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Foreword 

he papers in this volume are from the 1995 Annual Meeting of the Transportation Research Board 
nd were peer reviewed by the TRB Committee on Traffic Flow Theory and Characteristics. 

The study of the relationships among traffic flow characteristics and flow models is fundamental to 
raffic operations and is the subject of considerable interest as a result of the development of intelli­
ent transportation systems. 

Readers with an interest in traffic flow models and characteristics will find papers pertaining to re­
ationships among traffic speed, flow, and concentration; neural network modeling of the macroscopic 
elationships between traffic flow variables; microscopic models for traffic operations at the individ­
al vehicle level; the analysis of day-to-day variations in real-time traffic flow data for providing in­
ehicle real-time information on traffic conditions; and the validation of traffic simulation networks. 

The use of traffic flow theory for control applications in real-time. advanced traffic management 
ystems is the focus of the last series of papers. Included are papers on an event-based traffic flow 
rediction model for real-time traffic-adaptive signal control, estimation of intersection turning 
ovements, arterial incident detection, and deceleration behavior and prediction models. 

v 





TRANSPORTATION RESEARCH RECORD 1510 

Another Look at A Priori Relationships 
Among Traffic Flow Characteristics 

JAMES H. BANKS 

Past derivations of a priori relationships among speed, flow, and con­
centration (such as the fundamental relationship and the speed-flow­
occupancy relationship) have involved unrealistic assumptions of uni­
formity in at least one traffic flow characteristic. Several relationships 
are derived for which these assumptions of uniformity are relaxed. For 
relationships involving both time- and distance-based variables, this 
requires that the relationship be understood in probabilistic terms; 
where all variables are time-based, deterministic relationships are also 
possible. The fundamental relationship can be shown to be strictly true 
in the limit where the time and distance intervals over which measure­
ments are taken approach 0. Where the order of arrival of vehicles with 
particular speeds is random, the fundamental relationship is found to 
hold for average values of the variables in question; this is also true if 
the section over which density is measured is empty at the beginning 
and end of the time interval used for averaging. Relationships derived 
under various other assumptions involve covariance terms, so that if 
particular variables are not correlated, simple relationships continue to 
hold. Where these variables are correlated, biases may be expected. 
Under certain conditions, these biases may be quite serious. Compari­
son of the relationships derived here with those of past empirical stud­
ies results in good agreement for the relationship between density, as 
estimated from the fundamental relationship, and occupancy. On the 
other hand, previously reported discrepancies between measured speeds 
and speeds calculated from flows and occupancies cannot be explained 
fully by the covariance terms in the relationships derived here. 

The study of relationships among the traffic flow characteristics 
speed, flow, and concentration (either density or occupancy) has 
long been a fundamental part of traffic research. In general, two 
types of relationships among these variables are possible: a priori 
relationships, which proceed from the definitions of the various 
measures, and empirical relationships, which can be discovered 
only by observing actual traffic flow. 

Not surprisingly, the bulk of the literature focuses on empirical 
elationships. The major a priori relationships were worked out 
arly in the history of traffic flow research and have been little 
xamined since. They have often been taken for granted and used 
reely to transform data from one form to another or to move back 
nd forth among the three possible bivariate relationships involving 
peed, flow, and concentration. Nevertheless, several recent studies 
y Hall et al. have raised questions about the accuracy and applica­
ility of these relationships (J-4). These studies have also presented 
ata that appear to contradict them to some extent and have sug­
ested using three-dimensional empirical models that are indepen­
ent of them. 

The relationships in question include the so-calledfundamental 
elationship: 

= uk (1) 

epartment of Civil Engineering, San Diego State University, San Diego, 
alif. 92182-1324. 

where 

q =flow, 
u = speed, and 
k =density. 

A similar relationship exists among speed, flow, vehicle length, and 
occupancy: 

u = qL 
H 

(2) 

where L represents vehicle length and H occupancy, defined as the 
fraction of time that vehicles are present at a point. The classical 
derivation of Equation I is that of Wardrop (5). Equation 2, which 
most commonly has been used to estimate speeds from flow and 
occupancy data, was proposed by Athol (6). 

Since the use of these relationships (especially Equation 1) has 
been pervasive in traffic flow theory, confirming major inaccuracies 
in them could have far-reaching consequences. The purpose of this 
paper is to reexamine the validity of these relationships, extend their 
derivations to address certain oversimplifications, and consider the 
possible reasons for apparent discrepancies between them and 
actual data, particularly those reported by Hall and Persaud (J). 

FUNDAMENTAL RELATIONSHIP 

Theoretical objections to the fundamental relationship (Equation 1) 

arise from the distinction between relationships that hold true for 
uniform traffic streams (those with constant, identical speed and 
spacing for all vehicles) and those that hold for averages of the char­
acteristics of nonuniform traffic streams. In addition, the funda­
mental relationship involves both time- and distance-based vari­
ables, which may be incompatible with one another in nonuniform 
traffic streams. 

.Point Relationships Among Traffic Flow 
Characteristics 

The version of Equation 1 presented here implicitly assumes a uni­
form traffic stream and under that assumption can be derived easily 
by means of dimensional analysis. It can also be shown to be true at 
a point, if all measures are regarded as continuous variables. This 
approach to its derivation makes use of a three-dimensional surface 
proposed by Makigami et al. (7). If vehicle trajectories are plotted 
and numbered (with some adjustments in cases in which vehicles 
pass one another), the trajectories may be considered as the contour 
lines of a surface of cumulative flow versus time and distance. For 



2 

such a surface to exist, it must be possible to smooth out the discrete 
steps in the actual cumulative vehicle function, so as to treat it as 
continuous. Where this is a reasonable simplification, the partial 
derivative of the cumulative vehiCle function A(x,t) with respect to 
time represents flow, that of A with respect to distance represents 
density, and that of distance with respect to time represents the 
speed of a vehicle at an instant of time. That is, 

k =()A 
dx 

and 

dx 
u=-

dt 

Then, since 

it follows that 

q = uk 

Nonuniform Flow over Long Time Intervals 

(3) 

(4) 

(5) 

(6) 

Obvious problems with these derivations are that (a) real traffic 
streams are never truly uniform and, under some conditions (con­
gested flow, for instance), are far from being even approximately 
uniform; and (b) point measures of traffic characteristics such as 
flow and density have theoretical meaning only. To apply to more­
realistic models of the traffic stream, derivations of the fundamen­
tal relationship must be able to relate average values of the traffic 
flow variables, measured over more extended times and distances. 

A possible way of doing so is to further consider the traffic flow 
surface proposed by Makigami et al. (7). Consider two locations Xi 

and x2 such that there are no entrances or exits between them. Plots 
of the cumulative numbers of vehicles passing these two points 
result in the functions A(x, i. t) and A(x2, t). Now consider a time 
interval T that begins when the section between Xi and x 2 is empty, 
continues so long as vehicles are present in the section, and ends as 
soon as the section is empty again. Figure 1 shows plots of A(x, i. t) 
and A(x2, t) for time interval T. At any given time N(t) vehicles are 
p_resemin~t.Qe section. The average number of vehicles in the sec­
tion at any time is 

N = f: N(t)dt 
T 

and the average density is 

k = J: N(t)dt 
(X2 - Xi )T 

(7) 

(8) 

The total flow exiting the section during time Tis A(x~, T), which, 
under the preceding assumptions, is also the total flow entering, or 
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A(xi. T). The average flow, then, is 

_ A(xz, T) 
q=--­

T 
(9) 

Finally, the total time consumed by all vehicles in the section is 

J: N(t)dt 

so that the average time required for a vehicle to cross the section is 

_ s~· N(t)dt t =;:._o:__.:.....;__ 

A(x2 , T) 

and the harmonic mean or space mean speed is 

il = Xz - Xi A(x2 , T)(x2 - Xi) 

s f 

Substituting kT for 

g N(t)dt 

X2 -XI 

J: N(t)dt 

and qT for A(x2, T) results in 

(10) 

(11) 

(12) 

Note that the assumption that the section is empty at both the 
beginning and end of period Tis necessary for this relationship to 
be strictly true. In the absence of this assumption, the total travel 
time does not represent the sum of the travel times across the entire 
section for any particular group of vehicles; consequently, us would 
be at best an approximation. In cases in which Tis long relative to 
t, this may not be important, but in the extreme case in which T 
approaches 0, the average speed used in Equation 11 would be 
meaningless. Also, A(xi ,T) would not equal A(xi,T), so that q would 
be defined ambiguously. Again, if A(xi.T) is approximately equal to 
A(x2,T), this may not be important, but over short time intervals the 
difference is apt to be fairly large, especially in congested flow. 

Wardrop's Derivation 

A second approach to deriving the fundamental relationship for 
nonuniform flow is that of Wardrop. This classical derivation 
relaxes the assumptions of uniform speeds and densities by assum­
ing instead that the traffic stream is composed of a set of subsidiary 
traffic streams. Within each stream, speeds of all vehicles are iden­
tical and constant with respect to time and distance, but vehicle 
spacings are random. Wardrop's subsidiary streams thus represent 
a discrete approximation of the speed distribution. From these 
assumptions, Wardrop shows that if each traffic stream i has speed 
u; and flow q;, the characteristics of the traffic streams may be com­
bined to give 

q = usk (13) 
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FIGURE 1 Cumulative flow versus time at two locations. 

where q and k are the overall flow and density of the traffic stream 
and u.1. is the harmonic mean or space mean speed. 

Uncongested Flow: Speed Independent of Flow 

A close look at Equation 13 shows that it is not exactly correct, since 
q and k cannot be uniform quantities if vehicles are spaced ran­
domly. Instead, q and k must. be intended to be averages or expected 
values. More important, the assumption of a discrete speed distrib­
ution is unrealistic. To relax this assumption, however, it is neces­
sary to confront a fundamental difficulty that arises because of the 
combination of time and distance-based variables in the fundamen­
tal relationship. 

Density is most properly measured by counting the number of 
vehicles present in a section of known length at an instanl of time. 
The presence of any given vehicle in the section at this instant, how­
ever, is dependent on the exact time that it entered the section as 
well as its average speed across it. There can be no deterministic 
relationship among speed, flow, and density for nonuniform traffic 
streams because flow conveys only the average time between the 
arrival of successive vehicles at a point, not the exact time that each 
vehicle arrived. 

Under certain assumptions of randomness, this difficulty can be 
circumvented by formulating the relationship in probabilistic terms. 
The resulting relationships must be understood to hold only among 
the average or expected values of the variables when repeated sam­
ples are taken, not for the measured values of any given sample. In 
the case of uncongested flow, it may be reasonable to assume a con­
tinuous speed distribution that is nearly independent of flow, espe­
cially over short periods of time, and for which the order of arrival 
of vehicles with given speeds is random. 

Consider a traffic stream with an average flow rate ofq over some 
period of time. Flow during this same period is also characterized 
by a speed distribution with a probability distribution function p(u ). 
If vehicles arrive at random, and the speeds of individual vehicles 
are independent of one another, the probability that a vehicle with 
speed u' is present in a section of length X at any instant is propor­
tional to Xlu', the amount of time that the vehicle spends in the sec­
tion. Note that, to be strictly correct, the speed in question should 

be the average speed of the vehicle across the section, not its spot 
speed at any point. Thus the probability of detecting a vehicle with 
any given speed is 

(14) 

For the entire traffic stream, the expected number of vehicles pre­
sent in a section of length Xis 

E(N) = qX t p(u) du 
u 

(15) 

The lower bound of the integral is shown as 0 on the assumption that 
negative speeds do not occur; this is not important, however, as long 
as it is understood that the integral of p(u) from 0 to infinity is 1.0. 
Expected density, in turn, is the expected number of vehicles in the 
section divided by the length of the section, or 

k- _ E(N) _ -f= p(u) 
- X -q 0 --du 

u 
(16) 

For a continuous speed distribution, however, space mean speed is 
defined as 

- 1 u =----
s t p(u) du 

(17) 

u 

so that Equation 6 becomes 

(18) 

Consequently, it can be shown that the fundamental relationship 
also holds between space mean speed and the arithmetic means of 
flow and density in cases in which speed distributions are continu­
ous, so long as the order of arrival of vehicles with given speeds is 
random. 
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Congested Flow: Cyclic Speed-Flow Variation 

In congested flow, the assumption of random arrivals is unlikely to 
be valid. Instead, what is usually observed is a pattern of waves 
moving upstream. Flow moving through these waves is character­
ized by alternating periods of acceleration and deceleration and is 
often called stop-and-go traffic. The behavior of such waves is not 
very well understood, although there is literature, both theoretical 
and empirical, related to them ( 8-12). In any case, however, speeds, 
flows, and densities in congested flow appear to be strongly corre­
lated with one another. 

At one extreme, the wave pattern might be assumed to consist of 
a series of identical waves with periods T and wave lengths X. 
Under that assumption, the relationship among speed, flow, and 
density is affected by the length of the section over which density 
is measured. Suppose, for instance, density is defined over the 
waves' length X and flow over their period T. In this case, both the 
number of vehicles present in the section and the amount of time it 
takes each vehicle to cross the section are constants, since flow is 
always identical at both boundaries of the section. The density in 
this case is k = qTIX and the speed is u = X/T, so that 

(19) 

Note, however, that k and u are constants only if measured over 
X (or some integral multiple thereof). For distances less than X, they 
vary, and for distances much less than X, they fluctuate widely. 
Under these conditions, Equation 19 is no longer valid. 

Consider a traffic stream consisting of a series of identical 
waves with period T. At any instant t, there is an instantaneous 
flow rate q(t) arriving at some point in a section oflength X (which 
is less than the wave period) and an average speed across the sec­
tion of u(t). The speed u(t) (as measured over distance X) varies 
less than the spot speed measured at any point in the section, but 
it still varies and is correlated with q(t), the flow passing the point 
at time t. The probability of detecting a particular vehicle in a sam­
ple taken at a random instant is proportional to the amount of time 
that the vehicle spends in the section. In this case, this time is 
given by 

x 
u(t) 

(20) 

and, since the cycle repeats itself over T, the probability of detect­
ing the vehicle that passed the point at t is 

x 
Tu(t) 

(21) 

Since the number of vehicles passing the point at tis given by q(t)dt, 
the expected number of such vehicles to be detected is 

! q(t)dt 
T u(t) 

(22) 

Note that in any given sample, the q(t)dt vehicles passing the point 
t are either in the section or not; Expression 22 gives the average 
number of such vehicles that would be detected in repeated samples. 
The expected total number of vehicles detected in any given sam­
ple may be found by integrating over t: 
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E(N) = ! r q(t) dt 
T 0 u(t) 

(23) 

Once again, the expected density is the expected number of vehi­
cles in the section divided by X, or 

k = !JT q(t) dt 
T o u(t) 

(24) 

Now let A represent the reciprocal of speed, so that A(t) = 1/u(t) 
and A = llus. Also, let q(t) be replaced by q + [q(t) - q] and A(t) 
by A+ [A(t) - A], where q and A are the mean values of q and A. 
Equation 24 may now be rewritten as 

k = t J: {q + [q(t)- q]}{A + [A(t)- X]}dt (25) 

Expanding Equation 25 results in 

k = J: qAdt +A J: [q(t)-q]dt + q J: [A(t)- A]dt 
T T T 

+ J: (q(t_)- q][A(t)-A]dt 

T 
(26) 

By definition, however, 

J:[q(t)- q]dt = 0 (27) 

J:[A(t)- A]dt = 0 (28) 

and 

(29) 

where er qA is the covariance of flow and the reciprocal of speed. 
Equation 26 may now be rewritten as 

- qAT q 
k = -- + (j qA = =- + (j qA 

T U 5 

(30) 

Let the estimated density that would be ~alculated by dividing flow 
by space mean speed be represented by k = q I U5 • Then, from Equa­
tion 30, 

(31) 

In congested flow, speeds and flows tend to be correlated positively; 
consequently, the covariance of flow and the reciprocal of speed 
should be negative. This means that in congested flow characterized 
by a uniform wave pattern, the actual expected density should be 
less than that estimated by dividing average flow by space mean 
speed, where us is defined over a distance less than the wave length. 

The assumption of identical waves is, of course, not very realis­
tic [see, for instance, the wave plots by Koshi et al. (JO)]. It is far 
more likely that wave periods, wave lengths, and amplitudes (in 
terms of speed, flow, and density) vary in some irregular pattern. 
This affects the preceding derivation primarily in that it is no longer 
sufficient to integrate over the period of a single wave, as in Equa-
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ti on 23; instead, if the traffic stream is assumed to exhibit long-term 
averages of speed and flow, the period of integration should be long 
enough to allow these averages to be approached. The fundamental 
relationship thus appears to hold approximately for nonidentical 
waves, provided traffic flow characteristics tend toward long-term 
averages and are averaged over sufficiently long periods. 

Density Calculated from Measured Speed and Flow 

Equation 31 gives a relationship between the expected value of den­
sity, as measured over an extended section of roadway, and density 
calculated as the ratio of flow to space mean speed. Because true 
density data are hard to obtain, one common use of the fundamen­
tal relationship has been to calculate density from measured speeds 
and flows (13). In a number of empirical studies of speed-density 
or flow-density relationships, the "density" data were actually the 
estimatek rather than measured densities. 

It is clear such densities are not based on conditions measured 
over extended sections of roadway; rather, this type of density may 
more nearly represent the reciprocal of the average distance head­
way between successive vehicles in the vicinity of a point. This 
quantity will be referred to as "inverse-spacing density" and the 
symbol ks used to designate it. 

The inverse-spacing density k.,, unlike k, is a time-based variable. 
That is, it is measured over time at a point in space or, more liter­
ally, over a comparatively short distance. Consequently, relation­
ships involving speed, flow, and inverse-spacing density avoid the 
difficulties that arise from combining time-based and distance­
based variables. As a result, it is possible to derive relationships that 
hold for the measured values of the variables for particular samples, 
rather than just for expected values obtained in repeated samples. 

The relationship between k and inverse-spacing density may be 
derived as follows. Let X; be the distance that vehicle i has traveled 
from some point at the instant vehicle i + 1 reaches the point, and 
t; be the time elapsed between the time vehicle i passes the point and 
the time vehicle i + I passes it. Time t; for vehicle i is given by 

X· 
t; = _!_ = X;A; 

U; 

( 32) 

For a total of N vehicles passing the point, the average flow is 
defined as 

- N 
q=-

LJi 

Then the estimated density k is given by 

! A - NA 
k=qA=~ 

£...x;A; 

(33) 

(34) 

Now, in a procedure similar to that used to derive Equation 20, let 
x; be replaced by x + (x; - x) and A; be replaced by A+ (A; -A). 
Then 

A NA 

k = I,[x +(xi -x)][A: +(Ai -A)] 

NA 

= I[xA: +x(Ai -A)+ A(xi -x)+(xi -x)(Ai -A)] 

NA 

5 

In this case, L (A - A;) = 0, L (x; -X) = 0, and crxA = L[(x;- x) 

X (A; -A)]IN, so Equation 35 may be rewritten as 

A k=----
XA + axA 

If axi\ = 0, 

A 1 
k=­

x 

(36) 

(37) 

This indicates that if there is no correlation between the vehicle 
spacing and the speed of the individual vehicles (so that the covari­
ance of x and A is 0), the estimated density is indeed the reciprocal 
of the distance spacing of the vehicles in the vicinity of the 
point of measurement. In reality, however, vehicle spacing and the 
reciprocal of speed are expected to have a negative correlation, 
especially in congested flow; consequently, k tends to over­
estimate inverse-spacing density as well as density measured over 
a section. 

This tendency is somewhat counteracted in cases in which the 
average speed used in the calculation is the time mean speed rather 
that the space mean speed. In that case 

(38) 

Since space mean speed is always less than time mean speed, the 
first term is always less than 1.0; however, the extent to which this 
counteracts the negative covariance term in the denominator is 
uncertain. 

OCCUPANCY-BASED RELATiONSHiPS 

The relationship among speed, flow, occupancy, and vehicle length 
given by Equation 2 most commonly has been used to calculate esti­
mated speeds from flows and occupancies. For uniform traffic 
streams, Equation 2 (like Equation 1) can easily be derived by 
dimensional analysis. In his classical derivation of the speed-flow­
occupancy relationship, Athol assumes a uniform vehicle length I 
and proceeds to show that under this assumption, 

H=q[ 
u,,. 

or, in the more familiar form used in Equation 2, 

- q[ 
u =­

s H 

(39) 

(40) 

Hall and Persaud (1) question the validity of this relationship for the 
realistic case in which vehicle lengths vary within the traffic stream; 
they also present data that are incompatible with it, although the 
speeds in the data in question are time mean speeds rather than 
space mean speeds. 

The effect of nonuniform vehicle lengths may be incorporated in 
the derivation of the speed-flow-occupancy relationship as follows. 
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Let the speed estimate calculated from flow and occupancy be u. 
Then Equation 40 becomes 

~ q[ 
u=-

H 
(41) 

where L now represents the average effective vehicle length, con­
sisting of the sum of the detector length and the vehicle's electrical 
length, which is related, but not identical, to its physical length. It 
is assumed that the effective length of an individual vehicle L; is 
independent of the speed of the vehicle as it passes the detector, 
although it may, of course, vary from vehicle to vehicle. Under this 
assumption T;, the time that vehicle i "occupies" the detector, is 
given by 

r; = !:J. = L;A; 
ll; 

and occupancy, if measured over time interval T, by 

'r· 'LA H = _£,..,_1 = _£,..,_1_1 
T T 

Flow, meanwhile, is defined as 

(42) 

(43) 

(44) 

where N is the total number of vehicles passing the detector during 
time T. Equation 41 may now be written as 

(45) 

By a derivation similar to that of Equation 36, the denominator of 
Equation 45 can be shown to equal N(LA + aLA), so that it may be 
rewritten as 

u=----
A+ a~A 

L 

(46) 

If effective vehicle lengths are not correlated with the reciprocal of 
vehicle speeds, the covariance term is 0 and Equation 46 reduces to 

~ 1 -
U =A= Us 

(47) 

In cases in which speeds and vehicle lengths are correlated, how­
ever, the speed estimate calculated from flow and occupancy is not 
the same as the space mean speed. If there is a correlation between 
Land A, it should be positive, since larger vehicles normally would 
be assumed to have smaller speeds and hence larger values of A. 
Consequently, u may be an underestimate of the space mean speed. 

A rough idea of the bias resulting from the covariance term may 
be gained by assuming a traffic stream composed of two distinct 
types of vehicles, one large and slow and the other small and fast. 
By this means it can be shown that for conditions typical of non­
congested urban rush hour traffic on relatively flat roads (small per­
centage of trucks, relatively small difference in speed between 
trucks and other vehicles) the bias should be small, but that on steep 
grades with substantial truck traffic it should be quite significant. 
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For instance, for a traffic stream consisting of 95 percent passenger 
cars with effective lengths of 7 m and speeds of 85 km/hr and 5 per­
cent trucks with effective lengths of 22 m and speeds of 70 km/hr, 
Ur = 84.25 km/hr, Us = 84.09 km/hr, and u = 82.45 km/hr. On the 
other hand, for a traffic stream consisting of 80 percent passenger 
cars with effective lengths of 7 m and speeds of 85 km/hr and 20 
percent trucks with effective lengths of 22 m and speeds of 40 
km/hr, Ur = 76.00 km/hr, Us= 69.39 km/hr, and u = 56.86 km/hr. 

DENSITY-OCCUPANCY RELATIONSHIP 

Another relationship of interest is that between density and occu­
pancy. Athol ( 6) shows that if it is assumed that vehicles are of uni­
form length and that the fundamental relationship holds, this rela­
tionship is 

H=kL 
(48) 

If Athol' s assumptions are relaxed, the relationship may be derived 
as follows for occupancy and point density. From Equation 43, 

'LA-H=-£,..,_1_1 
T . 

Meanwhile, 

Substituting Equation 50 into Equation 49, 

H = LL;A; 
LX;A; 

(49) 

(50) 

(51) 

By logic similar to that used in deriving Equations 36 and 46, it can 
be shown that 

H = L A + cr LA ks ( L A + cr LA 

xA + crxA A+ kscr LA 
(52) 

If both a LA and axA equal 0, 

(53) 

which is identical to Athol's result. As argued previously, if the 
covariances are not 0, a LA should be positive and axA should be neg­
ative; consequently, where either covariance is not 0, H should be 
greater than ks L, and the relationship between H and ks should be 
nonlinear. 

Equation 52 gives the relationship between occupancy and 
inverse-spacing density. A more interesting comparison may be that 
between density estimate k and occupancy, since these have com­
monly been the concentration measures used in empirical studies of 
speed-concentration and flow-concentration relationships. By defi­
nition, the estimated density is k = qA. Meanwhile, combining 
Equations 41 and 46 leads to 

qL 

H - crLA 
A+-=­

L 

(54) 
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Cross-multiplying, 

-(- (j LA) A_ H = qL A + I = kL + qcr LA (55) 

Since CJ'LA is assumed to be positive, H should also normally be 
greater thank I. Of the two covariances, however, uLA is more likely 
to be negligible (except in certain obvious situations such as steep 
upgrades) than is uxA; hence, the relationship between Hand k is 
more likely to be nearly linear than is that between H and k.1 .• 

EMPIRICAL EVIDENCE 

A few studies have attempted to verify some of the a priori rela­
tionships among speed, flow, and concentration. These include 
comparisons of occupancy with density by Koshi et al. (JO) and 
Athol (6) and comparisons of measured speeds with speeds esti­
mated from flows and occupancies by Hall and Persaud (I). 

Koshi et al. compare occupancies with densities calculated from 
double-loop data from Tokyo expressways. These densities were 
thus (presumably) calculated as measured f19w divided by mea­
sured average speed, which would result in what has been referred 
to here as k, provided that the speed data were reduced as space 
mean speed. They found the relationship to be slightly nonlinear, 
with a negative second derivative of H with respect to k. 

Athol compares occ~pancy with what he calls accumulation, 
which also turns out to be k, and both occupancy and accumulation 
with what he calls aerial density (density defined over a section, k 
in the present notation; Athol calls this aerial density because it was 
measured from aerial photographs). Athol found good agreement 
between H and k and plotted a linear relationship between them, 
although the data could possibly indicate a nonlinear one. Plots of 
either Hor k versus k were badly scattered, however, especially that 
of k versus k. 

Hall and Persaud compare measured speed with speed calculated 
from flow and occupancy (u in the present notation) and find major 
discrepancies between the two, especially for very high and very 
low occupancies. In general, their data show that if reasonable val­
ues of I are assumed, Ct will significantly overestimate true speed 
at very low occupancies and underestimate most of the range rep­
resenting congested flow. 

The experiment actually performed by Hall and Persaud was to 
!calculate a term g, defined as 
I 

g = _!]__ 
uH 

(56) 

This term corresponds to l/L in Equation 41; however, since speeds 
in their data are measured in kilometers per hour and occupancies 
in percent, the equivalent average effective vehicle lengths in 
meters are given by I = 10/g. In addition, the speeds used in the 
calculation were time mean rather than space mean speeds. 

Hall and Persaud present plots of mean values of g versus H for 
various locations; Figure 2 is a reproduction of one of these plots. 
The plots indicate that mean values of g for the very lowest occu­
pancies ranged from 1.8 to 2.4, with the average being about 2.2 for 
the four locations. Values of g for most of the rest of the uncon­
gested regime are near 1.4 or 1.5, and those for the very highest 
occupancies (between 70 and 80 percent) range from about 0.3 to 
0.6, with an average of perhaps 0.5. The values of g for the higher­
volume uncongested regime correspond to a value of I of about 
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FIGURE 2 Reproduction of plot of mean values of g versus H 
(1, Figure 2). 

7 m, which is credible; those for heavily congested flow, however, 
correspond to I o( 20 m, which is not. 

The overestimates of speed at very low occupancies are related 
to data reduction practices. The traffic management system in ques­
tion reported occupancies in whole percentages and truncated these 
to the next lowest whole percent. This practice led to the large 
biases at very low flows (F. L. Hall, unpublished data). 

For data taken at high occupancies, biases might result from 
either the covariance term or the difference between time mean and 
space mean speed. It is unlikely that the covariance term was very 
large, however, because the data were taken in the median lane at 
sites for which trucks were excluded from this lane. This was done 
to reduce the variance of both speeds and vehicle lengths. 

The relationship between time mean and space mean speed was 
shown by Wardrop (I) to be 

(57) 

where 

(58) 

Substituting for CJ'~ in Equation 57 and simplifying gives 

(59) 

as a general relationship between the two. From Equation 59, it may 
be seen that the difference between space mean and time mean 
speed will increase as the dispersion of the speed distribution 
increases and that even a very small number of very low speeds 
could bias the relationship significantly. From this, it may be con­
cluded that the bias will be greatest in heavily congested traffic, but 
it is difficult to tell how large it might be in any given case. 

One past attempt to quantify the relationship between time mean 
and space mean speed is that of Drake et al. (14), who found the 
following relationship: 

Us= -1.88960 + l.02619-Ur (60) 

where speeds are in miles per hour. Drake goes on to comment that 
the maximum difference in the two averages is about 3 km/hr (1.9 
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mph) at zero speed, a conclusion that proceeds directly from the 
regression equation. This is certainly much smaller than the bias 
reported by Hall and Persaud, although, since the relationship is not 
linear, Drake may have understated the bias at very low speeds. In 
any case, the discrepancies found by Hall and Persaud appear larger 
than can be accounted for by the known biases. This raises the pos­
sibility that there may have also been counting or data reduction 
errors under congested conditions, although it is not clear what 
these might have been. 

CONCLUSIONS 

Previous derivations of a priori relationships among speed, flow, 
and concentration variables have assumed that certain features of 
the traffic stream are uniform. In the case of relationships among 
speed, flow, and density, either speeds or vehicle spacings (some­
times both) have been assumed to be uniform. It has been shown 
that, for the fundamental relationship, these assumptions can be 
relaxed provided that the relationship is understood in probabilistic 
terms. For relationships involving only time-based terms, these 
assumptions can also be relaxed in deterministic cases. 

Where the order of arrival of vehicles with particular speeds is ran­
dom, it has been shown that the fundamental relationship applies to 
average values of the variables in question. Where there are cyclic 
variations in speeds and flows resulting from waves in congested 
flow, the expected relationship among speed, flow, and density in­
volves the covariance of flow and the reciprocal of speed and should 
vary depending on the relationship between the length of the wave 
and of the section over which density is measured. For the relation­
ship among speed, flow, and what has been called inverse-spacing 
density (the reciprocal of the average distance separations of vehicles 
in the vicinity of a point), relaxation of the assumptions of uniform 
speed or uniform spacing leads to a relationship involving the covari­
ance of vehicle spacing and the reciprocal of speed. For the relation­
ship among speed, flow, vehicle length, and occupancy, relaxation of 
the assumption of uniform vehicle length leads to a relationship 
involving the covariance of vehicle length and the reciprocal of speed. 
It has further been shown that the relationship between inverse­
spacing density and occupancy contains both of these covariance 
terms, but that the relationship between occupancy and density esti­
mated from flow and measured space mean speed contains only the 
covariance of vehicle length and the reciprocal of speed. 

