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Evolution of Network Flows Under Real­
Time Information: Day-to-Day Dynamic 
Simulation Assignment Framework 

TA-YIN Hu AND HANIS. MAHMASSANI 

A day-to-day dynamic framework, in which the DYNASMART simu­
lation assignment model was applied to evaluate the performance of 
traffic networks, was developed to study network dynamics under dif­
ferent information systems. Two levels of tripmaker decision-making 
processes are identified: (a) day-to-day dynamics and (b) real-time 
dynamics. Day-to-day dynamics consider the choices of departure time 
and route according to indifference bands of tolerable "schedule delay" 
defined as the difference between the user's actual and preferred arrival 
times~ Real-time dynamics consider en route switching decisions. 
Numerical experiments were conducted to investigate the day-to-day 
evolution of network flows under real-time information and assess the 
effectiveness of such information in a proper dynamic perspective. 

Advanced traveler information systems (A TIS) and advanced 
traffic management systems provide a variety of capabilities to 
alleviate traffic congestion in urban networks by strengthening the 
connection between traffic control and available information (/). 
The evaluation of such information-based systems has been con­
cerned primarily with the potential of this information to redistrib­
ute flows spatially over the network during the peak period on a 
given day (2-4). However, real-time information can also induce 
changes in time of departure, leading to temporal redistribution of 
the flows. Such effects tend to take place over several days. In other 
words, although the ability of real-time information to affect 
en route switching is well recognized, its potential effect on the 
day-to-day decisions of departure time and route remains to be 
investigated systematically. A key question is how tripmakers make 
decisions on the basis of experienced or received information, or 
both. Although the importance of learning processes in such sys­
tems has been recognized (5-8), consideration of such processes 
needs to be incorporated into the effectiveness of analysis and eval­
uation of information systems. 

This paper describes a day-to-day dynamic simulation assignment 
framework to study the interaction among individual decisions, traf­
fic control strategies, and network flow patterns under real-time 
information systems. The framework integrates two previous lines 
of investigation, namely (a) day-to-day forecasting methods for 
commuter systems, previously considered only in a corridor context 
and without en route real-time information (9), and (b) time­
dependent assignment-simulation modeling for networks with gen­
eral topology under real-time ATIS in the form of DYNASMART 
(10). The resulting methodology is applicable to general networks 
with detailed representation of traffic processes, including traffic 
control actions, and provides a tool for forecasting the day-to-day 

Department of Civil Engineering, University of Texas at Austin, Austin, 
Tex. 78712. 

evolution of the system under various information policies, network 
supply actions or control strategies. System users are represented 
individually in the model, and their daily decisions of route and 
departure time (and possibly mode) provide the principal mechanism 
governing day-to-day evolution. Similarly, user decisions in 
response to information, both en route and pretrip, are also repre­
sented individually. As such, this framework provides an illustration 
of an operational dynamic demand_ forecasting tool on the basis of 
microsimulation of individual tripmaking decisions (although traffic 
interactions are modeled using macroscopic relations). 

The next section presents the day-to-day dynamic simulation 
assignment model framework and DYNASMART. The algorithmic 
procedure and experimental design and numerical results are 
discussed, and concluding comments follow. 

DAY-TO-DAY DYNAMIC SIMULATION 
ASSIGNMENT FRAMEWORK 

Given the focus on peak-period network flows, the framework 
considers primarily the variation in route and departure time in the 
context of commuting trips to work, for which tripmaker behavior 
rules for day-to-day decisions have been calibrated in previous 
work. Extensions to consider noncommuters and nonwork trips are 
conceptually straightforward in terms of overall framework, 
although appropriate individual decision rules for these situations 
remain to be developed. 

