Understanding Pedestrian Behaviors and Traffic Controls at Signalized Crosswalks for Safety Improvements in Japan and USA

Presented by

Dr. Miho Iryo-Asano The University of Tokyo	Dr. Wae! Alhajyaseen Qatar University	Dr. H.Joon Park NYCDOT

Moderator: Lee Kim

Purpose:

Examine how crosswalk geometry and signal timing/indication impact pedestrian speed and decision making process.

Review current traffic control policies and discuss ways improve safety at signalized crosswalks.

This webinar will:

Provide general introduction about existing design and operational policies for pedestrians at intersections in different countries.

Examine pedestrian behavior and traffic controls at crosswalks in US.

Examine pedestrian behavior at crosswalks in Japan considering the effect of signal timing.

Concepts of Traffic Signal Control for Pedestrians in Different Countries

Miho IRYO-ASANO, Associate Professor
Institute of Industrial Science
The University of Tokyo, JAPAN

Problem Statement

Pedestrian-vehicle conflicts are common safety problems.

- More than one-third of the total number of fatalities in traffic accidents were pedestrians
- 29\% of pedestrian fatalities (42\% of elderly fatalities) can be attributed to illegal crossing behavior
(National Police Agency in Japan, Accident statistics in 2011)

5th Ave and 42nd St in New York, USA

Problem Statementcont.

Intersections at the common locations for ped-veh conflicts

- At signalized intersections pedestrian streams are controlled through three intervals:

Don't Walk (Red)

The time required by pedestrians who enter the crosswalk at the end of the green indication to complete crossing before conflicting vehicular traffic movements are released

Clearance
(Flash green, red or
yellow)

Don't Walk (Red)

- Different practices
- Diffe These different practices affects pedestrian ime behavior and leads to different patterns What is the most efficient signal design in terms of pedestrian

Germany

Functions of pedestrian green phase
Theoretically, the pedestrian phase consists of:
Discharge time: Time required for pedestrians to leave curbs or shoulders
\rightarrow Dependent on the reaction time, pedestrian demand and crosswalk width

Clearance time: Time required for crossing pedestrians to complete crossing

\rightarrow Dependent on walking speed and crosswalk length

Definitions of pedestrian signal indications in US

Walk
Pedestrians are able to proceed

Discharge time

Flashing
don't walk
 crossing

Clearance time

Time for all waiting pedestrians to start crossing (7 s reaction time + queue discharge time)

Crosswalk length
Walking speed
$\varlimsup_{3 \sim 3.5 \mathrm{ft} / \mathrm{s}(0.9 \sim 1.1 \mathrm{~m} / \mathrm{s})}$

Pedestrians should not start crossing

Definitions of pedestrian signal indications in Japan

Green

Flashing
Green

Red

By: Order of Enforcement of Road Traffic Act in Japan

Definitions of pedestrian signal indications in Japan

Green

Pedestrians are able to proceed

Pedestrians should not start crossing. Pedestrians who are on the crosswalks have to complete crossing or give up crossing and return to the origin side immediately.

Red \qquad Pedestrians should not cross roads

By: Order of Enforcement of Road Traffic Act in Japan

How to set minimum green/flashing green time in Japan

Green
 \qquad
 Pedestrians are able to proceed

 Crosswalk length
 Walking speed $1.0 \mathrm{~m} / \mathrm{s}(3.3 \mathrm{ft} / \mathrm{s})$

Those who are on the first half
Pedestrians should not start crossing.
 Pedestrians who are on the crosswalks have to complete crossing or give up crossing and return to the origin side immediately.

Red

Pedestrians should not cross roads

Pedestrian signal indications in Germany

Green

Pedestrians can proceed
Crosswalk length / 2
Walking speed $1^{\sim} 1.5 \mathrm{~m} / \mathrm{s}\left(3.3^{\sim} 4.9 \mathrm{ft} / \mathrm{s}\right)$

Provide following time before the start of green on the crossing road

Crosswalk length
Walking speed
$1 \sim 1.5 \mathrm{~m} / \mathrm{s}\left(3.3^{\sim} 4.9 \mathrm{ft} / \mathrm{s}\right)$

Pedestrian signal indications in UK (Puffin control, midblock crosswalks)

Pedestrians can proceed
Crosswalk length / 2
Walking speed
$1.2 \mathrm{~m} / \mathrm{s}(3.9 \mathrm{ft} / \mathrm{s})$

Blackout
Pedestrians should not start crossing

Fixed time + extension time considering the existence of crossing pedestrians

With pedestrian detection system

Locations of signal indicator: Puffin control in UK

Difference of definition causes different user behavior

Buffer Intervals Bls in Japan

Bls are the time between the end of the PFG and the succeeding vehicle green indication.