These findings imply that simple relationships among speed, flow, 
and concentration variables hold a priori not only in cases in which 
particular variables are uniform (which is almost always unrealistic), 
but also in cases in which certain variables are not significantly cor­
related with one another. For the relationship among speed, flow, and 
occupancy, this is an important advantage, since the covariance of 
vehicle length and the reciprocal of speed is not likely to be of prac­
tical significance except in certain easily identified circumstances 
such as steep grades with considerable truck traffic. For relationships 
including inverse-spacing density, the covariance term involving 
spacing and the reciprocal of speed is likely to be fairly large, espe­
cially in congested traffic. This need not be a major problem, how­
ever, since inverse-spacing density is not a very useful measure oth­
erwise, and it can be shown that density estimated from flow and 
measured speed should agree closely with occupancy, except in 
cases in which speeds and vehicle lengths are strongly correlated. 

Comparison of the relationships derived here with empirical 
studies of the relationship between occupancy and density esti­
mated from flow and measured speed indicates good agreement. In 
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the case of the empirical data in Hall and Persaud' s study of speeds 
calculated from flows and occupancies, on the other hand, there are 
large discrepancies, both in cases in which occupancies were very 
low and in most of the congested-flow regime, where they were 
relatively high. Those involving very low occupancies were due 
to data reduction techniques. Those involving data from the 
congested-flow regime may to some extent be due to the difference 
between time mean and space mean speed or to the covariance term 
identified here; however, the magnitude of the discrepancy appears 
to be too large to be explained by the combined effects of these two 
sources of bias. This situation raises the possibility that there may 
have also been counting or data reduction errors under congested 
conditions, although it is not clear what these might have been. 

The a priori relationships examined here have commonly been 
used for calculating speed estimates by traffic management systems 
and as a basis for studying empirical relationships among traffic flow 
characteristics. Given the nature of the relationships for nonuniform 
flow, it appears that the use of the flow-speed-occupancy relation­
ship to estimate speeds and transform variables in empirical studies 
should be valid in all but a few cases-provided that flows and occu­
pancies are measured accurately. This is certainly true for uncon­
gested conditions. For heavily congested conditions, it should also 
be true provided speeds are reduced consistently as space mean and 
the correlation between vehicle lengths and speeds is small. Given 
the results of Hall and Persaud' s study, however, the accuracy of the 
measurements should not be taken for granted. 
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DISCUSSION 

MICHAEL CASSIDY 

University of California, Berkeley, 109 McLaughlin Hall, Berkeley, 
Calif. 94720. 

This paper is based on the premise that the equation q = vk is valid 
only for a limited range of flow conditions such as stationary con­
ditions where all families of vehicle trajectories are parallel, 
equidistant, and of constant speed. Yet, Edie (J,2) provided defini­
tions of flow, speed, and density so as to guarantee the validity of 
this equation for all traffic conditions. To resolve this apparent con­
tradiction, we apply Edie's definitions in a manner consistent with 
earlier experiments performed by Hall and Persaud (3), which 
served as motivation for the present paper. 

We visualize on a time-space plane a rectangular region A of spa­
tial dimension L, the distance separating paired loop detectors (6 m), 
and temporai duration T, the count interval (30 sec). An instant at 
time t within rectangular region A is itself a region (i.e., a "slice") 
of spatial dimension L and elemental time duration dt. Density at 
time t is conventionally defined as n/L, the number of vehicles 
within region A at time t divided by the segment length. Equiva­
lently, density can be expressed as (n·dt)l(L·dt), the ratio of the total 
time spent by all vehicles in the slice corresponding to time t to the 
"area" of the slice. As our original rectangular region A is composed 
of elementary slices, it makes sense to define density in region A as 
t(A)l(L· T), where the numerator is the total time spent by all vehi­
cles in A. This is Edie's generalized definition of density. Given that 
region A is a rectangle composed of elementary slices of fixed 
"area" L·dt, this generalized definition is simply the average den­
sity over time. 

We exchange the roles of space and time and next visualize a sin­
gle point at location x within rectangular region A. This point 
defines a region of duration T and elemental spatial dimension dx so 
that flow can be expressed as (n·dx!T·dx), the total distance traveled 
by all vehicles crossing point x divided by the "area" of the slice 
corresponding to this point. As region A is composed of elementary 
slices of "area" T ·dx, it makes sense to define flow in A as 
d(A)l(L· 1), where the numerator is the distance traveled by all vehi­
cles in A. Again, this is Edie's generalized definition of flow; it 
reduces to the conventional definition when A is taken to be a slice 
of spatial dimension dx and temporal duration T. 
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As we have now defined these measures, dividing flow by den­
sity results in d(A)/t(A), which can be taken to be a definition of an 
average velocity in region A. This was proposed by Edie, and with 
his definitions, the equation q = vk is always valid. 

The expression evaluated by Hall and Persaud (3) is 

occupancy/tr= flow/v 

where tr is mean effective vehicle length and vis mean speed. This 
can likewise be shown to be true by definition provided measure­
ments of v are the generalized ones because the left-hand side can 
be shown to be Edie's generalized definition of density and the con­
ventional definition of flow appearing in the right-hand side coin­
cides with the generalized one. [When correlations exist between 
vehicle length and speed, le must be an average value occurring over 
space. When traffic is not stationary, occupancy measured at a point 
in space over time (i.e., by a detector) is not equivalent to a spatial 
measure of road occupancy. We anticipate addressing these issues 
at some future date.] Reported discrepancies can be explained by 
methods used for averaging observations. Edie's definition of aver­
age speed can be computed using the arithmetic mean of trip times 
between two points (e.g., paired detectors) or as the harmonic mean 
speed of vehicles passing a single point (e.g., detector) when con­
ditions are stationary. There is no reason to expect av calculated in 
a different manner to satisfy the relation. 
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AUTHOR'S CLOSURE 

I wish to thank Mr. Cassidy for calling attention to work by Edie, 
which I probably should have mentioned. It is, however, just one 
more in a long series of efforts to make the fundamental relation­
ship work by imposing special conditions or (in this case) by adopt­
ing unnatural definitions of the variables. Strictly speaking, none of 
Edie's variables can actually be measured, although they can be 
fairly closely approximated under the conditions Cassidy outlines. 
Certainly, they are not the conventional definitions of t~e variables 
in question. The thrust of my paper was to acknowledge (and in 
some cases elaborate on) these special cases while at the same time 
determining the nature of the discrepancies that result when con­
ventional definitions of the variables are used. 

In the case of Hall and Persaud, the special case proof is inter­
esting, but it does not address the practical concern underlying their 
work. The occupancies they were concerned with were measured 
over time, and the traffic flow was not stationary. Also, given that 
the flows were not stationary, none of the possible measures of 
speed available to them really conformed to Edie's definition. 
Given that situation, I believe that it makes sense to ask whether the 
biases introduced by the nonstationary traffic stream account for the 
discrepancies they observed. I am not so sure that it makes sense to 
try to define a relationship that is a priori true but involves variables 
that are unlikely ever to be measured in practice. 
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The paper deals with the fundamental traffic flow relationships and 
the problems that basically local measurement techniques cause in the 
analysis of these relationships with some section wide variables. 

I have three main comments on the paper. The first is that it is 
hard for me to understand why the writer, who clearly wants to chal­
lenge some basic traffic flow theory paradigms, fails to give precise 
definitions for his variables in each case of analysis. This vagueness, 
I believe, is also the reason for some errors that can be found in the 
equations that he derives. In addition to that, the vague definitions 
can cause misinterpretations of correct results. 

My second comment is that the writer does not at all describe the 
most general definitions of the three basic traffic flow variables 
(J,2), which guarantee that the fundamental flow relationship is 
valid for any kind of traffic (congested, uncongested, random, uni­
form, etc.) in any time-space domain XT (X being the space axis and 
T being the time axis). 

These definitions are as follows: 

• Traffic flow q = the amount of vehicle-kilometers of travel (S) 
in the domain divided by the area of the domain, that is, 

s 
q= XxT 

• Traffic density k = total vehicle-hours of travel (TT01 ) in the 
domain divided by the area of the domain, that is, 

k = TTot 

XxT 

• Space mean speed of traffic u = total vehicle-kilometers of 
travel in the domain divided by the total vehicle-hours of travel in 
the domain, that is, 

s 
u=--

TTot 

From these definitions it can easily be seen that the fundamental 
flow relationship q = u X k is valid for the time-space domain in 
question. The derivation of these relationships is given for example 
by Leutzbach (2). 

So, in theory, traffic flow variables can be measured in a way that 
is in accordance with the fundamental flow relationship. The prob­
lems arise from our inability to measure the variables simultane­
ously in time and space. 

My third comment is related to Equations 20 through 31 in the 
paper. In this part of the paper the writer develops equations for a 
time-space domain TX in a cyclic flow situation. His derivations 
leading to Equation 24 are correct. This equation gives the defini­
tion of traffic density averaged over the time-space domain. It can 
easily be seen that his result is in accordance with the above given 
general definition, that traffic density equals the amount of vehicle 
hours in the time-space domain divided by the area of the domain. 
In Equation 24 only division by time is needed, because the deriva­
tion of the equation already averaged the value over the space axis. 

In Equations 25 and 26 the writer makes some basically correct 
mathematical manipulations of Equation 24 to develop it further. 
But then he makes a major error in the definition of space mean 
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speed, given in the form of the reciprocal of speed, in Equation 28. 
According to that equation the mean travel time in the domain is the 
average value of travel time A(t) over the time axis without consid­
eration of the number of vehicles traveling within the travel time in 
question. The error can be seen from the following equations, the 
first being the one given in the paper and the second the correct one 
(in two equivalent forms). 

f ~[ A(t)- A]dt = 0 (Equation 28) 

- r q(t)A(t)dt I s T -
A= 0 

T ory. 
0
[q(t)A(t)-qA]dt=O (correctform) 

f 0 q(t)dt 

When Equation 28 is replaced with the correct one, the calculations 
based on Equation 26 result in a simple identity (i.e., Equation 25). 

On the basis of Equations 25 and 27 and the correct equation for 
mean travel time given above, one can easily see that the funda­
mental flow relationship holds for this situation and no correction 
term is needed in the calculation of density. 
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AUTHOR'S CLOSURE 

I wish to thank Pursula for pointing out the mistake in Equation 28 
and calling attention to work by Edie and Leutzbach, which I prob­
ably should have mentioned. In the case of Equation 28, his version 
is the correct one, and the consequence is indeed that the correction 
term disappears. This leads to the somewhat more satisfying con­
clusion that the fundamental relationship holds without bias for 
cyclic flow, regardless of the relationship between the wavelength 
and the distance over which density is measured. 

The work by Edie and Leutzbach is of historical interest and 
should have been cited. It is, however, just one more in a long series 
of efforts to make the fundamental relationship work by imposing 
special conditions or (in this case) by adopting unnatural definitions 
of the variables. Strictly speaking, none of Edie's variables can be 
measured. Certainly, they are not the conventional definitions of the 
variables in question. The thrust of my paper was to acknowledge 
(and in some cases elaborate on) these special cases while at the 
same time determining the nature of the discrepancies that result 
when conventional definitions of the variables are used. 

I am somewhat puzzled by the assertion that my definitions of the 
variables are vague. In most cases the exact mathematical meaning 
is stated. It is true that in the "special case" formulations there are 
variations in the precise definitions from one formulation to 
another, but these are a result of attempts to make the fundamental 
relationship work. Finally, I must deny that it was my intent to 
"challenge some basic traffic flow theory paradigms." On the con­
trary, they had already been challenged, most notably by Hall, and 
my intent was to try to limit the uncertainty by determining, where 
possible, the nature of any biases. 
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Description of Macroscopic Relationships 
Among Traffic Flow Variables Using 
Neural Network Models 

TAKASHI NAKATSUJI, MITSURU TANAKA, POURMOALLEM NASSER, 

AND TORU HAGIWARA 

The relationships between traffic flow variables play important roles in 
traffic engineering. They are used not only in basic traffic flow analy­
ses but also in some macroscopic traffic flow simulation models. For 
many decades, various mathematical formulations that describe the 
relationships among density, flow, and speed have been proposed, 
including multiregime models. Previously, the best mathematical 
curve was determined by trying several different formulas and apply­
ing regression analysis. In these processes, one must specify in advance 
which mathematical formula should be adopted and where it should be 
shifted to another in a multiregime model. Neural network models have 
some promising abilities to represent nonlinear behaviors accurately 
and to self-organize automatically. A procedure for describing the 
macroscopic relationships among traffic flow variables using some 
neural network models is presented. First, a Kohonen feature map 
model was introduced to convert original observed data points into 
fewer, more uniformly distributed ones. This conversion improved 
regression precision and computational efficiency. Next, a multilayer 
neural network model was introduced to describe the two-dimensional 
relationships. The model was effective in describing the nonlinear and 
discontinuous characteristics among traffic flow variables. It was 
unnecessary to specify the regression curves and the transition points 
in advance. The multiple correlation coefficients resulting from the 
model were better than those resulting from a conventional nonlinear 
equation. 

The relationships among traffic flow variables play important roles 
in traffic engineering. They are used not only in analyses of traffic 
flow behavior but also in some macroscopic traffic flow simulation 
models. For many decades, traffic-flow analysts have studied vari­
ous mathematical formulations that describe the relationships 
among density, flow, and speed ofuninterrupted traffic flows (1-3). 
The best mathematical formerly was determined by trying several 
formulas and applying regression analysis techniques. In some 
cases, one equation may be most appropriate; another may be bet­
ter in the others. Moreover, multiregime models that use a few func­
tions have been proposed, too (1-3). Normally they include dis­
continuity points not only in original functions but also in their 
derivatives-that is, in applying such models, one must specify in 
advance which mathematical formula should be adopted in each 
region and where it should be shifted to another. 

Civil Engineering Department, Hokkaido University, Kita 13, Nishi 8, 
Kitaku, Sapporo, 060, Japan. 

As a matter of fact, the authors are now engaged in the develop­
ment of a traffic flow simulation model (4) in which a characteris­
tic curve prescribes the average traffic states. The curve is updated 
using traffic detector data at each observation point. The authors 
used to face the aforementioned difficulties in establishing a macro­
scopic relationship in a computer. 

Some neural network models, such as a multilayer model (5), 
have the promising ability to describe nonlinear behaviors very 
well. So, it is expected that when they are applied to the regression 
problem, they can self-adjust the curvature of characteristic curves 
automatically while responding to the distribution of observed data. 
Above all, they require no preliminary knowledge of the mathe­
matical formulas and the transition points. Another difficulty in 
regression analysis lies in the trimming of excessive observed data. 
When traffic flows are observed, often one comes across unequally 
distributed traffic data-distributed densely in a few restricted 
regions and sparsely in the others. This unequal distribution of 
observed data would affect the regression results badly. Excessive 
observed.data in a region decrease the computational efficiencies, 
too. One must determine in advance which data should be retained 
and which should be trimmed. Some statistical criteria, such as AIC 
(Akaike information criteria) and FPE (final prediction error) (6), 
may provide useful knowledge about how much data should be 
retained, but they provide no information about which should be 
retained. 

Some neural network models, such as a Kohonen feature map 
(KFM) model (7), have the ability to convert original observed data 
into fewer, more representative data automatically. The KFM 
model does not require any preliminary knowledge about the data 
structure. All one must do is specify the number of data points to 
which the original data set should be reduced. 

BACKGROUND 

Characteristic Curves 

There are many characteristic curves proposed so far for describing 
the relationship between density and speed. In this study the authors 
used the formula derived from the car-following theory (3): 

(1) 



12 

where 

k =density (veh/km), 
v = speed (km/hr), 
k1 =jam density, 
v1 = free speed, and 

l,m = sensitivity factors from car-following theory. 

Substituting Equation 1 into the relationships q = kv, the other 
relationships among density, flow, and speed can be obtained as 
follows: 

(2) 

(3) 

where q denotes the traffic flow rate in vehicles per hour. The 
unknown parameters in those equations are subject to some con-
straints (3): · 

l > 0 

m > 1 

vjin::; Vt::; vrx 

k?in ::; kj ::; kymx 

Regression Analysis 

Equations 1, 2, and 3 are expressed in a general form 

where 

x = control variable, 
y = state variable, and 

(4) 

(5) 

a1 (j = 1,2,3 ,4) = unknown parameters of l, m, vfi and k1 in Equa-
tions 1-3, respectively. 

By obtaining sets of observed data (x;, y;) (i = 1,2, ... ,N), one 
can identify the parameters by a regression technique. Since 
Equation 5 is in nonlinear form and is subject to some constraints 
given by Equation 4, the problem here reduces to a nonlinear con­
strained least mean square problem. That is, the unknown parame­
ters are estimated so as to minimize the objective function 1 as 
follows: 

Subject to 

G1 ::; a1 ::; H1 j = 1, 2, 3, 4 (6) 

The authors used Box's complex algorithm to solve this prob­
lem. A detailed discussion of this algorithm can be found else­
where (11) .. 
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Multilayer Neural Network Model 

Figure 1 shows a multilayer neural network model for describing 
the macroscopic relationships between traffic variables. It consists 
of three layers: an input layer, an intermediate layer, and an output 
layer. The strength of the connections is called synaptic weight. The 
normalized control variable xf was entered into the input layer, such 
as k!k1 in Equation l. The input signals were transmitted in sequence 
from the input layer to the output layer while the neural operations 
were repeated. The output layer produces the normalized objective 
variable yf, such as v!v1 in Equation 1. This is the forward signal 
process in Figure 1. Next, the synaptic weights were adjusted so that 
the error between the output signals and the target signals is mini­
mized. The backpropagation method (5) produces the adjustments 
of synaptic weights in each layer. In actual computation the synap­
tic weights are adjusted by the momentum method to smooth the 
adjustment and urge the convergence. 

Kohonen Feature Map 

The KFM model is a two-layered neural network that can organize 
a topological map from a random starting point. It has the ability to 
classify input patterns into several output patterns. Figure 2 depicts 
the basic network structure of a KFM model. the authors used a one­
di mensional structure for this analysis. It consists of two layers: an 
input layer and a competitive layer. The interconnections (synaptic 
weights) are adjusted in a self-organizing manner without any tar­
get signals. the authors briefly explain how this can be done. An 
input pattern to the KFM is denoted here as 

(7) 

Since the observed traffic variables are adopted as the input signals, 
the input layer has three neurons in it (n=3). The weights from the 
input neurons to a single neuron in the competitive layer are denoted 
as 

W; = [W1;, W2;, .... , W11;] (8) 

where i identifies the ith neuron in the competitive layer. The num­
ber of neurons there can be specified arbitrarily. 

The first step in the adjustment of synaptic weights is to find a 
winning neuron c in the competitive layer whose weight vector 

XB 
1 

B 

Signal 

c D 

0 
<~ 

r-=::'J zk 

FIGURE 1 Basic structure of 
multilayer neural network .. 
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Competitive Layer 

e1 e2 e.i 
Input Layer 

FIGURE 2 Basic structure of KFM 
model. 

matches most to each input vector E. The matching value is defined 
by the distance between vectors E and W;: 

(9) 

The neuron with the lowest matching values wins the competition. 
After the winning neuron c is identified, weights are updated for all 
neurons that are in the neighborhood Ne of the winning neuron. The 
adjustment is 

{
/3(e1 - wu) if i E Ne 

~W·= 11 
0 otherwise 

(10) 

where 13 is the learning rate, which is decreased over a span of many 
iterations. This adjustment results in the winning neuron becoming 
more likely to win the competition when the same or similar input 
pattern is presented subsequently. In other words, the synaptic 
weight vector W; consequently represents those input patterns that 
resemble each other. This is what is called the integration of 
observed data. See work by Dayhoff (7) for more details. 

TRAFFIC DATA 

Observed Data 

The observed data used here come from the Metropolitan Express­
way in Tokyo. The data were collected on the Y okohane Line 
between Tokyo Haneda Airport and Yokohama in October 1993. 
Supersonic traffic detectors are installed _in each of the two direc­
tional lanes every 300 m, and traffic data on flow, occupancy, and 
average speed are compiled every 1 min. Figure 3 depicts the 
schematic drawing of the freeway section and the location of the 
traffic detectors. Traffic data on both lanes in the eastbound direc­
tion from Yokohama to Tokyo Airport were used. This road section 
experiences incessant congestion in the daytime on weekdays. The 
authors chose such time periods that include extensive traffic situ­
ations, ranging from free-flow to congested states. In this analysis, 
assuming that density is proportional to time occupancy, the authors 
used time occupancy directly rather than converting it to density (8). 
This requires a minor change in the nonlinear equations from Equa-

FIGURE 3 Overview of Yokohane Line and 
locations of traffic detectors. 

13 

tions 1 through 3. Assuming homogeneity around observation 
points, the authors treated the time-mean speed as identical with the 
space-mean speed. However, it should be noted that this assump­
tion is not always valid. One must examine carefully what has been 
analyzed, in particular when traffic is congested. 

Training 

By using the KFM model in three-dimensional space, the original 
observed data were converted to fewer points of more integrated 
data. Figure 4 depicts the schematic drawing of the conversion. 
Iterative trainings by the model produce the neurons whose weights 
correspond to integrated data. They were projected on each two­
dimensional plane for two-dimensional analysis. Next, by using a 
multilayer neural network model, ihe input-output reiationships 
between the control and the state variables were built up. The com­
pletion of training by the backpropagation method brings a stable 
regression between them. 

Kohonen Feature Map 

To convert observed data to sets of integrated data, the authors pre­
pared a KFM model consisting of an input layer with three neurons 
and a competitive layer with neurons that correspond to the number 
of integrated data points. Before the training, all observed data are 
normalized. After having given a set of observed data to the input 
layer in Figure 2, the authors selected a winning neuron in the com­
petitive layer and adjusted the weights of neurons in the neighbor­
hood of the winning neuron. This process is iterated for all input 
patterns consecutively. Training iteration continues until the change 
of synaptic weights becomes sufficiently small. Finally, a stable for­
mation of integrated data can be obtained. 

The most important problem in this process is how to determine 
the number of integrated data points. Generally, the appropriate 
number of data points depends on the use of a characteristic curve; 
for interpreting traffic flow behaviors, the number must be deter­
mined carefully so as to not lose the original data properties. One 
must determine it while checking the information statistics based on 
a criterion, such as AIC or FPE. On the other hand, for using a char-



14 TRANSPORTATION RESEARCH RECORD 1510 

\I 

I I 
d I 

·1~------':'1 1 

I/,: ..:...1w1i. w2. 

:::. 
Oc 

1 -- ·::r.' 
1/ .. • \ // 

// / 

v 
0 0 

v, 

Oc 

FIGURE 4 Schematic drawing of integration of observed data by 
Kohonen f ea tu re mapping. 

acteristic curve in a simulation model, excessive data should be 
trimmed because such data affect the regression badly. In this case, 
one may be able to determine the number experimentally because 
only the average characteristics of traffic fl.ow states are needed. In 
this paper, assuming the usage in a simulation model, the authors 
determined it experimentally: 20 points for each data set containing 
120 points of observed data. 

Figure 5 shows how original observed data are integrated as the 
training proceeds. For simplicity, the evolution process is pro­
jected on the occupancy-speed plane, and, for convenience, it is 
enlarged to the real scale. White circles in Figure Sa are original 
observed data, and black ones in the center of the graph are the ini­
tial weights that are set to the value 0.5 plus a small, within 10 per­
cent, randomized value. Figures 5b-d show the distribution of the 
neuron weights after 50, 130, and 200 training iterations, respec­
tively. It can be seen that the weights spread out gradually over the 
original space as the training proceeds. As shown in Figure 5, the 
KFM model requires nearly 100 to 300 iterations to complete the 
training. 

Multilayer Neural Network 

As mentioned before, the authors prepared a multilayer network 
with a neuron in the input layer and a neuron in the output layer for 
two-dimensional analysis. The synaptic weights were adjusted by 
the back-propagation method. 

In this paper the authors adopted a training procedure (9) that is 
somewhat different from the usual one. Here, the authors adjust the 

weights thoroughly for an input pattern until the error between the 
output signal and the target signal becomes sufficiently small. The 
adjustment is repeated for all input patterns. The completion of 
adjustment for an input pattern deteriorates the synaptic weights for 
the other patterns, so that those training processes are iterated hun­
dreds or thousands of times, normally 10,000 to 30,000 times. The 
training method adopted here was effective in avoiding entrapment 
into a local minimum and converged steadily to a global minimum. 

RESULTS 

In presenting how well the neural network models describe the non­
linear phenomena without any specific functions, the authors com­
pare two methods: an analytical one by nonlinear equations, and one 
using artificial intelligence through neural network models. How­
ever, the authors refrain from interpreting the curves from the traf­
fic fl.ow viewpoints because there is much to do before doing so, 
including determining the appropriate number of integrated data 
points. 

Occupancy-Speed Curve 

First, the methods are compared using the traffic data observed at 
Detector Station 1201. The period is 2 hr. Figure 6 shows three 
regression curves: (a) a curve by a nonlinear equation for original 
observed data, (b) one by a neural network model without the KFM 
model, and (c) one by a neural network model with the KFM model. 
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The white circles in Figures 6a and b present 120 points of original 
observed data, and the black ones in Figure 6c present 20 points of 
data integrated by the KFM model. 

It is seen in Figures 6a and b that the observed data are exces­
sively distributed in both regions where time occupancy is 
from 5 to 15 percent and from 20 to 40 percent. Those excessive 
data points affect the regression curve very badly. It should be 
noted that the shape of the curves is quite different in the high­
occupancy region (occupancy is more than 40 percent), although 
there is little difference in the correlation coefficients, as presented 
in Table 1. This means that the densely distributed data in the 
low- and middle-occupancy regions almost govern the curve, 
and to the contrary, the data in the high-occupancy region have 
little effect on it. 

On the other hand, Figure 6c shows 20 points of integrated data 
and the regression curve by the neural method with the KFM model. 
It is seen that by introducing the KFM model, the authors were able 
to make the original data more uniformly distributed. In particular, 
the five original data in the high-occupancy region in Figure 6a are 
reduced to two sets of data in Figure 6c. This favorably improved 
the regression in the region. One can see that the regression curve 
with the KFM is located in the middle of the original observed data 
in the high-occupancy region. This appears to be desirable for 
applying the curve in a traffic simulation model. However, for inter­
preting traffic flow phenomena in the region, the overtrimmed curve 
is not adequate. In such cases, one should increase the number of 
integrated data or use original raw data. 

Figure 7 shows the regression curves for the other detector sta­
tions. As in Figure 6, the white circles are the original data, the black 
are the integrated data, and the thick line is the regression curve pro-

duced by the multilayer neural method. One realizes at a glance that 
the regression curves are more complicated than those of the non­
linear equation in Figure 6a. It is seen in the low-occupancy region 
that the curves have a "snake head": they are nearly flat where time 
occupancy is less than 15 percent. In addition, the regression curves 
consist of a few convex parts. In other words, they are discontinu­
ous in their derivatives. Likewise, a small gap can be seen around 
the time occupancy of 20 percent in Figure 7 b. 

In this way, the neural network method has the promising ability 
to describe a discontinuous relationship more precisely. It needs 
neither to divide the whole region into several nor to introduce an 
individual function for each region. Unfortunately, those features of 
the neural network models are not easy to evaluate quantitatively. 
However, the correlation coefficients reflect those features indi­
rectly. Table 1 presents the coefficients produced by both of the 
neural methods along with those produced by the nonlinear equa­
tion for all cases. It is seen that the neural methods are better than 
the nonlinear equation. Also, there is little difference between both 
of the neural methods. This means that the neural network models 
can flexibly self-adjust the curvature of regression curves according 
to the number of data points. Needless to say, the neural method 
with the KFM model is more efficient in the computation than that 
without the KFM model. 

Occupancy-Flow Curve 

Figure 8 presents the regression results by both methods for the 
occupancy-flow curve at Detector Station 1201. Compared with the 
occupancy-speed curve in Figure 6, the behaviors are a bit more 
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FIGURE 6 Comparison of neural network models 
with nonlinear equation on occupancy-speed curve: 
a, nonlinear equation; b, neural network without 
KFM; c, neural network with KFM. 

complex. Clearly, the nonlinear equation in Figure 8a fails to 
describe the relationship in the congested region. On the contrary, 
as shown in Figure 8b, one can recognize the good regression in the 
region. Integration of original data in the high-occupancy region 
into a few data points contributed to this improvement. Of course, 
it must be examined carefully if the number of data points in the 
region is sufficient or not, according to the purpose for which the 
curve is used. In addition, one can see that the curve is not so well 
regressed in the vicinity of capacity, apparently because of the data 
being scattered in the region. That is, even the neural method can-
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TABLE 1 Comparison of Multiple Correlation Coefficients on 
Occupancy-Speed Curve 

Detector Non-linear Neural Network 
Point Equation without KFM with KFM 

1009 0.94 0.97 0.97 

1011 0.87 0.92 0.94 

1103 0.91 0.94 0.95 

1201 0.88 0.91 0.92 

1203 0.92 0.96 0.97 

not describe such data. The description for such data is the most dif­
ficult subject in the mathematical formulations. 

Figure 9, similar to Figure 7, shows the regression curves by the 
neural method for the other cases. One can see that the distribution 
of integrated data is more complicated than that of those in the occu­
pancy-speed curves in Figure 7: the thin curve that connects the 
integrated data in sequence has two peaks. It should be noted that 
the regression curve (thick line) in Figure 9a corresponds well to the 
movement of the data. In this way, the neural method is able to 
describe such a complex relationship, too. Here also, one must care-
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FIGURE7 Occupancy-speed curves by neural· 
network models: a, Station 1011; b, Station 1103. 
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fully examine the validity of the curve from traffic engineering 
viewpoints. 

On the other hand, the regression curve in Figure 9b is relatively 
smooth, although the integrated data are distributed zigzag as in 
Figure 9a. This is because even the neural network model is not able 
to describe such a function that has two or more state values for a 
control value. In this case, there are two or three flow values for an 
occupancy value near capacity. Anyway, it should be noted that the 
curves are not so well regressed yet in the vicinity of capacity in 
both of the figures. For reference, the correlation coefficients for all 
cases are given in Table 2. One can see that the neural method is 
much better than the nonlinear equation. 

Flow-Speed Curve 

In general, flow-speed curves become more complicated because of 
the transition of traffic states (10). They would take a different path 
according to whether the traffic goes into congestion or recovers to 
free-flow state. However, in this paper, neglecting those dynamic 
behaviors, the authors treated traffic states as static ones. Figure I 0, 
similar to Figures 7 and 9, shows regression curves for two cases, 
in which the authors treated speed as the control variable and flow 
as the state variable. Because of the lack of observed data in the 
free-flow state, the regression curve cannot be seen in the high­
speed region. The curve in Figure I Oa presents a somewhat poor 
regression with the integrated data points around capacity whereas 
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80 

80 

the one in Figure I Oa follows them somewhat better. To trace the 
data in Figure l Oa more precisely, it may be necessary to change the 
number of data points. But this should be done only if it is mean­
ingful from the viewpoint of traffic engineering. Here also, as indi­
cated in Table 3, the neural method gives better correlation coeffi­
cients than the nonlinear equation. 