Consider a network G(N,A) consisting of a set of nodes N con­
nected by the set of directed arcs A. Suppose user i intends to go from 
origin r to destinations and arrives at his or her preferred arrival time 
(PAT;), 'Vi ED, the set of all drivers. PAT; reflects inherent prefer­
ences and risk attitudes of commuter i, as well as the characteristics 
of the work place. In this paper, PAT; is assumed fixed for a given 
tripmaker; however, it could be generalized and varied through 
appropriate behavior models to reflect flexible work schedules. The 
selected departure time j;_1+ 1 and route k;,1+1 for driver i on Day 
t + 1 are the outcomes of its decision-making process, described as 

where 

k; 1+1 = selected route for driver ion day t + 1 
i 1+ 1 = selected departure time for driver ion day t + 1, 
f,.(.) = route choice decision-making process function, 

(1) 

(2) 
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fd1(.) = decision-making process function for departure time, 
X; = vector of driver characteristics, 

Zi.t = vector of endogenous information characteristics for 
driver i up to day t, 

Y;, 1 = vector of exogenous information characteristics for 
driver i up to day t, and 

e,., edt = parameter vectors to be calibrated. 

The choices of departure time and route of tripmaker i on day t + 1 
depend on individual tripmaker characteristics, endogenous infor-. 
mation from personal experience, and exogenous information from 
traffic control centers. 

The aggregated departure time decisions of all users determine a 
three-dimensional time-dependent origin-destination (OD) matrix; 
the route choices determine the spatial distribution of flows over the 
peak period. The time-dependent OD matrix and the initial route. 
assignment form the major input for DYNASMART, in which indi­
vidual en route decisions are represented. Within the simulation 
period, tripmaker i equipped to receive in-vehicle information makes 
en route decisions according to his or her own behavioral character­
istics and information received about prevailing traffic conditions in 
the network. Let 0;, 11. 1 denote a binary indicator that is 1 when driver 
i switches to a new path 1 at node n from the current path and 0 oth­
erwise; 0;, 11, 1 can be determined by the user's characteristics, knowl­
edge of the paths at node n, Zu(n) and new information about path 
from node n to his or her destination and is expressed as 

0;,11,1 = f,[ X;, Zi.t(n), Yi.t(n)l0s] (3) 

where 

Zi.t(n) = endogenous knowledge of driver i at node non day t, 
Yu(n) = exogenous information for driver i at node n on day t, 
f. (.) = en route path-switching function, and 

es = parameter vector, to be calibrated. 

As a consequence, the flow pattern in the network on day t, F1, 

resulting from a time-dependent OD, initial path selections for day 
t, and en route path-switching decisions can be expressed as 

F1 = flow1 (ki.t, j;_1, O;,,,,i. 'V; E D and n E N) (4) 

Endogenous and exogenous information Z;,1 and Yu can be written as 

where 

(5) 

(6) 

J,, (.) = endogenous information acquisition function, 
fr (.) = exogenous information provision function, 

and 
Cr.1+ 1 and Cs.1+ 1 = route control and signal control on day t + 1. 

Z;. 1 and Yi.t are then used in Equations 1 and 2 to determine the depar­
ture time and initial route on day t + 1. Note that the control actions 
C.1+1 and C.1+1 on day (t + 1) are generated with knowledge by the 
controller on traffic conditions associated with flow pattern F1 on 
day t. The whole process takes place in a recursive form. Naturally, 
the complexity of the interactions depicted earlier precludes ana­
lytic solution of system performance descriptors. 
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Information Systems 

Information types and flow for different types of user classes within 
this framework are defined to illustrate the possible interaction 
between them. Vehicles (i.e., users) are differentiated into equipped 
and nonequipped classes on the basis of their ability to communi­
cate in real time with a central controller. Nonequipped vehicles do 
not receive real-time information and are assumed to follow the ini­
tial path selected before their departure. Although users in this class 
do not make decisions on the basis of in-vehicle real-time informa­
tion, they can still respond to exogenous information supplied 
through variable message signs. Equipped vehicles communicate 
with the controller, and their drivers can therefore make decisions 
on path selection en route. 

Information strategies can be categorized into two general types: 
descriptive and normative. Descriptive information, currently the 
most common type used or proposed, provides tripmakers with cur­
rent traffic conditions through different communication channels. 
Tripmakers can use this information to make their own travel deci­
sions, independently of other users' decisions. On the other hand, 
normative information delivers instructions aimed at achieving 
some systemwide objectives. Information can be experienced by 
travelers or collected by control centers by probes, detectors, or 
equipped vehicles, or all of these. 

