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APPENDIX F Development of Design Procedures. 
This appendix describes the development of design procedures.  That subject requires 
discussion of five primary topics, each of which is treated in a separate subsection.  The 
focus is on shear strains caused by the various loadings, because they are the critical 
quantity that determines whether debonding occurs. 

Section F.1 addresses shear strain demand, and in particular it describes the relationships 
between external loads and internal shear strains. 

Section F.2 addresses shear strain capacity.  Two models are developed from the test 
results, and they link the amplitude of the total shear strain to the level of debonding 
damage.  This is done for both monotonic and cyclic loading. 

Section F.3 addresses loading demand.  The forces and rotations that the bearing 
experiences must be known in order to determine the shear strains that they cause.  These 
forces and rotations should be evaluated for each bridge during its design, but estimates 
of them are obtained in this section from typical bridge geometries and loadings to guide 
the development of the proposed bearing design specifications.. 

Section F.4 details the evaluation of the two different models for shear strain capacity, 
and Section F.5 describes the process of developing detailed design provisions from the 
foregoing sections.  Section F.6 contains a summary of the findings of the appendix. 

F.1 Derivation of Shear Strains in the Elastomer. 
Determination of strains in the elastomer is complicated, because the material is nearly 
incompressible, is nonlinear, and experiences very large strains.  An accurate evaluation 
is possible only with Finite Element Analysis, as described in Appendix E, and even then 
it presents significant challenges.  A simpler, albeit approximate, approach to analysis is 
needed for design. 

Gent and Lindley (e.g. Gent and Lindley, 1959a, Gent and Meinecke, 1970, Lindley and 
Teo, 1978) pioneered the analysis of laminated bearings and developed and presented a 
linearized analysis procedure.  Conversy (1967) extended it to allow for finite values of 
the bulk modulus, and Stanton and Lund (2004) provided numerical values of all the 
necessary coefficients, for different bulk modulus values.  That approach forms the basis 
of the procedure used for the design method used in this research, and is summarized 
here.  It is approximate, because it assumes a parabolic distribution of displacement 
through the thickness of the elastomer, but, as the Finite Element Analyses show, that 
approximation proves to be remarkably good, and, for the geometries and stresses used in 
practical bearings, the errors are small compared with those arising from other sources, 
such as characterization of material properties.  Its simplicity compared with any other 
alternatives makes it an attractive choice.  

Two types of behavior must be distinguished.   The first is defined here as “uplift” an 
refers to any situation in which the loading surface (i.e. the sole plate between the girder 
and bearing) remains in full contact with the bearing at all times.  This always occurs 
when the bearing has bonded external plates.  It may also occur in the absence of bonded 
external plates if the compression is large enough to prevent any separation.  The most 
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important consequence is that hydrostatic tension stress may be induced in the elastomer 
if the rotation demand is large relative to the bearing’s rotation capacity.   

In the second type of behavior, referred to here as “lift-off”, the rotation is large enough 
that the loading surface separates from the bearing over part of its area. By definition this 
can only occur in the absence of bonded external plates.   

From an analytical viewpoint, the first behavior involves constant boundary conditions, 
while in the second the boundary (i.e. the region in contact with the loading surface) 
changes with the loading.  Those latter conditions constitute a contact problem, for which 
analysis is much more complex.  The two types of behavior are addressed in Sections 
F.1.1 and F.1.2.  

F.1.1 Response without Lift-off 

F.1.1.1 Internal Stresses 
The internal stresses in the elastomer are developed here.  They demonstrate fundamental 
behavioral properties of the bearing and are used in subsequent sections. 

The analysis is based on the following assumptions:  

• The rubber is perfectly bonded to the steel plates. 
• The steel plates are rigid in both axial tension and flexure. 
• No edge cover exists. 
• The rubber bulges laterally in a parabolic shape. 

In the linear theory developed by Gent and Lindley (1959a) the internal stress state can 
be shown to consist of two sets of stresses superimposed on each other.  The 
displacement fields that correspond to them are shown for a single bonded layer in Figure 
F.1. 

 
Figure F.1.  Displacement Fields for Component Loadcases. 

In the first loadcase, the elastomer is treated as being perfectly debonded from the steel 
plates above and below it.  Under pure axial load, it shortens vertically and spreads 
laterally, without any resistance from the steel plates, due to the Poisson effect.  For this 
loading, as for all loadings, Poisson’s ratio, ν, is very nearly equal to 0.5 because the 
elastomer is almost incompressible.  

Load case 1 Load case 2 
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The stresses and strains are described in a set of Cartesian coordinates, in which z is 
vertical, x is horizontal and parallel to the bridge axis and y is horizontal in the transverse 
direction.  The vertical stress and the local shear strain at the edge are given by  

zzzz Eεσ =  (F-1) 

0=xzγ  (F-2) 

Here, positive stress and strain are tensile. In the second loadcase, the vertical 
displacement is held constant, and horizontal stresses are applied to the top and bottom 
surfaces of the elastomer, which are pulled inwards to their original horizontal positions.   
The nearly-constant volume property causes the layer to bulge at the mid-thickness as its 
top and bottom surfaces are pulled inwards.  For this loadcase, the vertical stress and the 
shear strain are controlled (Stanton and Lund, 2004) by 

zzzzzz K
G
Kt εσσ −=−∇2

2

12
 (F-3) 

0=+
dz

d
dx

d zxxx τσ  (F-4) 

where   

G = shear modulus of the elastomer 

K = bulk modulus of the elastomer 

εzz = vertical strain 

σzz = vertical direct stress 

σxx = horizontal direct stress 

τzx = shear stress 

In Gent’s theory, the stress at a point is also assumed to be hydrostatic, so σxx , σyy  and 
σzz  are all equal. For the general case of a bearing whose plan shape is a rectangle of 
arbitrary aspect ratio, the problem is 3-D and closed form solutions are not available.  
The equations may be solved using a series solution (e.g. Conversy 1967) or by 
numerical integration (e.g. Stanton and Lund 2004).  3-D Finite Element analysis is also a 
challenge because the nonlinearity of the problem requires an iterative solution, and, 
given the mesh refinement needed, the computational demands become enormous.   
However, for an infinite strip, the analysis becomes 2-D, and closed form solutions are 
possible.   Furthermore, Finite Element Analysis of the 2-D system is computationally 
feasible, and may be used to explore behavior and to verify the simpler linear theory.  
The primary results for an infinite strip are presented here. 

Equation (F-3) may be simplified by using the Compressibility Index, λ, developed by 
Stanton and Lund  
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K
GS 3

=λ  (F-5) 

where S = Shape Factor ( )WLt
LW

bulgetofreeareaperimeter
areaplanloaded

+
==

2
    (F-6) 

In Equation (F-6), L is the bearing length, W is the width and t is the elastomer layer 
thickness. The Compressibility Index indicates the extent to which bulk compressibility 
of the elastomer affects the response, and arises naturally in the development of the 
equations. 

It is also convenient to define the dimensionless coordinate, 
L
x2

=ξ , where the origin is 

at the center of the bearing.  Thus ξ = ±1 correspond to the edges.  Then Equation (F-3) 
becomes, for a 2-D system in the x-z plane, 

( ) ( ) ( )ξεξσ
ξ

ξσ
λ zzzz

zz K
d

d
−=−2

2

2
1  (F-7) 

For pure axial loading, the vertical strain, εzz(ξ), is constant across the cross-section and 
therefore independent of ξ, so the vertical stress is obtained by taking εzz(ξ) as a constant 
value, εa, in Equation (F-7), which can be solved to give 

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−=

λ
λξεξσ
2cosh

2cosh1azz K  (F-8) 

The shear strain at the top or bottom surface of the layer is then 

( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
−=

λλ
λξεξγ
2cosh2

2sinh6 azx S  (F-9) 

These solutions are for the general case of a slightly compressible material, for which the 
compressibility is defined by λ.  For a completely incompressible material, λ = 0, and the 
equations become indeterminate.  Equations (F-8) and  (F-9)  can be solved by using 
binomial expansion, and the equations reduce to 

( ) ( )22 12 ξεξσ −= azz ES  (F-10) 

and 

( ) ξεξγ axz S6=  (F-11) 

The distribution of stress in the elastomer under compressive load is illustrated on the 
right side of Figure F.2.  
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Figure F.2.  Stresses in the Elastomer due to Rotation and Compression Load. 

 

For pure rotation, the vertical strain is distributed linearly across the bearing surface, i.e. 

( ) ξθθξε L
L

zz S
t

x ==  (F-12) 

where θL = the rotation per layer of the bearing.  For the general, compressible, case the 
vertical stress is derived from Equation (F-7)  as 

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−=

λ
λξξθξσ
2sinh

2sinh
Lzz KS  (F-13) 

( )
( )

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−−=

λ
λξλθ

λ
ξγ

2sinh
2cosh21

2
6 2

2

Lzx
S  (F-14) 

These may also be simplified for the special case of complete incompressibility (λ = 0), 
to give 

( ) ( )33

3
2 ξξθξσ −= Lzz ES  (F-15) 
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( ) ( )22 31 ξθξγ −= Lzx S  (F-16) 

The distribution of stress in the elastomer due to rotation is illustrated in Figure F.2. 
These equations are used in Sections F.1.1.2 and F.1.1.3 to define the two most important 
bearing properties: stiffness and peak shear strain. 

F.1.1.2 Bearing Stiffnesses 
The bearing stiffnesses in response to axial load and rotation are needed for analysis.  The 
axial stiffness is needed for computing the axial deflection, which is in turn needed for 
evaluation of hydrostatic tension.  The rotational stiffness is used for checking stability of 
the bearing, for verifying lateral-torsional buckling of the girder (Mast 1993) and, if the 
bearing is equipped with a slider, for determining whether the stainless steel will lift off 
from the PTFE. In most cases, under-estimating the stiffness leads to a safe prediction 
(i.e. it is a conservative choice).    The major exception is hydrostatic tension, for which a 
low estimate of stiffness is likely to lead to an unsafe prediction of stress (i.e. internal 
fracture will be predicted not to occur when if fact it will).  

Stanton and Lund (2004) show that these responses can be expressed in terms of the 
shape factor, S, of the bearing layer.  The axial and rotational stiffnesses of one layer are: 

( )
t

SBAEAPK aa

a
a

2+
=

Δ
=  (F-17) 

( )2SBA
t

EIMK rr
L

r +==
θ

 (F-18) 

where 

 S = shape factor 

M = moment 

E = Young’s modulus (≈ 3G) 

 Aa, Ba, Ar, By = dimensionless constants 

 Δa = axial displacement  

θ L = rotation angle applied to each layer of the bearing. 

For common S values (4 to 8), the Aa and Ar terms are small compared with the BaS2 and 
BrS2 terms and may be ignored in the interests of simplicity, with little error.  Their 
values are given by Gent and Lindley as Aa = Ar = 1.0 for rectangular shapes, and 1.333 
for an infinite strip.  Values for Ba and Br are given in Figure F.3 and Figure F.4, taken 
from Stanton and Lund (2004).  They are functions of L/W, and λ, the Compressibility 
Index. The axial stiffness coefficient, Ba, is shown only up to L/W = 1.0.  For larger 
values of L/W, Ba can be found by interchanging L and W.  
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Figure F.3.  Stiffness Coefficient Ba (from Stanton and Lund). 
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Figure F.4.  Stiffness Coefficient Br (from Stanton and Lund). 

 

  

Empirical approximations for these quantities in rectangular bearings, intended for use in 
the range 0 < λ < 1.0,   are: 



 - F-8 - 

( ) ( ) { }( )2,min196.090.086.131.2 LWWLBa −+−+−≈ λλ  (F-19) 

( ) ( ) ( )( )WLBr /64.0exp189.015.1024.024.0 −−−+−≈ λλ  (F-20) 

In figures F-3 and F-4, the true values are shown as solid lines with solid symbols, and 
the empirical approximations are shown as dashed lines and open symbols. 

For circular bearings, Gent and Meinecke (1970) give Ba = 2.0 and Br = 2/3 for the 
incompressible case.  By using the approximation proposed for compression by Gent and 
Lindley (1959a), the effective modulus of elasticity may be expressed as  

KSEBE aeff

111
2 +≈  (F-21) 

from which the stiffness coefficient Ba for the compressible case becomes 

221
2

λ+
≈aB  (F-22) 

Similarly, for rotation, 

25.1
1

λ+
≈rB  (F-23) 

For most elastomers used in bridge bearings, K ≈ 450,000 psi, and G ≈ 110 psi so, for S = 
6, λ ≈ 0.167 and the values of parameters such as Ba differ little from those of a 
completely incompressible material, for which λ = 0.0.   

Because in this approach the problem is characterized as linear, superposition is valid and 
the solutions from different load-cases, such as compression and rotation, can be added 
directly.  This greatly simplifies the calculations.   