CONCLUDING REMARKS 

The relationships among traffic flow variables play important roles 
in traffic engineering. They are used not only in analyses of traffic 
flow behaviors but also in some macroscopic traffic flow simulation 
models. Noting that some neural network models have promising 
abilities to represent nonlinear behaviors and to self-organize auto­
matically, the authors applied them to the description of the rela­
tionships. First, the authors introduced a KFM model to integrate 
the original observed data points into fewer, more uniformly dis­
tributed ones. Next, a multilayer neural network model was used to 
describe the relationships between traffic flow variables. the authors 
investigated the applicability of the neural network models to the 
regression problem and compared the results with those produced 
by a conventional nonlinear equation. The major findings are as fol­
lows: 

I. A KFM method served to integrate original observed data 
points into fewer, more uniformly distributed data points. All that 
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TABLE 2 Comparison of Multiple Correlation 
Coefficients on Occupancy-Flow Curve 

Detector Non-linear Neural 
Network 

Point Equation with KFM 

1009 0.60 0.78 

1011 0.47 0.58 

1103 0.74 0.79 

1201 0.52 0.66 

1203 0.61 0.80 

must be done to specify the desired number of integrated data 
points. This integration contributes to the improvement of regres­
sion precision and computational efficiency. 

2. A multilayer neural network model was effective in describ­
ing the nonlinear and discontinuous relationships between traffic 
flow variables. The model made it unnecessary to specify the 
regression curves and the transition points in advance. In addition, 
the multiple correlation coefficients produced by the model were 
better than those produced by a nonlinear equation. 
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TABLE 3 Comparison of Multiple Correlation 
Coefficients on Flow-Speed Curve 

Detector Non-linear Neural 
Network 

Point Equation with KFM 

1009 0.70 0.83 

1011 0.74 0.85 

1103 0.79 0.82 

1201 0.63 0.81 

1203 0.75 0.81 

The method proposed here still has some disadvantages: it 
requires a bit of burdensome work to estimate some fundamental 
traffic parameters, such as maximum volume, which are significant 
for analyzing traffic flow behavior. 

In this paper, the discussion was limited to the availability of 
neural network models. The interpretation of traffic phenomena · 
using them is left to future work. Moreover, the availability of other 
neural models that might be more effective than those used here 
must be examined. 
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Microscopic Modeling of Traffic Within 
Freeway Lanes 

JONATHAN M. BUNKER AND ROD J. TROUTBECK 

Microscopic models provide an understanding of traffic operations at 
the level of passage of individual vehicles. Roadway performance can 
be ascertained by understanding how vehicles interact with each other. 
Cowan's M3 headway distribution models were calibrated for the curb 
and median lanes of two-lane mainline freeway segments, using data 
captured at 14 sites. Calibration of the relationship among Cowan's M3 
parameters, proportion of headways greater than a minimum of I sec, 
and flow rate yielded exponential decay equations for each lane. The 
M3 models provide a source of vehicle arrivals for gap acceptance mod­
els, which may be used to quantify the ability of drivers to change lanes, 
for example. It was found that the parameters calibrated for each lane 
are suitable for use at any mainline site, independent of site-specific 
conditions. The proportion of small headways was found to be higher 
in the median lane than the curb, for all flow rates, and for both lanes 
lower than their respective equivalents on arterial roads with intersec­
tions. The largest bunched headway was considered to be between 2 and 
3 sec. The models predicted bunching between 85 and 93 percent of 
median lane vehicles, and between 75 and 90 percent of curb lane vehi­
cles, at capacity. The lesser amount of curb lane bunching reflects its 
use as a slower vehicle lane with greater stream friction. 

Microscopic models provide a means of modeling traffic at the level 
of individual vehicles passing roadside observation points by 
describing the headways, or times between passage of vehicles. 
These models can be used as inputs to gap acceptance models, so 
that roadway performance can be quantified with capacity and delay 
estimates. Because of these attributes, microscopic models provide 
a greater level of understanding of the processes taking place than 
do macroscopic models. 

This paper details an analysis of within-lane traffic flow on free­
way mainline segments. It discusses a method of relating the pro­
portion of headways greater than a minimum value to the lane flow 
rate, for each of the curb and median lanes on a two-lane, unidirec­
tional element. 

BACKGROUND 

Headways are the time intervals between passage of successive 
vehicles past a roadside observation point. Figure 1 illustrates a typ­
ical cumulative distribution of freeway curb lane headways, mea­
sured over 15 min. The horizontal axis represents the size of head­
way, and the vertical axis represents the proportion of headways 
less than the corresponding horizontal axis ordinate. Knowledge of 
the headway distribution is necessary for the application of gap 
acceptance theory by which the ability of a stream to absorb vehi­
cles can be quantified. 

Physical Infrastructure Center, School of Civil Engineering, Queensland 
University of Technology, GPO Box 2434, Brisbane Q 400 I, Australia. 

Figure 1 shows the measured distribution and a theoretical 
Cowan's M3 distribution (J), which fits the data. This model has 
two components of headways: those assumed to be equal to a spec­
ified minimum, ~. and those greater than the minimum. Those 
greater than the minimum are distributed exponentially. The pro­
portion of those greater than the minimum is denoted as a. The two 
parameters, a and ~. therefore are interrelated. Cowan' s M3 model 
is given as a cumulative probability function by Equation 1: 

{1 -A.(t-~) 
F(t)= -ae 

0 t<~ . 

where X. is a shape parameter, given by Equation 2: 

A-=~ 
1-~q 

(1) 

(2) 

and q is the lane flow rate, equal to the reciprocal of the mean 
headway. 

Many headways of 1 sec, and even smaller, were observed. How­
ever, only freeway gaps greater than about 1.5 sec are useful for 
merging, so it was important to select parameters of Cowan's M3 
model that consistently facilitate the accurate modeling of these 
headways. Headways less than this are not particularly useful, so 
they do not require accurate modeling. 

For a particular data set, there is a particular set of a- and ~-val­
ues that provide the best fit. Sullivan and Troutbeck (2) showed that 
a- and ~-values can be varied slightly, but, by maintaining a rela­
tionship between them, the resulting distribution, F(t), is not sig­
nificantly affected. Consequently, the ~-value was chosen to be a 
convenient constant, and a was reevaluated for each data set 
accordingly. 

The minimum headway,~. was set to 2 sec for the study of arte­
rial road operations, facilitating a maximum flow rate of 1 ~. or 
1,800 veh/hr. Flow rates of up to 2,500 veh/hr were recorded in free­
way lanes during this study, so a smaller value of~ was necessary. 
A value of ~ equal to 1 sec was considered more appropriate for 
freeways, as it allows for theoretical flow rates up to 3,600 veh/hr, 
and accounts for a more realistic minimum headway. 

Relationships between lane flow rate and proportion of headways 
greater than 1 sec need calibration to predict the arrival headway 
distributions in each lane on a two-lane unidirectional mainline 
freeway segment, for any lane flow rate. Headway distributions are 
required as input to merging and lane changing models, which 
quantify performance measures of capacity and delay. 

Headway data were collected in 15-min observations, at mainline 
locations a minimum of 1 km from ramp junctions, to calibrate rela­
tionships between lane flow rate and proportion of headways greater 
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FIGURE 1 Measured distribution of headways, overlain by Cowan's M3 
model representation. 

than the minimum. With ~ set to I sec, the maximum likelihood 
technique (3) was used to find the best Cowan's M3 model fit to the 
measured distribution for each 15-min observation. The data acqui­
sition led to a series of (a, q) data pairs for each lane at each site, 
for each observation period. 

RELATING PROPORTION OF HEADWAYS 
GREATER THAN 1 SEC TO FLOW RA TE 

The analysis relating headway proportions to flow rate was limited 
to two-lane, unidirectional freeway mainline elements, where the 
lane nearest the edge of the road was denoted as the curb lane and 
the lane nearest the center of the road denoted as the median lane. 

Curb Lane 

Figure 2 illustrates the plots of the curb lane relationships between 
the proportion of headways greater than l sec, a, and flow rate, q, 
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for all sites. For any given flow rate, there is a considerable spread 
of points occurring both within and between sites. The difference in 
environments between sites did not produce a marked effect on the 
overall relationship between a and q. 

Although there is considerable spread in the data across all sites, 
postulating a single curve was considered reasonable, as there is a 
definite downward trend in a with increasing flow rate. This was 
expected, because more drivers would travel at small headways as 
flow rate increases, changing the shape of the headway distribution, 
so that there is a smaller proportion of the larger, exponentially dis­
tributed headways in the representative M3 model. 

A model was sought between a and q, which would have com­
mon attributes to models representing other facilities. Current work 
by Sullivan and Troutbeck (2) showed that a negative exponential 
model is well suited to both lanes of an arterial road (one contain­
ing at-grade intersections). Relationships of this type were dis­
cussed and compared by Brilon ( 4) and Akc;elic and Chung (5) and 
generally were found to be th~ best form of model. 

Figure 2 shows that the data generally lie close to an a value of 
1, up to a flow rate of about 0.2 veh/sec. This means that very few 
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FIGURE 2 a versus q curb data from 14 freeway mainline segment sites. 
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drivers follow at the minimum headway, 1 sec, for low flow rates. 
Beyond this, the mass of data has a downward trend with flow rate. 
A constant value of a equal to l was considered adequate to reflect 
the conditions i.n the low flow regime. A downward trending rela­
tionship was considered for the higher flow rates. 

This dichotomized relationship assumed that the turning point 
had the coordinates (q0, 1 ), where q0 was to be found by regression 
analysis. The proposed relationship is given by Equation 3: 

(3) 

where q is the curb lane flow rate in vehicles per second, and q0 is 
the curb lane flow at the turning point between the two states of 
headway distribution discussed earlier. 

Note that for flow rates less than q0 , where a is equal to 1, 
Cowan's M3 model becomes a shifted negative exponential distri­
bution, with a minimum headway,~. equal to 1 sec. 

The values of q0 and A providing the minimum standard error 
were found to be 0.1877 veh/sec and 1.0801 sec/veh, respectively; 
the standard error was 0.0586. A value of q0 equal to 0.175 veh/sec 
produced a standard error only 0.597 percent larger than the best-fit 
value. The optimum value of A was found to be 1.0027, which was 
then rounded to 1.0, giving a standard error of 0.059-only 0.599 
percent larger than the best-fit value. Equation 4 defines the regres­
sion equation found to predict the curb lane proportion of headways 
greater than 1 sec, a, for a given flow rate, q: 

a= {e-1.0(q-O.I?S) q;:::: 0.175 veh/sec 

. 1 q < 0.175 veh/sec (4) 

where ~ is equal to 1 sec. 
An analysis of variance for Equation 4 yielded an F-value of 217, 

well exceeding the critical F(l, 130, 0.05) value of 3.91, so the 
hypothesis that there is no relationship between a and q by Equa­
tion 4 was rejected at the 5 percent level. 

Figure 3 illustrates the regression curve against the data. The 
dichotomized linear-exponential relationship fits the data well. A 
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two-part linear relationship would have been equally acceptable 
within this range of flows. The exponential function selected for the 
downward trend decays very slightly, appearing almost linear any­
way. The linear relationship was not chosen because it may predict 
negative a-values for some flow rates, which is not satisfactory. The 
function selected is also applicable to the median lane data, as will 
be discussed later. Consistency of functional form between both 
lanes is a positive attribute, as it is has greater flexibility in practi­
cal applications. 

F-tests were used to establish whether the general relationship 
of Equation 4 was a suitable representation of the data for each 
individual site. The calculated F-values exceeding the critical 
F( 1, N - 2, 0.05) values in 10 of the 14 cases. The four sites found 
to bear no significant relationship by Equation 4 at the 5 percent 
level were Jerrang Street outbound (six points), Holmes Street out­
bound (six points), Underwood Road inbound (seven points), and 
Miles Platting Road inbound (eight points). 

All of these sites had small sample sizes within narrow bands of 
flow rates. The data were not able to produce a strong enough trend 
for any relationship to be significant within each of these sites. The 
spread of data for each of the 4 sites, however, was not unusually 
high, compared with the data of all 14 sites. The generalized rela­
tionship was therefore considered to be acceptable for each of these 
locations. 

Median Lane 

As with the curb lane analysis, the median lane relationships 
between proportion of headways greater than 1 sec, a, and lane flow 
rate, q, were found to vary little between the 14 sites, for most flow 
rates. (Figure 4). For a given flow rate, data points lie within a band 
with depth of about 0.2 in terms of a, independent of site. 

Two regimes of flow state can be seen in Figure 4 for flows 
above 0.6 veh/sec. A branch of data conforms to the trend of the 
lower flow data, below 0.6 veh/sec. However, there is also a 
branch where a-values are higher. Five or six data points that do 
not conform have a-values greater than 0.4 and result from the 
distribution's being relatively insensitive to a at these higher flow 
rates. For instance, if q is 0.65 veh/sec and a is 0.4 or 0.8, the pro-

+ data 
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+ + 

0.4 0.5 0.6 

Kerb Flow Rate q (veh/s) 

FIGURE 3 a versus q curb lane regression, using Equation 4 and data from 14 
mainline sites; q0 = 0.175 veh/sec, A = 1.0. 
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FIGURE 4 a versus q median data from 14 freeway mainline sites. 

portions of headways greater than 2 sec are 19 and 18 percent, 
respectively. For purposes of modeling, operations were assumed 
to occur in the low state only, requiring only one curve for the 
entire flow regime. 

In Equation 3, the exponential curve was shifted to the right to 
account for the low flow state in which practically all headways are 
greater than 1 sec. However, for the median lane data, a shift to the 
left was more appropriate, as the trend indicates that even for low 
flows the proportion of headways greater than 1 sec will not reach 
unity. When flow rate is 0, for an isolated vehicle, a must equal 1. 
A model incorporating these features is given by Equation 5. 

{

e-A(q+qo) 

a= 
1 q = 0 

q>O 
(5) 

Regression analysis using Equation 5 yielded optimum values of q0 

and A equal to 0.0869 veh/sec and 1.4070 sec/veh, respectively; the 
standard error in ex ·was 0.0534. For q0 rounded to 0.075 and A to 
1.45, the standard error was 0.0535, compared with 0.0534 for the 
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best-fit parameters. The difference is negligible. The regression 
curve for the relationship between ex and q for the median lane is 
given by Equation 6: 

a = {e -1.45Cq+O.O?S) q > 0 veh/sec 

1 q = 0 veh/sec 
(6) 

where the minimum headway,~. is 1 sec. 
Figure 5 illustrates the curve of Equation 6 against the field data. 

An analysis of variance for the equation gave an F-value of 723, 
compared with a critical F (1, 125, 0.05) value of 3.91. The hypoth­
esis that Equation 6 is unsuitable was rejected at the 5 percent level 
of significance. 

F-tests were used to determine whether the common relationship 
of Equation 6 gives a reasonable representation to the data of each 
individual site. The calculated F-values exceeded the critical 
F(l, N - 2, 0.05) values in all but 1 of the 14 cases. Again, insuffi­
cient data were available at this site to produce a strong enough 
trend for any relationship to hold. 

• data 
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Median Flow q (veh/s/lane) 

FIGURE 5 a versus q median regression, using Equation 6 for data from 14 
mainline sites; q0 = 0.075, A = 1.45. 
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DISCUSSION OF RESULTS 

Uses 

The models for proportion of headways greater than l second, a, 
versus lane flow rate, q, have practical and theoretical applications 
in traffic engineering problems. 

Bunker and Troutbeck (6) described relationships for estimating 
the flow rate in each of the curb and median lanes of a freeway main­
line segment, given a total flow rate. Dichotomized linear models 
were selected to model the relationship between curb lane and total 
freeway flow rates. The relationships developed here may then be 
used to estimate the proportion of headways greater than 1 second in 
each lane, under the specified total demand. Using Equation 2, the 
decay constant of Cowan' s M3 model may be calculated for each 
lane. All of the parameters necessary for using Cowan' s M3 model 
for distribution of traffic within a lane, given in cumulative form as 
Equation 1, are then available. Thus, the amount of traffic in each 
lane and the distribution of headways within lanes may then be pre­
dicted for any freeway mainline segment, for any total flow demand. 

This compound model has uses in prescribing the arrival of traf­
fic on freeway mainline segments and estimating traffic inputs to 
gap acceptance models. Cases in which gap acceptance theory may 
be used for a mainline segment include merging and lane changing. 
Subsequent to the study described here, a gap acceptance model was 
established to predict delays and the distances required to perform 
lane changes, which are valuable performance measures. The model 
requires the distribution of headways in the target lane for the flow 
rate under consideration, as was calibrated here, and parameters for 
driver critical acceptance. 

The models developed here may also be used to gain an under­
standing of the operation of a freeway and to compare it with other 
facilities. Comparisons are now made between the performance of 
freeway lanes and lanes on arterial roads with intersections. 

Comparison of Curb and Median Lanes 

Curb and median mainline freeway lanes do not operate in the same 
manner, as Figure 6 shows. For any given flow rate, the curb lane 
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has a higher proportion of headways greater than 1 second and 
therefore would be expected to have fewer vehicles following at 
close headways. 

The curb lane flow rates do not reach the high flows observed in 
the median lane. The maximum flow rate recorded in the curb lane 
at any site was approximately 0.58 veh/second, or 2,100 veh/hr, 
whereas in the median lane, the highest flow rate recorded was 
approximately 0.72 veh/sec, or 2600 veh/hr. This is consistent with 
the findings of Bunker and Troutbeck (6), who studied lane flows 
on freeway mainline segments. In those analyses they found that 
the curb lane is the dominant carrier under low total flows, and 
the median lane is the dominant carrier under high total flows, hence 
the discrepancy between maximum flows recorded in each lane. 

The models for a versus q were not extended beyond the maxi­
mum flow rates recorded, as it is likely that they are close to capac­
ity. The Cowan's M3 headway distribution model may not be 
applicable to congested operations. The relationship between a and 
q certainly would not be consistent with the model established ear­
lier under those conditions. 

The higher bunching in the median lane for any given lane flow 
rate relates to the apportioning of total flow between lanes (6). The 
median lane is reserved principally for overtaking on divided roads. 
Drivers using the median lane are likely to be more dissatisfied with 
their speeds than curb drivers, who tend to travel at more comfort­
able headways (of greater than 1 sec from the vehicle in front). 
Because the median lane is considered to be the fast lane, drivers 
might tend to be more alert and, as a result, travel closer to vehicles 
in front. This could be because a driver in a median platoon may 
intend to be in the median lane only until he or she passes the vehi­
cle in the curb lane so is prepared to follow at a closer distance, or 
because the driver wishes to pressure the driver in front to speed up 
or move to the curb lane. 

Drivers in the median lane may also be prepared to. travel at close 
headways more often, as there is not as much stream friction cre­
ated in the curb lane by merge and diverge areas. 

If the proportion of vehicles following closely behind others can 
be considered to be a measure of the quality of service, then Figure 
6 indicates that drivers in the curb lane have a better quality of ser­
vice than those in the median lane. Of course, the driver elects to 
use a particular lane, so an improved speed that may be available, 
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FIGURE 6 Models developed for a versus q in each lane, for freeway mainline 
segments. Differences show that each lane operates in a unique manner. 
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or perceived to be available, in using the median lane may be an off­
setting quality-of-service measure. 

Comparison of Freeway and Urban Arterial Facilities 

Sullivan and Troutbeck (2) analyzed the behavior of traffic within 
lanes on urban arterial roads, classified as those with at-grade inter­
sections, including traffic circles and unsignalized and signalized 
intersections. Cowan's M3 model was also used to model the dis­
tribution of flows within lanes for that analysis. However, the min­
imum headway, ~. selected for that analysis was 2 seconds, the 
value recommended by road authorities for safe travel. 

Sullivan and Troutbeck quantified the relationship between the 
proportion of "free" vehicles·, having headways greater than 2 sec, 
and lane flow rate, q, for each lane on urban arterial link segments, 
away from intersections. Analyses were conducted for two- and 
three-lane segments; those for two-lane segments only are discussed 
here. Exponential models were selected for these relationships. 

To compare freeway operations with arterial roads, it was neces­
sary to establish -relationships between the proportion of headways 
greater than 2 seconds and lane flow rate, q, for freeways. Using 
Equations 5 and 6 to predict a, the proportions of headways greater 
than 2 seconds were predicted by Equation 1. This proportion could 
then be compared directly with the equivalent quality for arterial 
roads. The results are plotted in Figure 7. 

Figure 7 shows that for a given lane flow rate, a greater propor­
tion of drivers closely follow others on an arterial road than on a 
freeway. This is partly due to the formation of platoons of vehicles 
at intersections on arterial roads. There are not as many opportuni­
ties to bunch vehicles together on freeways, where there are no 
interruptions in the uncongested state. The lower-speed environ­
ment of an urban arterial would also act to maintain a higher level 
of bunching. Vehicles on arterials are limited to the lower speeds 
necessary to maintain safety and order, which allows drivers to tol­
erate shorter headways. 

Implications for Bunching 

The development of the models for predicting the headway distrib­
ution in each lane, given the lane flow rate, helps in assessing the 
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amount of bunching occurring. A bunched driver is considered to 
be one closely following a vehicle ahead. This ass~ssment is most 
important at capacity conditions. 

Figure 5 shows that the maximum flow rate recorded in the 
median lane at a site was approximately 0.7 veh/sec, or 2,500 
veh/hr. It is postulated that this high flow rate is at, or very near to, 
capacity. Equation 6 gives the corresponding value of the propor­
tion of headways greater than 1 sec, a, equal to 0.325. Equation 1 
gives a proportion of headways less than or equal to 2 sec, of 85 per­
cent. This can also be seen in Figure 7. The proportion less than or 
equal to 3 sec is 93 percent. If the largest headway in front of dri­
vers who are bunched is between 2 and 3 sec, then between 85 and 
93 percent of median lane vehicles are bunched at capacity, accord­
ing to the model. This value appears to be reasonable. 

Figure 3 shows that the maximum flow rate recorded in the curb 
lane was approximately 0.6 veh/sec, or 2, 160 veh/hr. It is postulated 
that this value is also at or very near to capacity. The discrepancy 
between capacity flow rates in each lane is expected, as the median 
lane is usually the dominant carrier under such conditions. Accord­
ing to Equation 4, the value of a corresponding to capacity, is 0.65. 
The proportion of headways less than or equal to 2 sec is then 75 
percent, and the proportion of headways less than or equal to 3 sec 
is 90 percent. If the largest bunching headway is between 2 and 3 
sec, then between 75 and 90 percent of curb lane vehicles are 
bunched at capacity, according to the model. Again, this appears to 
be reasonable. 

The lesser amount of bunching in the curb lane at capacity is to 
be expected because of the slower drivers who wish to travel at 
more relaxed headways, and the cautious drivers who expect vehi­
cles to be merging into the curb lane from an on-ramp or the median 
lane. The result shows that it would be more difficult to move into 
the median lane at capacity than into the curb lane. This conclusion 
matches observations of capacity operations. 

CONCLUSIONS 

Headways are the times between passage of successive vehicles in 
a lane. Knowledge of the headway distribution is important when 
using gap acceptance theory to assess the ability of a lane to absorb 
merging vehicles. Cowan's M3 model was used to model the head-

kerb fwy 

median fwy 

kerbart 

median art 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Lane Flow Rate q (veh/s) 

FIGURE 7 ~roportion of headways greater than 2 sec versus lane flow rate, q, for 
curb and medrnn lanes of freeway and arterial road types. 
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way distributions in the curb and median lanes on two-lane, unidi­
rectional mainline segments, a minimum of 1 km from ramp termi­
nals. Parameters of the M3 model include the minimum headway 
modeled, proportion of headways greater than the minimum, and a 
shape parameter, which is a function of the lane flow rate. Head­
ways greater than the minimum are distributed exponentially. 

A constant minimum headway of I sec was selected for conve­
nience, as this value permits accurate modeling of all useful head­
ways greater than about 1.5 sec. Small measured headways close to 
the minimum of I sec are poorly modeled; however, they are not 
considered useful to entering drivers so do not require specific at­
tention. 

Two relationships were found that relate the proportion of head­
ways greater than I sec to flow rate, for each of the curb and median 
lanes. Both equations were based on exponential regression across 
14 sites and were found to be significant at the 5 percent level, based 
on the results of F-tests. They were also shown to be suitable esti­
mators of the relationships for individual sites. Although these 
empirical equations are recommended for estimating the value of ex, 
given a lane flow rate, q, it must be emphasized that there was a con­
siderable amount of spread in the data. The standard errors were 
0.059 for the curb lane and 0.054 for the median lane, in terms of ex. 

The relationship may be used in conjunction with lane flow mod­
els to predict the distribution of vehicles in both lanes for any two­
lane mainline location, given the total flow rate. Gap acceptance 
theory may then be used to predict delays, and subsequently dis­
tances required to change lanes, which are valuable performance 
measures. 

Comparison of the relationships between proportion of headways 
greater than 1 sec and lane flow rate, for both lanes, shows that the 
proportion of small headways is greater in the median lane for any 
flow rate. This relates to its function as a fast or overtaking lane. Dri­
vers in the median lane are more likely to be dissatisfied with their 
speeds, traveling at closer headways. 
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Relationships were compared with similar ones calibrated for 
arterial roads with at-grade intersections. The minimum headway 
modeled for these facilities was 2 sec. For any flow rate, and for 
both lanes, the proportion of headways greater than 2 sec is always 
greater for freeway traffic than for arterial traffic, because there are 
not as many opportunities to bunch traffic together on freeways. 

The development of the models for prediction headway distribu­
tions in each lane enabled assessment of the amount of bunching. 
The largest bunched headway was expected to be between 2 and 3 
sec. At capacity flow rates, between 85 and 93 percent of median 
vehicles and between 75 and 90 percent of curb vehicles are 
bunched, according to the models. These values match observa­
tions. The lesser amount of bunching is expected in the curb lane, 
as was the lesser amount of the very small I-sec headways. 
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Statistical Analysis of Day-to-Day 
Variations in Real-Time 
Traffic Flow Data 

H. RAKHA AND M. VAN AERDE 

In the absence of intelligent vehicle-highway system technologies, 
commuters tend to select their routes through a congested network pri­
marily on the basis of expected average link travel times. For this ave~­
age to be representative of the current day, it is esse~tial that t~e traffi_c 
conditions be relatively similar each day. However, 1f the traffic condi­
tions vary considerably from one day to the next, the historical infor­
mation will be insufficient for commuters to find the optimum routes 
through the network, and the provision of real-time traffic information 
could provide major benefits. Furthermore, simulation is becoming an 
important tool in evaluating different traffic control strategies. As a 
result it has become more and more important not only that the average 
typical traffic conditions be established but also that the upper and lower 
bounds of these average conditions be estimated. Consequently, two 
related issues are examined: the spatial and temporal magnitude of the 
variability in traffic conditions during typical nonincident conditions, 
and the magnitude of this variability during incident conditio~s. It ~as 
shown that in the absence of incidents, the temporal and spatial varia­
tions in traffic conditions were very similar for weekdays but varied 
considerably relative to the typical conditions during weekends. Major 
incidents, however, were found to alter drastically the average recurring 
conditions, thus creating a window of opportunity for achieving travel 
benefits by using dynamic data in real time. 

The main objective of most advanced traveler information systems 
(A TIS) is to provide drivers with accurate real-time information on 
traffic conditions. Drivers can select optimum routes to their 
intended destinations based on this information. Various studies 
have investigated the potential benefits of A TIS (1, 2). 

In general, the benefits of such A TIS have been shown to depend 
on the level of market penetration and on the relative accuracy of the 
information provided to the equipped vehicles when compared with 
the accuracy of the historical data available to nonequipped vehicles. 

Furthermore, as simulation becomes an important evaluation 
tool, it is important that one calibrates these simulation models to 
the existing traffic conditions. 

Therefore, various questions remain. For example, how large 
must typical day-to-day variations in weekday traffic conditions be 
before they provide a sufficient window of opportunity for benefits 
to be accrued through the provision of real-time data to equipped 
vehicles? By how much do traffic conditions typically vary from day 
to day? By how much do incidents increase the window of opportu­
nity for achieving benefits through the provision of real-time data? 

This paper attempts to address most of these questions through a 
qulitative and quantitative analysis of 75 days of freeway manage­
ment center (FMC) data along Interstate 4 in Orlando, Florida. The 
specific objectives of this paper are twofold: to investigate the vari-
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ability in traffic conditions during (a) typical nonincident condi­
tions and (b) incident conditions. 

It is anticipated that the findings will be of assistance to both 
intelligent vehicle-highway system (IVHS) designers and to those 
who simulate such systems, as they will be able to perform their 
analysis based on tangible traffic network statistics rather than on 
hypothetical ones. 

BACKGROUND 

As part of the Advanced Driver and Vehicle Advisory Navigation 
Concept (ADVANCE), static prediction models were developed 
that could be applied to a series of traffic flow data: travel time, vol­
ume, and occupancy (3). In their model, Shbaklo et al. studied the 
effect of link type, time of day, day of week, and season on the flow 
and occupancy measurements for arterial and freeway links. This 
work was an extension of previous work on travel time analysis on 
links (4). 

Shbaklo et al. (3), using 5-min loop detector data, for 72 days 
conducted analysis of variance (ANOV A) tests on freeway data in 
Chicago. They found the season to be an insignificant factor and the 
day of the week (2.5 to 9. 7 percent of squared error) and time period 
(50 to 77 percent of squared error) to be significant factors on the 
flow and occupancy measurements. In their analysis, Shbaklo et al. 
did not examine whether Fridays or Mondays were statistically dif­
ferent from midweek days (Tuesdays, Wednesdays and Thursdays). 
Furthermore, they did not study the effect of incidents on these typ­
ical traffic conditions. 

In this paper, the work conducted by Shbaklo et al. is extended 
to investigate variability within weekdays, spatial variability, and 
the effect of incidents on typical traffic conditions. Furthermore, the 
temporal and spatial variability in flow, speed, and occupancy mea­
surements about a typical average temporal and spatial surface is 
investigated in an attempt to estimate statistical bounds to identify 
a typical weekday traffic conditions. 

STUDY DESCRIPTION 

Network Configuration 

A 16-km (10-mile) portion of the I-4 freeway in Orlando, Florida, 
was considered in this study. I-4 is a major route that travels across 
the center of Florida from the southwest (Tampa) to the northeast 
(Daytona), passing by Disney World. The detectorized portion of 
the I-4 freeway is located near downtown Orlando, extending from 
33rd Street to the southwest and ending downstream of Maitland 
Boulevard to the northeast. 
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Twenty-four loop detector stations along I-4 were numbered 
from 1 to 25, with no data being provided for Station 10. The spac­
ing of the detector stations ranged from approximately 0.40 to 0.90 
km (0.25 to 0.54 mil). There were no major terrain variations along 
the detectorized section of the I-4 freeway, as Orlando is rather flat. 
However, at many interchanges with arterials, the freeway was ele­
vated. The entire detectorized section of I-4 was composed of three 
lanes in each direction. 

Data Collection Time Frame 

The analysis period included traffic data for portions of 4 months 
during the winter of 1992-1993. The data included 11 days in 
November 1992, 29 days in January 1993, 26 days in February 1993, 
and 11 days in March 1993. This amounted to 7 5 days of 30-sec data, 
yielding approximately 10 days of data for each day of the week. 

The FMC dual loop detectors measured and logged the flow, 
occupancy, and space-mean speed for each of the three lanes at 30-
sec intervals. These data were aggregated into 5-min data sum­
maries in order to reduce the level of data to be processed while still 
capturing most of the trends in the varying traffic conditions. Aver­
age lane flow, occupancy, and space-mean speed estimates were 
generated from the individual loop detector measurements for each 
station. In estimating the average lane speed at a speeific st~tion, 
loop speeds were weighted by the volume on each set of dual loops. 