A fundamental problem is what actions drivers might make on 
the basis of different information types. In the day-to-day dynamics 
context, studies that have explicitly dealt with this aspect have 
relied on a convenient Markovian assumption, whereby the antici­
pated travel time on a given day is assumed to be equal to its actual 
value on the preceding day only (11-13.) Horowitz (14) proposed 
to model the predicted trip time on day t as a weighted sum of all 
previous days' trip times. Empirical investigation of this issue is 
limited. Mahmassani and Chang (15) and Tong et al. (16) have cal­
ibrated departure time adjustment rules in which the predicted travel 
time is based on the driver's own previous experience as well as 
exogenous information. The calibrated models show that the influ­
ence of travel time on the immediately preceding day, TR;,i-i. is 
much greater than that of TR;, 1- 2 (experienced 2 days previously). 
Functional forms of how information is processed can thus be gen­
eralized as the weighted sum of all previous days' information and 
different assumptions on tripmaker behavior can be reflected by 
varying the relative weights. 

Day-to-Day Dynamic Choice Behavior 

The behavior component within the day-to-day framework 
addresses the selection of route and departure time in accordance 
with individual attributes and received information. The theoretical 
underpinnings of the model are grounded in Simon's well-known 
notion of bounded rationality, applied to commuter day-to-day deci­
sions of departure time and route in work by Mahmassani and 
Chang (J 7, 18). Essentially, the model is founded on the simple 
notion that if tripmakers are not satisfied with their previous selec­
tions, they will seek to select a new route or adjust their departure 
time, or both. Satisfaction is implemented on the basis of "indiffer­
ence bands" of tolerable schedule delay (relative to one's preferred 
arrival time). 

This decision process consists of two levels, as indicated in Fig­
ure l. The first level is concerned with acceptability of the conse-
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FIGURE 1 Day-to-day dynamic analysis procedure. 

quences of the latest choices, vis-a-vis the indifference bands; the 
second level is used to select an alternative conditional on the deci­
sion to switch taken at the first level. Previous studies have shown 
that arrival time is of major concern to commuters and have sug­
gested that an indifference band of tolerable "schedule delay," 
defined as the difference between the actual arrival time (AT) and 
the preferred arrival time (PAT) for a given tripmaker, is the pri­
mary mechanism governing the day-to-day responses of commuters 
to congestion. In their daily commute, tripmakers are assumed to 
maintain the choice as long as they can tolerate the associated 
earliness or lateness relative to PAT. 

if 0 ::::; ESD;, ::::; EBDi1 or - LBD;, ::::; LSD;, ::::; 0 
otherwise 

if 0 ::::; ESD;, ::::; EBR;, or - LBR;, ::::; LSD;, ::::; 0 
otherwise 

(7) 

(8) 

where 

'Yu = departure-time switching binary indicator, equal to 1 if 
switch, 0 otherwise; 

A.;.1 = route choice indicator, equal to I if switch, 0 otherwise; 
ESD;.1 =early schedule delay, equal to Max(PAT;,1-1 - ATi.1-1' 

0); and 
LSD;,,= late schedule delay, equal to Max(ATi.t-I - PATi.t-1' 0). 

There are four possible combinations of departure time and route­
choice switching decisions, corresponding to the combinations of 
values for the pair ('Y;.1, A.u). Note that EBO. and LBD are the respec­
tive departure time indifference bands of tolerable schedule delay 
corresponding to early and late arrivals for day t, and EBR and LBR 
denote the early and late indifference bands governing route switch­
ing. Because the indifference bands are latent terms, internal to each 
individual, and therefore can be neither observed nor measured 
directly, the indifference bands are treated as random variables, 
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distributed over days and across commuters with systematically 
varying mean values (9). 

The second level in Figure 2 is the selection of an alternative, 
which could be a new departure time, a new route, or both, condi­
tional on the decision to switch. Several rules, based on different 
behavioral assumptions, can be applied in the individual selection 
process. In this study, alternative selection is based on a simple util­
ity maximization process. Two particular models, proposed by 
Small (19) and Hendrickson and Plank (20), respectively, are used 
in the numerical experiments. 

