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Develop a straightforward & well-defined modulus-based 
construction specification with following constraints: 
1. Based on field measurement of modulus & moisture content. 
2. Acceptance criteria correlated with design moduli.   
3. Variation of modulus with moisture content and density are accounted for. 
4. Principles of unsaturated soil mechanics considered 
5. Available models, devices, and methods 
6. Validity and practicality of proposed specification documented based on 

shadow specification of actual construction projects. 

Objectives 
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Why would we replace a 
density-based specification with a 

modulus-based specification? 
 Road foundations are important. 
 Poor performance has consequences. 
 Testing has NOT “always been done this way.” 
 Building financially effective highways for the 

21st century requires 21st century technology.  



Road Foundations are Important 

surface measure subsurface measure 



Poor Performance has Consequences   

 Unable to maintain our public assets. 
 Waste labor, energy, and natural resources. 
 Public confidence reduced. 
 New investments (higher gas tax) difficult. 



Ralph Proctor 
reminds us. 

photo courtesy of Dr. J. David Rogers 
University of Missouri-Rolla 

■ Strength is not achieved 
by density alone. 

■ Optimum moisture is for 
compaction. 

■ Need to avoid rutting 
during construction. 



Ralph Proctor, 1945, Trans 110, ASCE 

 “Methods for hand compaction, such as 
dropping various weight tampers from different 
heights and mechanical tampers, were tried and 
discarded.” 

 “No use is made of the actual peak dry weight.” 
 “The measure of soil compaction used is the 

indicated saturation penetration resistance.” 



Proctor Penetrometer 

Photo courtesy of Humboldt   



Hveem and Carmany, 1948, HRB 

 “It can easily be shown that the density of a 
granular mass is one to the least reliable and 
least informative of all determinations which 
can be made.” 

 “The internal structure of the particle 
arrangement may vary considerably without 
any significant change in density.” 
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Develop a straightforward & well-defined modulus-
based construction specification with following 
constraints: 
1. Based on field measurement of modulus & moisture content. 
2. Acceptance criteria correlated with design moduli.   
3. Variation of modulus with moisture content and density are 

accounted for. 
4. Principles of unsaturated soil mechanics considered 
5. Available models, devices, and methods 
6. Validity and practicality of proposed specification documented 

based on shadow specification of actual construction projects. 

Objectives 
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• Three Phases 
I. Development 
II. Calibration 
III. Validation 

• Consisting of 
– Laboratory testing 
– Small-scale testing 
– Field testing 

 

• Motivation 
to separate a number of complex 
and inter-related issues into a 
number of well-defined 
hypotheses that, when combined, 
can provide a practical and 
scientifically-sound specification.  

3 

Work Plan 
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Characteristics of Materials Used  

4 

Material USCS 
Classification 

Approx. Grain Size Distribution, % Atterberg Limits 

Gravel Sand Fines LL PL 

U
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nd

 
A
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. B
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El Paso  GP 66 30 4 22 13 

LTRC GW 56 36 8 NP NP 

Em
ba

nk
m

en
t/S

ub
gr

ad
e Mississippi ML 0 41 59 NP NP 

Minnesota CH 0 3 97 86 33 

Austin CL 8 28 64 27 13 

LTRC CL 0 10 90 32 16 

El Paso SM 0 73 27 NP NP 
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Laboratory Study 

5 

MR and FFRC tests at  
OMC 

OMC±1% or OMC±10%OMC (if OMC>10%) 
OMC±2% or OMC±20%OMC (if OMC>10%) 

• Determine moduli and their variations with moisture.   
• Validate selected moisture modulus relationships 
• Compare FFRC moduli with MR moduli. 
• Correlate small-strain modulus and resilient modulus 

over 200 specimens 
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Small Scale Testing Plate Load Test 

6 

over 30 specimens 
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Candidate Devices for in situ Measurements 

• Modulus/Stiffness Devices 
– DCP 
– Geogauge 
– LWD 
– PSPA 
 

• Moisture/Density Devices 
– Soil Density Gauge (SDG) 
– Speedy Moisture Tester 
– DOT 600 
– Decagon Embedded Sensors 

7 
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In-Depth Evaluation of Modulus Measuring Devices (Variation in moduli) 
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n =20 
COVs of measured moduli = 29±5% 

change in representative MR modulus of more than three times with change in moisture 
content from OMC-1% to OMC+1% 

Different Values from different LWDs 
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In-Depth Evaluation of Modulus Measuring Devices 

Total Variability 
• Repeatability 
• Reproducibility 
• Specimen Variability 

Device Total  
Variability 

Distribution of Total Variability 

Repeatability  
(3 repeats) 

Reproducibility 
(2 operators) 

Specimen 
Variability 

(6 locations) 
Zorn LWD 28% 5% 4% 91% 

Dynatest LWD 34% 1% 20% 78% 
PSPA 29% 26% 3% 71% 

Geogauge 24% 22% 8% 69% 
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In-Depth Evaluation (Moisture Devices) 

25 Additional Small-Scale Specimens 

Not to scale. 

