the computational domain from dis­
crete locations around the boundary with an initial horizontal ve­
locity equal to the free stream velocity V .. and an initial vertical 
velocity determined by equating the gravity and vertical drag 
forces. Each entry location j has an associated area Aj, so the 
raindrop number flow rate from entry location j for diameter in­
terval ilDp,i can be expressed as 

(10) 

where N(ilDP,;) is the raindrop number density for diameter inter­
val i, and (Vp .. ,i • Aj) is the dot product of the free stream velocity 
of particles of average diameter Dp,i and the normal vector to area 
Aj. Thus for each drop size interval ilDp,i and each entry location 
j, one particle of average interval diameter Dp,i is tracked through 
the domain and has associated with it a raindrop number flow 

rate Nij· 

Interphase Coupling 

Particle drag acts as the momentum coupling between the fluid 
and particulate phases. It is ·explicitly accounted for in the particle 
equation of motion, but a momentum source/sink term must be 
added to the Navier-Stokes equations to account for the particle 
drag effect on fluid motion. The momentum source/sink term is 
determined by tabulating the particle drag throughout the flow 
field. 

Nondimensional particle drag distributions are collected on a 
per volume basis for each grid cell as 

(11) 

where velocities are averaged over the time step, V cen is the non­
dimensional volume of the cell (scaled by the cube of the airfoil 
chord length), the particle drag coefficienct C0 is determined by 
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Equation 3, N;j is the number flow. rate associated with the par­
ticle from Equation 10, and Atp,ij is the residence time of the 
particle in the cell. The bracketed term in Equation 11 represents 
the nondimensional drag force acting on the particle, and the 
sum-is over all particles that traverse the cell for all diameter 
~tervals i and all particle entry locations j. The vector quantity 
Fctrag determined in Equation 11 represents the coupling between 
the air and particle fluids and is subtracted from the right-hand 
side of the Navier-Stokes equations to account for the particle 
effect on fluid motion. 

Splashback Model 

Modeling of raindrop impacts on the airfoil surface presents a very 
complex problem, and little literature exists on the characteristics 
of these types of impacts. Raindrops strike the airfoil at high ve­
locities and at angles varying from perpendicular (high-incidence 

·impact) to nearly tangential (low-incidence impact). Some fraction 
of the mass of the incident drop is splashed back as droplets, and 
the remainder is incorporated into the liquid surface film. The 
fraction of mass splashed back and the diameters, initial velocities, 
and directions of the splashed-back droplets all affect the mo­
mentum sink experienced by the boundary layer. These charac­
teristics of the splash are functions of the incidence angle and 
velocity of the incoming raindrop, and all change during the du­
ration of splash. Obviously, it will be very difficult, if not impos­
sible, to accurately model this phenomenon, so a relatively simple 
model is used. This model captures enough of the major charac­
teristics of the splashback process that it can be used to predict, 
at least qualitatively, a part of the performance degradation ex­
perienced by an airfoil in rain. 

Feo (37-39) has experimentally observed some features of the 
splashback process. The raindrop impact model used in particle­
tracking code and shown in Figure 5 is somewhat loosely based 
on his observations. For a perpendicular impact (13 = 90 degrees), 
5 percent of the mass of the incident drop is splashed back over 
an angular range of 0 = 120 degrees centered about the surface 
normal. Splashed-back droplets have a radius of 10 µm and an 
initial velocity equal to the velocity of the incident raindrop. For 
a tangential impact (13 = 0 degrees), the angular range of splash­
back (0), the initial velocity of the splashed-back droplets, and 

FIGURE S Splashback model. 
Droplets are splashed back over 
an angular range 6, which 
decreases linearly from 120 to 0 
degrees as the incidence angle ll 
decreases from 90 degrees for a 
perpendicular impact to 0 
degrees for a tangential impact. 
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the fraction of the incident drop mass splashed back all go to zero, 
whereas the radius of a splashed-back droplet goes to 50 µm. A 
linear variation is assumed between these two extremes, with the 
splashback always centered about the surface normal. 

RESULTS 

Numerical results are presented for a cruise-configured, 1-m chord 
length NACA 64-210 airfoil at a Reynolds number of Re = 
2.6 X 106 (corresponding to a free stream air velocity of V 00 = 
38 m/sec) and for rainfall rates of 0, 300, 500, and 1000 mm/hr. 
An eddy viscosity turbulence model (32) is activated near the 
leading edge of the airfoil to simulate a turbulent boundary layer. 
Turbulent particle dispersion is not considered. The airflow code 
does not appear to predict stall accurately for flow over the dry 
airfoil, so numerical results are limted to angles of attack below 
the stall angle of attack of 13 degrees determined experimentally 
(9). 