INITIAL ANALYSIS OF FMC DATA 

An analysis of the FMC traffic data is presented in order to assess 
the variability in traffic conditions within weekdays. Subsequently, 
different weekdays are compared and the effect of incidents on the 
average typical traffic conditions is assessed. The analysis in this 
paper defines Saturdays and Sundays to constitute weekend days. 

Generation of Typical Weekday Surfaces 

Using the FMC data available during the 4-month period, it was 
possible to generate a surface that represented the average for all the 
days at a particular station of all the speed, flow, and occupancy 
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measurements at a particular time of day. Equations 1 and 2 demon­
strate how an estimate of each observation for the flow and occu­
pancy was generated. In the case of the speed surface, a volume­
weighted average was used. Core weekdays were considered to be 
Tuesday through Thursday, as it was initially not clear if Mondays 
or Fridays would be consistently similar to Tuesdays, Wednesdays, 
and Thursdays. There were 33 pure core weekdays during the analy­
sis period. These core weekdays were checked for any abnormal 
traffic conditions such as vehicle detector failures (indicated as -1) 
or major incidents, as indicated in the incident data base that was 
provided by the FMC. The suspected days were removed from the 
estimated average. 

The selection process resulted in 22 weekdays being considered 
in developing the average eastbound weekdays surfaces (nd = 22). 
The entire 33 weekday were used to generate the average west­
bound weekday surfaces (nd = 33). The resulting average flow sur­
face for the eastbound direction only is presented in Figure 1; the 
results for the westbound direction were very similar. 

10 

xi'.j = L,. x~j,k Vxi'.j,k ;::: 0 
k=I 

nd 
~ X~· £... I,) 

.x . . =.!EL_ Vx~j;::: 0 
'· 1 nday 

(1) 

(2) 

where 

nd =total number of nonincident weekdays; 
nday =number of good observations (xf.j ~ 0); 
x7,1,k = 30-sec observation on day n at station i, at 5-min time 

interval j, at 30-sec period k during 5-min interval; 
x 'l.j = 5-min observation on day n at station i at time interval 

j;and 
x ;,1 = average weekday 5-min observation at station i at time 

interval} (flo\v or occupancy; speed vvas geneiated as 
a volume-weighted average). 

The typical average spatial and temporal flow variation in the 
eastbound direction for an entire 24-hr period along the detectorized 
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FIGURE 1 Spatial and temporal eastbound flow variation for average weekday [vehicles per hour (vph)]. 
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1-4 section is presented in Figure 1. The x-axis represents the time 
of day, which ranges from 0 at midnight at the start of the day to 24 
at midnight at the conclusion of the day, whereas the y-axis repre­
sents the station numbers traversed. The eastbound flow proceeds 
in the upward direction from Station 1 to Station 25. For each cell 
combination of time of day and station, the z-axis represents the 
average hourly Jane flow measured. 

It can be noted from Figure 1 that the flow increased gradually at 
6:00 a.m. along all stations until it reached approximately 2,000 
vehicles per hour per lane (vphpl) at 7:30 a.m. along most of the 
detector stations. The flow increased again during the p.m. peak at 
approximately 3:00 until 6:30 p.m. at Stations 12 through 22. It 
appears from Figure 1 that the flow from 5:00 to 7:00 p.m. at Sta­
tions 7 through 12 was lower (1,000 to 1,500 vphp). However, after 
examining Figure 2, it appears that the speed was also low, ranging 
from 20 to 40 km/hr. Thus the lower flow measurements were most 
likely due to the presence of congestion rather than to a reduction in 
demand. It appears from Figures 1 and 2 that a strict analysis of flow 
contours can be deceiving, as it is not clear whether a reduction in 
flow is caused by congestion or by a simple reduction in demand. 

Single-Factor ANOVA of Weekday Data 

To investigate whether the variability in traffic conditions between 
the different days of the core of the week (Tuesday, Wednesday, 
and Thursday) was statistically significant, a single-factor ANOV A 
was conducted using the SYSTA T model (5}:- The ANOV A tested 
if the root mean square error (RMSE) associated with the different 
day surfaces about the typical average weekday surface was greater 
than the variation within the samples for each specific day of the 
week using Equation 3. Table 1 presents the ANOV A results for 
flow variations in the eastbound direction. These results, based on 
the 22 observations, indicate that the different days were not found 
to be statistically different at a level of significance of 95 percent. 
Similar results were obtained when comparing the speed as well as 
occupancy in the eastbound direction, as indicated in Table 1. Con­
sequently, the observations in the eastbound direction for Tuesdays, 
Wednesdays, and Thursdays were grouped together as weekdays. 
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RMSE= 
nobs 

i j 
(3) 

where nobs is the number of good observations (xf'.1, X;,J ~ 0). 
A similar single-factor ANOVA on the different weekdays in 

the westbound direction was conducted as presented in Table 1. 
Again, the ANOV A results demonstrated that there was no statis­
tical difference between the observations for Tuesdays, Wednes­
days, and Thursdays at the 95 percent confidence level. Con­
sequently, the data for these days were grouped together as core 
weekdays. 

In order to examine the ANOV A assumption of homogeneity of 
variance, the variation in residuals as a function of the estimated 
values (day mean) is plotted in Figure 3. The Studentized residu­
als were used because it is convenient to reference them against a 
t distribution. In Figure 3 the residuals for the typical weekdays 
were all within two standard deviations. It appears from Figure 3 
that the residuals are homogeneous as there appears to be no trend 
to the residuals. Similar trends were found for the residual 
plots generated for the eastbound speed and occupancy surfaces. 
Similar trends were also found for the westbound flow, speed, and 
occupancy surfaces but because of limited space are not presented 
here. 

COMPARISON OF MEAN SURFACES 

A typical average core weekday was compared with a typical Mon­
day, a typical Friday, a typical Saturday, and a typical Sunday to 
determine if the traffic conditions are qualitatively and statistically 
different. An incident scenario is also compared with the typical 
average weekday conditions in order to demonstrate qualitatively 
the relative difference in flow conditions from one day to the next, 
versus an incident day to a nonincident day. 
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FIGURE 2 Spatial and temporal eastbound speed variation for average weekday (km/hr). 



Rakha and Van Aerde 29 

TABLE 1 Single-Factor ANOVA Results 

Descrietion ANOVA groues DF ~within groues~ DF {total~ F F~ril Sig ~95%l 
Tue. vs. Wed. vs. Thur. 19 
weekday vs. Mon. 29 

Flow (EB) weekday vs. Fri. 30 
weekday vs. Sat. 30 
weekdal'. vs. Sun. 32 
Tue. vs. Wed. vs. Thur. 19 
weekday vs. Mon. 29 

Speed (EB) weekday vs. Fri. 30 
weekday vs. Sat. 30 
weekda~ vs. Sun. 32 
Tue. vs. Wed. vs. Thur. 19 
weekday vs. Mon. 29 

Occ. (EB) weekday vs. Fri. 30 
weekday vs. Sat. 30 
weekda~ vs. Sun. 32 
Tue. vs. Wed. vs. Thur. 30 
weekday vs. Mon. 41 

Flow (WB) weekday vs. Fri. 41 
weekday vs. Sat. 41 
weekdal'. vs. Sun. 43 
Tue. vs. Wed. vs. Thur. 30 
weekday vs. Mon. 41 

Speed (WB) weekday vs. Fri. 41 
weekday vs. Sat. 41 
weekda~ vs. Sun. 43 
Tue. vs. Wed. vs. Thur. 30 
weekday vs. Mon. 41 

Occ. (WB) weekday vs. Fri. 41 
weekday vs. Sat. 41 
weekdal'. vs. Sun. 43 

Average Monday Surface 

The average l\fonday flow, speed, and occupancy eastbound and 
westbound surfaces were generated in a similar fashion to the 
average core weekday surfaces. The eastbound average Monday 
surfaces were estimated by averaging over 9 Mondays, and 

8 

21 1.16 3.52 No 
30 5.32 4.18 Yes 
31 101.87 4.17 Yes 
31 682.84 4.17 Yes 
33 384.79 4.15 Yes 
21 2.76 3.52 No 
30 2.40 4.18 No 
31 101.87 4.17 Yes 
31 682.84 4.17 Yes 
33 384.79 4.15 Yes 
21 1.88 3.52 No 
30 1.20 4.18 No 
31 17.13 4.17 Yes 
31 16.01 4.17 Yes 
33 47.25 4.15 Yes 
32 0.85 3.32 No 
42 7.03 4.08 Yes 
42 66.39 4.07 Yes 
42 1678.67 4.08 Yes 
44 1668.55 4.07 Yes 
32 0.55 3.32 No 
42 0.11 4.08 No 
42 12.15 4.07 Yes 
42 22.34 4.08 Yes 
44 23.54 4.07 Yes 
32 0.62 3.32 No 
42 0.30 4.08 No 
42 15.98 4.07 Yes 
42 113.03 4.08 Yes 
44 208.02 4.07 Yes 

the westbound average surfaces were estimated by averaging over 
10 days. 

The average Monday flow surface was found to be quite simi­
lar to the core weekday surface, and thus a typical Monday may 
qualitatively be considered to be similar to a core weekday. The 
same trends were found in comparing the occupancy and speed 
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FIGURE 3 Variation in residual error as a function of RMSE estimate for eastbound flows. 
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surfaces. However, the limited space in this paper prevents their 
inclusion. 

To verify quantitatively the similarity or variability between the 
Monday traffic conditions and the typical core weekday conditions, 
a single-factor ANO VA was conducted. The results of the ANO VA 
for the eastbound direction, presented in Table I, demonstrate that 
the Monday flow conditions were statistically different from the 
typical weekday conditions at the 95 percent confidence level. 
However, the speed and occupancy measurements were not statis­
tically different from the typical core weekday measurements (at the 
95 percent confidence level), as given in Table 1. The same trend of 
results was obtained in conducting an ANOV A for the westbound 
direction, as indicated in Table J. 

It appears that Mondays are different from core weekdays in 
terms of flow but not in terms of speed or occupancy. Mondays 
therefore were not included in the data sample to create an average 
core weekday. These results were found to be consistent with the 
homogeneity assumption of ANOVA as illustrated by the residuals 
in Figure 3. 

Average Friday Surface 

The eastbound and westbound average Friday flow, speed, and 
occupancy surfaces were generated by averaging over 10 Fridays. 
By comparing the weekday and Friday surfaces, it was found that 
the p.m. peak on Friday started earlier (11 :00 a.m. versus 12:00 

. p.m.) and extended over an extra hour (until 8:00 p.m. versus 
7:00 p.m.). 

The statistical results were found to verify the preceding qualita­
tive comparison, as given in Table 1. Specifically, the ANOVA 
results for the eastbound direction indicated that the flows, speeds, 
and occupancies on a typical Friday were statistically different from 
the traffic conditions of typical core weekdays at the 95 percent con­
fidence level. The results for the westbound direction were similar, 
as indicated in Table l. These results, again, were found to be con­
sistent with the homogeneity assumption of ANOV A, as illustrated 
by the residuals in Figure 3. 

Average Saturday Surface 

The eastbound and westbound average Saturday fl.ow, speed, and 
occupancy surfaces were generated by averaging over I 0 Satur­
days; the plots are not presented because of the limited space in this 
paper. For the average Saturday fl.ow surface, the traffic flows 
increased gradually from 7:00 a.m. until they reached a maximum 
flow of approximately 1,800 vphpl at noon at Station 15. The flow 
characteristics for a typical Saturday were very different from the 
traffic characteristics of a typical core weekday, as might be 
expected. The ANOVA results for the eastbound direction, pre­
sented in Table 1, demonstrate that the Saturday traffic conditions 
were statistically different from the typical weekday conditions. 
The results for the westbound direction, presented in Table l, also 
demonstrate this trend. 

It is noteworthy that in terms of eastbound flow and speed, Sat­
urdays were much more distinct from core weekdays than Fridays. 
However, in terms of occupancy, Saturdays were different from 
core weekdays by only as much as were Fridays. In the westbound 
direction, flow and occupancy were much different, but speeds were 
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not quite so different. These results, again, were found to be con­
sistent with the homogeneity assumption of ANOV A as illustrated 
by the residuals in Figure 3. 

Average Sunday Surface 

An ANOV A of the eastbound Sunday traffic conditions and the 
weekday conditions, presented in Table 1, demonstrates that traffic 
conditions on Sundays were also statistically different from typical 
weekday conditions. Similar results were found for the westbound 
direction, as given in Table 1. As for Saturdays, the results pre­
sented in these tables indicate that the flow and speed on a typical 
Sunday were very different from a typical core weekday for the 
eastbound direction. The fl.ow and occupancy in the westbound 
direction were also very different from the core weekday. These 
results, again, were found to be consistent with the homogeneity 
assumption of ANOV A as illustrated by the residuals in Figure 3. 
However, there appeared to be an outlier point, as illustrated in Fig­
ure 3. 

Incident Effects 

During the analysis of the core weekday data, a severe incident that 
resulted in the total closure of the eastbound direction of 1-4 
occurred on Thursday, November 5, 1992, as illustrated by the 
speed surface plot presented in Figure 4. The incident started at 
approximately 3:20 p.m. and lasted until approximately 5:00 p.m. 
The incident site was located between Stations 9 and 11 at Robin­
son Street, as indicated by the stationary frontal shock wave. 

Following the clearance of the incident it can be noted in Figure 
4 that the traffic proceeded downstream as a continuous platoon, 
and thus one can observe a surge of low speeds proceeding down­
stream up to Station 21. The forward-forming shock wave appears 
to be sloped steeply because the vehicles proceeded to Station 21 
within one 5-min analysis period. This incident resulted in a queue 
that extended as far back as Station l. 

Note that a vehicle entering the system at 6:00 p.m. would expe­
rience delay at a location downstream of the incident at a point 
sometime after the incident was actually cleared. 

Summary 

In summary, based on statistical comparison of the traffic condi­
tions for various days, the following conclusions can be made: 

• Traffic fl.ow conditions within core weekdays appear to be 
highly similar and consistent. 

• Some traffic fl.ow parameters on Mondays are similar to traf­
fic conditions on core weekdays (Tuesday, Wednesday, and Thurs­
day). 

• Traffic conditions on Fridays differ from core weekday condi­
tions in each of the three measures. Specifically, it appears that the 
p.m. peak on Fridays extends further in the day. 

• Traffic conditions on weekends differ from traffic conditions 
on weekdays, and Saturdays differ in flow from Sundays. 

• Major incidents can cause significant disruptions to typical 
weekday traffic conditions. 
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FIGURE 4 Spatial and temporal eastbound speed variation during an incident (km/hr). 

OVERALL COMPARISON OF TRAFFIC 
CONDITIONS 

The traffic conditions for each day were compared with the average 
weekday flow, speed, and occupancy surfaces. Two measures of 
comparison were estimated. The first was an estimate of the coeffi­
cient of determination (R2

) and will be labeled the regression mea­
sure. The second measure was an estimate of the number of obser­
vations within two standard deviations of the average weekday 
observation, assuming a normal distribution, and will be labeled the 
success measure. The findings for each of these measures are dis­
cussed in this section. 

Regression Measure 

A regression measure similar to R2 was used to compare the traffic 
conditions for each day. For each day, three matrices of flow, speed, 
and occupancy observations were generated. These matrices were 
288 rows (number of 5-min intervals in the day) by 24 columns 
(number of loop detector stations). A separate overall mean for the 
average weekday flow, speed, and occupancy measurements was 
also estimated, as demonstrated in Equation 4 (mean over all sta­
tions and all time periods x). 

For each of these surfaces, the squared error about the average 
core weekday surface was estimated as the difference for each sta­
tion and time-of-day combination from the average core weekday 
surface using Equation 5 (sum of squared errors about the average 
surface S1). The sum of squared errors for the flow, speed, and occu­
pancy measurements of each day about their respective overall 
means was also estimated using Equation 6 (Sr). The sum of squared 
error, explained by each of the flow, speed, and occupancy average 
weekday surfaces, S2, was estimated as the difference between S, 
and S, using Equation 7. The R2 measure for each of the three sur­
faces for each day was calculated as the ratio of S2 to S, (SiS,). Thus, 
R2 was a measure of the amount of error captured by the average 
weekday surface. An R2 of 1 would mean that the average surface 
explained 100 percent of the squared error, whereas an R2 of 0 

would mean that the average surface did not explain any of the 
error. 

24 288 

LLXi,j 
x = i=lj=l 

nobs 

24 288 

S - LL( II - )2 I - X· · -X· · l,j l,j 
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24 288 

Sr= LL(xi'.1 - x)2 
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where 

nobs = number of good observations (x;.j ;:::: O; 
maximum= 6, 912), 

(4) 

(5) 

(6) 

(7) 

x = overall average observation (flow, speed, and occu-
pancy), 

S, = total sum of squared errors about overall mean (flow, 
speed, and occupancy), 

S1 = sum of squared errors about average surfaces (flow, 
speed, and occupancy), and 

S2 = sum of squared errors explained by average surface 
(flow, speed, and occupancy). 

The variation of R2 over the 75-day analysis period from the aver­
age core weekday flow surface in the eastbound direction is pre­
sented in Figure 5. It appears that the R2 for weekdays exceeded 90 
percent and that an R2 of 30 percent was estimated for the major 
incident day (November 5, 1992: Day 24). This low R2 indicated 
that this incident had a substantial effect on the average traffic con­
ditions. Mondays also had a relatively high R2 (exceeded 90 per­
cent), except for a Monday that had an incident in addition to a fail­
ure in some loop detectors. Fridays had a lower R2

, ranging from 75 
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to 90 percent. The Saturday and Sunday flow surfaces differed con­
siderably from the weekday average surface (R2 from 0 to 60 per­
cent). The same trend was found for the westbound direction, but 
because of limited space, the results are not presented here. 

The variation from the average weekday speed surface in the 
eastbound direction in R2 during the 75-day analysis period was also 
analyzed but is not presented because of lack of space. Unlike the 
flow surface comparisons in Figure 5, the speed variation appeared 
to be much more scattered. The scatter in the speed variation was 
probably the result of shock waves proceeding along the detector­
ized section at different rates, even though the overall flow 
remained very similar. Interestingly, the major incident did not 
result in an R2 worse than nonincident weekdays (Day 24). 

The variation, from the average weekday occupancy surface in 
the eastbound direction, in R2 during the 75-day analysis period was 
less scattered than the speed variation. Specifically, the R2 ranged 
from 65 to 95 percent for the core weekdays, 45 to 90 percent for 
Mondays, 60 to 90 percent for Fridays, and 0 percent for Saturdays 
and Sundays. As was the case for the flow, the R2 for the major inci­
dent day (Day 24) was much lower than the typical weekday R2 (38 
percent). 

Success Measure 

The original loop detector measurements, which were made at thirty 
30-sec intervals, were aggregated into 5-min observations for pur­
poses of analysis. Each 5-min observation was the sum of 10 mea­
surements. Using the central limit theorem, it can be assumed that 
each of these 5-min observations may become distributed normally 
because the 5-min observation on one day should not be correlated 
with the same observation on another day. To verify this assump­
tion, a 5-min estimate of flow for the 22 core days in the eastbound 
direction were estimated and stratified into bins. The observed prob-
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abilities were then tested using a chi-square goodness-of-fit test in 
order to establish whether the normal distribution assumption was 
valid, as illustrated in Figure 6. The chi-square type of analysis 
showed that the observed 5-min flows were not statistically differ­
ent from the expected outcome of a normal distribution at the 95 
percent confidence level. The test was repeated for higher average 
flows in the range of 1,800 vphpl, and similar results were found. 
Tests conducted for speed and occupancy 5-min observations had 
similar outcomes. Thus, it appears that the normal distribution 
assumption is valid. 

The three average weekday surfaces were obtained by averaging 
each cell of the matrix over the nonincident weekdays using Equa­
tions 1 and 2. For each cell of these matrices, the standard deviation 
of the mean observation was estimated using Equation 8 and upper 
and lower bounds were estimated assuming a normal distribution us­
ing Equation~ 9 and 10, respectively. The proportion of similar ob­
servations was estimated as the ratio of observations within the upper 
and lower bounds to the total number of good observations using Eq­
uation 11. An average proportion of cells within the average week­
day confidence limits subsequently was estimated for the weekdays 
using Equation 12. Using this proportion of successful observations, 
a lower confidence limit was estimated using Equation 13 (6): 
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(13) 
/ = p - 3 p(l - p) 

nobs 

where 

nobs = 24 X 288 = 6,912, 
U-;J = standard deviation of 5-min observation distribution at 

station i at time interval j, 
x;'.1 = upper 95 percent confidence limit of 5-min observation 

at station i at time interval j, 
xf.1 = lower 95 percent confidence limit of 5-min observation 

at station i at time intervalj, 
n'~ = number of observations for day n within confidence lim­

its of average weekday surface, 
n" = number of good observations for day n (observation 

2: 0), 
p" = proportion of observations for day n within confidence 

limits of average weekday surface, 
p = average weekday proportion of observations within con-

fidence limits, and 
p1 = lower bound of proportion of observations within confi­

dence limits. 

Figure 7 illustrates how flow p" varied for the different days of the 
analysis period in the eastbound direction. It appears that most of 
the nonincident weekdays were within the confidence limit ( 16 of 
22 observations). The high number of observations outside the 
range occurred because the number of good observations (nonneg­
ative) for these extreme nonincident weekdays was less than nobs 
(used in estimating the confidence limits), and thus the lower con­
fidence limit should have decreased to reflect the smaller number of 
observations. However, this was not done. The major incident (Day 
24) did not have a major influence on p", which was 78 percent, indi­
cating that traffic conditions were similar, based on this index, to 
typical core weekday conditions before and after the effects of the 
incident were removed. This high p" resulted because this measure 
is not affected by how much the observation is outside the confi­
dence limits, and thus the fact that the incident had an extreme effect 
on traffic flow was not reflected. It is important to note that except 

for a single incident day, all the incident days fell outside the pre­
ceding confidence range. 

The Monday flows appeared to be near the borderline of the 
weekday flows (20 percent of the observations fell within the con­
fidence range). Fridays differed from the weekday conditions, and 
so did Saturdays and Sundays (0 percent of the days fell within the 
confidence range). The westbound direction experienced a similar 
trend in variation of the flow p". 

Summary 

Two methods for distinguishing typical traffic conditions from a­
typical traffic conditions were investigated. The regression method, 
which uses the flow and occupancy surfaces, could distinguish typ­
ical from atypical weekday traffic conditions. However, the noise 
in the speed surface was too large to enable the identification of any 
systematic underlying variations. In the regression method it was 
not possible to determine any statistical confidence limits, which 
limits the practical usage of the method. 

The success measure of the flow had the advantage of yielding 
confidence limits in order to distinguish statistically between signif­
icant and insignificant variations from the typical traffic conditions. 
This method could be developed further as an on-line incident detec­
tion routine by decreasing the averaging process from 5 to 2 min and 
estimating a p-value on-line for each station. A value outside the 
confidence limits would indicate a suspicious observation, and a sec­
ond p-value outside the confidence range could set off an alarm. 
Such an approach to incident detection differs from techniques that 
detect incidents on the basis of the traffic state at upstream and 
downstream detector stations (7) rather than the deviation of the cur­
rent observation from some bounds based on time of day. 

CONCLUSIONS AND RECOMMEND A TIO NS 

The premise of most equilibrium traffic assignments is that drivers 
base route selection on the assumption that in the absence of inci­
dents, temporal traffic patterns are very similar from one day to the 
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next. Many IVHS technologies attempt to explore the fact that even 
in the absence of incidents, traffic conditions on one day may be 
quite different from a similar previous day. This paper attempted to 
quantify these similarities and differences, both for incident and 
nonincident days. 

It is recommended that the quantification of these similarities 
and differences be incorporated directly in any IVHS designs 
and benefit simulations. The present frequent use of hypothesized 
similarities or differences of day-to-day traffic may lead to designs 
or benefit estimates that are not consistent with the actual behavior 
of traffic. In this paper, such behavior has been quantified for at 
least one location, and a potential step toward a standardized pro­
cedure for analyzing others in a comparable fashion can be 
adopted. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the comments, critiques, 
and suggestions made by Hana Suleiman at Queen's University. 

x 

·~ 

35 

TRANSPORTATION RESEARCH RECORD 1510 

x 
,i x 

x ,, 
x • •• x • 

j. • 
~ ... 

• 
<) 

0 00<> 
oO 

<> • 0 
'<) 

0 

•• •• • 
·1 

• • 

40 45 50 55 60 65 70 75 

Day 

REFERENCES 

I. Rak.ha, H., M. Van Aerde, E. R. Case, and A. Ugge. Evaluating the Ben­
efits and Interactions of Route Guidance and Traffic Control Strategies 
Using Simulation. Proc. IEEE Vehicle Navigation and Information Sys­
tems Conference, Toronto, Ontario, Canada, Sept. 1989, pp. 296-303. 

2. Rilett, L. R. Modelling of TravTek's Dynamic Route Guidance Logic 
Using the INTEGRATION Model. Ph.D. thesis. Queen's University, 
Kingston, Ontario, Canada, 1992. 

3. Shbaklo, S., F. Koppelman, and C. Bhat. Static Prediction Models of 
Flow and Occupancy. ADVANCE Report TRF-TT-05, ADVANCE, 
Transportation Center, Northwestern University, Evanston, Ill., 1993. 

4. Bhat, C., F. Koppelman, A. Sen, P. Thakuriah, P. Li, and N. Rouphail. 
Short-Term Travel Time Prediction. Report TRF-TT-02, ADVANCE. 
Transportation Center, Northwestern University, Evanston, Ill., 1992. 

5. SYSTATfor Windows: Statistics, Version 5 Edition, SYSTAT, Evanston 
Ill., 1992. 

6. Crow, E. L.,-F. A. Davis, and M. W. Maxfield. Statistics Manual. Dover, 
1960. 

7. Gall, A. I., and F. L. Hall. Distinguishing Between Incident Congestion 
and Recurrent Congestion: A Proposed Logic. In Transportation 
Research Record 1232, TRB, National Research Council, Washington, 
D.C., 1989. 



TRANSPORTATION RESEARCH RECORD 1510 35 

Statistical Analysis and Validation of 
Multipopulation Traffic Simulation 
Experiments 

SHIRISH S. JOSHI AND AJAY K. RATHI 

Computer simulation has become a very powerful decision aid for var­
ied facets of traffic engineering. Simulation experiments are often used 
to fit a metamodel of interest between the mean response and a selected 
set of input factors. This is done by carefully designing statistical exper­
iments under alternative system designs, which are referred to as mul­
tipopulation simulation experiments. Validation and statistical analysis 
procedures are presented on linear metamodels from multipopulation 
traffic simulation networks under the common random number (CRN) 
strategy on three sample networks using the TRAF-NETSIM model. 
Under the CRN strategy, positive correlations are induced among the 
observations, and hence the usual statistical analysis cannot be applied 
to obtain point estimates and confidence intervals; therefore it must be 
modified. Before the statistical analysis is conducted, certain assump­
tions of the CRN strategy should be validated-those that, if violated, 
render the modified statistical analysis invalid. 

Variance reduction techniques (VRTs) reduce the variance of the 
estimates of interest by replacing the original sampling procedure 
with a new procedure that yields the same expected value but with 
a smaller variance. Among the various correlation-induction tech­
niques used as VRT, such as the common random numbers, anti­
thetic variates, and Schruben-Margolin strategy, the common ran­
dom number (CRN) strategy is perhaps one of the easiest to employ. 
Rathi (1 ) illustrated the effectiveness of the CRN strategy for the 
TRAF-NETSIM simulation model developed by FHW A. 

TRAF-NETSIM is a microscopic, stochastic simulation model of 
traffic operations on urban street networks. This program has been 
applied extensively to a wide variety of problem areas by both prac­
titioners and researchers and is the most widely used traffic simula­
tion model (2). The availability of this model has enabled the devel­
opment and testing of innovative traffic management concepts and 
designs (3). An important feature of this model is its amenability to 
control randomness from one simulation run to the next. This con­
trol can be used to induce desired correlations among the outputs 
and reduce the variance of estimates on the statistics of interest. 

This paper presents validation and statistical analysis procedures 
on linear metamodels for multipopulation traffic simulation net­
works under the CRN strategy on three sample networks using the 
TRAF-NETSIM model. Under the CRN strategy, positive correla­
tions are induced among the observations, and hence the usual sta­
tistical analysis cannot be applied to obtain point estimates and con­
fidence intervals; therefore, it must be modified. Before the 
statistical analysis is conducted certain assumptions of the CRN 
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strategy should be validated-assumptions that, if violated, render 
the modified statistical analysis invalid. 

MUL TIPOPULA TION SIMULATION 
EXPERIMENTS 

Often the purpose of a simulation experiment is to estimate a meta­
model of a selected response, that is, a linear or nonlinear model of 
the mean response in terms of relevant decision variables for the 
simulated system. This fitted metamodel can be used in several 
ways. For example, it can be used to perform a sequential search in 
order to obtain better response values or make inferences on the 
behavior of the system. Consider a situation in which each simula­
tion run yields a univariate response y. A particular run, j, called a 
design point, and denoted by xjl (l = 1,2; . .. ,k), is identified by a 
setting of k factors or decision variables that are used as inputs to 
the simulation model. Suppose there are r replications of the simu­
lation experiment across the m design points composing the exper­
iment; then the relation of the response Yu for the ith replication and 
the jth design point to the level of the k factors can be represented 
as a linear-metamodel having the form 

k 

Yu= ~o + L~1xp +Eu 
/=I 

for i = 1, 2,. . .,r and}= 1,2,. . .,m (1) 

where (31 (l = 1,2, ... ,k) are the metamodel parameters and Eu is the 
experimental error at the ith replication at the jth design point. 
Across all m design points in the experiment, the metamodel in 
Equation 1 for the ith replicate can be written in matrix notation as 

Yi= Xf3 + Ei for i = 1, 2, , ... , r (2) 

where 

Yi = (yi1, Yi2 , · · · , Yim) ', 
f3 = (f3o, f31')' = (f3o, f31> · · ·, f3k)', 
Ei = (Eii, Ei2, ... 'Eim)'' and 
X = ClmT) is them X (k + 1) design matrix with ones in the first 

column and xjl in the jth row and (l + 1 )st column. 

In classical statistics, a design point is also referred to as a popula­
tion. Since this experimental setup has more than one design point, 
it is called a multipopulation simulation experiment. Often, the vari­
ances of the estimates of the metamodel coefficients can be reduced 
by inducing correlations of a desired sign between observations 
obtained from different runs. The induced correlations are obtained 
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by controlling the random number streams that drive the simulation 
model. Unfortunately there is no general guarantee that the correla­
tion-induction strategies produce the desired variance reduction. 
Therefore, careful implementation of these techniques is needed. 
CRN is one such useful correlation-induction technique. 