- Ideally provided to increase the capacity of left-turners by avoiding conflicts with pedestrians

Phase 1

Phase 2

Vehicle clearance time

Summary of Pedestrian Clearance Time

Japan

- Short PFG (pedestrian have to return if the did not finish crossing half of the crosswalk)
- Long Buffer Intervals BI (5-10 sec)

US

- Long Flashing Don't Walk
- Medium Bls (3-5 sec)
- Clearance interval is indicated by red

Germany . Clearance and Bls can not be distinguished
Pros and cons
will be discussed in the following presentations

Qatar Road Safety Studies Center

Qatar

University

Pedestrian Behavior at Signalized Intersections in Japan

Dr. Wael Alhajyaseen / Assistant Professor
Qatar Road Safety Studies Center
Qatar University
Doha, Qatar

Email: wyaseen@qu.edu.qa

Pedestrian Fatalities: Trends

22 \% of total fatalities are pedestrians

Pedestrian Fatalities: Japan

-JAPAN: More than third of the crash fatalities are pedestrians National records = 35\%, Police Department of Tokyo= 48\%

Signalized Intersections in Japan

- Severe traffic crashes at intersections

Layo large intersections with long delay

Signal control

Large corner radii

Enlarge speed of turning vehicles, which induce pedestrian accidents. Illegal parking at corners. Large setback distance Enlarge clearance distance and all red time
Channelization by zebra marking Left-turning vehicle can run on the marking Encourage high-speed turn

Wide crosswalk and long setback distance
Turning vehicle can enter the crosswalk with high speed

- Too long cycle time
- Long intergreen time (Yellow + all red)
- "Arrow" is used only for green phase
- 4-phase control is dominant
- Traffic lights are placed at near-side
- No 2-stage crossing for pedestrians

Problem Statement

- Intersection layout (crosswalk length and position)
\checkmark Vehicles enter in high speed
\checkmark High degree of freedom gives variety of movements
- Common Objective of Traffic signal control
$\{$ Provide sufficient capacity for motorized traffic
Minimize vehicle delay
- Inappropriate signal setting \rightarrow too long cycle lengths \rightarrow Long delays
\checkmark Induces hazardous maneuver, such as red light running and early starts at onset of green

Compared to vehicles, pedestrians violate traffic regulations more frequently

Pedestrian Behavior

- Dynamic interaction with
- Signal indication and timing
- Traffic conditions
- Intersection Iayout
- Crosswalk length \& width
- Channelization

Left-hand Traffic

Pedestrian position and
speed at the onset of PFG speed at the onset of PFG

1

The onset of PFG
Right Turn on Red

Distance to crosswalk edge

Vehicles

Pedestrian Behavior

Observation Sites

Intersection		Sasashima			Imaike			Yagoto Nisseki	
Intersection Layout									
Approach		West	East	South	West	East	North	South	North
Crosswalk Length (m, ft)		32, 105	17, 56	36, 118	21, 69	21, 69	22.5, 74	17, 56	18, 59
PFG (Sec)		6	6	7	8	8	8	7	7
Pedestrian volume (ped/hr)		2025	1238	1103	360	327	147	734	250
	Go	249	154	32	28	45	11	122	32
	Stop	153	51	16	24	32	3	4	8
	Total	402	205	48	52	77	14	126	40

Stop/Go Decision

- Impact of Crosswalk Length

At long crosswalks, Stopping probability is significantly higher \rightarrow The crossing decision is made based on pedestrians judgment whether they can complete crossing during the available time

Stop/Go Decision

- Walking speed and position at the onset of PFG

Pedestrian judgment whether to stop or go is influenced by:

- Their speed
- Distance to crosswalk
- Available time until the release of conflicting vehicles

Start crossing at the end of PFG (Pedestrian Flashing Green)