F.1.1.3 Maximum Shear Strain 
The maximum shear strain in the elastomer is of interest because it is often used as a 
design criterion.  It can be obtained from Equation (F-4). The results are, for axial load 
and rotation respectively, 

aaa SC εγ )(=  (F-24) 

Lrr t
LSC θγ
2

)(=  (F-25) 

where 

 Ca, Cr  = dimensionless constants 

 γa= maximum shear strain caused by axial load 
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 γr = maximum shear strain caused by rotation 

 

Equations (F-17) and (F-24) may also be combined to give the shear strain due to axial 
load directly in terms of the stress.  This may be done most simply by ignoring the Aa 
term in Equation (F-17), on the basis that it is much smaller than the BaS2 term.  Then  

GS
D

SGB
SCSC a

a
a

a
aaaa

σσεγ =≈= 23
 (F-26) 

where 

a

a
a B

CD
3

=  (F-27) 

Similarly, the shear strain caused by rotation may be expressed in terms of the L/t ratio 
alone (and not the shape factor) as 

Lrr t
LD θγ 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (F-28) 

where 

( )WL
C

D r
r /14 +

=  (F-29) 

For typical bearings, S is about 6, Ba is about 2, and Aa is 1.0, and the error resulting from 
ignoring the Aa and Ar terms is approximately 1.5%.  Values for Ca, Da, Cr and Dr are 
shown in Figure F.5 through Figure F.8.  Empirical approximations for the shear strain 
coefficients, valid in the range 0 < λ <1.0, are  

( )( ) ( )22 124.075.01*/667.08.46.8 λλ +−−−≈ WLCa  (F-30) 

( )( ) ( ){ }λλλ 25.28.4,66.012min 22 −++−≈ WLCr  (F-31) 

( ){ }WLdddD aaaa /*,max 221 +≈  (F-32) 

where 
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( )413.0*210.0*06.11 λλ ++=ad  

( )406.0*071.0*506.12 λλ +−+=ad  

( ))047.0(*195.0*315.03 −++−= λλad  

⎭
⎬
⎫

⎩
⎨
⎧

++
−

≈ 5.0,
156.0233.2

627.0552.1min
WL

Dr λ
λ  (F-33) 

In Figure F.5 through Figure F.8, the true values are shown as solid lines with solid 
symbols, and the empirical approximations are shown as dashed lines and open symbols.  
The value of Da remains essentially constant for L/W > 3. 

To minimize possible confusion over the value S of W and L, a convention is needed.  
The one used here is that W is always the length of the side parallel to the axis of rotation 
under consideration.  This holds true for computing both stiffness and shear strain 
coefficients.  Usually, the bearing will experience rotation about its weak axis, so W will 
be the length of the long side and L, the length of the short side.  Thus, for a 10 in. x 20 
in. bearing, L = 10 in. and W = 20 in. for bending about the weak axis, but L = 20 in. and 
W = 10 in. for bending about the strong axis. The coefficients Da and Dr given in 
Equations (F-32) and (F-33) compute the shear strain on the side of the bearing, of length 
W, that is the one parallel to the axis of rotation.  Because both strains occur in the same 
place, they are additive.   

Note that, under axial load alone, the largest shear strain occurs on the long side of the 
bearing.  For the common case of rotation about the weak axis, the largest shear strains 
due to both axial and rotation loading individually occur in the same place, so shear 
strains need only be calculated there.   If the primary loading is about the strong axis, the 
largest total shear strain may occur either at the long side (due to axial load alone) or at 
the short side (due to axial plus rotation effects).  Both must be calculated, and the larger 
controls. 

For a circular bearing, 

Da and Dr may be approximated as  

0.1=aD  (F-34) 

375.0=rD  (F-35) 

The values for Da and Dr in Equations (F-34) and are derived from Gent and Meinecke 
(1970).  They are also consistent with the equations in the existing AASHTO LRFD 
Design Specifications.  They are lower than the values for rectangular bearings, thereby 
demonstrating that, for the same rotation or average axial stress, the circular bearing will 
experience lower shear strain.   
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Figure F.5.  Shear Strain Coefficient Ca. 
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Figure F.6.  Shear Strain Coefficient Cr. 
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Figure F.7.  Shear Strain Coefficient Da. 
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Figure F.8.  Shear Strain Coefficient Dr. 

 

Example. 

Consider a bearing with four internal layers each 20” x 10” x ½” thick, made from rubber 
with G = 0.135 ksi, K = 450 ksi, and subjected to compressive load of 200 kips and a 
rotation of 0.01 radians about its weak axis. 

The shape factor is  
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The compressibility index is  
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From Figure F.3 and Figure F.4, Ba = 1.85 and Br = 0.50 (exact values), so the axial 
stiffness of the layer is  
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The rotational stiffness of the layer is 
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so the rotation of θL = 0.01 rad/4 layers = 0.0025 rad/layer induces a moment of  
kipsinM −== 7840025.0*500,313  

For λ = 0.2 and L/W = AR = 0.5, the coefficient values are Ca = 7.6 and Cr = 2.9.  The 
peak shear strains due to combined axial force and rotation are: 

50.10297.0*66.6*6.7max, === aaa SC εγ  
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LSC L
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Note that, for these calculations, the gross dimensions of the bearings were used.  This 
ignores the fact that the cover rubber behaves slightly differently than the rubber in the 
core of the bearing. The specifications proposed in Appendix G include a slight 
refinement of the definition that accounts approximately for the difference.  

F.1.1.4 Combined Loading 
A bearing subjected to combined compression and rotation may be analyzed using the 
linear theory outlined in Sections F.1.1.1 through F.1.1.3.  There are two major questions 
of interest: whether a bearing without external plates experiences lift-off at the tension 
edge, and consequently higher shear strains on the compressive side, and whether a 
bearing with external bonded plates experiences internal hydrostatic tension. 

Figure F.9 illustrates the development of hydrostatic tension.  Note that the maximum 
hydrostatic tension typically does not occur at the edge.  Recall that the linear theory 
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assumes that the direct stress at a point is the same in all directions, so it is also equal to 
the hydrostatic stress. 

The total vertical stress in the elastomer is obtained for an infinite strip by adding 
Equations (F-8) and (F-13) and including the terms from the first loadcase.  The result, 
given in Equation (F-36) is also written in terms of the coefficients Aa, etc., so that the 
equation may be extended for use with aspect ratios other than an infinite strip. 

 

 

 

 

 

 

 

 

 
Figure F.9.  Hydrostatic Tension under Combined Compression and Rotation. 
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 (F-36) 

The characteristics of the total response depend on the relative magnitudes of εa and SθL, 
which represent the magnitudes of the individual loadings.  For this purpose it is 
convenient to introduce the variable θc, defined as  

S
a

c
εθ −=  (F-37) 

The strain εa is negative for compression, in which case θc > 0.  Physically, θc represents 
the rotation at which the vertical displacement on the “tension” side of the bearing starts 
to become net upwards.  It is called the characteristic rotation.   

To find the location of the maximum vertical stress, Equation (F-36) must be 
differentiated and the result set to zero.  Doing this and using the fact that  

( ) ( ) 12sinh2cosh 22 += λξλξ  (F-38) 
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[ ] ( ) [ ] ( ) [ ] 02sinh22sinh 22222 =−+−+− rrarra HFHFHH λξλξ  (F-39) 

Where 

( ) aaa KBH ε
λ

λ
2cosh

75.0=  (F-40) 

 

( ) SKBH Lrr θ
λ

λ
2sinh

75.3=  (F-41) 

( ) SKBEAF Lrrr θ75.3+=  (F-42) 

Equation (F-39) is a quadratic in sinh(2λξ), which can be solved in closed form.  The 
value of ξ, the location of the peak hydrostatic stress, can be extracted from it and 
substituted back into Equation (F-36) to find the peak hydrostatic stress.   

If ξ is less than 1.0, the maximum vertical stress occurs within the bearing and the 
elastomer experiences vertical tension and, by implication, hydrostatic tension.  If ξ > 
1.0, the peak stress occurs outside the bearing, so the result is of no practical interest from 
the viewpoint of hydrostatic tension, since the vertical stress everywhere within the 
bearing is compressive.  
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Figure F.10.  Distribution of Vertical Strain across the Bearing. 
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Direct stress/E vs 2x/L
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Figure F.11.  Distribution of Vertical Stress across the Bearing. 
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Figure F.12.  Distribution of Shear Strain across the Bearing. 

 

Figure F.10 through Figure F.12 show the vertical stress, the vertical strain and the shear 
strain across the elastomer layer for the case θ = 2θc.  In the figures, negative stress and 
strain indicate compression.  (εa = - 0.03 in/in was used in this case, but that fact does not 
affect the figures).  For these conditions the “tension” side of the bearing experiences net 
upward displacement, or vertical tensile strain.  However, the total vertical stress is 
everywhere compressive.  This implies that the sole plate does not lift off from the 
elastomer layer.   

The fact that vertical tension strain does not necessarily lead to vertical tension stress 
represents behavior that differs from that of conventional materials.  It is explained by the 
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fact the elastomer’s near incompressibility causes the material to shift laterally as well as 
vertically.  Some rubber from the compressed side is indeed forced outwards into the 
bulge on that side.  However, some of it is also pushed across the bearing to the tension 
side, where it occupies the space left by the upward movement of the top plate on that 
side.  This behavior is confirmed by the fact that the signs of the shear strains at the two 
edges are opposite (see Figure F.12), showing that both faces are bulging outwards.  If 
the “tension” face bulges outward, the hydrostatic stress just inside it must be 
compressive. That result is confirmed in Figure F.11. 

It is shown in Section F.1.1.5 that, in the bearing with external plates, the hydrostatic 
stress first becomes tensile only when the rotation reaches a value of approximately 3θc.  
At that rotation, the shear strain on the tension faces changes sign, so the edge bulges 
inwards, confirming the existence of hydrostatic tension.  Furthermore, in bearings with 
no external plates, lift-off also starts at a rotation of θ = 3θc, since the interface can carry 
no tension stress.  Thus the tension side must rise due to rotation through three times the 
distance required to reach its original elevation, in order to cause shear strain reversal at 
the edge or hydrostatic tension in the interior of the elastomer. 

F.1.1.5 Uplift and Hydrostatic Tension 
If external plates are bonded to the bearing, rotation may cause hydrostatic tension in the 
interior of the rubber.  Excessive hydrostatic tension may cause the rubber to rupture 
(Gent and Lindley, 1959b).  A comprehensive analysis of the internal stresses is complex, 
because it must address both 3-D effects and finite compressibility.    However, a 
simplified solution can be obtained by applying the linear theory to an infinite strip layer, 
as was done in Section F.1.1.4.  An infinite strip allows the analysis to be 2-D, which 
simplifies the closed form analysis and also makes Finite Element Analysis feasible.   
The analysis described below is confirmed by the Finite Element studies described in 
Appendix E.    

Equations (F-36) through (F-42) presented a way of finding the peak vertical stress in the 
elastomer, including the effects of material compressibility.  However, the equations are a 
little complex.  They can be simplified by specializing them for the geometry of the 
infinite strip and by assuming that the material is completely incompressible.  Those 
assumptions reduce Equation (F-36) to  

( ) ( )( )213
3
2 ξαξξσ −−= Ehyd  (F-43) 

where ξ = 2x/L is measured from the center of the bearing layer and 

L

c

L

a

S θ
θ

θ
εα =−=  (F-44) 

Note that εa is negative for compressive strain at the center of the bearing, so in most 
cases, α will be positive.  Equation (F-43) shows that the distribution of hydrostatic stress 
is governed by the single variable α.  This observation simplifies the calculations 
significantly.   



 - F-18 - 

Hydrostatic tension
S = 6

0

0.5

1

1.5

2

2.5

3

0 0.001 0.002 0.003 0.004 0.005 0.006

Rotation/layer (rad)

Te
ns

io
n 

st
re

ss
/E

eps =  0

eps =  -0.015

eps =  -0.03

 
Figure F.13.  Hydrostatic Tension vs. Rotation for Various Compression Strains.  S = 6. 

 

For specific bearings subjected to specific loadings, εa and θL, figures such as Figure F.13 
can be prepared.  It shows the peak tensile stress, normalized with respect to E, for 
various εa and θL values, for a bearing with S = 6 and incompressible material.  Negative 
axial strain indicates compression.  The lower regions of the curves for 0≠aε  are 
curvilinear because the location of the peak hydrostatic stress moves inwards towards the 
center of the bearing as the rotation increases while the axial strain remains constant. 

Figure F.13 shows the results for a single bearing, but results for a range of bearings can 
be shown on a single dimensionless plot.  This is achieved by finding the location, ξ, of 
the maximum hydrostatic stress from Equation (F-43), and substituting back to find the 
peak stress.  The value of ξ that maximizes σhyd(ξ) is given by  

3
12

max ++= ααξ  (F-45) 

If ξmax > 1, the direct stress is compressive everywhere within the bearing and no 
hydrostatic tension exists.  This is the case when α > 1/3, which  implies that the rotation 
per layer lies below 3θc.  

For design, the problem is likely to be to determine the maximum hydrostatic tension 
stress, if any, that exists under a particular combination of axial load and rotation. It is 
obtained by using in Equation (F-43) the value of ξ found from Equation (F-45).  The 
result, after normalization, is   
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This representation is convenient because it allows all combinations of shape factor, axial 
strain and rotation to be shown on a single plot.   

The constant of normalization in Equation (F-46) contains the term S3 so, for a given α, 
the hydrostatic stress rises rapidly with increasing S.  The configuration most likely to 
lead to problems with hydrostatic stress is therefore a bearing with external bonded 
plates, a high shape factor, light axial load, and large rotation.  This combination of 
events may occur in steel bridges during construction.  If bolting or welding the bearing 
to the girder really is essential for the service load condition, the possibility of temporary 
hydrostatic tension during construction may be avoided by leaving the bearings 
unattached until after the deck has been cast.  By then, the initial rotation due to camber, 
and the potential for internal rupture in the bearing, will largely have been eliminated. 

Similar calculations, but including compressibility, were conducted using Equations 
(F-36) through (F-43).  The hydrostatic stress was again normalized using with respect to 
ES3θL.  It was found that all bearings with a single value of λ, regardless of the individual 
values of S, E and K, all lay on a single curve.  Curves for different λ values are shown in 
Figure F.14, with the approximate curve for complete incompressibility, marked “approx 
0” and computed from Equation (F-46). 