DYNASMART Simulation Assignment Model 

DYNASMART is a descriptive analysis tool for the evaluation of 
information supply strategies, traffic control measures, and route 
assignment rules at the network level (2,4,21,22) The model is 
designed around a flexible structure that provides sensitivity to a 
wide range of traffic control measures for both intersections and 
freeways, capability to model traffic disruptions as a result of inci­
dents and other occurrences, and representation of several user 
classes corresponding to different vehicle performance characteris­
tics (e.g., cars verses trucks), access to physical facilities (e.g., high 
occupancy vehicle lanes), different information availability status, 
and different behavioral rules. 

The framework of DYNASMART is shown in Figure 2. The 
approach integrates traffic flow models, path processing method­
ologies, behavioral rules, and information supply strategies into a 
single simulation assignment framework. The input data include a 
time-dependent OD matrix (or a schedule of individual departures) 
and network data. Given the network representation, the simulation 
component will take a time-dependent loading pattern and process 
the movement of vehicles on links and the transfers between links 
according to specified control parameters. These transfers, which 
are determined by path processing and path selection rules, require 
instructions that direct vehicles approaching the downstream node 
of a link to the desired outgoing link. The user behavior component 
is the source of these instructions. 

DYNASMART uses established macroscopic traffic flow 
models and relationships to model the flow of vehicles through a 
network. Whereas macroscopic simulation models do not keep 
track of individual vehicles, DYNASMART moves vehicles indi­
vidually or in packets, thereby keeping a record of the locations and 
itineraries of the individual particles. This level of representation 
also has been referred to as "mesoscopic." Multiple user classes of 
different vehicle performance characteristics are modeled as pack­
ets, consisting of one or more passenger car units; for instance, a 
bus is represented by a packet with two (or other user-specified val­
ues) passenger car units. The traffic simulation consists of two 
principal modules: link movement and node transfer, as described 
previously (4,22). 

One of the principal features of DYNASMART that allows it to 
interface with activity-based behavioral models is its explicit repre­
sentation of individual tripmaking decisions, particularly for path 
selection decisions, both at the trip origin and en route. Behavioral 
rules governing route choice decisions are incorporated, including 
the special case in which drivers are assumed (required) to follow 
specific route guidance instructions. Experimental evidence pre­
sented by Mahmassani and Stephan (23) suggested that commuter 
route choice behavior exhibits a boundedly rational character. This 
means that drivers look for gains only outside a threshold, within 
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which the results are satisfying and sufficing for them. This can be 
translated to the following route switching model (2): 

{
I s. = 1,n.l 0 

where 

if TTC;(n) - TTB;(n) > max[11; · TTC; (n), T;] (9) 
otherwise 

8;.11, 1 = binary indicator variable of I when user i 
switches from current path to best alternate 
I and 0 if current path is maintained; 

TTC;(n), TTB;(n) = trip times along current path and along best 
path from node k to destination on current 
path, respectively; 

'l]; = relative indifference threshold; and 
'T; = absolute minimum travel time improvement 

needed for a switch. 

The threshold level may reflect perceptual factors, preferential 
indifference, or persistence and aversion to switching. The quantity 
11; governs users' responses to the supplied information and their 
propensity to switch. The minimum improvement 'T; is currently 
taken to be identical across users. Efforts are under way to calibrate 
these parameters from the results of laboratory experiments. 

ALGORITHMIC STEPS OF 
DAY-TO-DAY DYNAMIC MODEL 

Day-to-Day Dynamic Algorithm 

The conceptual framework of day-to-day dynamics was discussed 
in the previous section. The procedure, as shown in Figure 3, can be 
summarized as follows: 

• Step 0: Initialization. Generate vehicles' attributes and histor­
ical paths. Obtain a set of paths from origin r to destination s for 
each discrete departure time interval, denoted as P~··"" Also, each 
driver i will be assigned a set of simulation attributes, S;, and a set 
of behavior attributes, B;. Set iteration counter I = 1. 