Pedestrian distance to the crosswalk at the onset of PFG [m]

Crossing Speed with Distance and Timing

First half travel speed significantly increase as the PFG interval proceeds

Second half travel speed no significant change

Speed Change Events

Sudden Pedestrian Speed Changes

Unpredicted by drivers

Safety Hazard

Extraction of Speed Change Events

Observation Sites

Intersection			ama			Fushimi
Intersection Layout						
Approach		East	North	East	South	South
Crosswalk Length (m , ft)		16, 52	36, 118	28, 92	21, 69	30, 98
PFG (Sec)		6	9	10	8	10
Pedestrian volume (ped/hr)		179	338	90	114	322
	Total		373	71	135	128

Observation Sites

	Mode	Signal phasing length (sec)															Cycle length (sec)
		φ_{1}				φ_{2}			φ_{3}					φ_{4}			
		1	2	3	4	5	6	7	8		9	10	11	12	13	14	
E-W	Vehicle				V												
	Pedestrian (location S and N)		1														
	Right-turning vehicle		Sha	red			V										
S-N	Vehicle												\checkmark				
	Pedestrian (location E and W)										11						
	Right-turning vehicle										Sha	ed			V		
Intersection name	Kanayama	39	9	3	3	7	2	5	54		6	5	3	17	2	5	160
	Ueda	54	8	2	3	9	2	5	45		10	4	4	7	2	5	160
	Fushimi	40	10	2	4	7	2	5	62		7	3	4	8	1	5	160
	Signal phase plan								ϕ_{3} \uparrow \vdots \square					2			

Number of speed change events at each site

- 20-50\% pedestrians change their speeds at least once during crossing
- Long crosswalks have more frequent speed change events (Kanayama North, Fushimi South)

Location \& Distribution of Speed Change Events

Acceleration events:

- Occur frequently at the entrance of conflict area

Decelerations events:

- Occur at either edge of crosswalks

Summary

-Crosswalk Geometry

Crosswalk geometry and layout affects pedestrian behavior - As crosswalk length increase:

- Pedestrian stopping probability at the onset of PFG increases
- Pedestrians tend to cross with higher speeds
- More sudden speed changes \rightarrow more severe conflicts \rightarrow safety hazards - Mostly occur around the conflict area with exiting vehicles

-Signal Timing

-Significant noncompliance with signal indication

- Even after the onset of pedestrian red, pedestrian continue crossing until the onset of conflicting vehicles green
- Pedestrian crossing speed increases as PG and PFG intervals proceeds.
- Increasing tendency with time
- Frequent sudden velocity changes during PFG interval

Quantification of Pedestrian

 Behavior- Stop/ Go decision
- Speed adjustment

Fixed Value
Crosswalk length Signal timing (PFG)

Taking in account: (1) traffic control and (2) intersection geometry

Quantified considering the ochastic nature of pedestrians
 Quantified considering the stochastic nature of pedestrians

Stop

Crossing Speed

End
Time start crossing

Time complete crossing

Applications

1) Proactive Safety Assessment using microsimulation

- Realistic representation of pedestrianvehicle

Scenarios

- Intersection geometries layouts
- Signal control parameters
- Vehicle and pedestrian
demand (assuming random arrival) starting time to cross)

Output: Conflict characteristics
Safely indices
Comparison between different scenarios

Applications: Improvements on the Design and Control

2) Road Structure

- Two-stage crossing
- Road narrowing
- Raised crosswalks
- Overpasses / underpass

Applications: Improvements on the Design and Control

3) Signal Control

- Pedestrian Signal Setting
- PFG length
- Buffer time
- Countdown signals
- Position of the signal lights
- Dilemma zone for pedestrians

More efficient setting of pedestrian signal timing to improve compliance

USA

Thank You

Pedestrian Behaviorand Trafiic Controls at Crosswalks in New York City (US)

H. J oon Park, Ph. D., AICP, New York City Department of Tra nsp orta tion "Understanding Pedestian Behaviors and Trafic Controls at Signalized Crosswalks"

Pedestrian Behaviors

> Macroscopic approach

- Pedestrian flow fundamental diagram
- Average travel time and speed

Microscopic approach

- Profile on trajectories and speed of pedestrian and conflicting tuming vehicles
- Pedestrian compliance on control policy

Data Collection and Reduction

> Video Data Collection: pedestrian and traffic
> A combination of manual data reduction and video tracking analysis because of heavy pedestrians and video data quality (i.e., camera angle, object overlapping, and homography issues)

Video Data Examples

> Perpendicular view (Park Ave and 29 ${ }^{\text {th }}$ St)
> Multiple camera views (89 Ave and Merick Blvd)

Pedestrian Speeds

> Pedestrian speed is an important factor to influence level of senvice for pedestrian facility and to determine flashing DON'TWalk time at crosswalks.