Common bearings have S ≈ 6 and λ ≈ 0.2.  In that range, the approximate incompressible 
curve in Figure F.14 gives values that are very close to the exact ones.  Given the other 
approximations in the calculations, it is proposed that Equation (F-46) be accepted as a 
satisfactory design equation for computing the peak hydrostatic tension stress, regardless 
of the compressibility of the elastomer.  It was developed for an infinite strip, but is 
conservative for other geometries. 
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Figure F.14.  Normalized Hydrostatic Stress as a Function of α and λ. 
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To illustrate the use of Equation (F-46) and Figure F.14, consider a bearing with bonded 
external plates and S = 12.  It is subjected to a loading that causes εa = -0.01 in /in and 
θL = 0.01 radians per layer. Then  
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Gent and Lindley (1959b) analyzed rupture under hydrostatic tension using fracture 
mechanics and, to confirm their findings, they conducted experiments in which they 
applied pure tension to small circular rubber layers bonded to external plates. They found 
that sudden rupture occurs when the hydrostatic tension stress reaches a stress of  

Erupture 9.0≈σ  (F-47) 

The internal rupture is a consequence of the local stress state in the rubber and not the 
overall loading.  Thus, the fact that Gent and Lindley’s work was based on pure tension, 
but the problem here is caused by combined compression and rotation, is immaterial and 
use of Equation (F-47) as a rupture criterion is valid. 

F.1.2 Lift-off Permitted 
If lift-off is free to occur because no external plates exist, the problem becomes 
geometrically nonlinear, and therefore more difficult, even if the material nonlinearity is 
ignored on the basis that the displacements are small.  An approximate analytical 
approach can be developed for the 2-D problem of an infinite strip, and is presented here. 

Consider an infinite strip bearing layer of length L.  A rigid sole plate rests on it, inclined 
at an angle θ, and supports a load per unit width, p, small enough that the plate makes 
only partial contact with the elastomer layer, as shown in Figure F.15. 

The following assumption is made: 

• The bearing may be divided into two parts: the one on the unloaded side 
experiences no vertical load and no internal stress or strain, while the one on the 
loaded side behaves as though the vertical edge at the neutral axis were a free 
surface.  

The approximations implied by these assumptions are: 

• The vertical (axial) stress on the unloaded region is zero.  This is not quite true 
because the steel plate will be bent at the “neutral axis” and the out-of-plane shear 
stresses in it will cause some vertical stress on the elastomer. 
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• No interaction exists between the two regions of the bearing.  This is also not 
quite true because the profile of the left edge of the loaded part (as shown) will 
not be completely free from shear strain.  

 

 
Figure F.15.  Lift-off:  Assumed Bearing Behavior. 

 

The cross-section of one layer of the bearing is shown in Figure F.15.  The instantaneous 
shape factor, Si, of the right hand, compressed, region is given by  

t
LSi 2

η
=  (F-48) 

where the distance ηL is the length of the compressed region. The dividing line between 
the two parts of the bearing is taken to be the point at which contact is lost.  The length, 
ηL, of the compressed region is related to the axial strain and rotation by the fact that α, 
as defined in Equation (F-44), has the value 1/3 for the right hand region.  (This is a 
consequence of its being at incipient lift-off). The axial strain in the middle of the 
instantaneous compressed region, εai, and the rotation angle are then related by  

L

ai
iS

θ
ε3−

=  (F-49) 

where εai is negative if the strain is compressive, as it is expected to be.  The subscript “i” 
indicates the instantaneous value, corresponding to the compressed region’s covering 
only part of the total area of the bearing.  The load per unit width on the bearing is p, 
(negative if compressive) and it is related to the average strain in the compressed region 
by  
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This can be combined with Equations (F-48) and (F-49) to give 

L/2 

ηL

L/2 
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Equation (F-51) relates ηL, the length of the compressed region, to the loading 
parameters p and θL.  (It does so indirectly, since Si is a function of ηL).  The rotation per 
layer, θL, is expressed as a multiple, ρ, of the characteristic rotation for the full bearing 
section, θc,  

cL ρθθ =  (F-52) 
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Note that the coefficient ρ is the inverse of α, used in Section F.1.1.4.  In Equations 
(F-52) and (F-53), the subscript 0 refers to the properties of the complete bearing, rather 
than the instantaneous loaded portion.  The physical meaning of θc is that, when it is 
applied at the same time as the load p, the vertical displacement on the tension edge of 
the bearing is zero.  As explained in SectionF.1.1.4, this is not the same as the initiation 
of lift-off.  These two equations can be substituted into Equation (F-44) to give 
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Coefficient η defines the proportion of the bearing area that is subjected to compressive 
stress, and ρ defines the amplitude of the rotation. For ρ >3, η < 1, lift-off occurs and the 
compressed region is smaller than the bearing surface. 

The components of shear strain may now be computed as 
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These can be added to give 
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Equation (F-57) may also be expressed in terms of the average stress, σa0, referred to the 
entire bearing surface.  The stress is not real, because the load is applied only to part of 
the bearing surface, but it is still a convenient measure of the load.  The load p causes an 
average stress on the whole bearing of  
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where cσ is a dimensionless coefficient whose value may be expected to lie in the range 
0.0 < cσ < 3.0.  Then, using E ≈ 3G, and ignoring the negative sign, 
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For an infinite strip and incompressible conditions, Ca = 6 and Cr = 2, so this becomes 
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Prior to lift-off, the total shear strain may be calculated by conventional means, because 
the complication of the varying contact area does not exist. It can be shown that, under 
those conditions, the total shear strain is 

( )ra
a

tot CC
B
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 (F-61) 

Equation (F-61) is linear in θL (or ρ), as might be expected, while Equation (F-59) is non-
linear.  At incipient lift-off, when θL = 3θc, and ρ = 3.0, they give the same value, as they 
should. The individual curves that relate γtot to ρ are valid before and after lift-off 
respectively, and both the curves represented by the two equations and their slopes are 
continuous where they meet, at ρ = 3. 

Bearing with lift-off:
 total shear strain vs rotation
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Figure F.16 shows the relationship between total shear strain and rotation angle, for a 
fixed load per unit width, p.  Several curves, each representing a different value of p, are 
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shown.  They are made dimensionless by expressing the loading, p, as σa0/GS0, so that 
bearings of different sizes and materials may be represented on the same plot.  The total 
shear strain is the sum of the shear strains due to compression and rotation, and is shown 
for the “compression” edge of the bearing layer.  Each curve is a composite of Equations 
(F-59) and (F-61). They meet at ρ = 3.0, which represents incipient lift-off for all cases.   

As can be seen, the curves flatten out slightly after lift-off.  This suggests that the total 
shear strain may be approximated conservatively by using the simple expedient of 
ignoring the fact that lift-off occurs, and computing the components of shear strain using 
the linear, pre-lift-off equations (e.g. Equation (F-61)).  The ratio of the “correct” shear 
strain, computed using Equation (F-59) and the approximate one, obtained using 
Equation (F-61), is shown in Figure F.17.  It shows that the ratio lies in the range 0.80 to 
1.0 for ρ values up to 10, and is therefore conservative.  This finding was confirmed 
using Finite Element Analysis. 

A physical explanation can be given for this finding. Consider a bearing in which lift-off 
has occurred. Now freeze the position of the sole plate, and pull the separated elastomer 
upwards so that it is once again attached to the sole plate. The elastomer in that region 
will experience vertical tension stress.  Now release the vertical displacement of the sole 
plate but keep the same rotation.  The sole plate will move downwards in order to re-
establish equilibrium, because of the new tension stress in part of the elastomer.  The 
bulge on the compression side will increase and the shear strains there will be larger 
when the elastomer is everywhere attached to the external plates.  The converse is 
therefore true; lift-off will reduce the bulging and the shear strain on the compression 
side, if the rotation remains the same. 

 

Bearing with lift-off:
 total shear strain vs rotation
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Figure F.16.  Total Shear Strain for Bearing with Lift-off. 
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Shear strain ratio vs ρ
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Figure F.17.  Post Lift-off Conditions:  Ratio of Approximate and True Total Shear Strain. 

 

Bearing with lift-off:
 total shear strain vs rotation
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Figure F.16 leads to two observations.  First, lift-off is unlikely to occur under service 
conditions if the bearing support and the underside of the girder are parallel under full 
dead load because the service rotations are likely to be too small. In that case the post-
lift-off calculations are not needed.  As an example, consider a bearing with S = 6, three 
layers, loaded to an average stress of 1.0 GS (approx 600 psi). Lift-off starts when  

layerrad
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c
a

c /0208.0
333.1*6

0.1
3

33 22
0

===> σθθ  (F-62) 

or 0.0625 radians total in the three layers.  This rotation is most unlikely to be reached 
during the service life of the bridge. During construction, the axial load is lighter, thereby 
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reducing the lift-off rotation, θc, and the rotation is larger, in which case lift-off is 
possible.   

Second, even if lift-off does occur, use of the “no-lift-off” equation (Equation (F-61)) 
causes only a small error in the predicted total shear strain on the compression side, and 
that error is conservative.   

This discussion suggests that the linear equations (Equation (F-61) may safely be used to 
predict total shear strains even after lift-off.  This finding simplifies design by allowing 
one set of equations to be used for computing shear strains under all circumstances. 

F.2 Shear Strain Capacity 
Two models were developed to determine shear strain capacity and to form the basis for 
design.  One, referred to here as the Linear Model, uses Gent’s linear theory to relate 
loads to nominal shear strains.  For design, it limits to a fixed number the total nominal 
shear strain due axial load, rotation and shear displacements.  In this model, the nominal 
strains due to cyclic effects are multiplied by a constant numerical factor to reflect their 
greater potential to inflict debonding damage on the bearing.  That model is described in 
Section F.2.1 

The second model, called the “Nonlinear Model”, represents an attempt to obtain a closer 
fit with the data than is possible with the Linear Model.  It differs in three major respects 
from the Linear Model.  First, it uses a nonlinear relationship between the load and 
nominal strains.  Second, the components of strain that are caused by cyclic loads are 
multiplied by a coefficient that is a function of the number of cycles, rather than a 
constant.  Third, the strain capacity is not a fixed number, but is a function of the amount 
of debonding deemed acceptable.  The nonlinear model is more complex than the linear 
one.  It is described in Section F.2.2 

Both models are described here.  The Nonlinear Model was developed first.  However, 
for reasons discussed in Section F.4, it is considered less desirable as a design procedure 
at this time, and the design procedure defined in Appendix G, and based on the Linear 
Model, is recommended for adoption by AASHTO.   The Nonlinear Model is described 
here so that, when the necessary data become available, it may be developed into a 
complete and fully calibrated design procedure. 

F.2.1 Linear Model 
In the Linear Model, the nominal shear strains are obtained from the loads by using 
Gent’s equations (Equations (F-24) and (F-25).  The total shear strain that represents the 
demand on the bearing is obtained by  

( ) ( ) capcyscyrcyaNstsstrsta c γγγγγγγ ≤+++++ ,,,,,,  (F-63) 

In Equation (F-63), the subscripts a, r and s refer to axial, rotation and shear responses, 
and st and cy refer to static and cyclic load respectively.  The left hand side of the 
equation defines the total shear strain demand.  It is expressed as a static component plus 
a cyclic component that is multiplied by an amplification coefficient, cN, to account for 
the damaging effects of cyclic loading.  The right hand side represents the shear strain 
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capacity, γcap, and is taken to be a constant.  A similar approach has been adopted by 
others (e.g. BS 5400, EN1337). 

Numerical values are needed for the constants cN and γcap. They were obtained from the 
cyclic test data.  For a particular level of debonding, the total nominal strain from each 
test was plotted against the number of cycles needed to reach that debonding level.  An 
example is shown in Figure F.18.  The vertical axis, labeled “Effective Strain”, consists 
of the left hand side of Equation (F-56), in which the cyclic strains have been multiplied 
by a constant factor.  The value used in Figure F.18 is 2.0. 

To determine the best value of cN, different values were tried and the correlation 
coefficient (R2) of the data was found and plotted against the cyclic factor, cN.   The 
results are shown in Figure F.19, for both 25% and 50% debonding. These values of 
debonding, rather than the initiation of debonding, were used because of the scatter in the 
latter.  

Even these data show considerable scatter, as demonstrated by the rather low R2 values. 
However, at both levels of debonding, there is a clear trend that indicates that the largest 
correlation coefficient, and therefore the best fit, occurs with cN ≈ 2.0. That value was 
therefore selected.  The effective strain vs. number of cycles for 50% debonding, using cN 
= 2.0, is shown in Figure F.20. 

A value for γcap, the strain capacity, is also needed.  It is argued in Section F.3.1 that up to 
50 million cycles of rotation, due to fully laden trucks, may be imposed on a bearing 
during the lifetime of the bridge.  The best fit line in Figure F.18 crosses the 50 million 
cycle point at an effective strain of 4.7.  The corresponding value for 50% debonding, 
shown in Figure F.20, is 5.6.  The value adopted here was 5.0.  The reason for doing so is 
that some of the tests (such as SHF5-C2, with a shape factor of 9) never reached 25% 
debonding, and so are not included in Figure F.18.   There is no simple way to include 
them in the data analysis, but their effect would certainly be to raise the best fit line and 
to increase the strain corresponding to 50 million cycles above 4.7.  If the best fit line is 
taken as is, the effective strain of 5.0 corresponds to 17 million cycles. 

