Non-Nuclear Methods for Compaction Control of Unbound Materials

- Overview or NCHRP
 Synthesis 456 Munir Nazzal
 - Indiana Stiffness/Strengthbased Compaction Control Specs – Nayyar Siddiki
- Compaction Control Today and Anticipating the Future – John Siekmeier

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Non-Nuclear Methods for Compaction Control of Unbound Materials

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Related Efforts

January 2015

NCHRP Project 10-84 – Modulus-**Based Construction Specification for Compaction of Earthwork and Unbound** Aggregate

Research Results Digest 391

TPF Project 5 (285) – Standardizing LWD **Measurements for QA and** Modulus Determination in **Unbound Bases and Subgrades**

Research Results Digest 391

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

MODULUS-BASED CONSTRUCTION SPECIFICATION FOR COMPACTION OF EARTHWORK AND UNBOUND AGGREGATE

This digest summarizes key findings of research conducted in NCHRP Project 10-84, "Modulus-Based Construction Specification for Compaction of Earthwork and Unbound Aggregate," by the University of Texas at El Paso, with the support of the University of Texas at Arlington and the Louisiana Transportation Research Center, Baton Rouge. The research was directed by the principal investigator, Dr. Soheil Nazarian, University of Texas at El Paso. This digest is based on the project final report authored by Drs. Soheil Nazarian, Mehran Mazari, and Imad Abdallah of the University of Texas at El Paso, Dr. Anand Puppala of the University of Texas at Arlington, and Drs. Louay Mohammad and Murad Abu-Farsakh of the Louisiana Transportation Research Center. The complete project final report and twelve appendices are available to download from the TRB website (http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=2908).

INTRODUCTION

Earthwork and unbound aggregates, collectively called compacted geomaterials, are a significant portion of the construction of pavements. Much of the distress observed in pavements, particularly in flexible pavements, can be traced to problems in geomaterials. Good pavement performance can only be assured with (1) appropriate process control to ensure the geomaterials used are similar to the ones selected, (2) proper processing of the material to ensure that the material is uniformly mixed and contains an appropriate amount of moisture before compaction, and (3) adequate compaction equipment to ensure proper density and stiffness. Currently, the nuclear density gauge is the primary tool for quality management to ensure that appropriate density. Despite the importance of moisture content at the time of compaction to

the quality of the final product, not all highway agencies include moisture content in their specifications. However, measurement of moisture content and dry density does not directly tie the construction quality to mechanistic-empirical (ME) design processes where stress and modulus are key input and output parameters. In-situ nondestructive testing (NDT) devices that estimate the stiffness parameters of a constructed pavement structure are now commonly available. Such stiffness parameters provide a direct link to the pavement performance predicted through a mechanisticempirical based design process. Transformation from a density-based to a modulusbased quality assurance approach involves technical and organizational challenges that must be recognized and addressed in order to develop an efficient, practical modulusbased specification.

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIE:

CONTENTS

Introduction, 1 Objective and Scope 2 Research Approach, Project Final Report. Summary of Results, 4

Phase II, 5 Phase III, 8 Findings, Conclusions, and

Relating Accent

opendix: Proposed Standar

Responsible Senior Program Officer: Edward T. Harrigan

Results of NCHRP Synthesis Report 456 On Compaction Control Of Geo-Materials

Munir D. Nazzal, Ph.D., P.E. Associate Professor Department of Civil Engineering Ohio University

Outline

> Introduction

- > Overview of NCHRP Synthesis 456
- **>** Review of DOTs Compaction Control Specifications
- > Non-nuclear Density Devices
- Devices for In Situ Stiffness/Strength Measurement
- > Stiffness/Strength Based Specifications
- > Conclusions

Introduction

- Compaction is the process by which soil particles are rearranged and packed together to:
 - ✓ Improve stiffness and strength
 - ✓ Reduce excessive settlement
 - ✓ Decrease the susceptibility of to environmental changes, especially those caused by frost heave, swelling, or shrinkage
- Proper compaction of unbound materials is one of the most critical components in the construction of unbound layer to ensure their adequate performance, durability, and stability.
- DOTs assess the quality of compaction by comparing their field density to a target dry density value typically determined by conducting a specified laboratory standard compaction test.

Introduction

- The nuclear density gauge (NDG) is the device used by most state DOTs for measuring the field density of compacted layers of unbound materials.
- This device contains radioactive materials that can be hazardous to the health and well-being of the operators.
- It entails intense handling, storage, calibration, maintenance, and transportation regulations.
- The costs associated with owning, operating, licensing, transporting and maintaining NDG can be also prohibitive.