CRNSTRATEGY 

The idea of the CRN strategy is to compare alternative simulation 
models under similar experimental conditions in order to improve 
confidence that observed differences in performance are due to 
the differences in the model structure rather than to differences 
in the experiment itself (4, p. 61). Under the CRN strategy, the 
same set of random number streams, R; = (r;i. r;2 ••• , r;g) is applied 
to all m design points in the ith replicate where g is the number 
of streams used to drive the simulation model. Also, independent 
random number streams are used across replicates of the experi­
mental design. Replications reduce the variance of the outputs 
and present_ means of computing pure error. For the CRN strategy 
applied to simulation experiments, the following assumptions 
are made: 

1. The response variance is constant across all design points, 
so that 

2 2 
cr j = var[yu(Ri )] = cr for j = 1,2, ... ,m and i = 1,2, ... ,r (3) 

2. There is a constant nonnegative correlation between all pairs 
of responses within a given replicate, yij and y;k(J:t=k). That is, 

corr(yijyik) = P+ for j -:t:. k 

1 < j,k < m 

where 0 < P+ < 1. 

(4) 

3. The vector of responses composing the ith. replicate has a 
multivariate normal distribution. Under the first two assumptions, 
the covariance matrix between observations within a replicate is 
given by 

P+ 

P+ 

P+ 
1 

P+ 

P+ 
P+ 

VALIDATION AND STATISTICAL ANALYSIS 
PROCEDURES 

(5) 

The results for validation and statistical analysis procedures devel­
oped by Tew and Wilson (5) are presented. For a detailed theoreti­
cal framework, the reader is referred to Tew and Wilson (5). To per­
form statistical analysis and validation of the fitted metamodel 
under the CRN strategy, it is useful to transform the model to one 
with independent observations within each replicate. This is done 
by applying them X m orthogonal transformation f<CRNJ given by 

1~ l 
C' 

(6) 
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where C is an m X (m - I) matrix such that m- 112 1'" C is orthogo­
nal. (Note that in this case, the term 1,,, C does not indicate matrix 
multiplication; instead, it indicates the m X m matrix whose first 
column is given by 1111 , and whose remaining m - 1 columns com­

prise the matrix C.) 

Validation 

The validation consists of a three-step procedure in which each step 
checks a key assumption across all design points. The test in each 
step depends on validation of hypothesized properties of the previ­
ous steps; hence, these diagnostic checks on the experimental 
design and analysis must be performed in order. At each step a 
highly significant test statistic generally will indicate the need for 
some corrective action by the analyst. The following three diagnos­
tic tests must be performed. 

1. Test for multivariate normality. 

H0 : y; -N,,, (µ, :L) where :Lis positive definite but otherwiseµ and :L 
are unspecified 

versus 

H 1: y; has any nonnormal, nonsingular m-dimensional 
distribution 

2. Test for induced covariance structure. 

(7) 

H0 : cov(y;) =·:L<CRNJ with u 2 and P+ as in Equation 5 so that 
:L<CRNJ is positive definite and 0 < P+ < 1; otherwise u 2 and P+ are 

unspecified 

versus 

H 1: cov(y); is positive definite but different from :L<CRNJ 

3. Test for lack of fit in the linear model. 

H0 : E(y;) = X 13 

versus 

H;: E(y;) -:t:. X 13 

(8) 

(9) 

The Shapiro-Wilk test (5, Section 2.1) will be used to test the nor­
mality of responses y;. 

To test the covariance structure, the conventional likelihood ratio 
test statistic for H0 has the form 

[ ]

r/2 

L = det(r- 1 A) 
i ?cin<m-I) 

(10) 

where 

A= f.(y; -y)(y; -y)' (11) 
i=I 

and ~1 and~~ are explicitly defined elsewhere (25, 27 respectively). 
Also, 

1 r 

y =-LY; 
r i=I 

(12) 

is the sample mean of the original m-dimensional response vectors. 
If the responses are multinormal with the prescribed covariance 



Joshi and Rathi 

~tructure given by Tew and Wilson (5): then the test statistic N = 
-2 ln(L) asymptotically has a chi-squared distribution with 1/2 
m(m + 1) -2 degrees of freedom as r ~ 00 ( 6). However, the rate of 
convergence to this limiting distribution can be slow. To achieve 
adequate convergence to this limiting distribution of N with mod­
erate values of r, Joshi and Tew (6) developed a modified likelihood 
ratio statistic, M, whose definition and use are described in the 
following. 

Note that all the tests and analyses presented hereafter were 
derived using the transformed responses. They are, however, pre­
sented in terms of original responses to illustrate their application 
and ease of use to the simulation practitioner. 

Reject the null hypothesis in Equation 8 if 

M > xL{±m(m+ 1)-2] (13) 

M = -2w0 1n(L) 

with 

m(m+l) _
2 

2 
\jlo = m2 -3m+2 m-1 m-2 

-----+--+--
2\j/ I \j/2 \j/3 

and 

\jl I = l - 2m + 3 
6r 

3m2 -1 
\j/2=l-

6r(m-l) 

and 

m 
\j/3 =l+ 

3r(m-1) 

(14) 

(15) 

(16) 

(17) 

(18) 

The last stage of the validation procedure is to test for the lack of fit 
in the model. It uses a standard lack-of-fit test only applied to trans­
formed responses. Define the error sum of squares, SE, as 

r A 2 

SE= IJYi -XP1 II (19) 
i-1 

where 

~ = (X'X)-1 X'y (20) 

is the ordinary least squares estimate of J3. Also define St the error 
sum of squares for the transformed responses, and StE, the pure 
error of the transformed responses respectively, as 

r 

s; = SE-mL/Yi. -yj with v~ = mr-k (21) 
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with Vp£ = m(r-1) (22) 

where )i;. is the average response vector at the ith replication taken 
over across all design points, and y .. is the average response taken 
over all design points and over all replications. 

Reject H0 in Equation 9 if 

(S;-s;E)/(v~ -V~E) Fa 
* * > • • • Sp£/Vp£ (v£-vP£•vP£) 

(23) 

where Fis the quantile of order 1-o for the F-distribution with v[ 
- v"jf£ and vi£ degrees of freedom. Results on statistical analysis 
are presented next. 

Statistical Analysis 

The statistical analysis involves estimation of J3 and construction of 
simultaneous confidence intervals for the elements of J3. The uni; 
formly minimum variance unbiased (optimal) estimator of J3 is J3 
and is as given by Equation 20. The model independent estimator 
of cr2 is given by 

r m 

&2 
= [m(r-or

1 L L/Yij -y.j )2 

i=lj=I (24) 

where Y.j is the average response at the jth design point take!1 over 
all replicates. The variance on the estimate of J30 is given by X.'i and 
can be viewed as the between replicate variation; it is 

r (- - )2 
-1"2_ L Y;.-Y.. 
1\.1-m 

r 
i=I 

We have 

(25) 

(26) 

which can be used to construct 100(1 - a) percent confidence inter­
val for J30• 

Next, define~~. the estimate of the pure error variance cr2
, as 

r 

(mr-m)a 2 -m LCY;. -y..)2 
X~ = i=I 

r(m-1) 

(27) 

The joint 100(1 - a) percent simultaneous confidence interval for 
l'HJ3 1 for all! E Rh under the prescribed covariance structure where 
H is a known h X k matrix of constants with rank h :s (k + 1) and 

is given by . [ 
1 

] 112 
A A hF? l'H T'T - H'l 

l'HP1 E l'HP1 ±/...~ h,(m-l)r-k-lr ( ) (28) 

ILLUSTRATIVE EXAMPLES 

For the purpose of illustration, three sample TRAF-NETSIM net­
works were selected. The geometric conditions for Networks 1, 2, 
and 3 are depicted in Figure 1, 2, and 3, respectively. These data sets 



FIGURE 1 Graphical representation of Network 1. 

FIGURE 2 Graphical representation of Network 2. 
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FIGURE 3 Graphical representation of Network 3. 

represent traffic networks consisting of an isolated intersection 
(Figure 1 ), an arterial (Figure 2), and a grid (Figure 3). The input 
data for these networks regarding geometric length, signal control, 
number of lanes on each link, turning movements, and volume 
information are presented in Tables 1, 2, and 3 respectively. 
Because of the difference in characteristics of these three networks, 
different measures of effectiveness (MOEs) were chosen. The basic 
information pertaining to simulation experiments for the three net­
works is summarized in Table 4. 

For all these networks, nodes numbered 8XXX, where X is an 
integer between 0 and 9, are called entry/exit nodes. That is, traffic 
enters and exits through these nodes only. The rest of the nodes are 
all internal nodes. The combination of selected traffic volume, net­
work geometry, and control represents congested network. The pur­
pose of the study was to estimate and validate the relationship 
between the MOE (y), and the decision variables (x's), for each net­
work. Simulation experiments specified in Tables 1 through 4 were 
conducted, and MOEs, recorded. 

For all these networks, the following first-order metamodel was 
used to describe the relationship between the response, y (MOE), and 
the decision variables, x1 and x2 (i = 1, 2, ... , 10 and}= 1, 2, 3, 4): 

(29) 

where ~o is the average delay of interest across all design points and 
replicates. 

EXPERIMENTAL SETUP 

A sample experimental setup for Network 2 under the CRN strat­
egy is described to help the practitioner appreciate the ease of its 

use. Since there are two decision variables, or factors (green splits 
at Nodes 5 and 8), denoted by x, and x2, a 22 factorial experiment is 
conducted-that is, the two factors can be set at two levels, low and 
a high. The respective low and high levels for this example are 27 
and 37 sec as described in Table 4. There can, then, be four combi­
nations to set these factors: x1 at its low level and x2 at its low level, 
x1 at its high level and x2 at its low level, and so on. Each of these 
four combinations is called a design point, and there are four design 
points for this simulation experiment. Under the CRN strategy, each 
design point is driven by the same random number stream. Repli­
cations of such simulations at each design point, however, use inde­
pendent random number streams. If five replications are performed, 
five random number streams are used. However, the same five ran­
dom number streams are used across the four design points. In prac­
tice, applying the CRN strategy is easier than performing "normal 
simulation" (independent streams), since fewer random number 
streams are required under the CRN strategy. Note that in this case, 
the "normal simulation" would need 20 random number streams. 

SIMULATION ANALYSIS AND RESULTS 

The results of the validation for Networks 1, 2, and 3 are presented 
in Tables 5, 6, and 7 respectively, and those for statistical analysis 
procedures (if applicable) are presented in Tables 8, 9, and 10, 
respectively. 

A visual inspection of the correlation matrix in Table 5 indicates 
consistently induced positive correlations among responses 
between all pairs of design points in Network 1. It therefore guar­
antees that variance reduction is achieved, and using the CRN strat­
egy is better for this network than using independent streams. The 
test for multivariate normality of responses fails to be rejected, and 
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TABLE 1 Input data for Network 1 

Link length: All links 

Signal Control 

Nodes 1and3 

Node2 

All other nodes 

Number of Lanes 

Links with 3 lanes 

Links with 1 lane 

Links with 2 lanes 

Entry Volume (Follows a Uniform Distribution) 

node 8011 

node 8013 

node 8021 

node 8022 

node 8023 

node 8031 

node 8033 

Turning Movement 

Link 31-1 

Link 2-1 

Link 11-1 

Link 21-1 

Link 3-2 

Link 2-3 

Link 13-3 

Link 23-3 

All other links 

so does the test for the covariance structure from equation 8. The 
linear model representation in Equation 29 is found to be an ade­
quate representation for Network 1. Since all three stages of the val­
idation procedure failed to reject the null hypotheses in Equations 
7, 8, and 9, the analyst proceeds with the statistical analysis. This 
analysis yields point estimates and confidence intervals for the 
unknown parameters of the model in Equation 29. From the pre­
ceding confidence intervals, it is observed that the main effect for 
xi. the green split at Node 1, and the interaction effect do not appear 
to influence the delay in any significant manner. However, increas­
ing x2, the green split at Node 3 will decrease the vehicle delay, at 
least in the vicinity of the current setting of the decision variable. 

Table 6 illustrates consistently induced positive correlations 
among responses between all pairs of design points in Network 2. 
The use of CRN strategy is therefore justified for this network. The 
test for multivariate normality of responses fails to be rejected, and 
so does the test for the covariance structure from Equation 8. The 
linear model representation in Equation 29 is found to be an ade­
quate representation for Network 2. As for the previous network, all 
three stages of the validation procedure failed to reject their respec-
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500 ft. 

Signal control 

Two-phase actuated control 

Perpetual Green 

8031-31, 3-33, 31-1, 1-2, 2-3 

8022-22, 2-22, 22-2 

All other links. 

700 vph 

750 vph 

500 vph 

300 vph 

650 vph 

1350 vph 

650 vph 

30% left, 60% through, 10 % right 

30% left, 54% through, 16% right 

14% left, 36% through, 50 % right 

40% left, 40% through, 20% right 

71 % through, 29% right 

82% through, 18% right 

19% left, 48% through, 33% right 

27% left, 50% through, 23% right 

100% through 

tive null hypotheses. Statistical analysis can therefore be conducted, 
as prescribed. From the previous confidence intervals, it is observed 
that the main effects, Xi. the green split at Node 5, and x 2, the green 
split at Node 8, are both significant. The interaction term does not 
appear to contribute significantly to the fitted metamodel. There­
fore, decreasing x1, and increasing Xi. will decrease the vehicle 
delay, at least in the vicinity of the current setting of the decision 
variables. 

Finally for Network 3, Table 7 indicates consistently induced 
positive correlations among responses between all pairs of design 
points in Network 3. Employing the CRN strategy will therefore 
improve metamodel estimation, provided that the assumptions are 
validated. The test for multivariate normality of responses fails to 
be rejected, and so does the test for the covariance structure from 
Equation 8. The linear model representation in Equation 29 is found 
to be an adequate representation for Network 3. Since all three 
stages of the validation procedure failed to reject their null hypothe­
ses, the statistical analysis could be conducted. It yields point esti­
mates and confidence intervals for the unknown parameters of the 
model in Equation 29. From the confidence intervals, it is observed 



TABLE 2 Input data for Network 2 

Link length: All links 

Signal Control 

Nodes 5,6, 7, and 8 

All other nodes 

Number of Lanes All links 

Entry Volume (Follows a Unifonn Distribution) 

All nodes 

Turning Movement 

All links at four-way intersections 

All other links 

TABLE 3 Input data for Network 3 

Link length: All links 

Signal Control 

Nodes 4 through 12 

All other nodes 

Number of Lanes 

All links 

Entry Volume (Follows a Uniform Distribution) 

nodes 8001, 8005, 8009, and 8011 

All other nodes 

Turning Movement 

All links at four-way intersections 

All other links 

500 ft. 

Signal control 

Perpetual Green 

Two lanes 

1600 vph 

25% left, 50% through, 25 % right 

I 00% through 

500 ft. 

Signal control 

Perpetual Green 

Two lanes 

1000 vph 

1600 vph 

25% left, 50% through, 25 % right 

I 00% through 

TABLE 4 Information for TRAF-NETSIM Experiments, Networks 1-3, 22 Factorial 

No. of replications 
Duration (sec) 
Decision variables" 

X1 
X2 

Levels (sec) 
X1 (low/high) 
X2 (low/high) 

MOE: y (sec) 

10 
1,800 

Nodes 1 and 31 
Nodes 3 and 33 

8/12 
13/17 
Avg. delay for 
vehicles entering 
at Node 31 and 
exiting at Node 33 

Network 

2 

5 
1,800 

Nodes 5 and 13 
Nodes 8 and 14 

27/37 
27/37 
Avg. delay 
in network 

"Decision variables denote green split and approach nodes. 

3 

5 
1,800 

Nodes 4 and 16 
Nodes 10 and 18 

27/47 
27/47 
Avg. delay 
in network 
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TABLE 5 Validation results for Network 1 

Correlation mat.fix of responses 

corr()') 

Test for multivariate normality 

w· 
w*o.os (4, 10) 

Test for the correlation matrix 

M 

x2(8) 

Test for lack-of-fit of postulated model 

Test statistic 

FJ-0.0S 
(1,26) 

1.0000 0.5924 0.7259 0.7354 

0.5924 1.0000 0.7339 0.7630 

0.7295 0.7339 1.0000 0.7211 

0.7354 0.763 0 0.7211 1.0000 

0.67 

0.598 

7.86 

20.09 

0.54 

4.23 
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Validation complete. Fail to reject all null hypotheses. Therefore proceed with statistical analysis. 

that the main effect for Xi, the green split at Node 16 does not appear 
to influence the delay in any significant manner. However, increas­
ing x2, the green split at Node 10 will decrease the vehicle delay, at 
least near the current setting of the decision variable. The interac­
tion term, however, can play a role in this situation, and hence the 
analyst should proceed with caution. Conducting a pilot study to 
explore the effects of increasing the green split at Node 10 may be 
a suitable alternative before reaching to any meaningful conclusions 
about this network. 

The goal of this paper is to demonstrate the application of the val­
idation and statistical analysis procedures of linear metamodels from 
multipopulation simulation experiments under the CRN strategy, so 
the authors do not conduct further analysis on the effect of the deci­
sion variables on the response but instead point out the ease of appli­
cation of such procedures to the practitioner. The three networks 
selected for this study exhibit three different characteristics in their 
statistical analyses. Network 1 has only one factor significant, which 
is the main effect, x2• The other main effect and the interaction terms 

TABLE 6 Validation results for Network 2 

Correlation matrix of responses 

corr (y) 

Test for multivariate normality 

w· 
w*o.os(4,JO) 

Test for the correlation matrix 

M 

X2(8) 

Test for lack-of-fit of postulated model 

Test statistic 

1.0000 0.4 728 0.5992 0.9048 

0.4 782 1.0000 0.0785 0.3184 

0.5992 0.0785 1.0000 0.6362 

0.9048 0.3184 0.6362 1.0000 

0.72 

0.5 

1.6873 

20.09 

0.16 

4.23 

Validation complete. Fail to reject all null hypotheses. Therefore proceed with statistical analysis. 
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TABLE 7 Validation results for Network 3 

Correlation matrix of responses 

corr (y) 

1.0000 0.8373 0.7235 0.3418 

0.8373 1.0000 0.9531 0.7992 

0.7235 0.9531 1.0000 0.8538 

0.3418 0.7992 0.8538 1.0000 

Test for multivariate normality 

W* 

w* o.os ( 4, I 0) 

Test for the correlation matrix 

M 

x2(8) 

Test for lack-of-fit of postulated model 

Test statistic 

Fl-0.0S 
(1,11) 

0.64 

0.5 

7.9986 

20.09 

0.16 

4.84 

Validation complete. Fail to reject all null hypotheses. Therefore proceed with statistical analysis. 

are not significant. Network 2 exhibits the significance of both major 
factors on the metamodel, but the interaction term is not significant. 
Network 3 has one main effect, x2, and the interaction term to be sig­
nificant in the fitted metamodel, but the other main effect appears 
insignificant. These networks are therefore interesting for further 
exploration in their own way. For example, exploring Network 3 
along increasing values of the variable x2 can be self-defeating if the 
interaction term increases the delay with an increase in x2• 

In applying the CRN strategy for metamodel estimation and 
analysis to any simulation experiment, a note of caution is war­
ranted. There is no guarantee that the CRN strategy will produce the 
desired variance reduction. For this reason, the analyst should con­
duct a pilot study of the system before conducting an exhaustive 
simulation analysis. This can be done by computing the correlations 
obtained across design points for a smaller study and validating the 
assumptions. If negative correlations are observed across design 

points, then it is an indication that the CRN strategy may not be 
amenable for this particular problem. 

CONCLUSIONS AND FUTURE RESEARCH 

This paper demonstrates the statistical analysis and validation tech­
niques for linear metamodels in multipopulation traffic simuialion 
networks under the CRN correlation-induction strategy. This illus­
tration comprises a three-stage validation procedure and compre­
hensive postvalidation statistical analysis. The examples show the 
ease of applying the CRN strategy for traffic simulation experi­
ments and of performing estimation and analysis on a fitted meta­
model. The TRAF-NETSIM model can be used to perform efficient 
simulation experiments that could help a traffic simulation analyst 
gain more confidence in the results. 

TABLE 8 Statistical analysis results for Network 1 

Optimal estimator of P 

p = 

95% Confidence Interval for Po: 

27.1339 

-0.0933 

-3.6866 

-0.9689 

25.82 :S p0 :S 28.44 

Simultaneous 95% confidence interval for elements of P 
-I.94 5 p1 5 1.76, -5.54 5 p2 5 -I.84, -2.82 :S p3 5 o.88 
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TABLE 9 Statistical analysis results for Network 2 

Optimal estimator of P 

a = 

95% Confidence Interval for Po: 

533.1096 

18.3969 

-4.9419 

3.1534 

524.47 s Po s 541.74 

Simultaneous 95% confidence interval for elements of p 
14.53 s p1 s 22.24, -8.79 s p2 s -t.09, -0.1 s p3 s 7.6 

TABLE 10 Statistical analysis results for Network 3 

Optimal estimator of P 

a = 

95% Confidence Interval for p0 : 

526.6619 

1.0044 

14.3064 

-11.0461 

517.8 s Po s 535.51 

Simultaneous 95% confidence interval for elements of p 
-2.46 s p1 s; 4.46, 10.84 s p2 s 17.76, -14.5 s p3 s -7.58 

Future development in the TRAF-NETSIM model could include 
the statistical analysis procedures incorporated within the model for 
different types of simulation experimentation. Another avenue for 
research would be to develop statistical analysis and validation 
techniques for multiple responses instead of just a single response. 
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Event-Based Short-Term Traffic 
Flow Prediction Model 

K. LARRY HEAD 

The _problem of predicting traffic flow for the purpose of real-time 
traffic-adaptive signal control in an urban street network is explored. A 
prediction model is described that combines data from traditional vehi­
cle loo~ detectors and known relationships from traffic flow theory. The 
model 1s demonstrated using a microscopic traffic simulation model. 
Results of the simulation demonstrate that the model can provide the 
information required to develop truly proactive real-time traffic­
adaptive signal control. 

One of the greatest challenges to the development of real-time 
traffic-adaptive signal control is the prediction of traffic flows on 
the network and the relationship of these flows to the traffic control 
signal settings. 

The need for prediction was recognized in the development of 
the UTCS system in the early 1970s. The development of second­
generation (UTCS-2) and third-generation (UTCS-3) control logic 
included prediction as a primary system component (J). UTCS-2 
based its signal timing decisions on predictions of demand for the 
next 5 to 15 min. UTCS-3 based its signal timing on predictions of 
demand over much shorter periods of approximately a cycle length, 
although UTCS-3 logic was not based on fixed cycle length: 

For real-time traffic-adaptive signal control logic to be effective, 
it must have an accurate view of the state of traffic conditions on the 
network and be able to predict, at least 'over short periods, how the 
current network conditions will evolve. The imnortance of thf': tP.m­

poral distribution of information in the predictidn can be ~~d~;s~~-~d 
by considering the signal timing problem given two possible arrival 
patterns during the planning horizon as depicted in Figure 1. 

Each arrival pattern represents a flow profile where the magni­
tude of the profile represents the number of vehicles to arrive at an 
intersection in a fixed time interval. (For the purpose of this discus­
sion, the time intervals should be considered to be 1. or 2 sec in 
length.) Both arrival patterns are identical until time t0 , when the 
signal control logic is required to decide whether to serve this or 
another approach. There is significantly more demand immediately 
following to in the upper flow profile than in the lower during the 
same time interval. In each case the number of vehicle arrivals over 
the time horizon shown is equal, but the control decision should be 
different. It is of fundamental importance to know the temporal 
arrival distribution to build a truly real-time traffic-adaptive signal 
control logic. 

This paper explores the issues and problems of generating the 
necessary traffic flow predictions to allow the development of 
proactive real-time traffic-adaptive signal control logic. In the fol­
lowing section, the flow prediction problem is addressed and sev­
eral relevant issues are discussed. Then an event-based short-term 

Sy~tems_ and Industrial Engineering Department, Engineering Building 20, 
Umvers1ty of Arizona, Tucson, Ariz. 85721. 

traffic flow prediction model is presented and followed by a 
simulation-based demonstration of the model's capabilities. 

FLOW PREDICTION 

Three issues are important to predicting traffic flow: (a) length of 
the prediction time horizon: (b) number of prediction points per 
time horizon, called the prediction frequency; and (c) number and 
location of information sources used in making the prediction. The 
prediction time horizon provides the real-time traffic-adaptive sig­
nal control logic with the ability to plan future signal timing deci­
sions. If the prediction horizon is short, perhaps several seconds, 
then the signal timing decisions are restricted. For example, if the 
predictions are made over a 10-sec horizon, the signal timing logic 
can only make timing decisions that extend or shorten the current 
phase. Actuated signal control logic operates in this mode. If the 
predictions are made over a longer horizon, the signal timing deci­
sions can include decisions on phase termination times and phase 
sequencing. For example, if the prediction horizon is 30 to 40 sec, 
the signal timing logic might schedule the next two or three phases 
and their durations on the basis of predicted demand. 

The prediction frequency provides information about the distrib­
ution of vehicle arrivals over time. If the predictions are made at a 
frequency of only one prediction for the decision time horizon, then 
the signal timing logic must assume that the vehicles are distributed 
uniformly over that time. If the predictions are made more fre­
quently-say, 10 to 30 times over the prediction horizon-then the 
signal timing logic will have a more accurate representation of the 
distribution of vehicle arrivals over time. Figure 2 depicts the infor­
mation content of predictions at a frequency of once (dashed) and 
10 times (solid) per horizon. 

Traffic flow is, in general, a time-space phenomenon. The num­
ber and location of information sources determine the ability of any 
prediction algorithm to predict conditions on the basis of current 
conditions at related spatial locations. For example, if a detector is 
located 10-sec upstream of the desired prediction point, then pre­
diction will be easier but only for a 10-sec horizon. The farther away 
the location of other information sources, the longer the potential 
prediction horizon. But the temporal information may become more 
distorted (e.g., platoon dispersion) and thus less valuable for pre­
diction. In addition, the farther away the information sources, the 
greater the effects of exogenous factors, such as traffic signals and 
traffic sources/sinks. There is a trade-off between the distance 
between information sources and prediction accuracy. A system 
with many well-placed detectors will give the best prediction infor­
mation, but the cost of such a system may be prohibitive. 

Stephanedes et al. (2) conducted a critical review of the 
UTCS predictors and three other demand predictors. They com-
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pared the prediction accuracy of UTCS-2, UTCS-3, historical aver­
ages, current measurement, and a new algorithm proposed by the 
authors. The proposed predictor had a parametric form similar to a 
proportional-integral-differential (PID) controller. 

Each predictor was compared using mean squared error (MSE) 
and mean absolute error (MAE) for 5-min predictions and cycle-by-
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cycle predictions. It was concluded that for 5-min predictions, the 
historical average performed better than UTCS-2, and that both pre­
dictors were superior to the others. For cycle-by-cycle comparisons, 
the UTCS-2 and the historical average predictors were not applica­
ble since synchronization of cycles over historical periods was 
impossible. A moving average version of the PID predictor was 
superior to the UTCS-3 and current measurements. Some versions 
of the proposed PID predictor performed better than the moving 
average version, but the performance was sensitive to the selection 
of the model parameters. 

Each algorithm that Stephanedes et al. studied addresses the pre­
diction problem on the basis of a fixed time horizon, either five min 
or one cycle, and updates the prediction at a frequency of only once 
per horizon. Table l gives a summary of each of these algorithms 
in terms of its characteristics: prediction horizon, prediction fre­
quency, number and location of information sources, and perfor­
mance. 

Okatani and Stephanedes (3) used a Kalman filter model struc­
ture to consider information from multiple sources (i.e., detectors 
on a number of links). They made predictions at a frequency of once 
per 15-sec time horizon. Their results indicate a substantial 
improvement over the UTCS-2 prediction algorithm but fail to 
address the need for higher-frequency predictions as required for 
real-time traffic-adaptive signal control logic. 

In a discussion of the prediction problem, Gartner ( 4) concluded 
that the deficiency in providing good temporally distributed pre­
dictions could be addressed by relying on actual flows rather than 
average volumes. A possible method for obtaining actual flows 
would be to place detectors on the links upstream from the inter­
section and use the flows at these points to provide predictions. This 
approach has been adopted by several real-time signal control sys­
tems, including SCOOT (5), OPAC (6), and UTOPIA (7,8). A 
major limitation of this approach is that the distance between the 
intersection and the upstream detector could constrain the predic­
tion time horizon. 

Another approach, one used in SCA TS (9), is to locate the detec­
tors at the stop bars of the upstream intersection and use the depar­
ture profiles together with a dispersion factor to predict the down­
stream arrivals. This approach allows the effect of the upstream 
signal to be included in the prediction. 

TABLE 1 Comparison of Existing Traffic Demand Prediction Algorithms (2) 

Characteristic 

Algorithm Horizon Frequencya Sources Performance 

UTCS-2 5-15 min 1 Single Best for 5 min 

UTCS-3 5-15 min, 1, 1 Single Poor Overall 
cycle 

Historical 5-15 min 1 Single Best for cycle 
Average 

Current 5-15 min, 1, 1 Single Poor due to 
Measurement cycle time delay 

PID 5-15 min, 1, 1 Single Sensitive to 
cycle Parameters 

aThe notation 1,1 refers to the frequency based on the horizon, e.g. 
the UTCS-3 algorithm was evaluated with a 5-15 min horizon and a 
cycle based horizon. The frequency of each was I prediction per 
horizon. 
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PREDICTION MODEL 

The prediction model presented here is based on the use of detec­
tors on the approach of each upstream intersection, together with the 
traffic state (arrivals and queues), and the control plan for the 
upstream signals to predict future arrivals. The model is data-driven 
and combines actual traffic detector data with traffic flow theory. 

The prediction scenario geometry is depicted in Figure 3. It is 
desired to predict the flow approaching intersection A at detector dA, 
where the actual flow can be measured; hence, the quality of the pre­
diction can be assessed in real-time. The prediction of each arrival 
at the downstream intersection depends on the event of a vehicle 
crossing one of the upstream detectors and not (directly) on the tra­
ditional detection parameters of count and occupancy at a single 
detector. 

Consider the process of arrivals at an intersection, as observed at 
a detector, as a sequence of observations {n(t)};: 1 with n(t) repre­
senting the number of vehicle arrivals during time interval t. It is 
assumed that at any time t, n(t) = 0, l, 2, ... and depends on the 
number of lanes and length of the time interval. The prediction 
model assumes that this arrival process can be divided into two 
parts-a predictable part and an unpredictable part-hence, 

n(t) = n"(t) + n11 (t) (1) 

where np(t) represents the predictable part and n11(t), the unpre­
dictable part. From a traffic engineering perspective, the unpre­
dictable part of the arrival process may result from sources and 
sinks such as parking lots, garages, shops, and on-street parking. 

If several sources or sinks affect the arrival process-that is, if 
the contribution of n11 (t) is significant-the control strategy at the 
intersection probably will be different than if the arrival process is 
highly predictable. For example, if the process is highly predictable, 
the control strategy could be to allow platoon progression (assum­
ing platoons exist in the flow). If the process is highly unpredictable, 
then the control strategy could be to gather arrivals into platoons 
that can be predicted or accommodated at downstream intersec­
tions. 

A possible measure of predictability may be defined similarly to 
the signal-to-noise-ratio (SNR) familiar to signal processing and 
communication engineers: 

r+T 

J np(t)dt 
SNR = -r+"""'T:--'"r ___ _ 

J np(t) + n11 (t)dt 
r 

II 
FIGURE 3 Geometric layout of prediction 
scenario. 