• Step l: Network loading. For each driver i, assign a pathp from 
r to s, p; E P~··" an initial departure time, and a loading location, i.e., 
a generation link. For each day, the number of vehicles for each time 
interval DT and for each path RK, denoted X(DT,RK), is generated 
to form a three-dimensional matrix over both space and time. 

• Step 2: Traffic simulation. Simulate network performance dur­
ing peak period under given demand pattern using DYNASMART. 
Obtain an updated vehicle file, additional path files (if any diversion 
rule is applied), and time-dependent travel time information for 
links and movements. 

• Step 3: Information update. Update the historical path infor­
mation in terms of travel time, add new paths, or delete obsolete 
paths from the historical path file. 

• Step 4: Day-to-day behavior: indifference bands. Calculate the 
departure time and route choice indifference bands for the driver i 
according to B;. Determine values of the switching indexes 'Yu and 
A;.1 'V; for all given t. 

• Step 5: Convergence test. If convergence criterion is satisfied 
(the current flow pattern is stable), stop. Otherwise, continue. 

• Step 6: Selection of departure time and route. If the outcomes 
of 'Yu and A;.1. are (1,0), (0, I), or (1, l ), update departure time and 
route choice according to B;. 
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• Step 7: Resequence and feedback. Resequence vehicles 
according to their departure time. Obtain a time-dependent OD 
matrix. Set I = I + 1 and go to Step 1. 

To overcome the problem of an arbitrary starting point, the ini­
tial set of paths is system optimal in terms of minimizing total trip 
time and is obtained using an algorithm recently developed by 
Mahmassani and Peeta (24), for the given time-dependent demand 
pattern. The vehicle file and the historical path file are used and 
updated through the whole simulation period. Currently, for each 
discrete departure time for each OD pair, up to 10 paths are stored 
and dynamically updated in terms of travel time for each path. All 
the path travel times are updated by combining recent travel time 
information with "historical" information, as follows: 

T-1 

PT(T,r,s,j,k) = I w(t) · PT(t,r,s,j,k) (10) 
t=I 

where PT(t,r,s,j,k) is the path travel time for day t on route j at 
departure time k, and Lw(t) is 1 and can be used to express the rel­
ative importance of historical travel time. Currently, the particular 
values used for w(T - 1) = 1, and w(T - 2) = 0. 

Convergence Concept: BRUE 

The boundedly rational user equilibrium (BRUE) concept proposed 
by Mahmassani and Chang (/ 5) was applied in this study as the 
convergence concept. A BRUE arises in a system when no user is 
compelled to change his or her current selection, which he or she 
considers satisfactory in a boundedly rational sense. In this context, 
this corresponde~ to all users' arrival times falling within their 
respective departure time and route indifference bands. The partic­
ular operational definition adopted in the simulation experiments 
required at least a certain fraction, say 90 percent, of tripmakers to 
be satisfied with their current decisions. 

EXPERIMENTAL DESIGN 

Numerical experiments were performed to illustrate the day-to­
day dynamic framework and to explore the evolution of a traffic sys­
tem in response to different information supply strategies under dif­
ferent assumptions. The primary concerns of these experiments were 
(a) the dynamic evolution of the system, (b) congestion formation 
and dissipation, and (c) effectiveness of real-time information. 

Traffic Characteristics 

The network structure indicated in Figure 4 was used in these exper­
iments. It consists of 50 nodes and 168 links and includes 10 demand 
zones with 32 origins and 10 destinations. Each link is 0.25 mi (0.4 
km) long. The freeway links have a free-flow speed of 55 mph and 
all other links have a 30-mph ( 48-kph) mean free speed. The maxi­
mum bumper-to-bumper and jam densities are assumed to be 260 
and 160 vehicles per mile (approximately 152 and 100 vehicles per 
kilometer), respectively, for all links of the network. With regard to 
intersection signal control, 26 nodes have pretimed signalization, 8 
have actuated signal control, and the rest have no signal control. The 
pretimed signals have a 60-sec cycle length with two phases, each 
with 26 sec of green time and 4 sec of amber time_. The actuated sig-
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nals have 10 sec of minimum green time and 26 sec of maximum 
green time for each phase. In these experiments, signal control 
parameters are assumed fixed. The OD matrix D has a total number 
of 9,634 vehicles for a period of 25 min (8:05 to 8:30 a.m.) in the 
first day from 32 origins to 10 destinations. Time of departure is dis­
cretized into 40 intervals of 1 min between 8:00 and 8:40 a.m. 