Item	Cost*
Cost of nuclear gauge	\$6,950
Radiation safety &	
Certification Class	\$750
Safety training	\$179
HAZMAT certification	\$99
RSO training	\$395
TLD Badge monitoring	\$140/year
Maintenance & Recalibration	\$500/year
Leak test	\$15
Shipping	\$120
Radioactive Materials License	\$1,600
License Renewal	\$1500/year
Reciprocity	\$750

*Cho et al. (2011)

Introduction

Compaction control based on density presents several challenges:

From inspectors perspective :

- ✓ Target density value is determined using a very small sample
- ✓ Test methods to determine target density do not accurately represent the compaction energy levels applied in the field

> From the design and performance perspective:

- ✓ The main purpose of compaction is to improve their engineering properties, not only their density.
- ✓ The key functional properties of unbound layers are their stiffness and strength, which are typically used in the design of different transportation structures

Consequently, there is currently a missing link between the design and compaction quality control processes.

NCHRP Synthesis 456 Overview

SYNTHESIS 456

COOPERATIV HIGHWAY RESEARCH PROGRAM

Non-Nuclear Methods for Compaction Control of Unbound Materials

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

- Review current state of practice for compaction control of geomaterials.
- Summarize all information on the various non-nuclear devices and methods used for compaction control of geo-materials based on:
 - ✓ Density measurement
 - ✓ stiffness/strength-related properties
- Review of stiffness/strength-based specifications that have been developed and implemented by state DOTs for compaction control to geo-materials

NCHRP Synthesis 456 Overview

Review of DOTs Compaction Control Specifications

Compaction Control Specifications

Review of DOTs Compaction Control Practices of Geo-Materials

- 1. Impact Compaction Laboratory Methods
 - ✓ Are the most commonly used to determine the target field density value.
 - ASTM D 698 or AASHTO T 99 (standard effort)&ASTM D 1557 or AASHTO T 180 (modified effort)

- ✓ Do not accurately represent the compaction energy levels currently applied in the field
- \checkmark Can only be conducted on materials below grain size 3/4 inch
- ✓ If the particles in excess of this size is included, corrections need to be applied using AASHTO T224.
- ✓ This correction cannot be applied if the tested materials have more than 30% by mass of its particles larger than 3/4 inch.

2. Static Compaction Laboratory Method

- ✓ Has not been widely used since static pressure was not found to be effective in compacting granular materials
- \checkmark Currently there is no standard procedure

3. Vibratory Compaction Laboratory Method

- ✓ This method was reported to produce consistently higher maximum densities for granular materials than the impact compaction method and also better replicates of field.
- ✓ Some studies indicated that it can be effective in cohesive soils if compacted at low frequencies.
- ✓ Only two state DOTs (Kansas and Alabama) reported the use of this method for unbound aggregate materials.

4. Gyratory Compaction Laboratory Method

- ✓ Introduced by the U.S. Army Corps of Engineers.
- ✓ Involves applying a controlled normal force to both the top and bottom of the sample at a constant gyration rate.
- \checkmark Currently, there are no standard values available
- ✓ Different gyratory compaction parameters were used in previous studies.

Study	Vertical Stress (kPa)	Gyration angle	No. of Gyration S	Soil type
Smith (2000)	1380	1.0	30-40	Crushed stone
Ping (2003)	2000	1.25	90	Fine sand
Kim and Labuz (2006)	6000	1.25	50	Recycled material
White et al. (2007)	6000	1.25	50	Granular and cohesive soils

5. Test Strip Method

- ✓ Used to determine the maximum target density value as well as the roller type, pattern, and number of passes.
- ✓ Test sections are typically constructed every 1500 to 4000 yd³ or where the compacted material changes significantly.
- ✓ Field density and moisture measurements are obtained at three or more randomly selected locations after each pass until no significant increase in density is observed. The average final density is used as the maximum target density.
- ✓ Usually agencies specify that lifts must be compacted to a certain percentage of this maximum density.
- ✓ Several DOTs have specifications for using control strips in their compaction control procedures for geo-materials.