In both plots, the exact slope of the best fit line is dominated by the high-cycle data of 
tests CYC12 and CYC15 (log(N) ≈ 5.5 and 6.5 respectively).  Also R2 is not sensitive to 
the slope of the line, so predictions to 50 million cycles involve some uncertainty.  
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Figure F.18.  Effective Strain vs Number of Cycles: 25% Debonding. 
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Figure F.19.  Correlation Coefficient vs Cyclic Factor. 
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Figure F.20.  Effective Strain vs Number of Cycles: 50% Debonding. 

 

F.2.2 Nonlinear Model 

F.2.2.1 Theoretical Basis. 
The shear strain capacity of bearings subjected to monotonic and cyclic loading was 
investigated using experiments described in Appendices A, C and D.  However, physical 
limitations prevent shear strain from being measured during the experiments.  The 
primary difficulty is the existence of the rubber cover, but, even in the absence of cover, 
access to the critical location is anyway difficult because of the loading plates that 
enclose the bearing in the test rig.  Accurate measurements were made with a micrometer 
depth gage of the height of the bulge in the rubber, with the intention of using them as 
proxies for the shear deformation.  However, they proved difficult to correlate with the 
shear strain.  Furthermore, the Finite Element studies showed that the cover provided a 
significant smoothing effect over the bulging of the internal layers, and that the 
correlation between the two was weak.  Physical measurements of bulging therefore 
provided little useful numerical verification of the amplitude of the shear strain. 

It is thus necessary to use theoretical measures to relate shear strain to load. This is done 
in two steps.  The first is to relate the compressive load to the global, or average, 
compressive displacement, and this process requires consideration of bearing stiffness.  
The step is necessary for axial force, for which the loading is applied as a force, but is in 
general unnecessary for rotation, because the loading is applied as a displacement 
(rotation). This is so because the girder is typically so much stiffer in bending than the 
bearing that the rotation of both can simply be taken as the free rotation of the girder.  

The second step is to relate the local shear strain in the elastomer at the edge of the shims 
to the global deformation measures of compressive displacement and rotation angle.  The 
Finite Element studies demonstrated that, for small strains, the values for shear strain in 
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the internal layers computed by Stanton and Lund, based on Gent’s theory, are valid.  
(The strains in some of the experiments were clearly not small, but those in field bearings 
are expected to be small enough that the use of the linear, small-deflection theory 
provides a sufficiently accurate prediction of response).  However, in the edge cover, 
local distortions of the Finite Element mesh occur and they are sufficiently severe that the 
use there of the common small displacement definition of shear strain is questionable.  
There is also no simple way to compute the shear strains in the cover using closed-form 
analysis.  Therefore it was decided to use the shear strain at the edge of the shim, 
computed in accordance with Gent’s theory, as the measure of local demand on the 
bearing.  Such shear strains are referred to here as nominal shear strains. 

Obtaining the measured compressive displacement of a bearing from a known load poses 
some particular problems.  The first is that the load-displacement curves measured in the 
experiments were clearly not linear, even though Gent’s small-displacement theory uses a 
linear approximation.  If the curve were linear, it could simply be projected backwards to 
zero load, and that point could be take as the zero for displacement.  With a nonlinear 
curve, that is not possible.  The second is that the behavior is not truly elastic. In the 
experiments, the first cycle typically showed response to load that was very different to 
that of subsequent cycles.  This characteristic is usually attributed to the reversal of 
crystallization in the material due to the work done on it by the loading.  The third is the 
existence of visco-elastic behavior, manifested here as hysteresis in the cyclic load-
deflection curves. 

An effort was made to develop a simple method for calculating compressive 
displacement from load, so that it in turn could be used for computing shear strains.  It 
was based on the values recorded in the experiments. The breakdown of crystallization 
was addressed by using the third cycle of loading, by which time the differences with 
previous load cycles were negligible. The hysteresis was addressed by always using the 
loading, rather than the unloading, curve.  (The unloading curves were always stiffer at 
high loads, and less stiff at low loads, as is necessary to create a hysteresis loop with 
positive energy dissipation).  The nonlinearity was taken into account by developing 
nonlinear equations to define the load-deflection, or average stress vs. average strain, 
curves.  In order to maintain consistency with small-displacement theory, the equations 
were chosen so that the stiffness agreed with Gent’s theory at zero load. The nonlinearity 
was obtained empirically from the test results using Manufacturer C tests, because they 
included both a range of shape factors and two different aspect ratios.  

Several approaches for the nonlinearity were tried. The approach that was finally selected 
was to use an equation for average stress of the form 

m
amaa EE εεσ += 1  (F-64) 

The first, linear, term was taken as Gent’s small-displacement stiffness, and the second 
term was obtained by curve fitting.  The curve-fits were carried out to a maximum stress 
of about 10 ksi, so they easily encompass all stresses likely to be used in practice.  In all 
cases, the third cycle of the measured load-deflection curve started at about 0.5 ksi 
compression, because, when the tests were conducted, the primary focus was on causing 
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debonding damage rather than creating an accurate stress-strain curve, and some load was 
always maintained during the cycling to avoid temporary lift-off.   

A problem was experienced that is common in interpreting bearing test results, namely 
the definition of zero strain.  As the loading head of the test machine is lowered onto the 
bearing, contact is made gradually rather than suddenly, so the first part of the load-
deflection plot is curvilinear and suggests a soft bearing.  The problem is aggravated by 
the fact that the “true” zero shifts due to the de-crystallization and by the absence of data 
in this case below about 0.5 ksi stress.  The solution adopted was to shift the data along 
the strain axis so as to obtain the best fit with Equation (F-56).  Thus the strain shift was 
treated as a free variable in the curve fitting. 

The best results were found with m = 4, and 

ksiSEm 2250000,41 −=  (F-65) 

where S is the shape factor.  This equation gave results with an r.m.s. error in the 
predicted stress that was in all cases less than 250 psi.   

In developing the equation, an anomaly was found with the Shape Factor 12 bearing.  It 
was found necessary to reduce its E1 value from the theoretical small-deflection value of 
238E to 117E in order to obtain a reasonable fit. The reason for this apparently low 
stiffness is unknown.  A Finite Element check showed close agreement with the small-
deflection value of 238E.  The measured tangent stiffness at low load (i.e. σ ≈ 0.5 ksi) 
was well below the theoretical value and was approximately the same as for the S = 9 
bearing.  All other bearings stiffened with load, (i.e. En was positive), as expected, yet the 
only ways to obtain a reasonable curve fit for the S = 12 bearing were to reduce E1 below 
its theoretical value or to make Em negative.  Neither procedure makes sense.  The 
behavior is believed not to be a consequence of the greater effect of the bulk modulus, K, 
on high shape factor bearings, because that is already accounted for in the Ba coefficient.  
The difference is therefore attributed to either unexpected rubber properties or to faulty 
instrumentation in the test. 

F.2.2.2 Monotonic Loads 
Appendix A contains results for all of the monotonic tests, including both axial and 
rotational loading.  The shear strains corresponding to those loads were calculated using 
Equations (F-24) and (F-25), and are given in Table F-1.  The shear strain due to shear 
displacements is given by  

∑
Δ

=
t

s
sγ  (F-66) 

The tests on Batch A1 bearings were not included, because the shims in those bearings 
had sharp machined edges and are not representative of typical field bearings.  The 
components of shear strain were then combined to give the total that caused the initiation 
of debonding.  The average total shear strain is 6.7, with a coefficient of variation of 
14%.   
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Table F-1.  Computed Shear Strains at Initiation of Debonding in Monotonic Tests. 

Axial Rot Shear Total
(in/in) (in/in) (in/in) (in/in)

PMI-1a A2 4.652 0.000 0.000 4.652
PMI-1a B1 6.318 0.000 0.000 6.318
PMI-1a C1 5.378 0.000 0.000 5.378
PMI-1a D1 6.526 0.000 0.000 6.526
PMI-1c A2 5.831 1.980 0.000 7.811
PMI-1c B1 5.561 1.980 0.000 7.542
PMI-4 A2 3.195 2.970 0.000 6.165
PMI-4 B1 2.757 3.960 0.000 6.717
PMI-5 A2 3.687 2.970 0.000 6.658
PMI-5 B1 3.286 3.960 0.000 7.247
PMI-5 C1 3.347 3.960 0.000 7.307
PMI-5 D1 3.584 3.960 0.000 7.545
SHR1 B1 3.286 3.960 0.500 7.747
Average 6.739
st dev 0.949
CoV 0.141

Shear Strain
Test

 
 

These tests provided data on the computed shear strain at the initiation of debonding.  It 
is subject to considerable scatter, but is used here because many of the monotonic PMI 
tests debonded little, even at very high stresses.  In tests such as PMI-1a-D1, no 
debonding was observed at all.  However the loading was never reversed, but rather 
increased continuously until the shims fractured at about 12 ksi applied stress.  At those 
high loads the rubber becomes so distorted that debonding cannot be seen.  Thus, the true 
value of the initiation of debonding in these tests could not be determined.  It is known 
only to have occurred at an average stress higher than about 10 ksi. 

The initiation of debonding described here refers to tension debonding at the shim edge. 
In the bearings loaded to shim failure, the shims were afterwards found to have separated 
from the rubber over at least part of their surfaces, so strictly they also suffered surface 
shear delamination as well as edge tension debonding.  However, it is not clear whether 
that surface delamination occurred before or after the shims fractured. 

The coefficient of variation of the shear strain at debonding is 14%.  This is small enough 
to permit reliance on the data, and to base a design method, for static loads at least, on the 
mean value of 6.7 in Table F-1.  This value may be compared with values from 
specifications that use a limit on total shear strain as a design criterion.  For example, the 
previous British Specification, BS 5400 used a total shear strain of 5.0.  The same value 
is used in the European code EN 1337, which also notes  

“The maximum value of 5.0 for εtd is an empirical value which has been 
found from fatigue tests on three types of elastomeric bearings to best fit 
the limiting criterion for a strain calculated by the methode (sic) given 
here.  It should not be taken to reflect the ultimate strain of the material”.   
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Here, εtd is the EN1337 notation for total shear strain.  It should be noted that EN1337 
provides equations for computing the components of shear strain that are based on a 
linear model. The nonlinear relationship between average axial stress and strain used here 
leads to somewhat higher compressive stresses for the same compressive strain and 
corresponding shear strain. For monotonic load, the European limit of 5.0 on total shear 
strain appears to be conservative compared with the value of 6.7 found here.  

For many years, the AASHTO Specifications have imposed an independent limit of γs < 
0.5 on the shear strain due to applied shear deformations.  Those shear deformations 
cause shear strain in the elastomer, but they also cause local tension because the 
elastomer layers adopt the shape of a parallelogram, and their edges tend to roll over and, 
if the bond is inadequate, they may start to separate from the adjacent shims.  Thus shear 
strains due to shear deformation are likely to be more damaging than shear strains due to 
axial load or rotation, and the existing limit on γs should be maintained.  No tests using 
cyclic shear loading were conducted in this program.  However, cyclic shear tests 
conducted during previous research (Roeder et al., 1987) have demonstrated the effects of 
amplitude of shear loading and number of cycles.  The data from that study validated the 
use of γs < 0.5. 

F.2.2.3 Cyclic Loads 
Cyclic loading was applied in tests CYC 5, 7, 9, 11 and 12 to bearings from Batches A2, 
B1, C1 and D1.  Formulation of a cyclic strain limit for the AASHTO Specification 
requires that those test results be represented by a system of equations that relates 
debonding progression to axial load, cyclic rotation amplitude and number of cycles.  

Debonding does not progress linearly, so the model must reflect that fact.  Plotting results 
on a semi-log scale shows a progression that is nearly linear on that scale, as shown in 
Figure F.21 for Batch B1 bearings in tests CYC 5 through 12.  This suggests a basis for 
the relationship. 

Six different approaches for creating a design model were tried.  The one eventually 
adopted was chosen because the basis for it was rational and a good fit with the data was 
achieved.  It is given by  

( ) ( ) Dggc cyscyrcyaNstsstrsta 10,,,,,, +≤+++++ γγγγγγ  (F-67) 

In Equation (F-67), the subscripts a, r and s refer to axial load, rotation and shear 
displacements, and st and cy refer to static and cyclic load respectively.  The left hand 
side of the equation defines the total shear strain demand.  It is expressed as a static 
component plus a cyclic component that is multiplied by an amplification coefficient, cN, 
to account for the damaging effects of cyclic loading.   

The approach is similar to the one used for the Linear Model in Section F.2.1, but the 
cyclic factor, cN is treated here as a function of the number of cycles and the strain 
capacity is expressed as a function of the permissible edge tension debonding, (0.0 < D < 
1.0).  The tests conducted here did not show the existence of an endurance limit, at which 
a specimen could be cycled for ever with no debonding.  However, in every test, the 
specimen was loaded for a non-zero number of cycles before debonding started.   
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Therefore the parameter g0, which represents the shear strain capacity for zero debonding, 
is included on the right hand side.  The sum (g0 + g1) is the shear strain capacity if 100% 
debonding is acceptable.  
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Figure F.21. Tests CYC5-12 Debonding for Batch B1 Bearings. 

 

The challenge was to find suitable values for cN, g0 and g1, with cN being a function of the 
number of cycles, N.  Some restrictions are needed to ensure rationality.    In the interests 
of simplicity, g0 and g1, should be constants.  Furthermore, cN should be 1.0 when N = 1, 
because a single cycle may be taken to be the same as a monotonic load.  cN should also 
increase indefinitely with N, to reflect the absence of an endurance limit, and it should 
rise relatively rapidly at the start of the loading, but slow down as debonding progresses.  
The rate of debonding should also be a function of the intensity of the cyclic loading. 
(Larger rotation cycles caused faster debonding). 