Models of Departure Time and Route Switching 

The particular models applied in this dynamic analysis were cali­
brated by Jou et al. (25) using survey data from the Dallas, Texas, 
area. Tripmakers in that survey had an average travel time of 23.5 
min. Because the average trip time in the simulation experiments is 
much smaller, the indifference bands given by the models are 
adjusted by the average travel time in the simulation experiments. 
The indifference band for departure time selection is as follows: 

IBDTit = ~ 1 [initial bands] 
[socioeconomic 
component] 

+ ~2AGE; + ~3GENDER; 

[dynamic component] 

[myopic component] 

[unobserved component] 

(11) 

where 

~" ... , ~6 = estimated parameters; 
AGE, GENDER = individual's characteristics; 

NF AIL;, = number of unacceptable early and late arrivals 
until day t; 

8 TR;, = difference between travel times of commuter 
i on day t and t - 1 ; 

8DT;1 = departure time that commuter i has adjusted 
between day t and t - 1; 

3;1 = binary indicator variable equal to 0 if DTit 
= DT;1- 1; otherwise 1 ; and 

Eit = error term for commuter i on day t. 

The values of the estimated parameters are indicated as follows: 

Early Late 

131 23.26 17.82 
132 7.61 4.51 
133 -5.59 -6.57 
134 5.49 4.36 
13s 1.16 0.78 
136 4.17 2.98 

The calibrated indifference band for route choice is as follows: 

IBRC;1 = ~1 

where 

+ ~2STDTR;1 
+ ~3NFAIL;1 
+ T;r 

[initial bands] 
[dynamic component] 
[myopic component] 
[unobserved component] 

~" ... , ~3 =estimated parameters, 

(12) 

STDTR;1 = standard deviation of travel time up to day t, and 
T;1 = error term for commuter i on day t. 
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FIGURE 4 Network structure. 

The values of the estimated parameters are indicated as follows: 

Early 

27.22 
8.87 
8.95 

Late 

18.76 
4.37 
9.13 

Models of Departure Time and Route Selection 

Two particular models, proposed by Small (19) and Hendrickson and 
Plank (20), are used. The specification of the functional form proposed 
by Small can be summarized in the following equation: 
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4 

6 

8 

Uu = -0.106TRu - 0.065SDEu - 0.254 SD Lu 
- 0.58D1Lu + Eu 

where 

(13) 

Uu = measure of utility or "attractiveness" of trip characteris­
tics for individual i and altemativej; 

SDE = max { - SD,O}, early schedule delay for individual i 
under alternative j; 

SDL =max {SD,O}, late schedule delay, 
DlL = late dummy variable of 1 if SD 2::: 0, and 0 otherwise; 
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SD = schedule delay, arrival time minus official work start 
time (min); and 

TR = travel time (min). 

The originally calibrated utility function was based on 363 obser­
vations from four suburban areas and included constant terms for 
mode, such as drive alone, shared ride, and transit automobile. Some 
terms in the function are not applicable in this study; therefore, a 
modified utility function without those terms is used, as follows: 

UiJ = -0.021TRiJ - 0.00042SDEiJ - 0.148 SDLiJ 
+ 0.0014 SDL2 +Eu (14) 

All the variables are the same as those listed earlier. In this 
particular expression, late arrival incurs a high penalty. 

NUMERICAL RESULTS 

The numerical results are discussed in three parts. The first part · 
describes the evolution of daily flows in the base case. The results 
of two random utility maximization models are discussed in the sec­
ond part. The last part discusses the impact of real-time information 
in the day-to-day dynamic flow patterns, followed by a brief 
discussion of computational results. 