NON- NUCLEAR DEVICES FOR DENSITY MEASUREMENTS OF GEO-MATERIALS

Non-Nuclear Density Devices

Electrical Density Gauge (EDG)

Test Method	Electrical
Standard	None
Measurement	γd, w
Calibratian of Davida	Field calibration using direct
Calibration of Device	measurement of γd , w
Portability	Medium
Durability	Good
Operator skill	Moderate
Ease of use-Training	Difficult
Initial Cost	\$9,300
Data Storage	Yes
Repeatability	Mixed Results
Accuracy	Mixed Results
	-Complex and time consuming
Main Limitations	-NDG is required for calibration
	-Cannot test highly plastic clay

Moisture Density Indicator (MDI)

Test Method	Electrical				
Standard	D 6780				
Measurement	γd, w				
Calibration of Device	Laboratory testing in Proctor mold				
Portability	Medium				
Durability	Good				
Operator skill	Moderate				
Ease of use-Training	Difficult				
Initial Cost	\$6,000				
Data Storage	Yes				
Repeatability	Good				
Accuracy	Mixed Results				
GPS	No				
Main Limitations	-Complex and time consuming -Cannot test highly plastic clay.				

Soil Density Gauge (SDG)

Test Method	Electrical	12mg
Standard	None	ter .
Measurement	γd, w	
Calibration of	Field calibration using direct	
Device	measurement of γd , w	all and the
Portability	Good	
Durability	Good	
Operator skill	Extensive	Transmit
Ease of use-	Difficult	(() electrode
Training	Difficult	Sense
Initial Cost	\$10,000	electrode
Data Storage	Yes	
Repeatability	*	Air Gap
Accuracy	*	Soil
GPS	Yes	Electric Field Lines
Main Limitations	-Extensive operator training	

Methods for In Situ Stiffness/Strength Measurement

In Situ Stiffness/Strength Devices

In Situ Stiffness/Strength Devices

In Situ Stiffness/Strength Devices

Dynamic Cone Penetrometer (DCP)

ASTM Standard	D6951	
Measurement	DPI	
Moisture Measurement	No	
Calibration of Device	None	
Portability	Good	Contraction of the local division of the loc
Durability	Good	
Ease of use/Training	Easy-minimal	
Initial Cost	\$1,000	
Influence Depth (inch)	48	
Repeatability	Good	
Main Strengths	 Simple, quick for shallow depth Economical Assess up to 4ft thick layers Strong correlation with CBR & M_r Used in Many DOTs 	
Main Limitations	 -May require 2 persons -Max. allowed particle size is 2 in. -Deeper testing can take up to 15 min 	

GeoGauge

ASTM Standard	D6758	and the the
Measurement	Modulus	
Moisture Measurement	No	HIRL 2007
Calibration of Device	Calibration plate	
Portability	Good	
Durability	Good	140 GeoGauge
Ease of use/Training	Easy-minimal	
Initial Cost	\$5,000 - \$5,500	State The State of State
Data Storage	Yes	
Influence Depth (inch)	5-8	
Repeatability	Fair	
GPS	Yes	
Main Strongtha	-Simple, quick and non-intrusive	
Iviani Strenguis	- good portability and durability	
	-Extremely sensitive to seating conditions	
Main Limitations	-Inconsistencies in testing data	
	-Unfavorable findings by several DOT's	

Light Falling Weight Deflectometer (LWD)

ASTM Standard	E2583			
Measurement	Modulus			
Moisture Measurement	No	a set		
Calibration of Device	Required	400 100		
Portability	Medium	ANY THE		
Durability	Good	- T		
Ease of use/Training	Moderate	1 PS		
Initial Cost	\$8,000 - \$15,000			
Data Storage	Yes			
Influence Depth (inch)	11 (1-1.5D)*			
Repeatability	Fair			
GPS	No			
	-Quick			
Main Strengths	- Measure wide range modulus values			
	-Not influenced by aggregate size			
Main Limitations	- High variability in weak soft soils			
	-May require 2 persons			

Agencies Experience with Devices

Intelligent Compaction

Stiffness/Strength Based Specifications

Stiffness/Strength Based Specifications

implemented it it implemented it

Stiffness/Strength Based Specifications

Only a few state DOTs have developed compaction control specifications for unbound materials that are based on in situ stiffness/strength measurements

State DOT	Specifications links
	DCP specification:
Minnogoto	http://www.dot.state.mn.us/materials/gbmodpi.html
winnesota	LWD specification:
	http://www.dot.state.mn.us/materials/gblwd.html
	DCP specification:
Indiana	http://www.state.in.us/indot/files/Fieldtesting.pdf
mulana	LWD specification:
	http://www.in.gov/indot/div/mt/itm/pubs/508_testing.pdf
Miccouri	http://www.modot.org/business/standards_and_specs/Sec0
WIISSOUTI	<u>304.pdf</u>
Illinois	http://www.dot.il.gov/bridges/pdf/S-
	33%20Class%20Reference%20Guide.pdf