- Constant pedestrian crossing speed to determine pedestrian clearance time

- Many crosswalks in NYC with hourly pedestrian volume over 2,000
- 2009 MUTCD: $3.5 \mathrm{ft} / \mathrm{s}$ ($1.1 \mathrm{~m} / \mathrm{s}$)
- HCM 2010:
$4.0 \mathrm{ft} / \mathrm{s}(1.2 \mathrm{~m} / \mathrm{s})$, or 3.3 (1.0) if $\mathbf{> 2 0 \%}$ elderly population, and reduction of $.3 \mathrm{ft} / \mathrm{s}(0.1$ m / s) with $>10 \%$ upgrade

NYC standard:

$3.5 \mathrm{ft} / \mathrm{s}(1.1 \mathrm{~m} / \mathrm{s}), 3.0(0.9)$ in senior areas \& school zones

Note) $1 \mathrm{ft} / \mathrm{s}$ is equal to a pproximately 0.3 meter/s.

Pedestrian Fundamental Diagram

Based on Recent Sudies

Source) 1. Jun Zhang, et al, "Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram." Journal of Statistical Mechanics: Theory and Experiment 2012, no. 02
2. H. Joon Park, et al, An Investigation of Pedestrian Crossing Speeds at Signalized Intersections with Heavy Pedestrian Volumes. TRR Vol. 2463, 2015

Pedestian Fundamental Diagram at NYC Crosswalks

Hourly pedestrian volumes at 14 locations were obsenved from 655 with low density of 0.020 ped/ ft^{2} at the west crosswalk of $3^{\text {rd }}$ Ave and $23^{\text {rd }}$ St to 7,655 with high density of 0.082 ped/ ft^{2} at west crosswalk of $7^{\text {th }}$ Ave and $43^{\text {rd }}$ St (Saturday). As the crosswalk densities inc reased, pedestrian speeds gradually dec reased.

Pedestian Fundamental Diagram at NYC Crosswalks by Land Use Pattems

According to land use characteristics or trip purpose (i.e., tourist/ shoppervs. commuter), pedestrians tend to show different c rossing speeds. However, these speeds generally do not drop to below $2 \mathrm{ft} / \mathrm{s}(0.6 \mathrm{~m} / \mathrm{s})$.

Examples of Various Pedestrian Density levels

Travel Time and Speed of Pedestrian At Uiban Street Facility -Simulation

> Pedestrian simulation model applic ation for urban street facility in vic inity of Grand Central Terminal

East-west movement

Crossing Speed by Pedestrian Intervals

Pedestrians walk

 faster during flashing DW time than during Walk time.

Crossing Speed - School Children (1)

$>$ Video surveys at 17 intersections in the vic inities of seven primary schools in NYC.
> The comparison between moming school hour and after sc hool hour showed children walked faster during the moming.

Crossing Speed - School Children (2)

$>$ The tables below demonstrate the difference in speed between children alone and children with guardians (i.e., father, mother, parents orgrand parents) during school peak periods.

	Childeren Alone		Childeren with Guardians		\% Difference		
Average Speed	5.6 (1.7)		4.7 (1.4)		19.1\%		
15th Percentile Speed	4.0 (1.2)		3.7 (1.1)		8.1\%		
Median Speed	5.0 (1.5)		4.5 (1.4)		11.1\%		
85th Percentile Speed	6.8 (2.1)		5.6 (1.7)		21.4\%		
Unit: ft/sec (m/sec)							
Groups	Count	Average Speed	Variance	p-value			nificant lue $<=0.15$)
Children Alone	458	5.6 (1.7)	5.26 (1.60)				
Children with Guardians	501	4.7 (1.4)	1.42 (0.43)		E-14		Yes

Pedestrian-Vehicle Crashes

$>$ Based on 5-year crash data (2009-2013), 31 \% and 10 \% pedestrian crashes involved with left tum and right tum vehic les, respectively, in New York City.