Base Case 

In the base case, all vehicles are assumed to be nonequipped (to 
receive real-time information), but to have access to path informa­
tion from the preceding day's experience. Starting with a uniform 
loading pattern, the day-to-day dynamic flow patterns of Days 1,2, 
and 14 are indicated in Figure 5. The temporal loading pattern on 
the first day begins with a uniform profile, starting from 8:05 to 
8:30 a.m. (Note: time 0 in the figure corresponds to 8:00 a.m.; the 
work start time is 8:30 a.m. or Time 30). However, a peak devefops 
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·from day to day. On Day 14 (final state), fewer than 10 percent of 
vehicles are still not satisfied with their current selection; the asso­
ciated pattern indicates that most drivers want to arrive at their 
preferred arrival time instead of being uniformly distributed along 
the whole time span. The fact that the dynamic flow pattern shifts 
dramatically from Day 1 to Day 2 indicates the unreasonableness of 
the initial uniform load spreading assumption. As expected, peak­
period congestion forms because most tripmakers do not wish to 
arrive too early or too late in relation to their scheduled work time. 
Although the dynamic flow pattern tends to shift to a higher peak in 
this case from Day 2 to Day 14, this does not mean that all vehicles 
will select the same departure time in the final steady state. In the 
base case, the number of vehicles departing at the peak 5-min inter­
val is about 700 vehicles for Day 2 and 1,010 vehicles for Day 14, 
an increase of about 50 percent. 

The peaks shift from Time 28 of Day 2 to Time 22 of Day 14. 
Experiencing congestion, most of the drivers choose to leave ear­
lier, although a few of them choose to leave later to avoid the con­
gestion. In the process of adjusting to satisfy the schedule delay con­
straint, drivers collectively generate more serious congestion, as 
implied by the higher peak. Although demand managers and traffic 
control centers seek to spread the demand in a smoother pattern, 
drivers have a tendency to collectively create a peak-period flow 
pattern. If this is representative of what happens in actual systems, 
in-vehicle information systems probably can only shift or raise the 
peak instead of eliminating it altogether. 

Average travel time (A TT) and average stopped time (AST) from 
day to day are indicated in Figure 6. While starting from a system­
optimal solution point, drivers experience longer travel time and 
greater stopped time from day to day to arrive at their preferred 
arrival time. The overall average travel time doubles, from about 
2.5 to 5.0 min. However, the travel time after Day 11 tends to reach 
a maximum limit. 

Variation of daily time-dependent concentration is indicated in 
Figure 7. The figure provides a clear picture of system convergence. 
Although about 10 percent of vehicles are still seeking better alter­
natives, the system does not change because of those slight varia-

~ 1 
~ 2 
-0---- 14 
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FIGURE 5 Variation of day-to-day dynamic flow patterns (Days 1, 2, and 14) for 
base case. 
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FIGURE 6 Comparison of A TT and AST of day-to-day dynamic 
flows for base case. 

tions. It is evident that a traffic system with a fixed traffic control 
strategy can always absorb slight variations of demand pattern with­
out this causing additional congestion. 

Random Utility Maximization Models 

The previous results were based on experiments performed with 
Hendrickson and Plank's modified model described earlier. Similar 
experiments were conducted using Small's model. The results ·Indi­
cated in Figure 8 depict similar patterns in terms of the evolution of 
dynamic flow, switching percentage, and system-wide average 
travel time. The results suggest that different random utility models 
might have a similar effect as long as they can capture the relative 

.§ -f -i::: 
~ 1 
= 0 
u 

0 10 20 30 

magnitudes of the travel time and schedule delay. In other words, 
the day-to-day evolution patterns appear robust vis a vis the under­
lying choice models. 