MnDOT Stiffness/Strength Based Specifications

- DCP is used for base aggregates, granular subgrade, and edge drain trench filter aggregates.
- > Maximum allowable DCP penetration is found using:

DPI_{max}(**mm/blow**)=4.76xGN+1.68MC-14.4

MC: the moisture content at the time of testing,

GN: Grading Number, calculated

 $GN = [25 \text{ mm} + 19 \text{mm} + 9.5 \text{mm} + 4.75 \text{mm} + 2.00 \text{mm} + 425 \mu \text{m} + 75 \mu \text{m}]/100$

GN	In Situ Moisture (% by dry weight)	Maximum Allowable Seating (mm)	Maximum Allowable DPI (mm/blow)
	< 4.0	40	10
2125	4.1-6.0	40	10
3.1-3.5	6.1-8.0	40	13
	8.1-10.0	40	16
3.6-4.0	< 4.0	40	10

MnDOT Stiffness/Strength Based Specifications

> LWD is used for granular as well as fine grained soils

\mathbf{S}					Estimated LWD Modulus			Estimated
r Soil	Grading Number GN		Mois	sture Content (%)	Keros/Dynatest (MPa)		Zorn (MPa)	LWD Deflection Zorn (mm)
lla				5 -7	120		80	0.38
nı	3.1 – 3	3.1 – 3.5 100		100	100		67	0.45
al		75		75		50	0.6	
				5 -7	120		80	0.38
\cup	3.6 – 4.0			80	80 53		53	0.56
				63	63 42		0.71	
ained Soil	Plastic Limit	Estima Optim Moist	ated ium ure	Field Moisture as a Percent of Optimum Moisture	DCP Estimated DPI at Field Moisture	Zoi E Fie	rn Deflection stimated at eld Moisture minimum	n Deflection Estimated at Field Moisture maximum
Fine gr	15-19	10-1	4	70-74 75-79 80-84 85-89 90-94	12 14 16 18 22		0.5 0.6 0.7 0.8 1	1.1 1.2 1.3 1.4 1.6

INDOT Stiffness/Strength Based Specifications

Conclusions

- The majority of DOTs use field density measurements obtained by the nuclear density gauge for compaction control of various types of geo-materials.
- DOTs overall satisfaction with non-nuclear density devices is so low that none of them recommended their use.
 - ✓ More difficult to operate and require longer testing time than nuclear density gauge
- DCP, GeoGauge, and LWD are the most evaluated devices by DOTs among all in situ tests stiffness/strength devices.
- The DCP and LWD have been implemented by some DOTs in the field for compaction control of geo-materials.
- GeoGauge measurement was found to be very sensitive to the seating procedure and to the stiffness of the top two inches of the tested soil layer, which significantly affected its reliability.

Conclusions

- \succ The influence depth differs between the various in situ devices.
 - ✓ Some devices have shallow depths that may not allow them to assess the properties of the entire lift.
 - ✓ The zone of influence of some devices might exceed the lift thickness and it, thus providing a composite value of two layers rather than solely the tested layer.
- There is not one single in situ test device that can assess all types of geo-materials.
 - The BCD, DCP, LWD and SCS may not be suitable for very soft, fine-grained soils.
- In general, no strong correlation was found between in situ stiffness/strength measurements and in-place density, as this relationship continuously changes with moisture content.
Conclusions

- The majority of transportation agencies are interested in implementing stiffness/strength based specifications for compaction control of geo-materials.
- Only Indiana and Minnesota have widely implemented stiffness/strength based specifications, and both states use the DCP and LWD in those specifications
- Most research and implementation projects that were conducted on the use of continuous and intelligent compaction reported considerable success with and numerous benefits of these technologies.
- However, currently, only three state DOTs (Indiana, Minnesota, and Texas), have IC specifications.

Non-Nuclear Methods for Compaction Control of Unbound Materials

Nayyar Siddiki, M.S., P.E. Geotech. Construction and Tech. Support Engineer INDOT, Office of Geotechnical Services December 3, 2015

> Office: 317 610-7251 X 228 Cell: 317 903-0957

nsiddiki@indot.in.gov

Outline

Historical Background

Use of Resilient Modulus in lieu of CBR in subgrade design

- Motivation Behind the change in Construction Specifications
 - Light Weight Deflectometer
 - Device and Test Method
 - Construction Specifications
 - Limitations and Repeatability

Outline (Cont'd.)