Vehicle Direction	LeftTum	RightTum	Thru/Other	Overall
Pedestian Crashes	14,474	4,517	27,874	46,865
Percentage $(\%)$	31	10	59	100

Source: NYSDOT/NYSDMV Accident Database

Intersection Conflicts

> Driver Perspective

- Conflicts with Opposing Traffic
- Tuming (left and right tum) conflicts with Pedestrians
> Pedestrian Perspective
- Left or Right Tum Conflicts with Pedestrians
- Pedestrian interactions with opposing flow

Pedestrian Crashes by Age

Ederly citizens were more vulnerable to fatality crashes with tuming vehic les, espec ially with left tum vehic les, while young age (11-30) groups showed higher fatality crashes with right tum vehicles.

Source: Left-tum study, NYCDOT(2015)

Video Tracking of Near-side Tuming Vehicle Movements

Tuming Vehicle Speed

$>$ The average exit speeds at study locations ranged from 11.2 ($\mathbf{7} \mathbf{~ m p h}$) to $\mathbf{1 4 . 4} \mathbf{~ k m} / \mathrm{hr}$ (9 mph).

Detailed information of Near-side Turning Vehicles

> The conflicts between illegal pedestrian crossings and highspeed vehic les are most likely to occur in a narowerzone at the upstream stop line, but a wider conflictzone at the exit crosswalks.

	Tuming Vehic le Dista nce from Curb	Tuming Vehic le Speeds	
46th St. $7^{\text {th }}$ Ave.		70% 60% 50\% 40% 30% 20% 10% 0%	
Queens Blvd./ Van Dam St.		70% 60% 30\% 40% 30% 20% 10% 0\%	

[^0]
Trajectories of Tuming Vehicles

$>$ Trajec tories of observed tuming vehic les showed substantial variations in the pre-peak hour and peak period as well as downstream congestion of tuming vehicles.

One-Way ANOVA \& Post Hoc Test Summary

Location	Average Speed (km/hr)	Standard Deviation	$15^{\text {th }}$ Percentile (km/hr)	Percentile (km/hr)	$\begin{gathered} \text { F- } \\ \text { Statistic } \end{gathered}$	$\stackrel{\text { F- }}{\text { Critical }}$	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$
Flatbush Ave.I Fulton St.	13.7	4.2	9.7	16.3	7.70	2.64	$\begin{gathered} < \\ 0.00 \end{gathered}$
Queens Blvd.I Van Dam St.	13.5	2.8	10.1	15.9			
49th St. $7^{\text {th }}$ Ave.	14.4	3.7	11.9	16.5			
$46^{\text {h }}$ St. $/ 7^{\text {th }}$ Ave.	11.2	2.2	8.9	13.5			
3 Locations except $46^{\text {th }}$ St. $7^{\text {th }}$ Ave.	-				1.19	3.04	0.31

Location	t value	t Critical two-tail	$\mathrm{P}(\mathrm{T}<=\mathbf{t})$ two-tail	Bonfemoni Comection Significance level	Post Hoc Test Result
Fatbush Ave./ Fulton St vs. Queens Blvd./ Van Dam St	0.3450	1.9803	0.7307	0.0125	False
Fatbush Ave./ Fulton St vs. $49^{\text {th }} \mathrm{St} / 7^{\text {th }}$ Ave.	-1.1117	1.9766	0.2681		False
Fatbush Ave./ Fulton St vs. 46th St/ 7th Ave.	3.3728	1.9826	0.0010		True
Queens Blvd./ Van Dam St vs. 49 ${ }^{\text {th }}$ St/ $7^{\text {th }}$ Ave.	-1.6611	1.9799	0.0993		False
Queens Bivd./ Van Dam St vs. 46th St/ 7th Ave.	4.0180	1.9893	0.0001		True
49th St/ 7th Ave. vs. 46th St/ 7th Ave.	5.6125	1.9822	0.0000		True

Pedestrian Compliance

> Pedestrians often understood PDW time as an and ave. and zans extension of pedestrian (South Crosswalk) Walk time and noncompliance rates on FDW ranged from $\mathbf{1 4 . 3}$ \% to 26.9 \% during the PM peak hour.