The simplest characterization that could be found to satisfy these restrictions is 

( ){ }{ }crNN
crN eNNbac /1log1 −−++=  (F-68) 

The {1-e-N/Ncr} term goes from zero when N = 0 to 1.0 as N tends to infinity, and the 
variable Ncr controls how fast it changes.  This formula reflects approximately the 
debonding behavior during the early cycles.  Ncr may be thought of as a characteristic 
number of cycles, after which the {1-e-N/Ncr} term has the value (1-1/e), or 0.632. 

If the {a + b log(N/Ncr)} term were absent, cN would simply vary with N from 1.0 to 2.0. 
However, this characterization was found not to fit the data, because, particularly in tests 
CYC12 and CYC15 (small rotations, high cycle numbers), the debonding damage 
appeared to progress without tending to a limit.  Therefore the {a + b log(N/Ncr)} term 
was added.  It is a straight line on a figure such as Figure F.21, in which D, the level of 
debonding, is plotted against log(N), and acts  as an line to which the exponential term is 
asymptotic.  
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The long-duration test, CYC15, was carried out on only one specimen (Batch C1), so 
Batch C1 was used for the initial fitting to the model described by Equations (F-67) and 
(F-68).  The Batch C1 data was also the least noisy.   A least–squares fit technique was 
first used to find the optimal parameters for each individual test.  Those values varied 
considerably, so they were then studied to determine any functional dependence on the 
shear strains.  It was found that b and Ncr correlated most strongly with the cyclic shear 
strain, and the best fits were found with  

68.1=a  (F-69) 

667.0
,36.2 −= cyrb γ  (F-70)  

( )cyr
crN ,8.1310 γ−=  (F-71) 

6.60 =g  (F-72) 

81 =g  (F-73) 

where  

γr,cy = cyclic component of the induced shear strain (due here to rotation alone). 

The implication of Equations (F-72) and (F-73) is that the shear strain required to reach 
100% debonding under monotonic load is g0 + g1 = 14.6.  As pointed out above, such 
shear strains were never reached in the monotonic tests, because the shims failed first.  
Thus those tests cannot be used to confirm the value of g1, and reliance must be placed on 
the cyclic test results.  Doing so creates a difficulty, in that the design Equation (F-67) 
could be satisfied by using either a small cN and a small (g0, g1) pair, or a large cN and a 
large (g0, g1) pair.  Figure F.22 through Figure F.27 show the curves of debonding vs. 
number of cycles for the CYC test series, sorted according to test.   

The plots show that considerable scatter exists in the measured data, which fact alone 
makes a perfect fit impossible.  In most cases, the plots have been cut off before the end 
of the test, so as to show more clearly the data at low debonding levels.  In each case the 
plot shows curves from the four different test specimens and a model curve.  Because the 
model curve (Equation (F-67)) depends on material properties (needed to obtain the 
compressive strain), and all the specimens had somewhat different properties, the model 
curve was prepared using the average G and K values.  The only exception is Test 
CYC15, for which only Batch C1 data are available, so the model curve in that figure is 
based on the Batch C1 material properties.  No curves are shown for Specimens A1, 
because they had shims with sharp machined corners, and therefore debonded at an 
artificially fast rate.  

In general the best fit occurs with the Batch C1 data, largely because the primary fitting 
was done using it.  (The fit between the model and the Batch C1 data was even better 
than that shown when the correct material properties for the C1 bearings, rather than the 
average for all bearings, were used in the prediction).  The long-term CYC15 data was 
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given more weight than the others during the fitting, because it represents most closely 
the loading conditions to be expected in practice. 

D vs N.  Test CYC05

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

(Thousands) N cycles

D
(N

)

A2 meas
B1 meas
C1 meas
D1 meas
Model

 
Figure F.22.  Debonding vs. Number of Cycles.  Test CYC05. 

 

D vs N.  Test CYC07
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Figure F.23.  Debonding vs. Number of Cycles.  Test CYC07. 
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D vs N.  Test CYC09
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Figure F.24.  Debonding vs. Number of Cycles.  Test CYC09. 
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Figure F.25.  Debonding vs. Number of Cycles.  Test CY11. 
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D vs N.  Test CYC12
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Figure F.26.  Debonding vs. Number of Cycles.  Test CYC12. 
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Figure F.27.  Debonding vs. Number of Cycles.  Test CYC15. 

 

Equations (F-67)  through (F-73) are rational, but they are quite complicated.  They could 
be programmed into a spreadsheet or other application, in which case their complexity 
becomes irrelevant, but their use in the AASHTO Specifications may raise questions.  
Therefore, an effort was made to express the data differently, in the hopes of simplifying 
the Nonlinear Model. 

Figure F.28 through Figure F.30 show the measured data expressed in the conventional 
form used for fatigue data: an S-N plot, in which the number of cycles is plotted on a log 
scale. The three plots show results for 25%, 50% and 75% debonding.  Most of the values 
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were obtained by interpolating between real measurements, because the latter were taken 
at irregular intervals.  The curves labeled “A2” etc. refer to specific bearings, “mean 
1875” refers to the mean of all bearings tested at 1875 psi, and “25% opt” is the 
theoretical curve that best fits the 25% debonding data.  
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Figure F.28.  Fatigue Life for Cyclic Shear Strain due to Rotation: 25 % Debonding Criterion. 

 

Gamma.r vs log(N)
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Figure F.29.  Fatigue Life for Cyclic Shear Strain due to Rotation: 50 % Debonding Criterion. 
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Gamma.r vs log(N)
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Figure F.30.  Fatigue Life for Cyclic Shear Strain due to Rotation: 75 % Debonding Criterion. 

 

Several observations can be made.  First, the scatter in the data is considerable, even 
when using the semi-log scale, which tends to conceal differences by compressing the 
data along the horizontal axis.  Second, a definite trend exists of increasing number of 
cycles with decreasing cyclic shear strain.  Third, an increase in static axial shear strain 
decreases the fatigue life of the bearing.   

Each of these three characteristics is to be expected.  However, the goal is to develop a 
model that predicts the cyclic shear strain (here expressed as the rotational shear strain, 
because in the tests that was the only shear strain that was cyclic) as a function of the 
number of cycles, the static (axial) shear strain and the level of debonding acceptable. It 
is worth recalling that γr, the cyclic rotational shear strain the field, is likely to be on the 
order of 0.1 in practice, so it falls well below any of the data points, and any model will 
have to rely on extrapolation beyond the measured data. 

The data show no sign of an endurance limit when plotted in this form, at least within the 
range of γr studied in the tests.  Thus there is no basis for creating the bilinear S-N curve 
often used to characterize fatigue data.  A second possibility would be to fit a single 
straight line to the data.  However, that is at odds with the clearly curvilinear shape of the 
25% debonding curve. Furthermore, for the 50% debonding data, the straight line would 
predict that, with a cyclic γr of zero, 50% debonding would be reached after about one 
million cycles.  That prediction is clearly not rational. 

The mean values of γr vs. log(N) were plotted and they suggested a gradually descending 
curve, so a modified hyperbola was fitted to them.  It had the form 
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Where γr0, a, N0 and ca are constants to be determined by calibration. In the absence of 
axial load, the cyclic rotational shear strain capacity would become infinite when log(N) 
reached N0.  This is not rational, but is a consequence of trying to choose a simple form 
for the curve. 
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Figure F.31.  Fatigue Life for 25 % Debonding Criterion.  Equation (F-67) vs Measured Data. 

 

The constants were evaluated for each of the three debonding levels shown, and 
functional relationships were sought between the constants and the input variables D 
(debonding level) and γa. The parameters γr0, a and ca were found to be nearly constant. 
N0 was found to depend modestly on D.  The final values chosen for the best fit were 
γr0  = -0.0925, a = 2.295, N0 = 1.937 + 1.38D, and ca = 0.447.  Predictive curves using 
these values are shown in Figure F.31 for D = 0.25. 

The curves are prepared for different γa values (from 2.0 to 3.5). They appear close 
together in the figure because of the semi-log presentation, but the bearing with the 
lowest axial load (γa = 2) has a fatigue life that is about 10 times as long as the one with 
the highest load.  The mean values from the measured data at γa = 3.05 and 3.65 are also 
shown. The fit appears acceptable, but it diverges significantly at low γr (high N).  The 
curves predict very long fatigue lives (e.g. > 10,000,000 cycles to reach 25% debonding) 
for all the axial load levels shown. However, little faith can be placed in those 
predictions, because they represent significant extrapolations on a semi-log plot.  This 
difficulty is illustrated by the fact that the straight line approximation to the data predicts 
25% debonding at 1 million cycle of γr = 0, whereas the curvilinear approximation 
predicts a fatigue life of 100 million cycles at γr = 0.2.  That is a very large range of 
predicted life, obtained from two apparently reasonable extrapolations from the test data. 
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The curves thus show that this representation of the fatigue data shows patterns that 
might be expected, but the representation does not lead to a model that is simple but 
reliable.  The main difficulty in implementing it is the lack of data at low strain and high 
numbers of cycles.  

F.2.2.4 Summary on Nonlinear Model 
The Nonlinear Model has been shown to have advantages and disadvantages compared 
with the Linear Model.  Its main advantage is that it reproduces the test results in a more 
detailed manner.  It does so by relating the damage to the number of cycles of rotation at 
all cycle numbers (i.e. many points per test), whereas the linear model simply addresses 
the conditions at the end of the test (i.e. one point per test).  The primary drawback 
discussed here is its greater complexity.  However it has other drawbacks, which are 
discussed in Section F.4.  Those drawbacks prevent the model from being used now, but 
the description of the model ahs been retained so that it may be developed when the 
necessary cyclic axial load data become available. 

F.3 Axial and Rotation Demands from Dead and Live 
Loads. 

Design requires consideration of both demand and capacity.  During the conduct of the 
project, much of the effort was focused on establishing bearing capacity, using a 
combination of physical testing and Finite Element Analysis.  In this section the issue of 
demand is investigated, using analysis. 

F.3.1 Background and Assumptions 
When a truck crosses a bridge, it imposes on the bearings a combination of vertical load 
and rotation. The relative magnitudes of those two effects vary with the truck’s location.  
For example, the vertical load is largest when the truck is near the support, whereas the 
rotation is largest when the truck is near mid-span. The precise values of the load effects 
also depend on bridge characteristics such as continuity and skew.   

Since both loadings induce strains in the elastomer, they should be considered together in 
design.  Ideally, every possible location of the truck should be analyzed separately, and 
the one that imposes the largest combined strain in the elastomer should be used.  
However, this procedure is likely to be too time-consuming for practical design, so a 
simpler approach is desirable. 

The traffic loading provisions in the AASHTO LRFD Specifications consist of a series of 
concentrated loads from a standard truck or tandem axle plus a distributed lane load.  
(This is a departure from earlier versions of the Standard Specifications, in which the 
more severe of the two was used alone, rather than both together).  During the testing 
conducted during this research, it was found that the bearings exhibited fatigue-like 
behavior, in that damage accumulated and worsened as the number of cycles increased. It 
is therefore necessary to estimate not only the number of cycles likely to be applied in 
practice, but also to define what constitutes a cycle.   

For truck or tandem axle loading, this is relatively straightforward, but for the lane 
loading it is less obvious.  If the lane loading is viewed as representing lightly loaded 
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large trucks, then passage of such vehicles does indeed cause discrete cycles of load, and 
the lane load should be treated as contributing to the cyclic loading.  If the lane load is 
viewed as representing a stream of light traffic, such as automobiles, then, in the extreme 
case of a continuous stream, the stream causes a constant, rather than a cyclic, load.  

Counting the full lane loading in the cyclic load would imply that a train of traffic of 
length l (the bridge span length) and of intensity 0.64 kips/ft (the specified lane load), 
acted on the bridge for an instant, followed by a period with no lane load at all, followed 
in turn by the presence of a second traffic train identical to the first, and so on.   
Observation of light traffic on bridges suggests that this pattern does not occur.  The 
intensity of the 0.64 kip/ft lane load is also significantly higher than that imposed by 
average automobiles (about 0.20 kip/ft, even in bumper-to-bumper stationary traffic).   

Use of a reduced value of the lane load for the purposes of estimating cyclic loading 
therefore seems appropriate.  This is in accordance with the fact that it is not considered 
as contributing towards fatigue loading for steel bridges.  The full value should still be 
used for estimating maximum possible static load. 

The amplitude of the rotation depends strongly on the girder span, stiffness and 
continuity, and slightly on other details such as the lateral distribution of wheel load 
effects among adjacent girders. Bridge curvature and skew also lead to additional 
complications, such as bi-axial rotation of the bearings. Computing the exact rotation 
could therefore be time-consuming.   However, an approximate upper bound to the 
rotation can be derived from the limit of l/800 (in AASHTO LRFD Section 2.5.2.6.2) on 
live load deflection at mid-span, and this may be used to obviate the need for more 
complex calculations. 

The variables that are important in estimating demand on the bearings are: 

• Bridge overall dimensions (span, girder spacing, skew, continuity). 
• Bridge deck physical properties (deck weight, girder stiffness).  
• Load details (truck, tandem and lane loading, axle spacing, lateral distribution of 

wheel loads, number of cycles, direction of traffic flow).  

In the analyses that were conducted, the following assumptions were made: 

Span:  a range of spans was considered. 

Girder spacing:  a range of girder spacings, consistent with normal practice, was 
considered. 

Skew: In the interests of simplicity, skew was ignored when estimating the magnitude of 
the primary rotation.   

Continuity.  The bridge girders were assumed to be simply supported, because this 
condition gives the largest rotations.  A correction factor was derived that accounts 
approximately for continuity under live load.   