12 in 

12 in 

24 in 
@  
2   in 

• Soil Density Gauge 
• Speedy Moisture Tester 
• DOT 600 

Repeatability Reproducibility Specimen 
Variation 

Total 
Variation 

9% 1% 4% 10% 

Repeatability/Reproducibility (SDG on SM Subgrade) 
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Major Steps for Anticipated Specification 

1. Selecting Suitable Material 

2. Selecting Design Parameters 

3. Setting Target Field Moduli 

4. Conducting Field Process Control 

5.  Acceptance Process 

11 
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Step 1: Selecting Suitable Material 

• A stiff material does not correspond to a durable 
material. 

• Parameters, such as hardness of aggregates, percent 
fines and plasticity should be controlled for durability.  

• Each agency to define their own specification limits 

12 
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Step 2: Estimating Design  Parameters 

• Determine nonlinear parameters k1 through k3 for each material 
 

 

13 

Similar to MEPDG, a three-level approach.   
For less rigorous methods it may be prudent to include a test strip 

Conducting 
laboratory resilient 

modulus tests before 
structural design 

Utilizing results 
from a catalog of 

most common soils 
that have been 

tested 

Estimating modulus 
based on calibrated 

models that are 
functions of index 

parameters  

Using presumptive 
design values based 

on experience 
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Best Option        Worst Option 

θ = bulk stress 
τoct = octahedral shear stress  
Pa = atmospheric pressure  
k1,2,3 = regression constants 

There is a need once and for all to standardize MR Test 
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Selecting Target Field Modulus (Single layer) 

• Design 
– Estimate k1, k2, k3 

– Calculate MR from 
 
 

     Using prescribed θ and τoct 

  

• Field Testing (LWD) 
– Calculate modulus 

from 
    E = [(1 – ν2) F / (π a d)] f  

– Estimate d from 
Structural model 

14 
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ν = Poisson’s ratio  
a = radius of load plate 
F = applied load  
d = surface deflection 
f = shape factor MR E ? 
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Selecting Target Field Moduli (Process) 

• for multilayer system or as best approximation Use Structural Model 

• for single uniform layer Use Closed form solution  

• for two-layer system Use Artificial Neural Network algorithm 

15 

• Input 
– Thickness of each layer 
– Poisson’s ratio of each layer 
– Unit weight of each layer 
– k'1, k'2 and k'3 of each layer 

• Output 
– Target Deflection 
– Target Modulus 
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Calibration of Model (LWD, PLT) 

16 

• Direct Comparison is not possible 
• Proposed Process 

– Model small-scale specimens 
– Estimate deflections within the 

specimen 
– Compare deflections with geophone 

responses 
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thickness = 
6 in.

Subgrade 
thickness = 
16 in.
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ickness = 3 in.
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Calibration of Model (Constitutive Model)  

17 

Nonlinear Analysis 
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Numerical Deflection, mils 

Line of Equality 

30psi
50psi
70psi

Typical PLT Results (SM Subgrade) 

Nonlinear Analysis  
With K1  

• 8 in. diameter plate 
• 30, 50, 70 psi pressure 
• at OMC and MDD 
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Partial Verification of Process (Use of K1 vs. K1*) 
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• Options 
– Using nonlinear structural model estimate E from k1-k3 

– Using  
θ = σ0 [(0.001D2 – 0.012D – 0.169) ln(k'2) + (0.04D + 0.2)] 
τ = σ0  exp[(-0.01D – 1.47) + (k'2)(-0.006D2 + 0.066D – 1.269)]  

 
in  
 
 

Rigorously Relating k1-k3 to E (Single layer) 

20 

32 ''
1 )1(*)1(*' k

a

octk

a
a PP

PkMR τθ
++=

0%
20%
40%
60%
80%

100%

0% 5% 10% 15% 20% 25% 30% More

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n,
 %

 

Absolute Error of Estimate, %  

Based on MEPDG model
Based on Proposed process

D = LWD Plate diameter 
σ0 = Surface stress 



Center for Transportation Infrastructure  Systems - ctis.utep.edu 

Step 4: Field Process Control 
• Changes in type and gradation of materials and 

moisture content at compaction have significant 
impact on modulus. 