Figure 6 shows plots of lift coefficient (c1) versus angle of attack 
(a) and lift coefficient (c1) versus drag coefficient (cct)· Wind tunnel 
results for the same airfoil at the same Reynolds number are also 
plotted. The numerical results show a decrease in lift and an in­
crease in drag at higher angles of attack, with the penalty becom­
ing more severe as the rainfall rate increases. Very little loss of 
airfoil performance is evident at low angles of attack, indicating 
that the loss is apparently due to premature flow separation. Al­
though the rainfall rates used in the numerical simulations corre­
spond to much lower LWCs than those used in the wind tunnel 
experiments, the performance penalty is larger, probably due to 
inaccuracies in the raindrop splashback model. Thus, the numer­
ical scheme predicts a rain-induced airfoil performance penalty 
qualitatively similar to that measured experimentally, but the mag­
nitude of the penalty is overpredicted. 

Some features of the c1 versus Cct plot shown in Figure 6b are 
worth noting. First, the numerical scheme overpredicts the drag 
determined experimentally somewhat; lift was determined more 
accurately. At higher angles of attack and for a fixed value of ci. 
rain causes an increase in drag. Thus the airfoil is less efficient in 
rain at these angles of attack. Finally, the experimental results 
indicate an increase in drag even at lower angles of attack that is 
not exhibited in the numerical results. This may be due to the 
effectively rougher airfoil surface, which is not modeled in the 
numerical scheme. 

Figure 7 shows streamline patterns around the airfoil at the 
highest rainfall rate of 1000 mm/hr. For a rainfall rate of 1000 
mm/hr, there is no separation at an angle of attack of 4 degrees, 
but at 8 degrees a separated region has formed near the trailing 
edge of the airfoil. When the angle of attack is increased to 12 
degrees, massive separation has occurred on the upper surface of 
the airfoil and the airfoil appears to have stalled. In the absence 
of rain, there is no obvious separation of the flow at any angle of 
attack up to 12 degrees. A similar pattern could be seen for in­
creasing rainfall rates at a constant angle of attack; as the rain 
increases in intensity, a separated region will grow, and the airfoil 
may eventually stall. 

These results show a rain-induced airfoil performance penalty 
exhibited by a decrease in lift and an increase in drag. The per­
formance penalty results from premature flow separation and is 
more severe at higher rainfall rates and higher angles of attack. 
Although the performance loss determined numerically shows the 
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FIGURE 6 Numerically determined plots of lift (cJ and drag (cJ 
coefficients for various rainfall rates in mm/hr with corresponding LWC 
shown in g/m3

• Experimental results (9) are shown for comparison 
purposes. 

same overall patterns that have been observed experimentally, it 
is greater in magnitude. 

CONCLUSIONS 

A particle-tracking code for an arbitrary curvilinear coordinate 
system has been developed and incorporated in a two-way mo­
mentum coupled scheme to numerically evaluate the performance 
degradation of an airfoil in heavy rain. Results show a rain­
induced performance loss due to premature flow separation, al­
though the magnitude of the loss is overestimated relative to ex-

perimental measurements. However, the method shows promise 
for development of a more accurate predictive tool for the eval­
uation of airfoil performance in rain. 

Some recommendations for further research are as follows: (a) 
numerical experiments to study the effect of variations in the 
splashback model and possibly improve it, (b) revision of the 
airflow code or incorporation of a different code into the scheme 
so that stall and poststall behavior are more accurately predicted 
for the dry airfoil (and presumably for the airfoil in rain also), 
and ( c) inclusion of the effective increase in airfoil roughness due 
to a water film. Variation of parameters in the model may help in 
the understanding of the splashback process and its role in airfoil 



34 

a} 

b} 

c) 

FIGURE 7 Numerically determined 
streamlines around an airfoil for a rainfall 
rate of 1000 mm/hr showing the increasing 
separation of the flow as the angle of attack 
(a) is increased: (a) a = 4 degrees, (b) a = 8 
degrees, aQd (c) a = 12 degrees. Without 
rain, no obvious separation occurs at these 
angles of attack. 

performance loss. To more accurately model the splashback pro­
cess, experimental or analytical studies of the splashback process 
may be required. The apparent inability of the airflow code to , 
accurately predict stall. and poststall behavior is a problem, since 
premature stall is an important rain effect on airfoil performance. 
Finally, since the airfoil performance degradation in rain is ap­
parently largely due to two effects, the boundary layer momentum 
loss to splashed-back droplets studied here and the effectively 
rougher airfoil surface, it may be useful to include both phenom­
ena in the model. 

It may also be advisable to educate pilots on the detrimental 
effect that very intense rain can have on aircraft performance. 
Although there seems to be an effort to train pilots in microburst 
avoidance and recovery techniques, the effect of the heavy rain 
that often accompanies a microburst appears to be largely 
overlooked. 
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