Deck weight. The deck was assumed to be 11 inches thick (for purposes of estimating 
weight) and made from normal weight concrete.  The value was derived from an assumed 
8 inch thick deck, with a 3 inch deep pad over the girder flanges (assumed to occupy half 
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the deck width), plus a 1.5 inch allowance for a wearing surface. The results of the 
analyses were found to be relatively insensitive to the exact deck weight. 

Girder stiffness.  Both steel plate girders and precast, prestressed concrete girders were 
considered.  For a given span, steel girders generally lead to slightly lower dead loads, 
but to slightly higher cyclic end rotations of the girders.  

Truck and tandem axle loading.  A preliminary investigation showed that the truck 
loading almost invariably gave the more severe effects.  It was used exclusively in the 
main analyses.  Furthermore, AASHTO requires different axle spacings to be considered, 
but the shortest (14 ft) was found to control in all cases and was used throughout the 
analyses. 

Lane loading. Factors were introduced into the analyses that allowed inclusion in the 
cyclic effects of any desired fraction (from 0.0 to 1.0) of the rotation and compressive 
load due to the lane loading.  Different values were tried during the analyses. 

Lateral distribution of wheel loads. In the interests of simplicity, the “lever rule” was 
used, whereby each girder was assumed to carry (s/12) times the load in one lane, where s 
is the girder spacing in feet, and a lane is assumed to be 12 ft wide. 

Number of cycles.  Different numbers of load cycles were considered. The largest 
number was 50 million.  This was derived by assuming a bridge with an ADT (average 
daily traffic count) of 80,000 vehicles per day, of which 5% were assumed to be fully 
laden trucks, and a 50 year life span. Two-thirds of the trucks were assumed to be 
traveling in the inside lane, which is therefore the critical one.  This loading represents a 
heavily traveled freeway.  Other bridges may experience significantly fewer cycles of full 
truck loading. 

F.3.2 Methodology 
A spreadsheet was constructed that computes girder rotations and deflections and bearing 
rotations and axial loads, for different inputs.  It was used to investigate the effects on 
response of varying the input parameters.   

 

F.3.3 Computed Values 

F.3.3.1 Upper Bound to Rotation. 
The upper bound to the end rotation may be obtained as follows.  For a uniformly 
distributed load acting on a simply supported girder, the end rotation is  

EI
wl 3

24
1

=θ   (F-75) 

And the mid-span deflection divided by the span length, Δ/l, is  
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The ratio between the two is then 
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Similar calculations for a single concentrated load at mid-span give a ratio of 3.0.   (This 
calculation considers the load to be located at mid-span and ignores the fact that 
maximum end rotation occurs when the load is at 42%, not 50%, of the span.  However, 
the simplification introduces an error of less than 3%).  Since the truck loading consists 
of a series of point loads, its effects must lie between those of a single concentrated load 
and a uniformly distributed load.  The corresponding ratio for it must therefore lie 
between 3.0 and 3.2.  The largest girder end rotation consistent with a live load deflection 
of l/800, for any longitudinal distribution of loads, is then  

004.0
800

2.3
=≤θ  (F-78) 

The end rotation for any other deflection limit can be obtained directly by scaling.   

If the girders are continuous over two or three spans, the mid-span deflections and the 
end rotations (at the central support) are multiplied by the factors in Table F-2.  Because 
in a multi-span bridge the end rotation decreases more than the mid-span deflection, the 
net effect is to reduce the end rotation if the mid-span deflection is still controlled by the 
l/800 limit. If the entire load is treated as distributed, the largest possible end rotation is 
(0.50/0.70)*(0.004) = 0.00286 radians for two spans, and (0.40/0.52)*(0.004) = 0.00308 
radians for three spans.  

 
Table F-2.  Multipliers for Rotation Angle due to Girder Continuity. 

 

 

 

 

 

F.3.3.2 Critical Combination of Compression and Rotation 
Because the end rotation and compressive load from the live loading do not reach their 
individual maxima simultaneously, the critical end rotation is likely to be smaller than 
that predicted by the foregoing values.  The critical end rotation is the one that causes the 
largest shear strain in the elastomer of the bearing when the compressive load acts at the 

Loading 2 3
Distributed θ/θ0 cont. end 0.500 0.400

θ/θ0 free end 0.750 NA
Δ/Δ0 0.700 0.520

Concentrated θ/θ0 continuous 0.500 0.400
at mid-span θ/θ0 free 0.750 NA

Δ/Δ0 0.719 0.550

N spans
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same time.  The calculation does not lead to a unique value, because bearings of different 
sizes and shapes may be chosen, some of which may be more sensitive to rotation, and 
some more sensitive to compressive load.    

To obtain an approximate value of the critical rotation, calculations were conducted to 
investigate the effects of a range of parameters, such as girder stiffness, span, etc.  In each 
set of analyses, only a single parameter was changed.  The bearings were standardized by 
sizing them so that the total rubber thickness was l/1000, the dead load compressive 
stress was 600 psi, the aspect ratio was 2.5 and the shape factor was 6.0.  In most cases, 
this procedure resulted in a non-integral number of layers.  While this is clearly 
impossible in practice, it was accepted here to ensure consistency among the analyses.  
The girder dimensions were not intended to represent any particular girder type or size, 
and had no significance other than generating a value of bending stiffness. 

 

 

 

 

 

 

 

 

 

Figure F.32.  Effect of Span on Rotation Angle. 

 

The effect of span is shown in Figure F.32.  The critical rotation remains nearly constant 
at all spans investigated, but the left and right bearings experience different rotations 
because the axle loads of the truck are not symmetric.  (The truck traveled from left to 
right in the analyses). The slight reduction in rotation with increasing span length is 
attributed to the changes in the relative influences of the truck and lane loads.  For both 
ends of the girder, and for all spans considered, the critical combination occurred when 
the extreme axle of the truck was just entering or leaving the bridge. This finding also 
held true for all the other parameters considered. 
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Figure F.33.  Effect of Girder Stiffness on Rotation Angle. 

 

The effect of girder inertia is shown in Figure F.33.  The critical rotation is inversely 
proportional to Iactual/ Iminimum, as might be expected.  (Iminimum is the minimum girder 
inertia needed to ensure Δ < l/800).  However, even when Iminimum is used, the rotation is 
still only 0.003 radians.   
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Figure F.34.  Effect of Lane Load Factor on Rotation Angle. 

Figure F.34 shows the effect of the lane load factor.  It is relatively small and is 
controlled by the rotation of the bearing at the right hand end of the bridge.  Reducing the 
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lane load to 50% of its nominal value only reduces the rotation from 0.0015 to 0.0014 
radians. 
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Figure F.35.  Effect of Girder Stiffness on Total Shear Strain. 

 

Girder inertia thus has the greatest effect on bearing rotation.  To demonstrate its effect 
on the shear strains in the elastomer, cyclic shear strain in the bearing is plotted against 
girder inertia ratio in Figure F.35.  The shear strains are those caused by the critical 
combination of axial load and rotation, so the total is the sum of the two individual 
values.  The figure shows that the axial load effects provide the great majority of the total 
shear strain, particularly when the inertia ratio is high.  It is thus important to include 
cyclic axial load with the cyclic rotation when evaluating the response of the bearing. 
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Figure F.36.  Effect of Truck Location on Maximum Shear Strain. 
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Figure F.37.  Effects of Span and Truck Location on Maximum Shear Strain. 

 

Figure F.36 and Figure F.37 further illustrate the relative importance of the axial and 
rotation components of the cyclic loading.  Figure F.36 shows how the shear strains vary 
with truck location for the standard values of all parameters.  The ordinate in the plot is 
the x/l value of the truck front axle as the truck travels from left to right across the bridge, 
and the abscissae are the shear strains in the left bearing, which experiences the largest 
strains.  The jumps in the curve occur as the various truck axles enter the bridge.  The 
shear strain due to rotation is non-zero when x/l = 0 because the full lane load is assumed 
to be in place.  The axial load clearly dominates the cyclic loading effects.   

Figure F.37 shows similar information, but for a range of span values. For clarity, only 
the total shear strain is shown.  The cyclic shear strains due to axial load decrease as the 
span increases because a larger bearing is needed to accommodate the larger self-weight, 
but the truck weight remains unchanged.  The details of the relationship depend on the 
fact that, for these calculations, the bearing was designed so that static dead load caused 
an axial stress of 600 psi, as described above, but the finding is expected to be valid in 
principle for any practical assumptions.  Figure F.37  also shows that, at very long spans, 
the maximum cyclic shear strain no longer occurs when the rear axle of the truck just 
enters the bridge, but rather when the truck is slightly further advanced.  This implies 
that, for the great majority of bridges, the bearing may be designed with the rear axle at 
the end of the bridge, and only for very long bridges (greater than 201 ft. for the 
assumptions used here) is there a need to investigate other truck locations.  Even then, 
use of the true critical truck location will not greatly affect the result because the curves 
in Figure F.37 are relatively flat near their peaks. 

F.3.4 Thermal Camber 
Thermal effects can cause camber in the superstructure.  It is typically largest when the 
sun shines on the deck, which absorbs radiant heat and expands.  In this section the 
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magnitude of the girder end rotations, and thus the rotation imposed on the bearing, are 
examined. 

The thermal gradient to be used for design is defined in Section 3.12.3 of the AASHTO 
LRFD Design Specifications, and is shown in  

 Figure F.38.  In order to evaluate the expected end rotation, the thermal gradient was 
applied to a series of superstructures consisting of a slab and girder. The system consisted 
of a 74 in. deep precast girder with an 8in. deck and a 3 in. pad of cast in place concrete 
between the two.  Girder spacing was 8 ft.  Span was 120 ft. 

 
 Figure F.38.  Girder and AASHTO /Design Thermal Gradient (Zone 1). 

 

The AASHTO thermal gradient caused a curvature of 1.78 x10-6 radians/in, which led to 
a mid-span upward camber of 0.461 in. and end rotation of 0.00128 radians.  Thus the 
thermal end rotation is of the same order of magnitude as that due to truck loading.  To 
investigate the effects of span length, a series of girders was analyzed.  In the interests of 
simplicity, all the girders were identical except that the web height was increased.  
Therefore, most of them do not correspond exactly to a particular real girder.  The span 
was also increased to achieve a constant overall span/depth ratio of 18.5, including the 
slab.  The resulting end rotations are shown in Figure F.39.   
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Figure F.39.  Rotation due to Thermal Gradient on Girder. 

 

As may be seen, the end rotation is nearly independent of span. This occurs because the 
end rotation is the product of half span and curvature, and, as the span and depth of the 
member increase, the thermal curvature decreases and the product changes little.  Values 
are shown for Zone 1 (the most severe) and Zone 3 (the least severe apart from Alaska).  
Changing the girder spacing from 4ft to 12 ft altered the result by less than ±10%. 
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Figure F.40.  Strains due to Thermal Gradient. 

 

The variation in strain over the height of the section is shown in Figure F.40, which is 
drawn for the 74 in. deep girder and the Zone 1 temperature distribution.  Both 
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mechanical strain (stress/E) and total strain (mechanical plus thermal) are shown.  
Vertical distance is measured down from the top of the slab.  Positive strain indicates 
elongation. 

The outcome of these computations is that the thermal camber should be accounted for in 
design, since it is of the same order of magnitude as the rotation due to live load.  Use of 
a standard value in lieu of detailed calculations might be of interest.  A value of 0.0015 
radians appears appropriate for that purpose. 

F.4 Evaluation of the Design Models 

F.4.1 Evaluation Criteria 
The test data showed that the debonding is a fatigue behavior, in that the damage 
accumulates with cycles.  However it is somewhat more complicated than fatigue in 
metals, in which failure eventually occurs by fracture of the part, because in a bearing 
there is no comparable discrete failure event.  The design procedure must take this 
behavior into account. 

The design procedure also needs to take into account cyclic loading from all three 
potential sources: shear, axial and rotation.  The cyclic shear loading typically arises from 
thermal expansion and contraction of the deck, and contains far fewer cycles than do the 
compression and rotation fatigue components, so it is neglected in this discussion.  
However, in some structures, particularly those with deep girders, traffic may also cause 
shear displacements. For example, end rotation of the girder causes longitudinal 
displacement equal to the product of the rotation and the distance from the neutral axis to 
the bottom flange.  In some steel structures the girders are attached to a transverse cross 
beam that is supported on a bearing at each end.  Passage of truck traffic then causes the 
cross-beam to bend and induces transverse shear displacements in the bearings.   These 
shear displacements are likely to be small but numerous. 

The analysis of demand in Section F.3 shows that the shear strains due to cyclic 
compression are much larger than those due to rotation, yet no compression fatigue tests 
were conducted in this study.  Thus some model is needed to account for them in design. 

One possibility would be to treat all the cyclic shear strains as equally damaging, 
regardless of their source.  Thus, if a cyclic shear strain of 0.60 in the rotation tests 
caused 55% debonding after 500,000 cycles, then a shear strain of 0.60 caused by cyclic 
compression should be assumed to cause the same amount of damage after the same 
number of cycles. This choice would be consistent with the concept that shear strain is 
the appropriate measure of damage. 

Because the bearings tested during the research were not subjected to load combinations 
that included cyclic axial force, shear and rotation, no physical results are available for 
calibrating the model under that loading combination.   Therefore the design methods 
were checked against the conditions for a common bearing type that is used in freeway 
overpasses.  This process does not constitute a calibration in the same sense as matching 
the predictions of the design method to the measured test data, but it does provide a 
reality check.  The number of such bearings in service is large (approximate calculations 
based on the number of bridges in the country suggest a million or more), but very few 
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DoTs report problems with extensive debonding.  Therefore the loading on such bearings 
represents a combination for which the design method should predict no debonding after 
millions of cycles.  Such a check is desirable, because the test data could not be carried 
out to a number of cycles that represents field conditions.  The dimensions and loading 
for a typical bearing of this sort are given in Design Example 1, in Section 3.2 of this 
report.  