(2) 
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where Tis the prediction horizon. Intuitively, if SNR"" 1, the pre­
dictable part of the process is dominant; if SNR < < 1, the unpre­
dictable part of the process is dominant. When SNR ""0.5, there are 
approximately equal volumes from each process. 

The rest of this paper is concentrated on the predictable part of 
the arrival process. However, it is noted that if the unpredictable 
arrival process contributes significantly to the actual arrival process, 
the model presented here may not be the best choice for prediction. 
In cases in which the unpredictable process dominates, additional 
roadway detectorization may be required to observe the traffic flows 
that contribute to the unpredictable component of the process. 

Traffic contributing to the predictable arrival process, or traffic 
flow, at dA originates from the approaches to intersection Band can 
be measured at detectors d1, d1, and dn which represent the flows that 
will turn left, pass through, and turn right, respectively. Consider the 
event of a vehicle crossing a detector, say, d; where i E { l, t, r}, at time 
tc1;· Let this event be denoted e;(tc1;-) Several factors affect when and 
if the vehicle will arrive at dA, including 

• Travel time from d; to the stop bar at intersection B, 
• Delay due to an existing queue at B, 
• Delay due to the traffic signal at B, 
• Travel time between Band dA, and 
• Probability that the vehicle will travel along a route that 

includes location dA. 

Figure 4a-d depict the delay associated with the first four factors. 
In Figure 4a the vehicle arrives at detector d; and passes freely to 
detector dA. The arrival time, denoted t°' at dA can be estimated as 

(3) 

where Tc1;.sn is the travel time from d; to the stop bar at intersection 
Band T58.c1A is the travel time from the stop bar at intersection B to 
the detector at dA. Each of these travel times can be estimated on the 
basis of the approach speed and link flow speed, respectively. 

The approach speed can be estimated, for conventional detectors, 
from the state of the signal and the occupancy of the detector. The 
link flow speed can be estimated from the occupancy at dA. Both 
travel time estimates can be greatly improved using probe vehicle 
data and advanced surveillance technologies such as video surveil­
lance. However, it cannot be assumed that these information 
sources will be available, so the prediction model must perform well 
enough using only conventional detector information. 

In Figure 4b the vehicle arrives at detector d; and is delayed by 
the signal at intersection B. Hence the travel time from d; to dA must 
account for the travel time from d; to the stop bar, the delay due to 
the signal, and the travel time from the stop bar to dA. The arrival 
time at dA can then be estimated as 

(4) 

where T
118 

is the delay until the signal timing plan advances to a 
phase that will serve the desired movement. The travel time from d; 
to the stop bar can be estimated on the basis of approach speed, 
assuming that the vehicle will have to stop. The signal timing delay 
can be determined using the signal timing plan and the travel time 
from the stop bar to dA can be estimated from the link flow speed, 
assuming that the vehicle starts from a stop at B. 
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(a) (b) 

(c) (d) 

FIGURE 4 Delay associated with predicted travel time: a, detected vehicle passes freely 
through intersection; b, detected vehicle arrives during red signal-signal delay; c, 
detected vehicle arrives during red signal and a queue exists-signal and queue delay; 
and d, detected vehicle arrives during the green signal and a queue exists-queue delay. 

In Figure 4c the arrival at d; encounters delay for the signal as 
well as a standing queue and must travel from d; to the stop bar at B 
and from the stop bar to dA. The travel time is defined as 

ta= td. + max{Td s ,J;, + Tq }+Ts d 
I ;' B B ; 8' A (5) 

The delay due to the standing queue, T";' can be estimated using 
a relationship of the form 

(6) 

where a0 and a 1 are parameters that can be selected on the basis of 
the particular intersection and N"; is the number of vehicles in the 
queue (JO). Equation 6 has the form of the Greenshields equation 
and has been used to estimate the amount of time required to clear 
a queue.) 

Equation 6 assumes some knowledge of the number of vehicles 
in the queue, N"t Since current detection technology does not pro­
vide this as a direct traffic measurement, it must be estimated. Baras 
et al. (11) investigated a point process-based estimation/prediction 
filter that pi:ovides this information. In this paper the authors have 
compared the Baras et al. filter with a simple counting estimator and 
have found that a simple counting estimator provides reasonably 
accurate information for prediction and requires considerably less 
computational effort in the process. 

Figure 4d depicts the case when the arrival at d; occurs after the 
signal has begun serving the desired phase, but a standing queue is 
present. In this case the prediction time is 

ta = td. + max{Td. s , Tq.} +Ts d 
I ,, B I 8' A (7) 

This case is similar to Equation 5, except that the delay due to the 
standing queue must be adjusted using the amount of time that has 

elapsed between the onset of the signal and the arrival of the vehi­
cle at d; and the travel time to the back of the queue. Equation 5 cap­
tures this relationship accurately. 

Recall that the prediction of the downstream arrival was initiated 
on the basis of the event, e;(t<1), of a vehicle crossing an upstream 
detector. Given this estimate of the predicted arrival time, an arrival 
event at intersection A, at detector dA, can be anticipated with prob­
ability p/A. This probability reflects the uncertainty that vehicle 
crossing the upstream detector will actually travel on a route that 
will cross the detector at dA. 

This uncertainty, along with the possibility of multiple lanes or 
time intervals in which more than a single vehicle may cross one of 
the upstream detectors, can be incorporated into the model by pre­
dicting the expected number of arrivals at dA instead of a single 
arrival event. If n;((1-) vehicles cross detector d; in time interval t<f., 

then using Equation~ 3-7, the expected number of arrivals at dA ~t 
time t"A can be predicted to be 

nA(tdA)= L LPiBAni(tp) 

iE{/,t,r} Vt 1, =tdA 
(8) 

The inner summation estimates that the expected number of arrivals 
at dA predict that these arrivals will occur at future time t" = t"A for 
movement i. The outer summation is over each of the movements 
feeding link BA.· 

From an operational algorithmic point of view, the model can be 
implemented by maintaining a data base table that is updated each 
time an event occurs on one of the upstream approaches. In this 
manner the prediction at dA evolves as the information becomes 
available. 

Several operational issues, such as right tum on red and permit­
ted left turns, have not been addressed directly. These factors can 
greatly affect the predictions and can be incorporated into the 
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model. For example, right turn on red can be incorporated easily by 
conditioning the probability of a vehicle making a right turn on the 
signal state and the opposing volume. If the signal is in a red state, 
there are vehicles queued that may make a right turn, and a gap is 
observed in the opposing flow, then a right turn can be predicted. In 
this case the queue size estimate can be adjusted accordingly and an 
arrival at the downstream intersection can be predicted. A similar 
enhancement can be made for permitted left turns. These factors 
have been included in the simulation study discussed in the follow­
ing section. 

EXAMPLE 

The prediction model just presented was implemented as part of a 
research effort to develop real-time traffic-adaptive signal control 
logic. The signal control logic is a hierarchical-distributed logic 
called RHODES (12.) The prediction model was implemented as 
part of the intersection control logic within the RHODES hierarchy 
and was used to evaluate the performance of the RHODES inter­
section control logic at a single intersection using computer simu­
lation. 

A computer simulation was developed using a modified version 
of the TRAF-NETSIM traffic simulation model developed by 
FHW A (13.) The simulation model was modified to support exter­
nal real-time traffic-adaptive signal control logic by passing sur­
veillance data from the simulation and accepting signal-state con­
trol decision inputs on a second-by-second basis. 

The simulated traffic network was based on an actual network in 
Tucson, Arizona. Actual signal timing plans, detector locations, 
traffic volumes, and turning percentages were used as the basis for 
the simulation. The simulated network consisted of 28 intersections, 
although the prediction and control algorithms were applied to a sin­
gle intersection. It was necessary to simulate the area surrounding 
the intersection of interest to ensure realistic traffic flows since the 
current version of TRAF-NETSIM has limited traffic generation 
capabilities. The simulation model did not include any interlink 
sources and sinks, which provides the most desirable environment 
for the prediction model to be successful. 

The geometric scenario for collecting the following data is as 
shown in Figure 3. Nodes A and Bare located 716.5 m (2,350 ft) 
apart. Each of the upstream detectors is located 39.65 m (130 ft) 
from Node B. The through approach is three lanes plus a left-turn 
pocket. Each side street approach consists of two lanes plus a shared 
turning lane. Detector dA is located 152.5 m (500 ft) upstream of 
Intersection A. For the purposes of this study, the simulation was 
run for 1, 170 sec, of which 400 sec were used to allow the network 
to reach equilibrium. Since the prediction model does not require 
steady-state conditions, all data, both transient and steady-state, are 
collected for analysis. 

Figure 5 shows a plot of actual versus predicted travel time for 
vehicles traveling along a route that crosses detector dA. The plot 
shows the ability of the prediction model to estimate actual travel 
time. The general trend in the plot is along the line y = x, which is 
the perfect prediction line: 

The scatter in the plot is due to several factors, including the nat­
ural stochastic variations in travel times. The model produces sig­
nificant errors in two areas. The first is when the actual travel time 
is long but the predicted travel time is short, the other is when the 
actual travel time is short and the predicted travel time is long. Fur­
ther investigation of these errors shows that each occurs at the end 
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FIGURE 5 Actual versus predicted travel times. 

or beginning of a signal phase. If the phase ends before a vehicle 
crosses the stop bar, but the prediction model expected the vehicle 
to clear the intersection, the predicted travel time will be much 
shorter than the actual travel time. Similarly, if a vehicle passes 
through the intersection but the prediction model expected the vehi­
cle to stop, a significant error will occur. 

Figures 6a-c show a plot of the actual and predicted travel times 
as a function of the time when the prediction was made. Each fig­
ure also includes the signal control state when vehicle movements 
are permitted for the associated approach. It is important to note that 
there are more predictions than actual travel because of the proba­
bilistic nature of vehicles traveling along a route that crosses the 
downstream detector. This is most apparent in Figure 6a, where 
there are relatively few left-turning vehicles. There are no actual 
travel times reported from approximately Time 1100 to Time 1170, 
since the simulation terminated before the generating vehicles com­
pleted their trips. 

Close examination of Figure 6 shows that the prediction model 
exhibits the same temporal behavior as the actual travel process. 
This is especially evident in Figure 6b. During the period when the 
signal is red, the travel times are long. As the green phase nears, the 
travel times become shorter until eventually the queue has dispersed 
and vehicles flow freely through the intersection. 

Figure 6c shows the highly variable behavior of the right-turning 
vehicles. This variability is due primarily to right turn on red behav­
ior. 

Figure 7 shows actual and predicted flow profiles, nA(tdA), at dA 
as a function of time. To capture the "flow profile" characteristic, 
the cumulative number of arrivals in a 5-sec time interval are 
shown. Only a portion of the total 1, 170 sec of simulation time is 
shown. 

The performance of the prediction model can be assessed quan­
titatively by examining the prediction error statistics. Standard fore­
casting/prediction measures include mean error (ME), sum of the 
squared errors (SSE,) MSE, MAE, and mean absolute relative error 
(MARE) (14.) Since there are time instances where no actual 
arrivals occur, the MARE measure was modified to include only the 
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FIGURE 6 Predicted and actual travel times as function of prediction time. 

absolute error and not the infinite relative error that would result 
from dividing by the 0-valued number of observed arrivals. Table 2 
gives these measures for the simulation experiment that generated 
the flow profile shown in Figure 7. In addition to these descriptive 
statistics, a Durbin-Watson (D-W) statistic is reported in Table 2. 
The D-W statistic measures the existence of any pattern in the pre­
diction errors. If the D-W statistic is near 2, as it is in this experi­
ment, the errors are essentially random. 

used for comparison. In fact, it is not known how sensitive real-time 
traffic-adaptive signal control will be. to informational errors. As 
Gartner noted (4), the true test for a prediction model is its ability to 
work with signal control logic to improve traffic performance. The 
prediction model presented in this paper has been coupled with a 
dynamic programming-based traffic-adaptive intersection control 
optimization algorithm (15) for the purpose of evaluation. 

As described previously, a network of 28 intersections was sim­
ulated using TRAF-NETSIM. The load (demand) on the network 
was varied across 30 simulation runs by increasing the vehicle input 
rate at each source node over a range of ±20 percent. The opti­
mization logic was instructed to minimize total delay. Figure 9 
shows the average delay per vehicle using the combined (optimiza­
tion and prediction) intersection control logic over the range of 
observed loads at a single intersection. For the purpose of compar­
ison, the average delay per vehicle using well-timed semiactuated 
control logic is also given in Figure 9. 

Figure 8 shows a histogram of the errors with each error cell 
taken to cover a range of 0.5 and the center point shown as the cell 
label. Note that all 0-valued errors are included in the range from 0 
to 0.5. In addition, the cumulative frequency is shown on Figure 8. 
It is interesting that most of the second-by-second prediction errors 
are within a single vehicle. 

These descriptive statistics are valuable primarily when one or 
more models are to be compared and have limited value alone. Since 
this type of high-frequency prediction is new, no other models can be 
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FIGURE 7 Flow profile showing actual and predicted number of arrivals during time intervals of 5 sec. 

Figure 9 shows the ability of the prediction model and the traffic­
adaptive signal control logic to work together to reduce the delay at 
the intersection. 

DISCUSSION OF RESULTS 

Although the simulation study presented in this paper is limited, it 
appears that the prediction model provides valuable information for 
the development of real-time traffic-adaptive signal control logic. 
Further study and evaluation are required before the limitations and 
properties will be fully understood; however, the current results are 
extremely promising. 

It is the author's belief that different prediction algorithms will 
be required for different situations. In some cases the use of 
upstream detectors will be sufficient to provide the desired level of 
performance. In others, more complex algorithms will be required. 
In still others, prediction will not be possible. 

The prediction model presented here was based on several con­
siderations. One was that the predictions should be based on the 
actual observations of traffic on the network-that is, it should be 
data-driven. Another was that operating agencies (cities, counties, 
states) have already made significant investments in detector sys­
tems. For real-time traffic-adaptive signal control systems to be eco­
nomically feasible, they must use as much of the existing surveil­
lance system as possible. The model does require communication 
between adjacent intersections to provide signal timing and 
upstream detector information. This additional communication 
requirement may or may not be possible in modern traffic signal 

TABLE 2 Descriptive 
Statistics of Predicted 
Traffic Arrival Process 

Measure 
ME 
SSE 
MSE 
MAE 
MARE 
D-W 

Value 
0.09 
358.13 
0.31 
0.29 
0.27 
1.94 

control systems, but it will most certainly be required in future real­
time traffic-adaptive signal control systems such as the RT-TRACS 
under development by Farradyne Systems, Inc., for FHWA (16.) 

The primary limitation of the prediction model is its dependence 
on turning percentages, link travel times, and queueing delay. How­
ever, almost all existing traffic signal systems and signal optimiza­
tion software require similar information and, when properly cali­
brated, work relatively well. In the simulation study this 
information has been included as input parameters. It has been the 
author's experience, using this simulation study, that the prediction 
model is not highly sensitiv~ to some of these parameters. However, 
if these factors were to change significantly, it is expected that the 
quality of the predictions would be compromised. 
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FIGURE 9 Comparison of prediction model with a real-time traffic adaptive signal timing 
optimization logic and semiactuated control. 

It is hoped that some of these types of information will become 
available through advanced technologies as part of the intelligent 
transportation system (ITS). Perhaps, more important, develop­
ments such as this prediction model can identify the types of infor­
mation that ITS developers should be attempting to provide. 

Within the model itself are several possible improvements. A bet­
ter prediction of left- and right-turn permitted movements should be 
included. The model tested in the simulation used a heuristic rule 
for this behavior. Another possible improvement would be to treat 
link travel times as random variables and to allow the predictions to 
be distributed over time with some probability distribution. 

Despite these limitations. the prediction model appears to have 
many promising characteristics, including the fact that it is data­
driven and combines these data with traffic flow knowledge. The 
ability to work with the traffic-adaptive signal control logic to 
improve the performance of a single intersection is the best evi­
dence that this type of prediction model is feasible and, more impor­
tant, valuable. 
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Estimating Intersection Turning Movement 
Proportions from Less-Than-Complete 
Sets of Traffic Counts 

GARY A. D.AVIS AND CHANG-JEN LAN 

Estimated turning movement proportions are used in a number of traf­
fic simulation and traffic control procedures to predict the turning 
movement flows at intersections. Historically, these proportions have 
been estimated by manual counting, but the ongoing deployment of 
real-time adaptive traffic control strategies indicates that the ability to 
automatically estimate these proportions from traffic detector data is 
becoming increasingly important. When it is possible to count the vehi­
cles both entering and exiting at each of an intersection's approaches, 
methods based on ordinary least squares can produce usable estimates 
of the turning movement proportions, but when the number or place­
ment of the detectors does not support complete counting, these meth­
ods fail. The feasibility of estimating turning movement proportions 
from less-than-complete sets of traffic counts is assessed, and the sta­
tistical properties of less-than-complete count estimates are compared 
with estimates generated from complete counts. It turns out that esti­
mation from less-than-complete counts can be done as long as the detec­
tor configuration satisfies an identifiability condition. A numerical test 
is presented to assess whether or not this condition is satisfied, along 
with some simple rules for designing detector configurations that are 
likely to satisfy this condition. A Monte Carlo experiment suggests that 
estimates generated from less-than-complete counts can be more vari­
able than those generated from complete counts. 

A commonly used representation of the demand for travel on a 
bounded network of urban streets requires specifying (a) the arrival 
flows at each input point on the boundary of the network, and (b) 

the turning movement proportions at each of the network's inter­
sections. Both arrival flows and turning movement proportions may 
vary in time. When coupled with a method for estimating the travel 
times on street segments, knowledge of the arrival flows and turn­
ing movement proportions allows a traffic engineer to predict the 
turning movement flows at each intersection in the network, and 
these in turn are needed to evaluate the effectiveness of all but the 
most simple intersection signal control plans. Not surprisingly, this 
representation of demand has a long history of practical application, 
including use by classical methods for computing pretimed controls 
for isolated intersections (e.g., Webster's method), the Highway 
Capacity Manual's method for evaluating level of service at inter­
sections and along arterials (1), and computer models used for off­
line optimization and evaluation of timing plans for networks of 
intersections (e.g., TRANSYT, NETSIM). More recently, on-line 
adaptive control schemes (e.g., SCAT, CARS) have also used this 
representation. 

In the past, a major limitation on the timely updating of signal 
control plans was that the only reliable method for estimating the 

Department of Civil Engineering, University of Minnesota, 500 Pillsbury 
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turning movement flows was time-consuming and costly manual 
counting. This limitation became even more burdensome when one 
wished to adapt a control plan in real time, and often it led to 
reliance on a stored library of "typical" turning movement patterns, 
which were determined by off-line counting. It is no surprise, then, 
that over the past 15 years, a number of researchers have investi­
gated methods for estimating turning movement proportions auto­
matically from the traffic count data collected by real-time traffic 
control systems, which typically are gathered using detectors 
embedded in the pavement. Almost without exception, however, 
this work has assumed that it is possible to count the total number 
of vehicles entering the intersection from each of its approaches as 
well as the total number of vehicles exiting from each exit leg. For 
example, the intersection of two two-lane, two-way streets would 
require a minimum of eight detectors. It is now well-established that 
when time series of an intersection's input and output counts are 
available, estimation methods based on ordinary least squares will 
produce usable estimates of the turning movement proportions, both 
off-line and in real time (2-6). However, such a rich density of 
detectors tends to be the exception rather than the norm, at least in 
the United States, and the slow application of automatic turning 
movement estimation in the United States can in part be blamed on 
the added expense imposed by the additional detectors. The func­
tional specifications for real-time traffic adaptive control systems 
(RT-TRACS), recently prepared for FHWA, explicitly recognizes 
this limitation by calling for a maximum of 20,000 detectors for a 
total of 5,000 intersections. 

Before proceeding, it is useful to specify more completely the 
relation between this paper and past work. For the case in which 
counters are placed at each entry and exit point of an intersection, it 
has been recognized that the problem of estimating turning move­
ment flows or turning movement proportions from the counts is a 
special case of the more general problem of estimating an origin­
destination (OD) matrix from traffic counts, and reviews of this 
problem can be found elsewhere (7-9). As noted by Davis (10), OD 
estimation methods can be classified as either over- or underdeter­
mined, depending on whether the traffic count data at hand are suf­
ficient to produce a unique estimate of the OD elements. For under­
determined approaches, an infinite number of OD estimates 
consistent with the count data will exist, and one of these is selected 
by specifying a prior estimate of the OD matrix and then selecting 
as the new estimate the OD matrix that is consistent with the count 
data and "closest" to the prior estimate (7). 

Three general approaches to underdetermined OD estimation 
have appeared to date, defined primarily by how they define "close­
ness" to the prior estimate: the information minimizing (IM) 
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approach developed by Van Zuylen and Willumsen (11) and Bell 
(12), the weighted least squares (WLS) approach initiated by Maher 
(13) and Cascetta (14), and a maximum likelihood (ML) approach 
described by Speiss (15). Speiss also assumes that the prior estimate 
comes from a survey with known sampling properties. All of these 
approaches are subject to the criticism that despite more than 15 
years of research, none has been shown to yield estimators that are 
consistent, in the statistical sense of becoming increasingly accurate 
as the amount of traffic count data become arbitrarily large. In fact, 
Davis and Nihan (16) have shown that an underdetermined least 
squares OD estimator remains underdetermined, and hence not con­
sistent, even with an infinite time series of traffic count data. The 
IM, WLS, and ML approaches all have specializations to the prob­
lem of estimating an intersection's turning movement flows from 
traffic counts, and Maher (17) has provided a concise summary of 
these methods, where he found that for a particular computational 
example, these three approaches tended to produce similar esti­
mates. As with general OD estimators, the underdetermined meth­
ods for estimating intersection turning flows will fail if a good prior 
estimate is not available, so they are unable to "bootstrap" good esti­
mates from traffic count data alone. This dependence on prior infor­
mation makes them particularly ill-suited for real-time implemen­
tation. 

The limitations of underdetermined approaches were described 
by Cremer and Keller (2), who also described the first overdeter­
mined method for estimating intersection turning movement pro­
portions. Here it was assumed that time-series data of the intersec­
tion's entering and exiting counts were available, and an estimate 
of the turning movement proportions was coupled with the entering 
counts to produce predictions of the exiting counts. Those values of 
the turning movement proportions that minimized a measure of 
error between the predicted and observed exit counts were then 
selected as the best estimates. Subsequent papers (3-5) located this 
work within the framework of the systems identification paradigm 
(18-20), and general results on systems identification have been 
used to show not only that ordinary least-squares estimates of turn­
ing movement proportions are consistent (5), but also that consis­
tent estimates of more general OD matrices can be computed from 
time series of traffic counts (10). A particular advantage of the sys­
tems identification approach is that real-time implementation of the 
estimation algorithms is often straightforward. 

When considering the problem of estimating turning movement 
proportions for a network of intersections and complete entry and 
exit counts are not available, the estimation problem is no longer a 
special case of OD estimation, and to date no underdetermined 
methods have been proposed for this problem. When time series of 
traffic counts are available, however, the overdetermined estimation 
problem again falls within the systems identification paradigm, for 
which a reasonably general statistical theory (20) and real-time 
implementations (18) have been described. This paper considers the 
problem of estimating intersection turning movement proportions 
in networks where time series of traffic counts are available from 
automatic traffic detectors but the number or placement of the 
detectors may not be sufficient for the standard least-squares esti­
mation methods. Although it is recognized that method of moments, 
least squares, and ML approaches are applicable to this problem, the 
focus will be on a nonlinear least squares (NLS) approach because 
(a) it leads to a straightforward generalization of the methods that 
use complete sets of counts, and ( b) the basic ideas behind this 
approach can be developed with the least amount of statistical jar­
gon. Thus the authors believe that the NLS approach is more likely 
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to be accessible to interested practitioners. The primary focus in this 
paper is on determining feasibility, so the authors concentrate on 
off-line computation of the turning proportion estimates and simply 
note that on-line versions of NLS estimation, using state-space 
models, have been described in the literature (18,21). This restric­
tion to off-line methods is justified by the fact that an approach that 
performs poorly off-line will also perform poorly on-line, and the 
pathologies of an approach are usually easier to diagnose off-line. 

TRAFFIC FLOW MODEL 

To date, all methods for automatic estimation of turning movement 
proportions have used prediction error minimization methods, in 
which one first specifies a model for predicting the intersection's 
exit counts using the intersection's input counts and a trial set of 
turning movement proportions. One then selects as the estimated 
proportions those values that minimize some measure of the differ­
ence between the predicted and the actual exit counts. The predic­
tion model thus is essential for estimating, or identifying the turn­
ing proportions. The first requirement then is a prediction model 
that is capable of handling several intersections simultaneously and 
that allows for a variety of detector configurations. 

Consider a set of street intersections surrounded by a cordon 
boundary. Traffic counters are located at each point where traffic 
can enter the cordon area; they count the number of vehicles cross­
ing into the cordon area at that point. Suppose there are m of these 
input counters, and let q;(t) equal the traffic count at input counter i 
during time interval t, i = 1, ... , m. 

Next, suppose the streets within the cordon have been divided 
into s sections, or compartments, according to the following rules: 

1. Traffic flow within a compartment is unidirectional, 
2. The stop lines at intersections always mark the downstream 

boundaries of a compartment, and 
3: The exit line on an intersection leg always marks the upstream 

boundary of a compartment. 

A segment of a two-way street connecting two intersections must 
be divided into at least two compartments, one for each direction, 
with the compartment boundaries being the intersection stop and 
exit lines. These two compartments may be divided further. At a 
total of n compartment boundary points are placed additional detec­
tors that count the number of vehicles crossing that boundary point. 
Call these the output detectors, and let yj ( t) equal the number of 
vehicles crossing output detector j during time interval t, j = 

1, ... , n. 
Next, let 

xk(t) = number of vehicles in compartment k at begin­
ning of time interval t; 

q(t), x(t), y(t) = m-, s-, and n-dimensional vectors, respectively, 
containing individual elements q;(t),xk(t), and 
y/t); 

b1k = proportion of vehicles currently in compartment 
l that desire entry into compartment k, if com­
partment l is adjacent to compartment k, or 0, if 
compartment k is not adjacent to compartment 
l; 

b = d-dimensional vector containing turning move­
ment proportions; 



Davis and Lan 

Pk(x) = proportion of vehicles that can physically exit 
compartment k during time interval t, as a func­
tion of the current distribution of vehicles in the 
system; 

gki = 1, if input counter i is at the upstream boundary 
of compartment k, and 0, otherwise: 

The distribution of vehicles over the compartments then evolves in 
time according to the mass balance equations 

xk(t + 1) = {1- pdx(t)]}xk(t) 

+ L 1 x,(t)p,[x(t)]b1k +Li gkiqi(t) k = 1, .. . ,s (1) 

Thus the quantity xi(t) p 1 [x(t)] gives the number of vehicles actually 
exiting compartment l during time interval t, and these are then dis­
tributed to the neighboring compartments in proportion to the b1k, 

with 2,kb1k = 1.0. At this point no assumptions are made concerning 
specific functional forms for the exit probabilities pk(x), but note 
that plausible forms can be derived from traffic flow models, so that 
the quantity xkpk behaves like a traffic flow-that is, as the product 
of space-mean speed and traffic density (22-24). Additional gener­
ality can be achieved by letting these exit functions depend explic­
itly on time or on the destination compartment as well as the origin 
compartment, or on other dynamic variables, such as compartment 
mean speeds, making this class of models roughly coextensive with 
macroscopic traffic models based on continuum theory. Such 
enhancements do not affect the main conclusions of this paper, but 
they tend to obscure the drift of the argument with notational com­
plexities and so will not be dealt with here. It is noted, though, that 
actual application requires specification of the exit functions. 

Finally, for a given sequence of input counts q(l), q(2), ... , q(N) 
and a given vector of turning movement proportions b, predicted 
output counts can be generated by solving the mass balance equa­
tions recursively while computing the predicted output counts via 

if detector j counts exits 
from compartment k 

if detector j counts entries 

into compartment k 

(2) 

Equations 1 and 2 define a nonlinear state-space model: the first 
describes the state dynamics and the second gives predictions of the 
observations. 

The simplest example of such a model would be a network con­
sisting of a single intersection and its adjacent compartments, with 
the input counters located at the upstream boundaries of the inter­
section's approaches, the output counters located at the intersec­
tion's exit points, and pk(x) = 1.0 for all k and x. Since each pro-

0 

portion bk1 corresponds to exactly one inpuUoutput pair, these can 
be reindexed as bij, and they give the intersection's turning move­
ment proportions as defined elsewhere (2-6). In this case, given the 
input counts, the prediction of an output count is given by the sim­
ple linear relationship 

(3) 

and constrained ordinary least squares (CLS) estimates of the turn­
ing movement proportions can be computed by minimizing the sum 
of squares function 

subject to the constraints 

0:::;; bij:::;; 1.0 

Ljbij = 1.0 i = I, ... ,m 

This problem is well-defined as long as the matrix 
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(4) 

(5a) 

(5b) 

(6) 

is nonsingular. This is the basic model used by Cremer and Keller 
(2,3) and Nihan and Davis (4,5) in developing their numerous vari­
ants of least-squares estimators of turning movement proportions, 
whereas letting Pk :'.S 1 produces the platoon dispersion model pro­
posed by Bell (6) to account for travel time lags between the input 
and output counters. 

IDENTIFIABILITY OF TURNING MOVEMENT 
PROPORTIONS 

Returning now to the nonlinear prediction model defined in Equa­
tions 1 and 2, for a given sequence of input counts and an estimate 
of the turning movement proportions b, this model can be used to 
generate a sequence of predicted output counts, which in tum can 
be used to compute the sum-of-squares function 

S2(b) = L,[y(t)- y(t, b)f[y(t)- y(t, b)] (7) 

where y(t, b) denotes the vector of predicted outputs produced by 
Equation 2. The dependence of the predicted outputs on the unob­
served state vector x(t) makes y(t, b) a nonlinear function of the 
turning movement proportions, so that attempting to minimize S2 

with respect to b leads to an NLS problem. This can be solved using 
any of a number of standard routines as long as the problem is well­
defined, in the sense that at least a locally unique minimizing value 
of b exists. It may be, though, that the number or placement of the 
output detectors is not sufficient to produce a well-defined problem, 
leading to a situation analogous to the underdetermined OD esti­
mation problem. · 

The problem of determining in advance whether a data collection 
experiment will support estimation of a model's parameters is an 
example of the system identifiability problem, to which a substan­
tial research effort has been devoted (24,25). It is straightforward to 
verify that when the output count predictions are differentiable 
functions of the turning movement proportions (which is true for 
prediction model used here), and when there exists a vector b0 that 
produces "good" predictions (in the sense that the prediction errors 
are uncorrelated with the input counts), then the problem will be 
well-defined as long as the matrix J(bfJ(b) is nonsingular, where 

r 

aYi(1, h) aYi(1, h) I 
~--·~ 

J(b) = . . . . . . . .. 
ay11 (N, b) cry11 (N, b) 

ab1 ··· abd 

(8) 
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is the Jacobian matrix giving the derivatives of the predicted output 
counts with respect to the turning movement proportions. In prac­
tice, one would test whether or not a particular eonfiguration of out­
put counters will support identification of the turning movement 
proportions by Computing the determinant Of J(b) TJ(b) at a Sample 
of values for b, using a typical sequence of input counts. Analytic 
expression for the partial derivatives appearing in J(b) is not 
needed, as these can be evaluated numerically; as long as one can 
generate an a priori reasonable set of input counts, no actual data 
are needed to perform these tests. This makes this test suitable for 
use in designing detector configurations. A justification for testing 
only a few sample values for bis given by a result attributable to 
Eisenfeld (26): suppose J(b) is a polynomial function of b (as is the 
case for the prediction model described by Equations 1 and 2). Then 
if there exists one value b such that the determinant of J(bf](b) 
does not equal 0, the determinant of J(b)rJ(b) does not equal 0 for 
almost all values of b. 