- Dynamic Cone Penetrometer
 - Device and Test Method
 - Construction Specifications
 - Limitations
- Indiana Test Methods
- Questions

Joint Transportation Research Projects, JTRP Studies

FHWA/IN/JHRP-92/23, <u>Subgrade Resilient Modulus for Pavement Design and</u> <u>Evaluation</u>, Woojin Lee, Nihal C. Bohra, Adolph G. Altschaeffl, and Thomas D. White, HPR-2032

FHWA/IN/JTRP-98/02-1, <u>Implementation of Subgrade Resilient Modulus for Pavement:</u> <u>Laboratory Procedures Manual (2 volumes)</u>, A. G. Altschaeffl, Ross A. Duckworth, and M. K. Clough, SPR-2134

FHWA/IN/JTRP-98/02-2, Implementation of Subgrade Resilient Modulus for Pavement (2 volumes), A. G. Altschaeffl, Ross A. Duckworth, and M. K. Clough, SPR-2134

FHWA/IN/JTRP-2004/35, <u>Non-Destructive Estimation of Pavement Thickness, Structural</u> <u>Number and Subgrade Resilience along INDOT Highways</u>, Samy Noureldin, Karen Zhu, Dwayne Authur Harris, and Shuo Li, SPR-2408

FHWA/IN/JTRP-2005/23, <u>Simplification of Resilient Modulus Testing for Subgrades</u>, Daehyeon Kim and Nayyar Zia Siddiki, SPR-2633

Research Studies Completed to Improve the Construction

JTRP & In-House Research

1998, JTRP Technical Report Series

Cone Penetration Test to Assess the Mechanical Properties of Subgrade Soils

2010, FHWA/IN/JTRP-2010/27 SPR- 3009

Use of Dynamic Cone Penetration And Clegg Hammer Tests For Quality Control of Roadway Compaction and Construction JTRP & In-House Research

2014, FHWA/IN/JTRP SPR-3537

QA/QC of Subgrade and Embankment Construction

2014, JTRP SPR#3651 Developing Statistical Limits for using the Light Weight Deflectometer, LWD in Construction Quality Assurance

Subgrade Type and Mr Recommendations During Design Phase

Type of Work	Traffic	Subgrade Length	Subgrade Type and Description	Mr Value 1.25 times Mr @ σ1=6psi and σ3=2psi at OMC
New Road, Road Reconstruction and >8 feet Widening	*VPD ≥ 1,000 or Truck ≥ 5 %	> 800 feet	Type-IB 14 inches-chemical Soil Modification Granular Soils- Clay < 20%, PI < 10 - Cement Cohesive Soils- Clay > 20 %, PI > 10 - Lime	Up to M _{r -} 9,500 psi
New Road, Road Reconstruction and <8 feet Widening	•VPD ≥ 1,000 or Truck ≥ 5 %	_	Type IC Excavation and replacement with 12 inches Aggregates	Up to Mr ₋ 9,500 psi
New Pavement or Reconstruction	High water/ urban area, shallow utilities or others	_	Type IV 12 inches Aggregates w/Geogrid Type IB & woven Geotextile if needed	Up to M _{r -} 9,500 psi
New Road, Road Reconstruction	*VPD \leq 1,000 or Truck \leq 5 %	_	Type I 24 inches Strength/density and Moisture Control	Up to M _{r -} 7500 psi

* Vehicle per day

INDOT adopted Resilient Modulus (Mr) since 2002 and following recommendations are included in Geotechnical Report for designing the pavement.

- Subgrade Type
- Resilient Modulus of prepared subgrade
- Resilient Modulus of foundation soils
- AASHTO Classification
- Water Table

Motivation Behind the Change in Construction Specifications

- Measure fundamental properties of material (strength, modulus, etc.)
- Delineate the poor to good compaction in short time
- Simple enough to train and easy to perform with no electronics
- Precise enough to accept with confidence
- Safety issues (nuclear gauge handling)

Devices Evaluated

Clegg Hammer (Hammer weight, 10kg).

Dynamic Cone Penetrometer

Light Weight Deflectometer

Moisture Probe

Microwave Oven

Moisture Analyzer

Light Weight Deflectometer - LWD

Indiana Test Method ITM-508

LWD Test Procedure, ITM 508

- Select site and prepare surface.
- LWD plate should not translate laterally.
- Perform three seating (1st, 2nd and 3rd) drops from the fixed height
- Record the average of 4th, 5th and 6th drops and the test is complete.
- Deflection > 0.03 mm for any two consecutive drops warrants compaction.