F.4.2 Linear Model 
The fit between the cyclic test data and the predictions of the Linear Model is shown in 
Figure F.18 and Figure F.20.  The data contains a lot of scatter, as shown by the R2 
values, but this is to be expected when dealing with fatigue data.  However, the model 
clearly replicates the major characteristics of the data, which are that a larger effective 
strain leads to a shorter fatigue life for a given level of debonding (25% and 50% in the 
two figures), and that a reduction in the acceptable level of debonding also leads to a 
shorter fatigue life.  Furthermore, both characteristics are in accordance with expectations 
of physical behavior.  

As a check against common field conditions, the effective strain in a bearing  for a typical 
freeway overpass was computed, and is shown in Figure F.18 and Figure F.20 as an open 
circle at 50 million cycles. The bearing dimensions and loading are those used in Design 
Example 1 in Section 3.2.  The point lies well below the lines in the figures that represent 
25% and 50% debonding.  The model therefore predicts a very low level of debonding in 
such a bearing, and this is in keeping with the low level of debonding in the field implied 
by the lack of reported problems.  

The model has other advantages for the user: it is transparent, it has the same form as the 
model used by the European Specification EN 1337, and it is simple.  It is expressed in 
Code language in Appendix G.  Defining it requires many fewer equations than are 
needed by the existing AASHTO Method B. 

F.4.3 Nonlinear Model 
Figure F.22 through Figure F.27 show the fit of the Nonlinear Model defined by 
Equations (F-67) through (F-73) with the debonding data from the rotation tests.  The 
data show considerable scatter but the Nonlinear Model provides a good fit to the average 
of the data throughout the entire load history.  Fitting the debonding throughout the entire 
load history is more challenging than doing so only at the end, as was done for the Linear 
Model, and necessitates a cyclic load factor, cN, that is a function of the number of cycles 
and a total strain capacity that is a function of the level of debonding.  

The Nonlinear Model was also checked against the typical freeway overpass bearing of 
Design Example 1. The results are shown in Figure F.41.  The vertical scale represents 
the level of debonding, D, at N cycles.  The curve for “fac = 1” is based on using the 
cyclic shear strain caused by the full live load axial force, plus the full rotation demand of 
0.002 radians on the 3-layer bearing.  It predicts approximately 70% debonding after 1 
million cycles. Many bearings of approximately these proportions exist in the field, and 
DoTs are not reporting debonding on anything like this scale.  Therefore the model is in 
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some way inappropriate.  However, it was very successful in predicting the damage due 
to rotations in cyclic tests covering a wide variety of variables. 

A possible explanation for the failure to predict correctly the response of field bearings 
lies in the fact that the same shear strain, caused by axial force or rotation, does not in 
fact lead to the same level of debonding.  To investigate this possibility, other curves 
were prepared, as shown in Figure F.41.  They are based on counting only a certain 
fraction (“fac” in the figure legend) of the shear strain due to axial load in the total cyclic 
shear strain. The curve for “fac = 0” corresponds to the effect of rotation alone in the 
cyclic total, and shows no damage at all.  While this is in agreement with field experience 
on bearings of this common size and loading, it is surprising to find that cyclic axial 
stress causes shear strains that are much larger than those caused by the cyclic rotation, 
yet they appear to not count towards the fatigue demand on the bearing. 

A second possibility is that the model is fatally flawed.  However, it was arrived at after 
considering, calibrating and rejecting five earlier versions, its form has a rational basis 
that allows it to behave in accordance with expectations at extremes of loading or cycle 
counts (its form was developed with that specific goal in mind) and it fits the rotation test 
data remarkably well, including a wide variety of tests with cycle counts from 4000 to 2.2 
million.  An effort was therefore made to adjust the parameters so as to bring its 
predictions into line with the very low damage expected in the field bearing described 
above.  The changes required to do so caused its predictions for all of the test data to be 
completely unrealistic.  It is therefore concluded that the fault lies not with the model’s 
ability to represent debonding due to cyclic rotation loading, but rather with the assumed 
equivalence between cyclic rotation and axial loading. 
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Figure F.41.  Predicted Debonding for Example Bearing. 

 

In an effort to investigate the problem further, data from previous compression fatigue 
testing was sought and analyzed using the Nonlinear model developed here.  
Compression fatigue tests are reported in NCHRP Report 298 (dated October 1987).  
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Equations (F-67) through (F-73) were used to predict the amount of debonding in those 
tests.  The test conditions differed from those of the present series, so the results cannot 
be expected to agree perfectly.  The most important differences are: 

• The NCHRP 289 test bearings had no edge cover. They were cut from large 
sheets using a band saw, so the edges were somewhat rough, which may have 
influenced the start of debonding. 

• The material properties were inevitably different to those used in this study, 
because the testing was conducted approximately 20 years ago.  Several different 
materials were used, for which only the durometer readings, the tensile strength 
and elongation at break were available.  In particular, G and K were not available.  
The Shore A hardness varied among specimens from 51 to 65.  Most were 52 
hardness Neoprene, so were at least comparable, if not identical, to those used in 
the present study. 

• The NCHRP 298 specimens were 8” x 8” square, with two rubber layers and S = 
5 in most cases. Those used here were rectangular, 22” x 9” with three rubber 
layers and S = 6 in most cases. 

• The loading speeds were different.  The previous tests used 1Hz, whereas the 
present tests were run more slowly, at frequencies on the order of 0.3 Hz. 

• The method for measuring debonding was quite different. In the NCHRP 298 
study, the rubber eventually started protruding from between the steel shims, due 
to shear delamination at the shim surface.  In the present study, such a measure 
was not possible because of the cover, so the length of tension debonding along 
the shim edge was measured, and expressed as a proportion of the total length of 
the long sides of the two central shims.  Thus the previous data measured 
propagation of shear delamination, whereas the present study measured initiation 
of tension debonding. 

Despite these differences, the NCHRP data were analyzed using the proposed method to 
predict the debonding after the number of cycles reported from the tests, which varied 
from about 500,000 to 2,000,000.   The material property G from the tests was back-
calculated from the stress and strain ranges reported.  The results of that process were 
plausible (e.g. G ≈ 110 and 200 psi for 52 and 65 durometer material respectively).  K 
was assumed to be 460,000 psi.  The test loads were applied as a mean stress, on which 
was superimposed a cyclic stress range.  In the Nonlinear Model, the minimum stress (i.e. 
the mean minus half the stress range) from the tests was taken as the constant dead load 
stress, and the stress range from the tests was taken as the live load stress. 

This procedure led to the prediction of 100% tension debonding in all specimens but one, 
where 70% debonding was predicted.  The calculations were then repeated, with a scale 
factor applied to the shear stress caused by cyclic compression.  The reasoning for so 
doing is associated with Fracture Mechanics.  If the two types of deformation are 
associated with different fracture properties, then their propensities for initiation and 
propagation of debonding might differ, even if the loadings caused the same nominal 
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shear strain.  The results with a factor of 0.5 are shown in Figure F.42.  All the cyclic 
compression test data from NCHRP 298 are shown except the small bearings (4.8” x 
4.8”).  They had a smaller shape factor than the others, and the results were anomalous, 
so they were omitted from the comparison.   
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Figure F.42.  Compression Fatigue: Predicted vs. Observed Debonding. 

 

The results show a general trend of agreement, inasmuch as both the measured and 
predicted measures of debonding increase together.  There is still considerable scatter, 
although this should not be surprising in view of the differences between the two 
approaches and the fatigue loading.  These results lend credibility to the Nonlinear 
Model’s general ability to describe the progression of damage under fatigue loading, but 
the differences between the conditions are too great to permit a numerical calibration.  
The primary problem lies with the lack of cover in the compression fatigue tests, whereas 
the model was developed to predict tension debonding between the cover and the edge of 
the shim. 

This finding leads to a difficulty in using the Nonlinear Model for preparing rational 
design provisions for bearings.  The model predicts well the damage due to rotation seen 
in the tests, but, if the same cyclic amplification factor is used for shear strains due to 
axial load and rotation, the model predicts debonding in typical freeway overpass 
bearings that is much more extensive than expected from the lack of damage reported in 
the field.   

F.4.4 Evaluation Conclusions 
Two models were developed to relate debonding to cyclic load.  The Nonlinear Model 
provides a more detailed fit with the rotation test data, but it leads to implausible results 
when applied to common field bearings because, when used with apparently reasonable 
assumptions about the equivalence between axial load and rotation, it significantly over-
estimates the debonding damage caused by cyclic axial loading.  The Linear Model is 
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simpler and does provide reasonable predictions for the common field bearings, but was 
fitted to the test data only at specific levels of debonding, rather than throughout the 
entire load history.  More refined fitting is not possible because the cyclic amplification 
factor used in the model is not a function of the number of cycles. Therein lies part of its 
greater simplicity. 

One possible approach would be to implement the Nonlinear Model, and use it to predict 
the permissible rotation in terms of the desired fatigue life and acceptable debonding 
level, but to ignore completely the effects of cyclic compression.  This would provide 
better agreement with existing field data, which suggest that failures among elastomeric 
bearings are very few, but it would be irrational in that the cyclic shear strains due to 
compression would be ignored, despite the fact that they are much larger than those due 
to rotation.  It seems unlikely that the rubber at the tip of the debonding crack knows 
whether the shear strain that is driving it arises from cyclic compression or cyclic 
rotation. 

The second possibility would be to implement the Linear Model.  It is believed that at 
this time the Linear Model represents the preferable approach, because of its simplicity 
and the fact that it both fits the test data and provides plausible predictions for bearings 
commonly used for freeway overpasses.  The latter characteristic represents a useful 
reality check because the tests could not be carried out to the approximately 50 million 
cycles expected in the bearing’s lifetime. 

The most serious problem facing bearing designers today is that the present specifications 
prohibit both uplift and lift-off, and this creates difficulties with combinations of light 
compressive load and large rotations. It is proposed here that lift-off be allowed.  This 
solves the problem, provided that the combined shear strains on the compression side of 
the bearing are not excessive.   

Two arguments support this approach.  First, permitting lift-off avoids tension stresses in 
the bearing.  It is also shown in Section F.1.2 that, even under lift-off conditions,  the 
total shear strain on the compressive side of the bearing due to combined rotation and 
axial load may be conservatively estimated computed using the simpler, “no lift-off” 
equations.  This means that the geometrically complicated conditions caused by lift-off 
can in fact be addressed safely by using a simple computational approach.  Second, the 
results of the monotonic rotation tests PMI-2 through PMI-5 showed that, even with quite 
large axial loads combined with monotonic rotation, debonding never initiated until a 
rotation of at least 0.05 radians, and even then it occurred in the A1 bearings which had 
sharp corners on the shims.    The lowest value for other bearings was 0.06 radians. The 
debonding that occurred did so as a result of large shear strains on the compression side 
of the bearing. It can therefore be concluded that construction conditions, in which light 
axial stresses (much smaller than even the 2.5 GS used in test PMI-2) are combined with 
a maximum plausible rotation of 0.04 radians and shims without machined sharp edges, 
will not lead to debonding.   

Thus a strong case exists for permitting lift-off (i.e. allowing separation of the girder from 
the bearing).  For bearings with bonded external plates, lift-off is not possible, and uplift 
may occur that causes internal tension.   For those conditions, a need exists for provisions 
that will prevent internal rupture in the rubber due to hydrostatic tension.  The equations 
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described in Section F.1.1.5 provide the necessary safeguards against such hydrostatic 
tension. 

F.5 Detailed Development of Specification Provisions 
In this section, provisions suitable for inclusion in the AASHTO Specifications are 
developed, based on the total strain concept embodied in the Linear Model.  The 
Nonlinear Model is not developed to form design provisions.   

For consistency with the existing provisions, two design methods are developed.  Method 
B is general and accounts explicitly for axial load, rotation and shear. It is versatile, and 
may be used to design any bearing. It is developed first.  Method A is intended for simple 
conditions, and represents a special case of Method B, for which assumptions have been 
made about the rotations so that they do not need to be included explicitly in the design. 
It is developed from Method B. 

F.5.1 Method B 
The design criteria for Method B consist of several limits.   The first is that the applied 
shear deformation should not cause a shear strain greater than 0.50.  This requirement has 
been in the AASHTO Specifications for many years, and no evidence arose from this 
research that suggests that the requirement should be changed.   Thus 

rts h5.0≤Δ   (F-79) 

Second, the total shear strain due to axial, rotation and shear effects should be limited.  
An amplification factor of 2.0 is applied to the cyclic components of the shear strain, as 
discussed in Section F.2.1.  This leads to  

( ) ( ) capcyscyrcyastsstrsta γγγγγγγ ≤+++++ ,,,,,, 2  (F-80) 

The total shear strain limit is taken as γcap = 5.0, on the basis of Figure F.18. In that 
figure, the projected line from the testing reaches 50 million cycles at an effective strain 
of about 4.7.   It was argued that, because some tests never debonded at all, their 
influence is missing from the figure, so the line should be raised a little to reflect it.  For 
that reason the estimated strain capacity value of 4.7 is rounded up to 5.0.   This value is 
also the same as used in the present European Specification (EN 1337) the previous 
British Specification (BS5400) and the earlier French Railroad Specification (UIC772R).  
In the latter case the limit was on shear stress rather than strain, but since stress was 
assumed to be related linearly to strain, the effect is the same.  In EN 1337, the cyclic 
strains are multiplied by a cyclic factor of 1.0 or 1.5, to be chosen by the owner. Thus the 
requirements proposed here are more conservative than those specifications.  However, 
the test program on which the present proposals are based was much more extensive. 