Experience from the identification of compartment models in 
biology and medicine indicates that this property, known as local 
identifiability, is useful for determining which data collection con­
figurations can support parameter estimation (24,25). 

DESIGN OF IDENTIFIABLE DETECTOR 
CONFIGURATIONS 

The Jacobian test provides a method for assessing the ability of a 
given detector configuration to provide enough information for esti­
mating turning movement proportions, but it provides no guidance 
as to how one might arrive at plausible configurations in the first 
place, nor does the test indicate how to correct an unidentifiable 
configuration. Ideally one would like to have identifiability condi­
tions that are both necessary and sufficient, where the necessary 
conditions give guidance on how to design the detector configura­
tion while the sufficient conditions verify that the design is in 
fact adequate. In the current state of the art, useful necessary and 
sufficient conditions have yet to be found, even for linear, time­
invariant models. For linear models, however, there do exist neces­
sary conditions that indicate how to avoid certain common reasons 
for nonidentifiability, and although the traffic model described pre­
viously is nonlinear, because of the dependence of the exit flows on 
the current traffic distribution x(t), it shares many bf the structural 
features of linear models, becoming a time-invariant linear model 
when the exit probabilities are constant. Thus it can be recom­
mended that following the conditions for linear systems should pro­
vide good starting points for designing identifiable detector config­
urations for the nonlinear model. 

• A configuration of detector placements will be said to produce 
an input-reachable model if there is a route to each compartment 
from at least one input detector. Similarly, the configuration is 
output-reachable if there exists a route from each compartment to at 
least one output detector. 

• A pair of turning movement proportions will be called insepa­
rable if every route connecting an input detector to an output detec­
tor that involves one of these turning movements also involves the 
other. 

For linear models, it has been established that models that are not 
input- and output-reachable are unidentifiable whereas two insepa­
rable parameter values will be identifiable only in special cases (25). 
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Thus input and output reachability and separability can be regarded 
as highly desirable properties for a detector configuration, and for 
very simple networks it is usually possible to verify input and out­
put reachability and separability by inspecting a graphical represen­
tation of the network (25 ). For larger networks, input and output 
reachability can be verified by computing reachability matrices for 
the network (27), but separability is more difficult to check. The task 
b.ecomes much simpler if the network shows the graph theoretic 
properties of strong connectedness and degree-2 vulnerability. [By 
strongly connected, the authors mean that it is possible to travel from 
any internal compartment to any other internal compartment; by 
degree-2 vulnerability, they mean that the network remains strongly 
connected even if any one of its turning movements is forbidden. 
Roberts (27) gives a more detailed discussion of these properties.] 

• Proposition. Suppose a network of intersections is bounded by 
a cordon line, with no internal origins or destinations. Suppose the 
network is strongly connected and degree-2-vulnerable and that 
detectors are placed so that a complete cordon count of both enter­
ing and exiting vehicles is achieved. Then this detector placement 
is both input- and output-reachable and separable. 

• Proof Since the vehicles entering from the cordon line must 
enter an internal compartment, and since the vehicles exiting at 
the cordon line must exit from an internal compartment, strong 
connectivity implies input and output reachability. Now let 
(k, li. 12 ••• , l,l) denote a sequence of compartments that when tra­
versed, form a route from input point k to output point l. Let 
[(k, li)(/1, 12), ••• ,(/,, l)] denote the sequence of turning movements 
used in traversing this route, and select any two turning movements 
from this sequence, denoting them by (/0 , lb) and Uw 113). Since the 
network is degree-2-vulnerable, it is possible to forbid movement 
(1"'113) and still construct one route from an input from an input point 
to compartment 10 and another route from compartment lb to an out­
put point. Joining these routes with the movement (l"' lb) creates a 
route from an input to an output that uses (/", lb) but not Ua, l~), so 
the configuration is separable. 

Although it is easy to construct networks that are not strongly 
connected (the network shown in Figure 1 is an example), the 
authors believe that most well-designed street systems should have 
this property. For if a network is not strongly connected, it will be 
possible to divide it into two or more components, some of which 
are inaccessible from others (27). That is, a vehicle that is one part 
of the network can find it impossible to travel to other parts. Degree-
2 vulnerability also appears plausible but less general, so that some 
networks will have this property and some will not. One exception 
would arise from a T-intersection formed by two one-way streets, 
where, for instance, vehicles turn left from the cross of the T into 
the stem of the T. Forbidding this left turn would make it impossi­
ble to enter the stem of the T (and hence destroy the network's 
strong connectivity), and this also makes it impossible to construct 
a route using a movement exiting the stem of the T without using 
this left turn. The solution for this problem would be to place an 
additional output detector to count vehicles entering the stem of the 
T, so that routes terminating at this detector would separate the left 
turn into the stem of the T from the movements exiting the stem. 
Finally, for networks with internal origins or destinations, placing 
detectors to count the vehicles exiting or entering these points will 
convert them to "internal" cordon points, and the preceding results 
will still hold. 

To summarize, a detector configuration that is input- and output­
reachable and separable is not guan:mteed to be identifiable, but it 
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FIGURE 1 Simple signalized network. 

will avoid two common causes of nonidentifiability. If a network is 
strongly connected and this connectivity is relatively invulnerable 
to disruption, then a complete cordon count will give an input- and 
output-reachable and separable configuration. Finally, internal 
compartments that can be entered from only one other internal com­
partment are likely to cause separability problems unless additional 
detectors are used. 

MONTE CARLO EXPERIMENT 

A system that is identifiable in the preceding sense is one for which 
the data collection configuration will not, by itself, prevent estima­
tion of the turning movement parameters. However, the quality of 
the resulting estimates will depend at least in part on factors such as 
quality and quantity of the available data, the algorithm used to 
solve the NLS problem, and the choice of NLS as opposed to some 
other estimation approach, such as method of moments or ML. A 
comprehensive answer to the questions raised here is not available, 
but to illustrate these issues, consider the simple network depicted 
in Figure 1, showing two intersections of two-way streets. The var­
ious compartments are numbered from 1 to 14, and the figure also 
shows the 24 separate turning movement proportions, indexed 
according to their exit and entry compartments. Since for any given 
approach the proportions for left turns, right turns, and through 
movements must add up to 1.0, there are in fact only 16 linearly 
independent turning movement parameters in this network, and the 
vector b containing these independent parameters will have dimen­
sion d = 16. Figure 2 shows two different configurations of detec­
tor placements for this network. Placement Scenario 1 corresponds 
to the complete detectorization assumed by the linear model for es~i­
mating turning movement proportions, and Scenario 2 corresponds 
to a cordon count placement. It is straightforward to verify that 
under Scenario 2, the detector configuration is both input- and 
output-reachable and separable. 
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FIGURE 2 Configurations of detector 
placements. 
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The primary objective of this paper was to generate a sample of 
turning proportion estimates computed by minimizing the nonlin­
ear sum of squares function S2 and then to compare it with a sample 
of estimates generated by minimizing the linear least-squares func­
tion S1• To this end, simulated traffic counts for both the Scenario 1 
and the Scenario 2 detectors were generated using a stochastic ver­
sion of the prediction model described by Equations 1 and 2. Sim­
ulated input counts at each of the six input points for time interval t 
were generated as Poisson outcomes with time-varying means q(t), 
and the number of vehicles exiting compartment k during inter~al t 
was generated as binomial random variable with parameters xk(t), 

pdx(t)]. The exiting vehicles were then allocated to adjacent com­
partments as multinomial random outcomes with classification 
probabilities bki· The exit probability functions were of the same 
form as those presented and tested elsewhere (23,24) to describe 
freeway traffic flow, but with free-flow speeds, capacities, and jam 
densities selected to make them more representative of arterial 
travel. The traffic signal at each intersection was given a standard 
two-phase timing plan, with a 60-sec cycle length and 30 sec of 
green allocated to each phase (i.e., no yellow intervals were used). 
The effect of red time on a movement was simulated by setting the 
exit probability to 0.0 during the red interval. Fifty simulated data 
sets were generated, each consisting of 180 I-min traffic counts for 
each of the detectors depicted in Figure 2. Under Scenario l, it was 
assumed that data from the white detectors were available, and esti­
mates of the turning movement proportions were computed using 
the equality-constrained least-squares algorithm (28). Under Sce­
nario 2, it was assumed that data from the black detectors were 
available, and predicted values for the cordon output detectors were 
computed recursively using the prediction model described in 
Equations 1 and 2, with the I-min input detector counts as inputs. 
This recursion was implemented as a subroutine called by the NAG 
optimization routine E04JBF (29), which computed those estimates 
of the turning movement proportions that minimized the nonlinear 
sum-of-squares function S2• For the nonlinear estimation, only the 
left and right turning proportions at each approach were treated as 
independent parameters, with the through proportion then being 
computed as h1hrough = 1 - h1ef1-bright· 
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As noted earlier, even when a detector configuration supports 
identification of the turning movement proportions, the statistical 
properties of these estimates remain to be assessed. The least­
squares estimates generated by an identifiable configuration may 
still show enough bias or variability to limit their practical useful­
ness. Estimated turning proportions were computed for each of the 
50 simulated data sets, giving a pseudorandom sample of the 
estimates under each scenario. Table 1 presents the results of this 
experiment. 

The mean columns in Table 1 give the average, across the 50 data 
sets, of the estimates for that parameter, whereas the "std" column 
gives the standard deviation of the estimates. The "t" columns give 
the t-statistic testing the hypothesis that the sample average for that 
parameter is equal to its true value (i.e., a test for whether that esti­
mate is biased). For each approach, the "true" parameter values used 
in generating the simulated data were bthrough = 0.6, h1eftturn=0.3, and 
bright turn = 0.1. For the NLS estimates, the t-statistics for the through 
movements are omitted since they are actually deterministic func­
tions of the estimates for the right and left turn proportions. The 
results for the CLS estimates are consistent with those reported by 
Nihan and Davis (5), being unbiased with moderately low standard 
deviations. As would be expected, the NLS estimates show an 
increase in variability, because the NLS estimator is working with 
less information than the CLS estimator. The first set of NLS esti­
mates also shows a substantial number of instances of bias, but this 
appears to be due in large part to numerical difficulties experience 
by E04JBF. In 21 of 50 instances, E04JBF terminated with a mes-

TABLE 1 Results of Monte Carlo Experiments 

Para- CLS 

meters mean std mean 

hs.4 0.3015 0.0274 0.38 0.2978 

hs.2 0.5926 0.0312 1.67 0.5769 

bs.J 0.1059 0.0297 1.40 0.1254 

b9,J 0.2994 0.0190 0.21 0.2913 

b9,I 0.5953 0.0308 1.08· 0.6045 

b9.4 0.1052 0.0232 1.60 0.1041 

bl0,1 0.3096 0.0453 1.50 0.3080 

bl0,4 0.5888 0.0404 1.97 0.5825 

b10,2 0.1016 0.0338 0.34 0.1095 

bl4,2 0.3067 0.0331 1.44 0.2819 

bl4,3 0.5970 0.0296 0.72 0.5883 

bl4,l 0.0963 0.0323 0.81 0.1298 

h12.s 0.3032 0.0286 0.80 0.3106 

b,2,5 0.5933 0.0264 1.80 0.5751 

b,2,6 0.1035 0.0287 0.85 0.1144 

bl.6 0.3010 0.0343 0.21 0.2838 

bl.7 0.5973 0.0424 0.45 0.5859 

bl,8 0.1017 0.0315 0.38 0.1303 

bll,7 0.3020 0.0214 0.65 0.2993 

h11,s 0.5975 0.0243 0.72 0.5468 

bll,5 0.1005 0.0191 0.19 0.1474 

bl3,5 0.3038 0.0295 0.91 0.3162 

b,3,6 0.6002 0.0384 0.04 0.6036 

bill 0.0960 0.0414 0.69 0.0802 
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sage indicating that it was unable to satisfy all convergence criteria; 
in the remaining 29 cases, satisfactory convergence was achieved. 
Computed means, standard deviations, and t-statistics for only those 
cases showing satisfactory convergence are displayed in the three 
rightmost columns of Table 1, and these show removal of a number 
of instances of bias. This result suggests that careful attention to the 
numerical properties of one's optimization algorithm may result in 
improved estimator performance. 

From a practical standpoint, probably the most interesting result 
is the increased variability shown by NLS estimates when compared 
with CLS estimates. To interpret this, the results in Table l suggest 
that with 180 1-min traffic counts, roughly 95 percent of the time 
one could expect to have an estimate of b5.4 that would fall in the 
interval [0.25, 0.35], whereas with NLS one would need the inter­
val [0.18, 0.42] for the same degree of confidence. A similar result 
is shown for each of the turning movement proportions. Thus, shift­
ing to fewer detectors does not guarantee something for nothing. 
The cost savings can be offset by a loss of precision. 

CONCLUSION 

The first objective of this paper was to assess the feasibility of esti­
mating intersection turning movement proportions from automatic 
traffic counts, when the number or placement of the detectors can­
not provide complete counts for each intersection. It was deter­
mined that such estimation was possible for detector configurations 

NLS (1) NLS (2) 

std mean std 

0.0584 0.27 0.3011 0.0613 0.10 

0.0535 0.5854 0.0526 

0.0426 4.21' 0.1136 0.0402 1.82 

0.0259 2.38' 0.2981 0.0264 0.40 

0.0495 0.5985 0.0398 

0.0401 0.73 0.1035 0.0306 0.61 

0.1120 0.50 0.3139 0.1029 0.73 

0.1095 0.5832 0.1094 

0.0710 0.94 0.1029 0.0657 0.23 

0.0577 2.21' 0.2812 0.0583 1.74 

0.0525 0.5908 0.0564 

0.0612 3.44' 0.1280 0.0681 2.22· 

0.0415 1.80 0.3160 0.0429 2.01 

0.0544 0.5711 0.0611 

0.0442 2.30' 0.1129 0.0498 1.39 

0.0416 2.76' 0.2842 0.0432 1.97 

0.0477 0.5852 0.0515 

0.0422 5.08' 0.1306 0.0501 3.29' 

0.0280 0.18 0.3011 0.0292 0.21 

0.0490 0.5494 0.0362 

0.0377 8.90' 0.1495 0.0399 6.68' 

0.0643 1.78 0.3131 0.0518 1.36 

0.0549 0.6046 0.0389 

0.0553 2.54' 0.0823 0.0536 1.78 
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providing a requisite minimum amount of information. The authors 
described a numerical test of whether a given pattern of detector 
placements could provide this information and recommended a 
minimal placement pattern that is likely (but not guaranteed) to pro­
duce adequate information. Overall, it appears plausible that there 
is more information about turning movement proportions in limited 
detector configurations than is being used. 

The second objective was to obtain some idea of the effects on 
the statistical properties of turning movement estimates that result 
from a reduced detector configuration. A Monte Carlo study using 
a simple two-intersection network showed a noticeable increase in 
a tendency toward bias and in estimate variability when one shifted 
from a complete set of counts to cordon counts. This suggests that 
minimal identifiable detector configurations might not provide the 
precision needed for real-time tracking of turning movement pro­
portions. If full detectorization is not possible, one could begin with 
a minimal configuration, such as cordon counters, and add as many 
detectors as is economically possible. One compromise might be to 
divide a large network into a number of smaller cordoned areas, 
allowing some detectors to do double duty on the boundary between 
two areas. Doing so would also facilitate direct verification of input 
and output reachability and separability. 

For practitioners, the fact that a residual amount of uncertainty 
remains in the estimates of the turning movement proportions, even 
after processing 3 hr of data, should cause them to question the stan­
dard practice of "certainty equivalent" control, in which estimated 
quantities are used as if they were known with certainty. For a given 
identifiable detector configuration, some of this uncertainty might 
be eliminated by switching to a more efficient estimation approach, 
such as ML; the feasibility of such a switch is currently under inves­
tigation. It does not appear likely, however, that all uncertainty can 
be eliminated, and genuinely optimal control of traffic signal sys­
tems may need to take uncertainty into explicit account. 
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Arterial Incident Detection Integrating 
Data from Multiple Sources 

NIKHIL BHANDARI, FRANKS. KOPPELMAN, JOSEPH L. SCHOFER, VANEET SETHI, 

AND JOHN N. IVAN 

An integrated incident detection system for an arterial street network 
being implemented for the ADVANCE project, an advanced traveler 
information system demonstration in the northwest suburbs of Chicago, 
Illinois, is described. Incidents will be detected using three distinct data 
sources: loop detectors, probe vehicles, and anecdotal sources. Special­
ized incident detection algorithms will process each of these data types 
separately. The outputs from the fixed detector, probe vehicle, and anec­
dotal source algorithms will be integrated by a data fusion process to 
determine the overall likelihood that an incident has occurred at any par­
ticular location. The incident detection system will also estimate the 
expected duration of the incidents and their effects on link travel times 
as a function of the type of incident. 

Incidents are unexpected events that disrupt the flow of traffic on a 
segment of a roadway link and have significant effects on link travel 
times; examples are stalled vehicles, collisions, and materials spills. 
The effect of an incident is to reduce the capacity of the segment; if 
demand volume is high enough, this can result in queues, delays, 
and increased travel time on the link. Early detection of incidents 
can help traffic management agencies respond quickly, dispatch 
emergency vehicles to the incident site, and perhaps divert traffic to 
reduce delay. Detection of incidents also helps agencies warn the 
oncoming traffic and thereby reduce the danger of secondary inci­
dents (1). 

Recently, there has been much interest in increasing the effi­
ciency of existing roadways by developing intelligent transportation 
systems (ITS) and particularly advanced traveler information sys­
tems (A TIS). One aim of these systems is to provide road users with 
real-time information on travel times and roadway status to reduce 
their individual travel times. An important component of these sys­
tems will be the ability to detect traffic flow disruptions on the road 
network and alert and divert potential users of the affected links. 

The ITS field tests in the United States and Europe [e.g., 
ADVANCE (2), Pathfinder (3), TravTek (4), ALI-SCOUT (5), 
EURO-SCOUT (6)] used or will use multiple data sources such as 
traffic sensors, probe vehicles, video cameras, and anecdotal 
sources to collect real-time traffic information. The largest of these 
demonstrations is the ADVANCE project in suburban Chicago. 
ADVANCE will provide approximately 3,500 participants with real­
time route planning information based on up-to-date travel times 
and incident information in the test area. ADVANCE drivers will be 
local residents, and information about recurrent congestion or nav­
igational guidance will be of limited value as they will have con-
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Center, Northwestern University, Evanston, Ill. 60208. J. N. Ivan, Trans­
portation Institute, Department of Civil Engineering, University of Con­
necticut, Storrs, Conn. 06269. 

siderable experience with the network. Incidents-unexpected non­
recurrent events on the network-can have significant effects on 
link travel times. Real-time information about an occurrence and its 
impact on travel time will be valuable even to travelers who are 
familiar with the network structure under normal conditions. Evi­
dence from recruitment studies conducted for ADVANCE suggests 
that incident detection will be important for attracting participants 
to the project and sustaining their interest over the period of the 
demonstration (7). In general, knowledge about incident locations 
and their travel time effects will enable the ADVANCE project to 
give drivers more accurate estimates of link travel times for route 
planning and also to provide information on the reasons for 
increases in travel time. 

ADVANCE will integrate information from three distinct data 
sources to detect incidents: 

• Fixed detectors, which provide occupancy and volume data 
averaged over a fixed time interval (e,.g., 5 min) for a specific sec­
tion of selected network links; 

• Probe vehicles participating in the demonstration project, 
which travel freely on the network and automatically report link 
travel times by radio; and 

• Anecdotal sources, reports of particular events affecting traf­
fic flow provided by people traveling on or monitoring the road net­
work, including emergency services workers. 

On the ADVANCE network, made up primarily of suburban arte­
rial streets, fixed detectors providing volume and occupancy data 
are located approximately 350 ft upstream from selected signalized 
intersections on major arterials. A fraction of these will be con­
nected by telephone line to the ADVANCE traffic information cen­
ter (TIC) to support incident detection. Probe vehicles and anecdo­
tal sources will provide data intermittently at locations determined 
by the location of the probe-equipped vehicle and the reporting 
source, respectively. Specifically, probe vehicles, driven by drivers 
volunteering to participate in the operational test for up to 2 years, 
will automatically report travel times by radio to the TIC each time 
they complete link traversals. During any time interval, there may 
be no probe report for many links in the network because of the rel­
atively small number of probe vehicles. Similarly, anecdotal data 
will be available only when emergency personnel or motorists 
report a traffic incident on the link. These reports will be collected 
from a centralized emergency services dispatch center responsible 
for police, fire, and ambulance services in the test area; from the cel­
lular telephone emergency reporting center; and from the state 
department of transportation's emergency patrol fleet. 

To obtain the best determination of incident versus nonincident 
conditions under different conditions of data availability, the 
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authors adopt a hierarchical structure for the incident detection sys­
tem in which data are first processed by specialized algorithms for 
each data source (fixed detector, probe vehicle, and anecdotal algo­
rithms), then data fusion processes integrate all the available data to 
determine the overall likelihood that an incident has occurred at any 
particular location. This approach provides the flexibility to use the 
identification (ID) system when information on ADVANCE links is 
available from only one data source by employing the relevant algo­
rithm in isolation; for a majority of incidents.data from only one (or 
two) sources will be available because only a small fraction of links 
in the test area have fixed detectors and the small probe vehicle fleet 
can provide information from only a limited number of links during 
any short time interval. When more than one data source is avail­
able, this system will extract the most useful information from all 
available sources to make a more accurate determination of incident 
presence rather than select a single best source for each incident 
detection (3). 

This paper presents a fully integrated incident detection system 
that is being implemented for the ADVANCE project and describes 
the individual components of the ID system, the input and output 
requirements of each component, and the relationships among the 
components. The development, refinement, and calibration of the 
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individual algorithms used by the system are documented elsewhere 
(8-12). 

OVERVIEW OF ADVANCE INCIDENT 
DETECTION SYSTEM 

Figure 1 shows the relationships among the different components 
of the ADVANCE incident detection system; the components are as 
follows: 

• Fixed detector algorithm uses the real-time and historical data 
provided by fixed detectors located on major arterials to classify 
conditions on the detectorized streets as incidents or nonincidents. 

• Probe vehicle algorithm uses travel time reports by probe 
vehicle and historical travel times on these links to interpret traffic 
conditions as incident or nonincident. 

• Anecdotal algorithm uses information provided by emergency 
personnel and other motorists on the network to detect incidents in 
real time. 

• Data fusion algorithms combine the output from the fixed 
detector, probe vehicle, anecdotal algorithms, and the operator 
interface. 

- --- - -- - - - ----- -- -- --- - - - ---- -- ------- ------ ------- -- ------ --- ------- - - - -- - - - - -- -- . 
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FIGURE 1 ADVANCE incident detection system. 
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• Duration and impacts module determines the expected dura­
tion of the incident and the impacts on the incident link travel times. 

• Operator interface allows the TIC personnel to view the out­
put from the data algorithms and to key in incident reports from 
other sources. The output from the duration and impacts module 
will be available to the operator for review. 

The automatic data algorithms (the fixed detector and probe vehi­
cle algorithms) classify conditions on links for which current data 
are available at the end of a prespecified period (e.g., 5 min); "cur­
rent data" refers to probe reports or detector output received by the 
TIC during the current period. If both probe vehicle and fixed detec­
tor data are available for a link, the output from both algorithms is 
combined in the data fusion (Step 1) module; the fusion process is 
bypassed if data are available from only one source, and the output 
from the corresponding algorithm is used alone. When all the links 
with current data have been processed, the classification results are 
saved in the automatic detected incident file containing an unique 
tag for each link and a flag indicating incident presence or absence. 

A new algorithm for incident detection using fixed detector data 
was developed instead of adapting existing pattern recognition 
(13-15) or time series methods (J,16). The primary reasons for this 
were (a) the existing algorithms were developed primarily for free­
way environments whereas the ADVANCE network consists mostly 
of arterial streets (it is important to recognize that traffic flow char­
acteristics on arterials are very different from freeways because of 
the presence of traffic signals, parking, and such, which results in 
greater variability in traffic flow measures such as occupancy and 
travel time), and thus the freeway algorithms are not readily trans­
ferable to arterials; (b) they require loop detector data for short 
intervals of time (approximately 30 sec to 2 min), and it will not be 
possible to get these data for less than 5- or 15-min intervals for 
ADVANCE; and (c) many of the existing algorithms use data from 
adjacent pairs of detectors, which generally are not available on 
ADVANCE arterials in the test area. Further, no well-established 
methods are available for using probe vehicle and anecdotal data 
and data fusion processes for incident detection. 

The fixed detector, probe vehicle, and data fusion algorithms 
were estimated using simulated data because no actual field data and 
corresponding incident confirmations were yet available. When it is 
deployed, the ADVANCE operational test will generate field data 
that will be used to recalibrate the algorithms. Each of these mod­
els was estimated using discriminant analysis (J 7), which produced 
a function of the traffic flow parameters, the value of which is used 
to identify incident or nonincident conditions. Discriminant analy­
sis uses prespecified values of prior probabilities of incidents (pri­
ors) to control the classification output and develop more realistic 
models. Incident conditions will exist during only a small fraction 
of time periods on any given link; this low probability of incidents 
in the real world is taken into account by adopting incident priors of 
0.0001 (i.e., in the absence of any other information, any particular 
report has a probability of 0.000 l of being an incident report). This 
ensures that the number of false alarms (incident reports generated 
in nonincident conditions) will be small. 

The anecdotal algorithm uses data from anecdotal sources (e.g., 
computerized emergency dispatch systems) and produces a link­
specific output that is expected to be more detailed than the auto­
matic classification output. The operator will be able to key in inci­
dent reports from other sources using a menu-based interface. The 
link-specific anecdotal algorithm output and operator inputs will be 
stored in the TIC operator/anecdotal report file containing a link 
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identification tag, incident indicator, incident type, and a vector of 
variables representing the incident intensity. 

At the end of every period, the incident information from TIC 
operator/anecdotal report file and the automatic detected incident 
files will be matched by link; the data fusion (Step 2) will be per­
formed for links that have classification information available from 
both the files. Fusion will be bypassed for links having incident 
information from only one of the files. 

The duration and impacts module uses the output from the data 
fusion (Step 2) process to estimate the duration and impacts of the 
incidents based on the incident type and intensity. For links with 
missing values for the incident type and intensity information, 
default estimates of duration and impacts will be used. For many 
links and periods, no data will be available; for these links the 
default conditions will be assumed to be nonincident. Some inci­
dents will last for more than one period; when such incidents are 
detected in consecutive periods, the incident duration will be 
updated in the duration and impacts module for each period that the 
incident is detected. 

The TIC operator will be able to review the final output before it 
is passed to other ADVANCE processes. The operator will be given 
a limited time window for review to avoid a backlog of detected 
incidents not reported to participating drivers. Eventually, reports 
of incidents and their effects on travel time will be transmitted by 
radio to route planning computers in participating vehicles. 

ALGORITHM COMPONENTS 

Fixed Detector Algorithm 

The fixed detector algorithm compares current and historical vol­
ume and occupancy data from fixed detectors at the end of every 
period (8); Figure 2 shows the flow diagram for the algorithm. The 
historical (nonincident) volume and occupancy data are aggregated 
over a fixed time interval for each detector location by day type 
(weekday, weekend, etc.) and time of day. 

The algorithm uses current and corresponding historical volume 
and occupancy data to compute two variables: 

Occupancy deviation = occupancy observed - occupancy historical 

Volume/occupancy deviation = (volume/occupancy)observed 
(volume/occupancy)hiscorical 

A discriminant score is then computed using Equation 1, which 
determines incident presence in the proximity of each detector: 

Discriminant score= -14.880 + 0.0192 *occupancy deviation -
4.088 * volume/occupancy deviation ( 1) 

If the discriminant score is greater than 0, an incident is flagged for 
the link associated with the detector for the corresponding time 
period; if the discriminant score is less than 0, normal conditions are 
assumed. Incident classification, discriminant scores, and values of 
the deviation variables are provided to the data fusion module for 
every link that is processed by the algorithm. 

Both the fixed detector and probe vehicle algorithms identify 
incidents that occur either on the link from which the detector out­
put or probe report is obtained or on the upstream portion of the 
adjacent downstream link. However, because of the typical traffic 
flow impacts of arterial street incidents, the incidents detected are 



Bhandari et al. 63 

Read current volume and 
occupancy for the detector. 

Historic volume and 
occupancy database 

Compute 
- occupancy deviation, 
- (volume / occupancy) deviation. 

Compute discriminant score 
and cl~ify link as incident or 
non-incident. 

Output to data fmion (step 1) module 
- c~ification results, 
- discriminant scores, 
- occupancy deviation, and 
- (volume/ occupancy) deviation. 

FIGURE 2 Fixed detector algorithm. 

most likely to be in the downstream section of the report link; in a 
few cases incidents will be detected that are on the upstream or mid­
block section of thedink that is downstream of the reporting link. 
The current versions of both fixed detector and probe vehicle algo­
rithms do not differentiate between these cases; they will attribute 
all such incidents to the reporting link. This will be the correct 
assignment in most cases, and it will tend to have the correct impact 
on drivers in other cases, diverting them from the incident links. 

Probe Vehicle Algorithm 

The probe vehicle algorithm requires current and historical (nonin­
cident) probe travel time data; it operates in· two stages as shown in 
Figures 3 and 4 (9). In the first stage (Figure 3), average link travel 
times are computed by aggregating individual probe reports at the 
end of the period. Aggregation of probe reports results in a more 
accurate representation of the traffic conditions by averaging out 
aberrant nonincident probe reports. The aggregation procedure will 
depend on the number of reports received in the current time period. 
If only one report is available in the current period, probe reports 
from the previous period are averaged with the current reports. If 
more than one report is available, the average travel time is com­
puted using all the probe reports received during the current period. 
If no report is received in the current period, or if in two consecu­
tive periods only one report is received from a link, that link is not 
processed because of the unreliability of individual reports. 

The second stage of the probe algorithm is the application of the 
different models to classify conditions on the links as incident or nor­
mal; Figure 4 shows this procedure. Travel time ratio and speed ratio 
are computed using the observed travel time on the links and the cor­
responding historical travel times stored in a data base. Incident pres­
ence is determined by computing the discriminant score; the effec­
tive cut-off travel time ratios for declaring an incident is dependent 
on the number of reports received during the detection interval to 

recognize the increased reliability of the average link travel time 
with increasing number of probe reports (9). The cut-off points are 
given in Table 1. The output from the probe vehicle algorithm con­
sists of the classification results, discriminant scores, travel time 
ratios, and speed ratios for every link processed by the algorithm. 