• Intelligent compaction can also be marketed as a 
means of achieving uniformity.  

21 

Either through training or as a secondary requirement in process control 
this information should be considered by the SHAs and contractors.   
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Step 4: Field Process Control (from Unsaturated Soil Principles) 

Sr = ω Gs ρd/( Gs ρw – ρd) 
Gs = specific gravity 
ρd = dry mass density 
ρw = mass density of water 
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90 15% 22% 28% 34% 40% 46% 53% 59% 65% 71% 77% 

95 17% 24% 31% 38% 45% 52% 59% 66% 72% 79% 86% 

99 19% 27% 35% 43% 50% 58% 66% 74% 81% 89% 97% 

104 22% 31% 39% 48% 57% 66% 74% 83% 92% 101% 109% 

109 25% 35% 45% 55% 65% 75% 85% 95% 105% 115% 125% 

115 29% 40% 52% 64% 75% 87% 98% 110% 121% 133% 145% 

121 34% 48% 61% 75% 88% 102% 116% 129% 143% 156% 170% 

127 41% 57% 74% 90% 106% 123% 139% 155% 172% 188% 204% 

133 51% 71% 91% 111% 131% 152% 172% 192% 212% 233% 253% 

140 65% 91% 118% 144% 170% 196% 222% 248% 274% 300% 327% 

147 90% 127% 163% 199% 235% 271% 308% 344% 380% 416% 452% 

154 143% 200% 257% 314% 371% 428% 486% 543% 600% 657% 714% 
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Impact of moisture content at time of testing relative to moisture 
content at time of compaction on modulus 
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Step 5: Acceptance Process 

24 

• Acceptance based on moisture-adjusted modulus that accounts for: 
• Differences in compaction and testing moisture contents relative to OMC 
• Difference between lab and field moduli at same moisture content and density 

• Calculate Eeff, as suggested by manufactures 

          Eeff = [(1 – ν2) F / (π a deff)] f    

• Estimate adjusted modulus, Eadj 

 Eadj = Eeff  Klab-field  Kmoist  

       

ν = Poisson’s ratio 
F = peak load  
a = radius of load plate 
deff = peak deflection 
f = shape factor,  

Klab-field accounts for differences in lab & field moduli (at same moisture content/density) 
Kmoist     adjusts for differences in compaction and testing moisture contents. 
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Moisture-Adjusted Modulus (Eadj), cont. 

25 

• Klab-field = (Fenv)λ 
 

Sopt = degree of saturation at OMC  
S = degree of saturation at compaction moisture 

content 

λ = - 0.36 

         log F𝑒𝑒𝑒𝑒𝑒𝑒 = −0.40535 +
1.20693

1 + e 0.68184+1.33194×(
S−Sopt
100

 

Fenv = modified relationship proposed by Cary and Zapata (2010) 

y = x0.36 

0.0

1.0

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

N
or

m
al

iz
ed

 F
ie

ld
 M

od
ul

us
, E

/E
op

t 

Normalized Lab Modulus = Fenv 

y = x0.36 
R² = 0.94 

0.0

1.0

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0E
PS

PA
/E

PS
PA

op
t 

EFFRC/EFFRCopt 



Center for Transportation Infrastructure  Systems - ctis.utep.edu 

Moisture-Adjusted Modulus (Eadj), cont. 

26 

Kmoist = eη(ωC-ωT)  
 ωT  = moisture content at time of testing (%)  
ωC  = moisture content at time of compaction (%) 

η  = 0.18 for subgrades 
η  = 1.19 for unbound aggregates 

Subgrades 
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Plate Contact (Deflection) 

27 

Dynatest Zorn 

* Units in m 
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• Surface deflection modulus ELWD 

 
 
 

v = Poisson’s ratio 
σ0 = uniform stress distribution (30 psi) 
a = radius of plate 
f = shape factor (π/2 for inverse parabolic) 
d0 = measured settlement of soil at the center of plate 
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Depth of Influence 

 Based on stress: 
 Varies between 15 in. and 19 in. 
 Decreases with 

 Higher k1 (stiffer material) 
 Higher k2 (more granular material)  
 Insensitive to k3 

 Zorn LWD is less sensitive to nonlinear parameters as compared to Dynatest LWD. 
 