Compaction Acceptance with LWD 203-R-628

The maximum allowable deflection for #53 aggregate will be as follows or determined by the test section.

Material Type	Maximum Allowable Deflection (mm)		
waterial type			
Lime Modified Soil	0.30		
Cement Modified Soil	0.27		
Aggregates over Lime Modified Soil	0.30		
Aggregates over Cement Modified Soil	0.27		

Materials not included in the table need a test section.

Proofrolling of Chemically Modified Soil

A fully legally loaded tri-axle dump truck. (About 70,000 lbs.) Sec. 207 and 300 requires proofrolling prior to placing next layer

Compaction Acceptance with LWD, 203-R-628 A Test Section Layout

Test sections shall be constructed in accordance with ITM 514.

Test Section Size: 100 X 20 feet Aggregate Moisture: -3% of OMC and OMC Compacted Lift Thickness: 6 inches

Test Section Requirements, ITM-514

- 1. Proofroll and construct a lift.
- 2. Test 10 random locations and take the average.
- 3. Perform additional compaction. Retest previous test locations and take the average.
- 4. Subtract the average deflection of step 3 from step 2.
- 5. If the difference in step 4 is <0.02 mm. Test section is complete

ITM-514 Cont'd.

- If the difference is >0.02 mm, additional compaction is required.
- 7. Step 3 is the maximum allowable deflection and used for the remaining project.

Compaction Acceptance with LWD, 203-R-628

- Gradation and OMC on aggregates by (AASHTO T11,T27 and T99).
- Moisture: -3% of OMC and OMC
- Testing Frequency
 - 3 Tests/1,400 cyd of chemically modified soils.
 - 3 Tests/800 t for compacted aggregates at random station.
 - One moisture test / day in accordance with AASHTO T 255.

Limitation

- The aggregates larger than 1.5 in. shall not be *over* 15% in testing location.
- The testing location shall not exceed 5% inclination.
- The testing location shall not be frozen.
- Test shall not be executed when deflection measurements are less than 0.2 mm.
- LWD test is questionable in case of shallow ground water (2 feet) or soil with high moisture content.

LWD Repeatability Procedure

The Office of Material Management will establish the repeatability of lightweight Deflectometer (LWD) deflection measurements under defined conditions.

Repeatability testing will be performed:

- Immediately upon receipt of a newly purchased device
- Immediately after full calibration
- After significant repair
- Annually
- When measurements are no longer repeatable or questionable

Projects and Tests Completed in 2014

Projects completed

<u>118</u>

Test Performed

<u>2011</u>

Dynamic Cone Penetrometer

Indiana Test Method ITM-509

Section 203.23

Based on the research (QA/QC of Subgrade and Embankment Construction) the following relationships were developed

Soil type		Correlation	R ²	Penetration depth (inches)	Range of applicability	
Coarse- grained	Natural	Blow Count= 0.17 x <i>OMC</i> ² -5.94 x <i>OMC</i> + 60	0.95	0-to-12	8<0MC%<13	
soils	Manufactured	Blow Count = 4.03 x ln (C_{μ}) +2.64	0.99	0-to-12	3.0 <c<sub>u<6.0</c<sub>	
Fine-grained soils		Blow Count = $13.03 \times e^{-23 \times Pl} + 8.05 \times e^{-0.005 \times Pl}$	0.99	0-to-6		
		Blow Count = 22.11 x $e^{-0.23 \times PI}$ +13.04 x $e^{-0.012 \times PI}$	0.98	6-to-12	8 <u>></u> PI%	

Section 203.23 Cont'd.

The following laboratory tests are required during construction:

- Sieve Analysis......AASHTO T-88, T-89/or ASTM D-1140
- Atterberg Limits AASHTO T-90
- Moisture Density ……… AASHTO T-99
- Loss on Ignition.....AASHTO T-267
- Ca/Mg Carbonate..... ITM-507*
- Sulfate test ITM 510

*Not required when presence of shells in soil or density <105 lbs.

Soil Types

More than 1800 tests performed in the laboratory, grouped in three categories on the basis of Maximum Dry Density and other parameters.

Cohesive Soil: Soil is cohesive when >35% passing No.200 sieve and categorize as:

Clay - Max. dry density ≤ 114 pcf
Silty - Max. dry density ≥ 114 pcf and ≤ 120 pcf
Sandy- Max. dry density > 120 pcf

Granular Soil: Soil is non cohesive when <35 % passing No. 200 sieve.