Data Fusion-Step 1 

The data fusion algorithm reviews each link in the network once in 
every period and determines incident presence or absence for each 
link for which reports from both probe vehicle and fixed detector 
algorithms are available (J 1). The classification result for those 
links will be stored in the automatic detected incident file. If a report 
is available from only one of the algorithms, it will be used directly 
as the output of the automatic data fusion. Once all the links are 
evaluated for that time period, the automatic detected incident file 
will be combined with the TIC operator/anecdotal report file. 

Two approaches, discriminant analysis and artificial neural net­
works, were tested for this fusion task. Comparison of incident 
detection results with discriminant analysis and neural network data 
fusion models showed that the model estimated using discriminant 
analysis had better detection rates for less extreme priors, whereas 
the neural network model performed better for more extreme priors 
(J J). It is useful to evaluate both of these models with real data 
before selecting one over the other. For the current version of the 
ADVANCE incident detection system, the discriminant analysis 
model will be adopted because of its simpler structure. However, all 
the data required by the neural network model will be saved for off­
line comparative testing of the two models. 

The best data fusion model using the discriminant analysis 
approach uses occupancy deviation and volume/occupancy devia­
tion from fixed detector data, and travel time ratio and speed ratio 
from probe vehicle data (Figure 5) for computation of the discrim­
inant scores as follows: 
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FIGURE 3 Computation of average travel time using probe reports. 

Discriminant score = 3.005 - 0.255 * occupancy deviation - 4.523 
*(volume/occupancy) deviation - 24.573 * 
speed ratio + 1.834 * travel time ratio (2) 

An incident is flagged if the discriminant score is greater than 0. 
The performance of this model was substantially better than either 
the fixed detector or probe vehicle algorithm when applied to the 
same data set (11), showing that overall detection ability can be 
improved by using detector and probe vehicle data together (when 
available). 

Historic travel 
time data 

Retrieve average travel time from 
travel time data matrix. 

Compute travel time ratio and 
speed ratio. 

Compute discriminant score using 
functions based on the number of 
reports med for computing average 
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FIGURE 4 Application of probe vehicle algorithm. 

Anecdotal Information Algorithm ::i 

The anecdotal incident detection algorithm uses a qualitative 
description of incidents reported by field observers, both trained and 
untrained, to detect incidents in real time (JO). The two primary 
sources of anecdotal data will be 

1. The Northwest Central Dispatch System (NWCD), a com­
puter-aided emergency service dispatch agency serving six com­
munities in the center of the ADVANCE test area; and 

2. The *999 center, which receives toll-free calls from cellular 
telephone users voluntarily reporting roadway incidents and other 
problems. 

Reports from the *999 center, operated for the Illinois State Toll 
Highway Authority, originate primarily from lay citizens; they will 
be in the form of qualitative descriptions of events and nominal 
location references. A simple manual data connection to the *999 
center is planned for late in the ADVANCE operational test. The rest 
of this section focuses on the use of NWCD anecdotal inputs and 
inputs from other sources through the TIC operator. 

TABLE 1 Cut-Off Point for Declaring Incidents Used by Probe 
Vehicle Algorithm 

Number of Reports Travel Time Ratio 

2 3.45 
I 

3, 4 2.80 
I 

5, 6, 7 2.60 

8, ... , 15 2.40 

15, 16, ... 1.45 
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FIGURE 5 Data fusion algorithm using discriminant analysis model. 
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Reports from NWCD will be captured from the computer system 
in the dispatch center, where all incoming calls, emergency services 
dispatches, and other communications are entered into a data base. 
The ADVANCE anecdotal algorithm will use descriptions of emer­
gency vehicle dispatches to roadway incidents, explicit or implicit 
incident confirmation and clearance reports provided by on-scene 
emergency service personnel, incident type descriptions by stan­
dard codes (accident with property damage, accident with personal 
injuries, hazardous material spills, motorist assist, etc.), and (in 
some cases) incident intensity as reflected by number of service 
units on the scene or other qualitative descriptions. NWCD receives 
incident location information from callers in various forms, includ-

ing street addresses, intersections, and landmark names; this infor­
mation is geocoded to street addresses within the NWCD computer 
system. 

Figure 6 shows the main components of the anecdotal ID algo­
rithm. Initially, the only source of anecdotal data will be NWCD. 
Data from NWCD will be preprocessed at NWCD before trans­
mission to the ADVANCE TIC to extract only roadway incidents, 
and only those descriptor variables of interest to ADVANCE. The 
NWCD preprocessor will 

• Distinguish new incidents from update reports on incidents 
already identified, 
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FIGURE 6 Different components of anecdotal incident detection algorithm. 

• Separate incidents of interest to ADVANCE (i.e., roadway 
blocking incidents) from others, and 

• Maintain a list of active incidents; format messages to be sei:it 
by telephone to the TIC. 

Data from other anecdotal sources will have a separate preproces­
sor and translation module that will be similar to the TIC/NWCD 
preprocessor and translation module. Further, a procedure for 
matching reports from different sources for the same incident will 
be required. These will be incorporated in the anecdotal ID system 
when data from other sources become available. 

The anecdotal reports will be received by the TIC/NWCD pre­
processor and translation module that assigns the information from 
the report into several fields (i.e., information source, incident his­
tory number, incident location, incident type, unit update report, and 
incident intensity). The incident history number is defined by 
NWCD and used as a basis for maintaining unduplicated files of 
data for each active incident. Location will be in the form of street 
addresses. Incident type codes will be a short list of types of inter­
est to ADVANCE. Mobile unit update reports will indicate emer­
gency service unit radio call numbers and a status code (enroute, on­
scene, clear). This information will be used to confirm incidents and 
determine clearance: 

• Incidents will be confirmed 3 min after the first emergency 
responder arrives on the scene unless that unit reports clear, 

• Incidents will be reported clear 5 min after the last emergency 
unit leaves the scene. 

These criteria were established because responding units usually do 
not formally confirm incident presence or signal final clearance. 

Next, each incident will be assigned to a link by converting the 
address to a segment ID using a file with coordinates of all links and 
intersections in the test area and finding the street name. Once the 
street name is found, the address will be used to identify the seg­
ment. The link-specific anecdotal reports (link identification, inci­
dent indicator, incident type, and incident intensity) on confirmed 
and cleared incidents will then be saved in the TIC operator and 
anecdotal report file. 

Intensity data will be available for use in enhancing estimates of 
incident duration and traffic impacts; initial intensity data will be a 
simple count of emerge~cy units on the scene. It may prove useful 
and feasible to parse free-form text reports from NWCD, and par­
ticularly from *999 (which will be rich in qualitative data from 
untrained observers) for use in more complex impact estimation 
efforts. Development of these capabilities must await the availabil­
ity of field data from the ADVANCE implementation. 
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The TIC operator will also be able to enter anecdotal reports of 
incidents from telephone calls and other sources into the TIC com­
puter system for use in the incident detection system. Inputs will 
match the data types used by the anecdotal algorithm: information 
source, location by address or intersection, incident type, and status 
(confirmed or clear). When the operator receives a report, he or she 
will open an incident report window on the TIC terminal. This win­
dow will display an input form, allowing data items to be keyed in 
or selected from short menus with a pointing device. 

The operator inputs would bypass the anecdotal algorithm and go 
directly to the TIC operator/anecdotal report file. In this way, the 
operator will be able to clear an incident already detected or define 
a new incident not previously recognized by the ID system. The 
operator interface will also allow the operator to display a list of all 
active incidents by location, type, and start time. 

Data Fusion-Step 2 

The data fusion (Step 2) process combines the output from the auto­
matic data fusion algorithm and TIC operator/anecdotal algorithm; 
Figure 7 shows the process. This data fusion is accomplished using 
a rule-based approach. For the current version of the ADVANCE ID 
system, the output from the anecdotal algorithm and TIC operator 
will override the output from the automatic algorithms (i.e., fixed 
detector and probe vehicle algorithms). Initial anecdotal algorithm 
output will come only from NWCD, a highly reliable source origi­
nating with emergency services professionals. When other anecdo­
tal sources are brought on-line, a fusion procedure that blends algo-

, rithm inputs along the lines of Step 1 fusion approach described 
earlier will be developed. The output from the data fusion (Step 2) 
process will be saved in the final classification file that will be 
passed on to the duration and impacts module. 
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Duration and Impacts 

The impact of an incident is its effect on the travel time. The dura­
tion of an incident is the length of time during which that travel time 
impact occurs. The clearance time of an incident is the time from 
detection until the blocking event is removed from the roadway. 
The duration may last beyond the clearance time if a major queue 
must be dissipated. In other cases, the vehicle(s) involved in the 
incident can be moved off the road and the traffic conditions 
returned to normal, but the anecdotal algorithm will not declare the 
incident as cleared until the last emergency unit has left the site; in 
such cases the duration is less than the clearance time. The duration 
is more important to ADVANCE than the clearance time, but only 
the latter is typically available from anecdotal sources and may be 
used to estimate the former. Since current ID algorithms cannot dis­
tinguish between the two, the authors adopt a conservative per­
spective and set the incident duration to be 10 percent more than the 
average clearance time. 

The duration and impacts module will receive the final classifi­
cation file from the data fusion (Step 2) process. The incident type 
and intensity variables (number of police and fire units on scene), 
when available, will be used to compute the expected duration and 
impact of the incident. Figure 8 shows the procedure for determin­
ing incident duration and impact for different categories of incidents 
(I 2); some related incident types have been grouped together 
because they have similar characteristics. These incident types are 
a subset of incident categories used by NWCD; when data for other 
types of incidents become available, they will be incorporated in the 
algorithm. 

The duration of incidents can be expressed in terms of minutes or 
algorithm cycle (5-min periods). Figure 8 reports duration in min­
utes; this can be converted to algorithm cycle units by dividing 
duration by cycle length (i.e., 5 min) and increasing fractional time 
period values to the next highest integer. Since the algorithms oper-
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FIGURE 8 Procedure for determining incident duration and impacts. 

ate at the end of each period, it will be simpler to use periods as the 
unit of duration, especially for the duration updating process. 
Finally, when a specific clearance message is received from NWCD 
or other valid sources, the incident will be terminated. 

Initially the incident impact, formulated as a travel time ratio, will 
be based on default values derived from the simulation studies (12). 
These values are based on the distribution of travel time ratios for 
identified incidents. The median of the travel time distribution is 
used for motorist assist and traffic stops, and the 75th percentile of 
the travel time distribution, for all other incidents except severe 
incidents and in cases when the incident type is unknown. For 
severe incidents (such as accidents with entrapments, accidents 
involving hazardous materials, and fire-related incidents), 1.5 times 

the values used for all other incidents (excluding motorist assist and 
traffic stops) are used. Default values of duration will be used 
for incident links for which the incident type is not known, and the 
links ~ith no data from any of the sources will be assumed to be 
nonincident. 

For incidents that last longer than one period, the duration will be 
updated every period by the time elapsed since the incident was first 
detected. If the incident lasts longer than the expected duration, then 
for every additional period that it is detected, the duration will be 
set to one more period until the incident is cleared or a nonincident 
message is generated by the algorithms that identified the inci­
dent. The procedural details for duration updating are provided else­
where (18). 



Bhandari et al. 

Operator Review 

The operator review module will allow the operator to review the 
output of the ID system before it is passed to other ADVANCE 
processes. Through this option the operator can override the algo­
rithm recommendations on the presence of incidents on the links. 
Initially, all the ID output will be confirmed manually by the oper­
ator. If the operator does not confirm the output or does not take any 
action, the links will be assigned nonincident status. In all cases 
(i.e., when operator takes an action or does not respond to ID out­
put), the ID output will be saved with the corresponding operator 
response; the operator responses will be evaluated to make this fea­
ture more effective. 

CONCLUSIONS 

This paper describes the incident detection system being imple­
mented for the ADVANCE project. The ID system will use infor­
mation from three distinct data sources: fixed detectors, probe 
vehicles, and anecdotal sources processed through specialized 
algorithms. The output from these algorithms will be integrated 
using a two-stage data fusion process to determine the overall like­
lihood that an incident has occurred at any particular location. On 
the basis of type of incident, the expected duration and travel time 
impacts of the incidents will be determined. 

In contrast with other incident detection methods, this approach 
is designed to integrate information from multiple data sources. It 
is based on the concept that effective integration will result in an 
enhanced detection capability, making use of the special character­
istics of each data source. Evaluation with field data during the 
ADVANCE operational test will provide an opportunity to verify 
this design concept. 
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Driver Deceleration Behavior on a 
Freeway in New Zealand 

CHRISTOPHER R. BENNETT AND ROGER C. M. DUNN 

The results of a study that monitored driver deceleration behavior on a 
freeway in New Zealand are presented. A series of axle detectors were 
placed over a 500-m interval and the speeds were recorded using a data 
logger. The speeds of the same vehicle at different stations along the 
road were established for more than 1,200 vehicles. The speed profiles 
showed that vehicles decelerated over the.same distance irrespective of 
the initial speed. As a result, the deceleration rate was proportional to 
the initial speed. A relationship was developed to predict the speed at 
any time as a function of the approach speed. 

To model traffic flow, most simulation programs resort to models 
of driver acceleration and deceleration behavior. These dictate the 
speeds adopted during the simulation and, thus, significantly influ­
ence the results. 

This paper presents the results of a study of vehicle deceleration 
behavior on a freeway in New Zealand. It begins with an overview 
of the various techniques used to model acceleration and decelera­
tion behavior, which is followed by the results of a specific study of 
decelerations on a freeway. 

RESEARCH ON MODELING ACCELERATION 
AND DECELERATION 

Given the importance of modeling driver deceleration and acceler­
ation behavior, there are surprisingly few studies reported in the lit­
erature on this topic. The research that has been done essentially can 
be divided into four distinct areas: constant, linearly decreasing, 
polynomial, and driving power-based models. 

Constant Acceleration Models 

The simplest form of model is the constant acceleration model. [The 
generic term acceleration will be used to describe either accelera­
tion (positive) or deceleration (negative) except when presenting 
specific equations or study results.] It assumes that the average 
acceleration is maintained throughout the acceleration maneuver. . 
Table l presents some typical values reported in the literature for 
average acceleration rates (J-7). 

Linearly Decreasing Acceleration Models 

Constant acceleration models are not appropriate for developing 
detailed speed profiles. Accordingly, for these purposes researchers 

C.R. Bennett, N.D. Lea International, Ltd., 1455 West Georgia Street, Van­
couver, British Columbia V6G 2T3 Canada. R. C. M. Dunn, Department of 
Civil Engineering, University of Auckland, Private Bag 92019, Auckland, 
New Zealand. 

have tended to adopt a speed-dependent acceleration model. For 
example, Sullivan (8) presents curves showing the discretionary and 
maximum comfortable deceleration rates as a function of speed. 
These rates decrease linearly with increasing speed. This is an 
example of one of the most common forms of acceleration models: 
the linear-decreasing model. 

Linear-decreasing models generally assume that the maximum 
acceleration occurs at the beginning of the maneuver, linearly 
decreasing to 0, or a constant value, at the final speed. Equation l is 
an example of such a model (9): 

GR 
a= a0 - a1v - Mg (M + M') 

where 

a = acceleration (m/sec2), 

a0, a1 = model coefficients, 
v = vehicle speed (m/sec), 

M = vehicle mass (kg), 

(I) 

M' = effective vehicle mass (i.e., the mass considering inertial 
effects) (kg), 

g = acceleration due to gravity (m/sec2
), and 

GR= gradient(%). 

Many researchers have used linear-decreasing models (1,6,7,9,10). 
At higher speeds the model can become asymptotic, taking a long 
time to reach the final speed. This is illustrated in Figure 1, which 
shows the time-versus-speed profile for accelerating from 0 to 100 
km/hr for four vehicle classes using Equation 1 with the parameter 
values from N-ITRR (I J). 

The medium and heavy commercial vehicles do not reach the 
100-km/hr final speed within a reasonable time, because the accel­
eration decreases to a very small value, on the order of 0.02 m/sec2, 

for heavy commercial vehicles as time increases. This rate com­
pares with 0.57 m/sec2 for the same vehicles when they begin to 
accelerate at the onset of the acceleration maneuver. It is therefore 
prudent to assume a minimum acceleration rate to eliminate this 
problem. Doing so, however, creates a second problem in that when 
the vehicles reach terminal speed, there will be an instantaneous 
change in the acceleration rate. In reality, drivers slowly reduce 
their rates so as to experience zero "jerk" at the end of the accel­
eration. 

Polynomial Acceleration Models 

Because of the problems outlined previously, other researchers have 
preferred polynomial model forms. Samuels (I 2) investigated the 
acceleration and deceleration of vehicles at an intersection. The data 
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TABLE 1 Values Used in Constant Acceleration Model 

Source Country 

Lay (l) Australia 

McLean (2) Australia 

W atanatada, et al. CD Brazil 

Acceleration or Deceleration Rate in m/s2 

Acceleration. 

1.00 to 4.00 

0.34 to 1.18 

Deceleration. 

-0.50 to -1.47 

-0.40 to -0.60 

Lee, et al. (1) New Zealand 0.28 to 0.95 -0.28 to -0. 96 

Brodin and Carlsson (~) Sweden 

Lay(!) U.K. 

Bester(§) U.S.A. 

St. John and Kobett (1) U.S.A. 

indicated that a nonlinear speed-time relationship was applicable, 
and an equation of the following form was fitted to the data: 

(2) 

where tis time in seconds and a0 , a,, and a2 are regression coeffi­
cients. 

Samuels and Jarvis (13) investigated the maximum rates of decel­
eration and acceleration for a sample of 17 passenger cars. The 
models developed were of the following form: 

• Accelaration: 

• Deceleration: 
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\ ..,.} 

-0.50 

0.50 

-0.60 to -1. 90 

-1.07 

Jarvis (14) examined the acceleration behavior of drivers depart­
ing from a rural intersection. A regression was performed using 
Equation 3 along with a second-order model. The second-order 
term markedly improved the fit of the model, and parameters were 
presented for five classes of vehicles, from passenger cars to heavy 
trucks. These results were later modified (15) to consider speed as 
a function of distance. 

In New Zealand a study on acceleration behavior was conducted 
in the small rural city Palmerston North at four roundabouts, five 
signalized, and four priority intersections using arrays of pneumatic 
tubes connected to a data logger (16). The analysis consisted of the 
fitting of a fourth-degree polynomial equation to the speed/distance 
profiles. This equation was of the form 

S = a0 +a, DISPL + a2 DISPL2 + a3 DISPL3 + a4 DISPL4 (5) 

where DISPL is the cumulative distance traveled in meters, and a0 

through a4 are regression constants. 

.. 
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FIGURE 1 Speeds predicted by South African acceleration model. 



72 

Only vehicles with headways above 5.0 were included in the 
analysis, and equations were developed for each individual site and 
three composite equations for the different intersection types. 
Unfortunately, the model formulation does not lend itself to extrap­
olating for different approach speeds. A better method would have 
been to use the approach speed as an independent variable and to 
dispense with the constant a0• Although limits for the equations are 
not given, it appears that the maximum approach speed in the study 
was on the order of 70 km/hr, so these equations are not appropri­
ate beyond this speed. 

Ak9elik et al. (I 0) presented three models for passenger 
car acceleration profiles, a two-term sinusoidal, a three-term 
sinusoidal, and a polynomial model. These models were compared 
with constant and linear-decreasing acceleration models using 
data collected during fuel consumption testing. It was found that 
the polynomial model gave the best overall predictions and the 
linear-decreasing model the worst. This led to the development of 
the Australian Road Research Board (ARRB) polynomial 
model (17). 

The ARRB polynomial model uses the time to accelerate or 
decelerate and the average, initial, and final speeds to predict a 
model parameter 8. This is a shape parameter that indicates whether 
the maximum acceleration occurs early or late in the profile. If 8 is 
known (or assumed), only the times to accelerate and decelerate are 
required. A series of other model parameters are derived that result 
in a speed-time equation. 

A series of equations were developed to predict the time to ac­
celerate/decelerate and the acceleration/deceleration distances 
from field data collected in Australia (17). However, Bennett (18) 
indicates that there were problems with the ARRB equations in 
that their predictions were inconsistent for some speed com­
binations. Because of this, a linear model was adopted for acceler­
ation in New Zealand (18). This linear acceleration model was 
less than ideal in that it predicted the same acceleration rate irre­
spective of speed (i.e., 0 to 20 km/hr would take as long as 80 to 
100 km/hr). 

Vehicle Power-Based Acceleration Models 

The maximum acceleration of a vehicle is governed by the 
available acceleration reserve. Several researchers who have 
developed speed simulation models have used the acceler­
ation reserve as the basis for predicting acceleration. (3,5,8). The 
underlying philosophy in this approach is that drivers use all 
the available power to accelerate their vehicle. (Since the ac­
celeration reserve applies to positive power only this method is 
not used for deceleration.) Since the acceleration reserve de­
creases nonlinearly with increasing speed, this approach gives a 
nonlinear decreasing speed model. However, these sources (3,5,8) 
do not state explicitly whether an upper limit was used with the 
acceleration reserve to reflect the fact that drivers may use dif­
ferent power levels under acceleration than under steady-state 
driving. 

GEIPOT (19) employed a variation of this approach. It adopted 
a nonlinear acceleration-speed relationship that gave the accelera­
tion or deceleration as a function of gradient, roughness, and sur­
face type. A single function was used that gave both acceleration 
and deceleration. 
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GRAFTON MOTORWAY DECELERATION STUDY 

Introduction 

A study was conducted at the Grafton Motorway exit ramp in Auck­
land, New Zealand, to monitor vehicle deceleration behavior. Seven 
pairs (stations) of axle detectors were installed on the ramp over a dis­
tance of 500 m upstream from the traffic signal at the end of the ramp. 
The first station was positioned to record approach speeds, and the 
last station was 10 m before a traffic signal. 

The ramp was straight and had very high sight, distances (>750 
m) and a slight downgrade ( <3 percent) over the initial 300 m. It 
had a single lane except for 75 m upstream from its end, where there 
were two lanes. The detectors at Stations 1 to 3 were spaced at 100-
m intervals and thereafter at 50-m intervals. The experiment was 
conducted over a 24-hr period, but only data from daytime were 
used in the analysis. 

Data were recorded at each station using a VDDAS data logger 
(20). The time of each axle crossing a detector was recorded to the 
nearest millisecond. The speeds were then calculated on the basis 
of these times and the distances between the detectors. VDDAS 
allowed for continuous sampling, which eliminated sampling biases 
in data collection that may arise with manual methods such as radar. 
More important, it allowed the speeds of the same vehicle to be 
tracked as it crossed successive detectors, thereby giving speed pro­
files for individual vehicles. The vehicles were classified into one 
of 44 classes based on the number of axles and their spacing. Spe­
cial software was written both for the data reduction and establish­
ing the speed profiles as described by Bennett (22.) 

A total of 1,200 valid speed profiles were obtained in the study; 
they were stored in a FoxPro data base. A valid profile was consid­
ered to be one in which the same vehicle was identified and had its 
speed monitored at four or more stations. 

Data Reduction 

The speed profile data base contained the speed of the vehicle at 
each station along with the time between stations. It was necessary 
to manipulate these data into a format suitable for statistical analy­
sis. It was postulated that the deceleration behavior would vary by 
vehicle type, so it was also necessary to disaggregate the data by 
vehicle type. 

The data base was filtered so that only vehicles with a minimum 
headway of greater than 4.5 sec at all stations were included in the 
analysis. An upper limit of 15.0 sec was placed on the data to elim­
inate any unusually slow vehicles. This upper limit affected less 
than 0.1 percent of all available data. The profile data were filtered 
and converted into a sequential data base. Because of the limited 
amount of data available, the analysis could be conducted only for 
three vehicle types: (a) passenger cars and small light commercial, 
(b) medium commercial, and (c) heavy commercial vehicles. The 
total number of speed-time observations available by vehicle class 
were as follows: 

Class 

Passenger cars and small LCV 
Medium commercial vehicles 
Heavy commercial vehicles 

No. of Speed-Time 
Observations 

1,604 
255 
131 
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FIGURE 2 Elapsed time versus speed for vehicles approaching at 70 to 80 km/hr. 

Results of Analysis 

The literature review presented earlier indicated that deceleration 
behavior was probably a function of speed, so the analysis first con­
centrated on investigating such a relationship for passenger cars 
since these vehicles had the most data available. Figure 2 is an 
example of speed versus the elapsed time from the first detection for 
passenger cars traveling at an initial speed of between 70 and 80 
km/hr at Station 3. 

When the data were plotted for different approach speeds, it 
became apparent that deceleration behavior varied as a function of 
approach speed. Furthermore, there was little deceleration at the 
first two stations, so the initial station for deceleration purposes was 
treated as Station 3. The data were segmented into files from 50 to 
> 100 km/hr in I 0-km/hr increments. For each file a regression 
analysis was conducted that investigated the effect of time on speed. 
A variety of linear and nonlinear models were tested with the equa­
tions in Table 2 being selected as the most appropriate for model­
ing deceleration behavior. 

The deceleration equations used are all of the form S = a0 - a 1 t 
- a2 t

2
• In comparing the models it can be observed that the coeffi­

cients a, and a2 increase with increasing approach speed. This indi­
cates that faster vehicles decelerate at a higher rate. However, there 
is a problem with these models in that they provide inconsistent pre-

dictions at lower speeds. The predictions cross because the faster 
drivers do not begin decelerating until late in the maneuver and thus 
have a different time base than the lower speeds. 

Although the preliminary models developed were inadequate for 
general use, they did indicate that the higher the approach speed, the 
higher the rate of deceleration. This characteristic was further inves­
tigated by stratifying the data into various speed intervals and 
determining the average deceleration over these intervals for each 
approach speed group. It was not possible to use identical intervals 
with each approach speed group since there were often marked vari­
ations in the deceleration rate with time. Table 3 presents the aver­
age deceleration rates as a function of approach speed and deceler­
ation speed for speeds below I 00 km/hr. 

Table 3 verifies that there is a marked difference in deceleration 
behavior by approach speed. Vehicles traveling at low speeds expe­
rienced a low deceleration rate, whereas those at high speeds had 
much higher rates. This suggests that rather than taking a much 
longer distance, or time, to decelerate, high-speed drivers prefer to 
decelerate more rapidly. 

For comparative purposes, the New Zealand deceleration rates 
were assessed against those used in the ARFCOM model from Aus­
tralia (21). For speeds below 80 km/hr, the observed New Zealand 
deceleration rates were similar to those in ARFCOM. However, in 
the 100 to 80 km/hr area, the New Zealand rates were approximately 

TABLE 2 Preliminary Regression Models by Approach Speed 

Approach Speed Speed Model R,.2 

60 - 70 km/h s = 66.66- 0.96 t- 0.18 t2 0.96 

70 - 80 km/h s = 75.68 - 1.64 t - 0.22 t2 0.96 

80 - 90 km/h s = 84.46 - 2.59 t - 0.25 t2 0.96 

90 -100 km/h s = 94.36 - 3.65 t - 0.30 t2 0.98 

> 100 km/h s = 105.69 - 4.95 t - 0.41 t2 0.97 

Note: R,. 2 = the adjusted coefficient of determination 



74 TRANSPORTATION RESEARCH RECORD 1510 

TABLE3 Mean Deceleration by Approach Speed and Speed During Deceleration 

Mean Deceleration Rate by Approach Speed and Speed During Deceleration 

60 - 70 km/h 70 - 80 km/h 

Decel. Mean Decel. Mean 
Speed Dec el. Speed Decel. 
(km/h) (m/s2) (km/h) (m/s2) 

65 - 55 0.46 75 - 62 0.78 

55 - 45 0.93 62 - 50 1.11 

45 - 20 1.39 50 - 19 1.78 

90 percent higher. This difference could reflect the fact that the 
ARFCOM data are primarily urban-based whereas the New 
Zealand data pertain to open road speeds. 

It is interesting that the maximum deceleration observed in 
another New Zealand study conducted in the rural city of Palmer­
ston North (16) was -1.72 m/sec2• This result is similar to the aver­
age deceleration for the approach speed of 80 to 90 km/hr, verify­
ing that drivers on open roads use a higher deceleration rate than do 
drivers in urban areas. 

The Grafton Motorway data indicate that vehicles generally start 
decelerating at the same point on the road irrespective of the 
approach speed. Faster drivers then accept a higher deceleration rate 
than the slower drivers. This has the effect of producing decelera­
tion times and distances that are of the same magnitude irrespective 
of the initial and final speeds. 

A number of models were investigated for predicting the speed 
profile. These included sigmoidal models, the polynomial model 
from ARRB, as well as various polynomial equations. One of the 
main problems in developing a suitable model was the need to con­
. sider the variation in the deceleration rate as a function of approach 
speed and the predictions as vehicles approached stopping. It was 
found that the following formulation gave the most suitable overall 
predictions: 

(6) 

where S is the speed of the vehicle at time tin kilometers per hour, 
and S0 is the approach speed of the vehicle in kilometers per hour. 
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Decel. Mean Decel. Mean 
Speed Decel. Speed Dec el. 
(km/h) (m/s2) (km/h) (m/s2) 

85 - 68 1.23 95 - 75 1.39 

68 - 58 1.39 75 - 58 1.89 

58 - 18 2.22 58 - 22 2.34 

Taking the derivative of this equation with respect to time gives the 
following model for predicting acceleration: 

(7) 

Table 4 presents the coefficients and regression statistics for the pre­
vious two models by vehicle class. The values for coefficient ao 
indicate that light vehicles decelerate 22 percent faster than heavy 
vehicles. The differences between passenger cars and medium 
trucks is so small that it is negligible. Figure 3 illustrates the pre­
dicted speed profiles of passenger cars from different approach 
speeds using Equation 6. 

Equation 7 predicts that the higher the approach speed, the greater 
the deceleration rate. This was observed from the raw data. It also 
indicates that the maximum deceleration will occur at the very end 
of the speed profile. This is a deficiency in the model since at the end 
of the profile the drivers will actually experience zero jerk. 

CONCLUSIONS 

This analysis has developed equations for predicting deceleration 
behavior of vehicles as a function of approach speed and the cumu­
lative time. Although the equations pertain to a specific situation­
vehicles decelerating from the open road speed toward a stop-the 
analysis has provided useful insight into driver deceleration be­
havior. 

S =Sa - 0.005176 Sa t"2 

FIGURE 3 Predicted deceleration profiles for passenger cars and small commercial vehicles. 
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TABLE 4 Final Deceleration Model Regression Coefficients 

Vehicle Class Regression Model Coefficients R,.2 

-0.005176 -0.002876 Passenger Cars and Small LCV 

Medium Commercial Vehicles 

Heavy Commercial Vehicles 

-0.005129 -0.002849 

0.83 

0.86 

0.83 -0.004244 -0.002358 

Notes: a 0 and a, =model coefficients 
R.2 = the adjusted coefficient of determination 

It was found that higher-speed drivers decelerate over a short 
period of time, thereby experiencing high deceleration rates instead 
of gradually decelerating over a long period. This is different than 
what is predicted by the equations for applying the ARRB polyno­
mial model (JO), which imply that drivers decelerate over a longer 
distance with higher speeds. 

The average deceleration rate for drivers with an approach speed 
of 80 to 90 km/hr was similar to the maximum deceleration rate 
observed in an urban study in New Zealand. This indicates that open 
road drivers have much higher deceleration rates than urban drivers 
employ. 
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