Effectiveness of Real-Time Information 

The effectiveness of real-time information is evaluated from day 
to day for different market penetrations _of equipped vehicles 
(Table 1). Nonequipped vehicles must continue along their assigned 
initial path set. However, if equipped vehicles are satisfied with 
their new paths, they are assumed to use the paths as their initial 
paths. In this set of experiments, three levels of market penetrations, 
10, 25, and 50 percent, and two real-time behavior assumptions, 
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FIGURE 7 Variation of time-dependent network concentration from day to day for 
base case (1 km = 0.6 mi). 
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FIGURE 8 Comparison of day-to-day flow patterns with different utility models. 

namely, myopic and boundedly rational behavior with a threshold 
of 0.2 and a minimum bound of 0.5 min, are considered. These tests 
are termed info-10, info-25, info-50, info-10-b, info-25-b, and info-
50-b. Real-time information provides path information for equipped 
vehicles switching en route; in the meantime, the new experienced 
paths are collected and added into the path file for all vehicles to use 
for the next day. In brief, this case is termed "info-50-np," which 
means new path information is collected through equipped vehicles 
and distributed to all the tripmakers. 

General Flow Dynamics 

The evolution of day-to-day dynamic flow patterns is similar to that 
of the previous cases. Therefore, the results are summarized in 
Table 1 instead of in the figures. The results show that similar pat­
terns are reached in the final steady state, although with different 
peak heights, in spite of different assumptions. The peak-period 
flow pattern indicates that most drivers wish to depart closer to their 
work schedule times in spite of the congestion. It is surprising to 
note that real-time information has an insignificant effect on 
improving the formation of the peak pattern; on the contrary, such 

information apparently can lead to raising the peak, reducing the 
travel time, and shifting the peak toward the work start time. 

With real-time information, the peaks of all the info cases shift 
toward the work schedule time. The gap between the base case and 
info- I 0 is about 3 min, more than 50 percent of the travel time in these 
experiments. The info-50 case not only shifts the peak by 3 min but 
also raises the peak to about 1, 100 vehicles. Although the increase of 
the peak is not quite significant, it offers insight int~ how drivers 
respond to real-time information through their day-to-day dynamic 
choices. These shifts imply that real-time information improves 
drivers' understanding of the traffic system, so trip makers select late 
departure times without delaying their arrival time. In other words, the 
information system may lead to a reduction in travel time, but the traf­
fic system compensates by attracting more tripmakers to use the facil­
ity and maintain the same level of service. Such phenomena are not 
quite clear in traffic systems and need some validation from field tests. 

Real-Time Information Paths 

The comparison is made for the info-50 case and the info-50-np case. 
The loading patterns of the final state (Day 12 for info-50 and Day 

TABLE 1 Summary Statistics of Effectiveness of Real-Time Information Experiments 

1 llcm = 0.6 mi. 
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19 for info-50-np) in both cases have a similar shape, but the peak in 
the info-50-np case is earlier than that of the info-50 case. This early 
peak implies that vehicles have an earlier departure time to satisfy 
their indifference bands in the evolution of the info-50-np case. To 
maintain the same level of convergence, more days are required for 
info-50-np, probably because of the higher level of congestion. 

The execution time of the model on a CRAY YMP for the test 
network (50 nodes and 168 links) takes about 110 sec/day, includ­
ing the input/output time from module to module. 

CONCLUDING COMMENTS 

The analysis of information-based traffic systems needs to consider 
tripmaker behavior, flow patterns, and traffic control systems. In 
this paper, two levels of tripmaker decision-making processes are 
identified: (a) day-to-day and (b) real-time dynamics. Day-to-day 
dynamics considers drivers' choices of departure time and route 
according to indifference bands of tolerable "schedule delay." Real­
time dynamics is incorporated within DYNASMART to simulate 
driver's real-time en-route switching behavior. Flow patterns are 
obtained by simulating vehicle movement in the network, whereas 
traffic control systems update flow information or control strategies. 

The day-to-day dynamic simulation-assignment framework 
presented in this paper provides a practical tool for the evalua­
tion of network flows and associated performance measures in 
information-based traffic systems. The methodology allows inves­
tigation of a wide variety of alternatives and provides fundamental 
insights into the performance of traffic networks under a variety of 
assumptions on information availability and user behavior. 

Naturally, the numerical results presented here should be inter­
preted with caution, given the limited set of experiments and the 
nature of the test network and associated conditions. Nonetheless, 
the results provide useful insights into actual traffic systems. It is 
also notable that the impact of the real-time information is mani­
fested in several ways: reduces travel time, raises the peak, and 
pushes the peak toward the work schedule time. 
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