Madison Ave. and 42nd St. (North Crosswalk)

Nonc ompliance rates on crosswalk and comerarea were from 3.2\% to 21.9 \% and from 5.0% to 46.0%, respectively.
Approximately 46.0 \% stood in the parking lane at northwest comer, Madison Avenue and 42nd Street

Queens Blvd. and Van Dam St. (South Crosswalk)

6th Ave. and 42nd St (South Crosswalk)

Pedestrian Compliance (2)

> Among the study locations, the lowest pedestrian noncompliance percentages on crosswalk area \& FDW and steady DW intervals oc c urred at longer c rosswalk with crossing distance of approximately 70 -foot and very long Walk time (Ped Timing 1) of 69 seconds.
> Third Avenue and 34th Street with same crosswalk length was identified with high nonc ompliance rates in those categories because there were vehic les oc c upying the crosswalk and relatively shorter Walk time (Ped. Timng 2).

Pedestrian Timing 1

Pedestian Compliance (3)

> Pedestrian noncompliance rates at comer waiting areas were highest far-side crosswalk ("F") in a one-way street approach, when the distance ("D") between the approach stop bar and the opposing crosswalk is longer.
> A near-side crosswalk from approaching traffic without a parking lane caused pedestrians to remain in the comerwaiting area ("X") but induced higher nonc ompliance on pedestrian Walk time when pedestrians perceived that Walk time is not enough.

Control Policy Score for Pedestrian Safety and Mobility

> Protecting Signal Timing for Pedestrians

- Leading Pedestrian Interval (LPI)
- Split Phase
- Split LPI
- Bames Dance
> Tum Prohibitions
> Curb Extension and Safety Island
> Signal Timing Modific ation (Walk \& Fashing DW)
> Exclusive Tum Lanes
> Others
Cost \& Easy Implementation

Case Study: Downtown Flushing

Downtown Flushing

Downtown Flushing is a thriving community with a dense concentration of businesses and residents. The area serves as one of the largest intermodal transportation hubs in New York City with the 7 train, the Longlsland Rail Road, 20 bus routes, and commuter vans all converging in the downtown. Sidewalks and roadways are congested. Pedestrian traffic regularly spills into the street in many
areas, disrupting traffic and posing safety risks. Of particular concern was the intersection of Union Street and Northern Boulevard, which had the greatest number of crashes with pedestrian injuries in the entire borough.

To ease congestion and improve safety in Downtown Flushing, DOT worked with Community Board 7, local
business owners and elected officials to analyze and discuss several options to improve pedestrian and traffic safety and reduce congestion. The MTA and NYCEDC were also important partners in the study.

- Total crashes with injuries down 10%
- Crashes with injuries to vehicle occupants down 26\%
- Crashes with injuries to bicyclists down 31%
- Travel times along the eastbound and westbound Northem Boulevard decreased by 16% and 15% in the PM peak hour, respectively, and 34\% and 37\% in the Saturday Midday peak hour

Chango in Traval Time Northern Boulevard EEastbound)

Time Perisd	OverallTravel Tmer Pestuction
Weekday Morning Peak Hour	7%
Weekday Midday Peak Hour	5%
Weekday Evening Peak Hour	16%
Saturday Midday Peak Hour	34%

Crashes with Injuries

Northern Boulevard from Prince Street to Bowne Street, Main Street from Norther n Boulevard to o 1st Avenue, Union Street at 35 th Avenue, Union Street at Roosesevelt Avenue

	Pefore'ttree previous yearal			Atter
Total Crashes with muries	58	74	84	64.9
Number of Crashees with Injuries tos.				
Motorvehicle Gcoupants	20	25	31	18.7
Pedestriams	35	43	45	42.4
Bixyclists	3	6	8	3.9
"Retre colums show the crat histony for eachof the twee yers immediately intomation on coast data sor oe and analisis methodobogy. Te sum of the tivee 				

Source: Sustainable Streets Index 2012, NYCDOT

[^0]: _Initial Stop Bar_MMiddle of the corner __Crosswalk Edge
 CS-2
 CS-3