Embankment other than Rock, with Strength or Density Control, Sec. 203.23

Textural Classification	Maximum Dry Density (pcf)	Optimum Moisture Content Range (%)	Acceptable Minimum DCP value for 6 in.	Acceptable Minimum DCP value for 12 in.
	CLAY	SOILS		
Clay	<105	19 - 24	6	
Clay	105 - 110	16 - 18	7	
Clay	111 - 114	14 - 15	8	
		SILTY SOIL	S	
Silty	115 - 116	10 14		9
Silty	117 - 120	12-14		11
		SANDY SOIL	S	
Sandy	121 - 125	0 1 de		12
Sandy	> 125	8 - 1 2		15
GRANULAR	SOILS - STRUCT	URE BACKFIL	L AND A-1, A-2,	A-3 SOILS
No. 30				6
No. 4	1			7
1/2 in.				11
1 in.]			16

Section 203.23 Cont'd.

Moisture Range for Compaction Moisture range for all soil types are as follows:

Soil Type	Moisture Compaction Range	
Clay (<105 lb/cu ft)	-2 to + 2% of optimum moisture content	
Clay (105-114 lb/cu ft)	-2 to + 1% of optimum moisture content	
Silty and Sandy (>114 lb/cu ft)	-3% of optimum moisture content and optimum	
Granular	5 to 8%	

Dynamic Cone Penetrometer Testing

DCP blow counts for the chemically modified soils

Section 203.23 Cont'd. Frequency of Testing

- 3 Random test / 2000 cyd of compacted soil.
- Moisture test at every 4 hrs for clayey soils.
- Moisture test once per day for other type of soils.

Note:

The moisture sample should represent the entire lift. Additional moisture tests may be required if there is an obvious visual change in moisture When the soil type changes during construction:

One Point Proctor shall be performed to identify the soil type and revised DCP blow counts in accordance with the ITM 512-15T

Motive behind performing One Point Proctor

To determine the following properties at the project:

- Optimum Moisture Content of the blended soils
- Maximum Dry Density and the use of ITM 512 Charts
- Density based soils classification
- Adjusted Optimum Moisture and DCP blow counts

Maximum Dry Density (pcf)

[Figure 3]

Conclusion

- The DCP is portable, easy to operate, and requires no electronics. It takes couple of minutes to learn the test.
- It is an effective tool to identify weak layers when penetration rates are plotted vs. depth.
- Improve inspector safety.
- Directly related to design.
- Increase compaction uniformity.
- Increase productivity due to less time per test.
- Improve documentation and reporting.

NA= Not Applicable

Equipment Inventory

INDOT Inventory of LWD and DCP Devices			
LWD (ZORN) & DCP (KESSLER)			
Available With	No's of LWD	No's of DCP	
INDOT	60	200 +	
CONSULTANTS	10	30	
Comparison Cost / Test With Different Devices

Device	Estimated Tests Per 8-hr Day	Daily Employee Rate	Daily Equipment Rate	Daily Charge	Cost Per Test (Approx.)	Est. Device Price
NDG including 1-Point Proctor	18	\$336.00	\$35.00	\$371.00	\$20.60	\$ 8,000.00- \$12,000.00
DCP	32	\$336.00	\$ 3.00	\$339.00	\$10.00	\$ 1,000.00- \$ 1,300.00
LWD	72	\$336.00	\$14.00	\$350.00	\$ 5.00	\$ 7,500.00- \$ 1,2000.00

Other Costs:

- NDG Training: Safety and Maintenance
- DCP None
- LWD- Calibration and Verification

INDOT Compaction Requirements

		Field Testing						
Matarial Types	Lab. Testing	Max.	DCP (ITM 509)	Sand Cone	Moisture Test			
Material Types		DD & OMC (ITM 512)		(AASHTO T191)	(ITM 506)	AASHTO T255	(ITM 508)	
Cohesive Soils	AASHTO T 99 (Method A)	Х	х	X	Х	N/A	N/A	
Granular Soils (Soils with aggregate retained on the 3/4 in., structural backfill size 2 in. and 1 1/2 in., and b borrow with a similar gradation)	AASHTO T 99 (Method A or C)	N/A	N/A	x	Х	N/A	Х	
Granular Soils (Soils with 100% passing 3/4 in., structural backfill sizes 1 in., 1/2 in. No 4, No. 30, and b borrow with a similar gradation)	AASHTO T 99 (Method A or C)	N/A	х	x	х	N/A	N/A	
Coarse Aggregates (No. 43, 53, and 73)	AASHTO T 99 (Method A or C)	N/A	N/A	x	N/A	х	Х	
Coarse Aggregates (No. 5, 8, 9, 11 or 12)	Field Testing is not required. Compaction in accordance with applicable specification.							
Chemical Modified Soils	AASHTO T 99 Performed by the Contractor	N/A	X	N/A	*Х	N/A	x	