 Based on deflection: 
 Varies between 24 in. and 32 in. 
 Decreases with 

 Higher k3 (more clayey material) 
 Lower k2 (less granular material)  
 Insensitive to k1 

Depth of influence is material and device dependent 

8 in. diameter plate 
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Field Validation  

29 

Stage 1 - Documenting Shortcoming of Specification 
– Documenting shortcoming and improving specification 
– Collect relevant field data,  
– Conduct proposed lab tests 
– Compare results with current processes.  

Stage 2 - Validating Specification 

– work hand-in-hand with highway agencies 
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Sites for Phase III 
Site I.1. US 67 in Dublin, TX 

Site I.2. IH 35 W, Tarrant County, TX 

Site I.3. Route 22, Bridgewater, NJ 

Site II.1. FAA Facility, Atlantic City, NJ 

Site II.2. US-50, North Vernon, IN 
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I.1 I.2 I.3 

II.1 

II.2 

Sites for Phase III 
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Site No. Soil Type 
Gradation % 

USCS 
Class. 

Atterberg Limits 

Gravel Coarse 
Sand Fine Sand Fines LL PL 

I.1 

Subgrade A 0 4 10 86 CL 41 14 

Subgrade B 0 5 11 84 CL 36 13 

Base 52 29 15 5 GW 28 16 

I.2 Subgrade 0 8 3 89 CH 55 15 

I.3 

Subgrade 12 20 13 55 CL 32 18 

Subbase 63 26 10 1 GW Non-Plastic 

Base 59 32 7 1 GW Non-Plastic 

II.1 
Subgrade  5 4 2 89 CL 48 15 

Subbase 0 79 18 3 SP 0 0 

II.2 
Subgrade  5 8 22 65 CL 27 11 

Subbase 56 34 10 1 GW 0 0 

Index Properties of Phase III Geomaterials 
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Field Evaluation: (OMC Section) 
Construction Quality Acceptance Scenarios (Zorn LWD) 
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Conclusions and Recommendations 

Achieving quality compaction (defined as achieving adequate layer 
modulus) is weakly associated with achieving density.  

Most moisture-modulus models that are reasonable for (long term) 
pavement design may not be appropriate for (short term) quality 
control.  

Proposed model of correlating normalized modulus (E/Eopt) vs. 
[(MC-OMC)/OMC] matched field data better. 
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Conclusions and Recommendations (Cont.) 
Among the modulus/stiffness-based devices, the PSPA, LWDs and DCP 

perform reasonably well with the following caveats: 
 
 The PSPA exhibits the highest variability and needs the most training, but provides the most 

reasonable layer-specific information. 
 

 Different LWDs estimate different moduli at the same test spot.  As such, the specification should 
be clear which LWD should be used.  

 
 Properties of the underlying layers should be considered  in setting the LWD target values, 

especially when the layer of interest is overlying a layer with significantly different modulus.  
 

 The DCP is simple to use and inexpensive.  However, since DCP strictly measures the strength not 
the modulus of the layer, setting its target should be done with care.  The DCP results were not very 
sensitive to moisture content and material changes. 
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Thank you 
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NCHRP 10-84 Panel 
Ed Harrigan 



Concluding Remarks 
 
 

The Path Towards 
Greater Implementation 





Mechanistic Empirical Pavement Design 

• Provides the framework for using 
performance based material properties 

• Free design software available 
http://www.dot.state.mn.us/app/mnpave/index.html 

• Just Google “MnPAVE” 
 



Estimated Target Values 



 Verifies pavement 
design inputs 
 Empowers inspector 

with useful measures 
 Creates as-built 

construction record 

Light Weight Deflectometer 
Links Design to Construction 

 



Design, Construction and Performance 

Pavement Design Construction Quality Control 

Construction Quality Assurance 
Performance Measurement 





Import Intelligent Compaction Data 



Import Pavement Performance Data 



Summary 

• Compaction equipment and field tests are now 
available that can measure the properties used to 
design pavements and predict performance. 

• LWDs and DCPs can be used during construction quality 
assurance to effectively verify design values. 

• Several options exist to quantify moisture and more 
field measurement devices are coming. 

• The time is now to accelerate implementation of 
performance based quality assurance so that our 
investments are well spent. 
 



Action Items and Future Work 

• Continue participation on national project teams. 
– TPF (5)285 Standardized LWD Measurements for QA 

• Inspector certification training includes LWD. 
• Educate designers, opportunity to optimize design. 
• Enhance LWD and DCP target value prediction. 
• Specification to include design-based LWD targets. 
• Further development of moisture/suction field test. 

Thank you.       Questions? 



Act Boldly. 
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