N/A Not Applicable

 $^{\ast}\mathrm{X}$ No Microwave Testing

No Probe Testing

ITM for Compaction Acceptance

ITM No. 506-15T Field Determination of Moisture Content of Soil

ITM No. 508-12T Field Determination of Deflection Using Light Weight Deflectometer

ITM No. 509-15P Field Determination of Strength Using Dynamic Cone Penetrometer

ITM No. 512-15T Field Determination of Maximum Dry Density and Optimum Moisture Content of Soil (AASHTO T272)

ITM No. 514-15T Test Sections for Aggregates and Recycled Materials

Compaction Control Today and Anticipating the Future

NCHRP Synthesis 456 "Non-Nuclear Methods for Compaction Control of Unbound Materials"

John Siekmeier P.E. M.ASCE

Why would we replace a density-based specification with a modulus-based specification?

Road foundations are important.
Poor performance has consequences.
Testing has NOT "always been done this way."
Building financially effective highways for the 21st century requires 21st century technology.

Road Foundations are Important

Poor Performance has Consequences

- Unable to maintain our public assets.
- Waste labor, energy, and natural resources.
- Public confidence reduced.
- New investments (higher gas tax) difficult.

Ralph Proctor reminds us.

 Strength is not achieved by density alone.
Optimum moisture is for compaction.
Need to avoid rutting during construction.

photo courtesy of Dr. J. David Rogers University of Missouri-Rolla

Ralph Proctor, 1945, Trans 110, ASCE

- "Methods for hand compaction, such as dropping various weight tampers from different heights and mechanical tampers, were tried and discarded."
- "No use is made of the actual peak dry weight."
- "The measure of soil compaction used is the indicated saturation penetration resistance."

Proctor Penetrometer

Photo courtesy of Humboldt

Minnesota Department of Transportation

Office of Materials & Road Research 1400 Gervais Avenue, MS 645 Maplewood, MN 55109

Memo

- TO: PCMG, CMG, MnDOT Districts, Materials Engineers, Soils Engineers, State Aid
- FROM: Glenn M. Engstrom, Director Office of Materials & Road Research
- DATE: October 31, 2014
- SUBJECT: Pavement Design Manual Publication

I am pleased to announce the publication of the MnDOT Pavement Design Manual.

This publication represents a significant effort to update pavement design procedures and codify existing documents into a single point of reference. As of November 1, 2014, all MnDOT pavement designs shall follow the pavement design, pavement-type selection, LCCA, and alternate bidding as laid out in the Pavement Design Manual. To view the manual, please follow <u>http://www.dot.state.mn.us/materials/pvmtdesign/newmanual.html</u>

Mechanistic Empirical Pavement Design

Provides the framework for using performance based material properties
Free design software available http://www.dot.state.mn.us/app/mnpave/index.html

Just Google "MnPAVE"

MnPAVE - Deflection Test Simulation

Edit Print Window Help

200 mm LWD Resistance Factor 0.67

Applied Load 6.3 kN

Plate Diameter

Surface	Field	Field	LWD Deflection (mm) at top of Surface Material				
Material	Modulus	Resistance	Degree of Saturation				
	(MPa)	Factor	Opt20%	Opt10%	Optimum	Opt.+10%	Opt.+20%
			Estimated Target Values				
AggBase	180.5	1.15	0.52	0.55	0.60	0.66	0.71
EngSoil	29.98	0.96				Х	
UndSoil	19.23	0.75			Х		

Simulated using material properties from Intermediate design level.

Light Weight Deflectometer Links Design to Construction

 Verifies pavement design inputs
Empowers inspector with useful measures
Creates as-built construction record

Design, Construction and Performance

Construction Quality Assurance

Action Items and Future Work

Continue participation on national project teams. TPF (5)285 Standardized LWD Measurements for QA Inspector certification training includes LWD. Educate designers, opportunity to optimize design. Enhance LWD and DCP target value prediction. Specification to include design-based LWD targets. Further development of moisture/suction field test.

Thank you.

Questions?