In addition to the cyclic amplification factor and the total strain capacity, methods of 
calculating the shear strains from the loading parameters are needed.  The shear strain 
coefficients in Figure F.5 through Figure F.8 were prepared using the equations in 
Section F.1.1.3.   
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For bearings without external plates, lift-off is free to occur, and there is no need to check 
for hydrostatic tension. If external plates exist, then the hydrostatic tension should be 
evaluated using Equation (F-46).  Gent and Lindley’s (1959b) experiments showed that 
rupture occurred when the hydrostatic tension reached approximately 0.9E.  It is 
proposed here to use 0.75E or 2.25G, and to include the amplification factor on the cyclic 
components of the load, in order to include a margin of safety.  It is likely that the cyclic 
load factor will have little effect in practice, because the critical loadcase for hydrostatic 
tension is expected to arise during construction, when large rotation angles (due to 
camber) may accompany light axial loads (due to the girder self weight alone).  That 
loadcase is monotonic.   

The following requirements address the possibility of hydrostatic tension due to uplift.  In 
them, the sign of εa, and therefore of α, have been reversed so that compressive strain in 
the elastomer is positive, for consistency with the sign convention presently used in the 
AASHTO Specifications.  The rotation per layer is also designated as θi rather than θL for 
the same reason. 

“To prevent internal rupture of the elastomer by hydrostatic tension stress, in bearings 
with externally bonded steel plates, the computed hydrostatic stress shall satisfy: 

Ghyd 25.2≤σ   (F-81) 

where σhyd is the peak hydrostatic tension, computed by 
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and  
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a
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The average axial strain, εa, is given by 

23 GSBa

a
a

σε =  (F-85) 

and shall be taken as positive for compression in Equation (F-84).  Constant Ba is given 
by Equation (F-19). 

For values of α greater than 1/3, the hydrostatic stress is compressive throughout the 
bearing, and no limit is required.  The values of εa and θi used in Equation (F-84) shall 
consist of the static components plus 2.0 times the cyclic components”. 
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Other requirements presently in the AASHTO Specifications, such as those for stability 
and seismic conditions, remain unchanged. 

F.5.2 Method A 
Method B, as described above, is operationally simpler than the version in the existing 
AASHTO Specifications.  If it is programmed into a spreadsheet or other application, 
design is quick and simple, so the need for an even simpler Method A is questionable.  
However, such a method is developed here in the interests of providing choice to the 
AASHTO T-2 Committee. 

The proposed Method A is similar to the existing one, in the sense that it allows the 
designer to select a bearing on the basis of compressive stress alone.  To do this, an 
implicit allowance for rotation must be made, and it must be large enough to 
accommodate all rotations that have a reasonable probability of occurrence.  
Furthermore, to the greatest extent possible, it should allow engineers to continue their 
present practice of designing common bearings by Method A.  However, it should, if 
possible, also be consistent with the proposed Method B in such matters as using 
amplified cyclic loads and a definition for the shape factor that is based on the shim size 
plus half the cover.    

Ideally, a bearing that fails to meet the requirements of Method B should not be allowed 
under Method A, as can sometimes happen under the present provisions.  However, this 
cannot be ensured without some restrictions on the use of the method.  The problem is 
that a bearing with a high shape factor that is subjected to a large rotation will fail to meet 
the requirements of Method B because of the large rotation, regardless of the axial stress.  
Because Method A ignores rotation, the bearing could prove satisfactory under it, thereby 
creating an inconsistency 

In order to develop a rational Method A that accounts for these matters, interaction 
diagrams between normalized axial stress, σa/GS, and rotation were prepared, using 
Method B criteria.  These were then used to determine the allowable axial stress that 
could be carried at the same time as the design rotation. The design rotation should 
represent the largest feasible rotation demand on bearing. 

An example interaction diagram is shown in Figure F.43, for a 9 in. x 22 in. bearing, with 
3 layers of ½ in. each.  (It is based on G = 110 psi, but variations in G make almost no 
difference to the result, because the stress is normalized by GS). The two curves represent 
conditions with maximum shear deformation due to shear displacement and with no shear 
deformation.  The total shear strain capacity is 5.0, as discussed in Section F.5.1 for 
Method B.  The figure shows the combinations of axial stress/GS and rotation per layer 
that are permissible under Method B.  The axial stress and rotation may contain any 
combination of static and cyclic components, but the coordinate axes represent the total, 
including the cyclic amplification factor. 

The figure also shows a vertical line at the minimum rotation angle for which the bearing 
should be designed.  Within the range of rotation shown, the stress is controlled by the 
requirement that the axial load must cause a shear strain no greater than 3.0.  This leads 
to an allowable stress of 2.15GS, regardless of simultaneous shear deformations.  
Constraints related to rotation are therefore not active at the design rotation.  Continued 
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use of the present Method A limit of 1.0 GS thus seems very feasible.  However, the 
result is sensitive to the shape factor, the aspect ratio and the number of layers, because 
these strongly affect the shear strain due to rotation.  Those parameters are explored next. 
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Figure F.43.  Axial Stress – Rotation Interaction Diagram.  9” x 22” Bearing, 4 Layers at 0.5”. 

 

To illustrate this point, Figure F.44 shows the interaction diagram for a bearing that has 
the same effective area (190.3 in2) and the same layer thickness (0.5in.), but is square 
(14.05” x 14.05”).  The change in aspect ratio changes the shape factor slightly, from 
6.24 to 6.90.  Now the allowable axial stress is a function of the rotation over at least part 
of the range, and in particular at the design rotation. The shear deformation also reduces 
the allowable stress.  At the design rotation (0.0067 radians per layer in this case) the 
allowable axial stress is 2.26 GS with shear and 1.85 GS, without.  The existing limit of 
1.0 GS is still safe, but with less spare capacity than before.  The reason is that the square 
bearing is less able to accommodate the rotations, so less of its total capacity is available 
for resisting axial load. 

To demonstrate the effect of thinner layers and a higher shape factor, Figure F.45 shows 
the same bearing but with the layer thickness reduced to 3/8”.  To keep the same total 
rubber thickness, four layers are used.  The normalized stress, σa/GS, drops again to 1.30 
and 1.70 with and without shear deformations.  The shape factor increases thanks to the 
thinner layers, which partly compensates for the lower normalized stress, but the absolute 
allowable stress still decreases.  A normalized stress of 1.0 GS is still feasible. 
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Figure F.44.  Axial Stress – Rotation Interaction Diagram.  14.05” x 14.05” Bearing, 3 Layers at 0.5”. 
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Figure F.45.  Axial Stress – Rotation Interaction Diagram.  14.05” x 14.05”, 4 Layers at 0.375”. 
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The foregoing arguments show that the allowable axial stress is a function of bearing 
shape and shape factor and number of layers.  Several approaches therefore appear 
feasible: 

• Use an allowable axial stress that is low enough to accommodate all likely shape 
factors and numbers of layers. 

• Use an equation for allowable stress that is a function of shape factor and number 
of layers. 

• Use a fixed allowable stress, but limit the circumstances under which Method A 
may be used. 

The first option was ruled out because the allowable stress would have to be substantially 
lower than the one in the present Method A.  The second option represents essentially 
what is done in Method B, so there seemed to be little purpose in duplicating it.  Thus the 
third option was adopted here.   

The use of Method A was therefore chosen to be contingent on some restriction related to 
shape factor, number of layers, and applied rotation.  Manipulation of the Method B 
equations shows that the quotient S2/n, where n is the number of internal layers, provides 
a suitable control.    This is illustrated in Figure F.46, which shows the maximum 
possible stress at the design rotation as a function of S2/n.  As S increases, or as n 
diminishes, the quotient S2/n increases.  Then, the shear strains caused by rotation 
increase, leaving less of the capacity available for resisting axial load.   
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Figure F.46  Allowable normalized axial stress as a function of S2/n. 
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Curves are shown for: a constant number of layers (n = 3) but different layer thicknesses; 
a constant layer thickness (hri = 0.5in.) but different numbers of layers; and three different 
total rubber thicknesses (1.5, 3 and 6 in.), for which both the layer thickness and number 
of layers were changed in such a way as to keep the total rubber thickness constant.   If 
the curves for the two thicker bearings are ignored, the data lie essentially on a single 
line, suggesting that the term S2/n is a valid one for limiting the use of Method A. 

The value of S2/n remains to be selected as the limit for use of Method A.   Figure F.47  
was prepared to help make the decision. It shows the absolute axial stress as a function of 
S2/n, for various numbers of layers, n, and was derived by fitting a straight line to the data 
from the first three curves in Figure F.46.  Because the data in Figure F.46 are also 
subject to the limit of axial stress < 2.4 GS, imposed by the limit on shear strain due to 
axial load alone, the data for of S2/n less than about 10 should be ignored. Figure F.47 
shows that the allowable stress rises and then falls, with a peak in the middle.  This can 
be explained physically.  At very low S, the axial stress capacity is severely limited by 
the low shape factor, because even a modest axial stress creates very large shear strains.  
At high S2/n, the rotation cause high shear strains, leaving little remaining capacity for 
carrying axial load. The peak in the central region represents a balanced design in which 
axial load and rotation each causes some shear strain, but neither completely dominates.  
The peak occurs at an S2/n ≈ 11. 
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Figure F.47  Allowable axial stress as a function of S2/n. 

 

This result suggests that S2/n < 11 would be an appropriate limit for a Method A design 
procedure that effectively ignores rotation.  If axial stress were the only consideration, 
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this would indeed be true.  For a given number of layers, S will be bounded by the limit 
S2/n < cS, where cS is the chosen limiting value of S2/n, e.g. 11.  However, bearing 
designers tend to use standard layer thicknesses, and manufacturers also favor them in the 
interests of simplicity.  If the layer thickness is also pre-selected, a given S leads to a 
unique bearing size.  Thus the stress (as shown in Figure F.47) and the plan area of the 
bearing are both limited, so the axial capacity of the bearing, which is the product of the 
two, is also limited.  Results for four example n and hri values are shown in Figure F.48.  
The allowable axial load in all cases peaks at S2/n < 20.  (This was found to be true for 
any n or hri).  Thus, even though the highest stress is achieved by using cS = 11, the 
highest axial load on the bearing can be achieved with cS = 20.  This is true because the 
higher cS limit leads to a larger bearing.  Even though the normalized stress, σa/GS, is 
lower, the larger size more than compensates for it, up to S2/n = 20. 

In Figure F.48, the load capacity of the bearing increases significantly with the number of 
layers.  This occurs because, for a given S2/n, larger n leads to a larger S, which, for a 
given layer thickness, leads to both a larger S and a larger bearing. 
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Figure F.48  Allowable axial load as a function of S2/n 

 

The rational choices for cS thus lie between 11 and 20.  Use of a small value (e.g. 11) 
would mean that either the number of layers would have to be large, which might be 
undesirable on the grounds of both economy and available space.  Use of a large value 
(e.g. 20) reduces the stress that can be used, as shown in Figure F.46, but increases the 
allowable plan dimensions for a given layer thickness.  That might also prove not to be 
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the most economical approach.  Consequently, it is proposed here that use of Method A 
should be permitted only for bearings for which  

16
2

≤
n

S  (F-86) 

This limit of 16 lies in the middle of the plausible range.   

To verify that this limit and the corresponding stresses are appropriate, some specific 
bearings were checked. For example, for the bearing of Figure F.44, which is 14.05 in. by 
14.05 in., and has 3 layers each 0.50 in. thick, the quotient S2/n is 15.9.  If the same 
bearing were constructed using 12 layers of ¼” rubber, S2/n would still be 15.9 and the 
normalized allowable stress would also still be 1.85 GS and 2.26 GS with and without 
shear.  (This is very nearly, but not exactly true.  The higher shape factor increases λ, 
which changes the shear strain coefficients Da and Dr slightly.  Apart from that very 
small difference, the results are identical). However, the absolute allowable stress would 
be higher in the 12-layer bearing, because S would be higher.  Both bearings could 
accommodate the axial load and rotation. 

To illustrate further the effect of aspect ratio, Figure (F.49) shows the effect of keeping 
the layer thickness and effective plan area the same, but changing the L/W ratio.  An L/W 
ratio greater than 1.0 indicates that rotation is imposed about the strong axis, and vice 
versa.  In all cases the effective plan area was 190.3 in2 (based on gross dimensions of 9” 
x 22”) and the layer thickness was 0.5”.   
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Figure F.49  Interaction Diagram: Effect of Aspect Ratio.  (n = 3, hri = 0.5” for all). 
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The results show that the rotation effects detract less from the axial load capacity in 
bearings that are long and narrow, rotated about their weak axes (shown by the lines with 
solid symbols). By contrast, the reduction in allowable axial stress for a bearing rotated 
about its strong axis is large. This is not surprising.  However, it provides the basis for a 
second restriction on the use of Method A, namely that rotation should occur about the 
minor axis of the bearing.  This way of expressing the restriction has the virtue of 
simplicity, but it becomes open to question on bridges with heavy skew angles, in which 
rotation occurs about both axes.  In order to avoid unwieldy rules, it is proposed simply 
that Method A be permissible if the primary rotation occurs about the weak axis of the 
bearing.  In cases of doubt, the designer should use Method B. 

The minimum rotation implicit in Method A clearly affects the permissible axial stress, 
because movement along the horizontal axis of the vertical line representing θmin implies 
a change in allowable stress.  The foregoing calculations used an (amplified) rotation of 
0.02 radians. It was made up of 

     Radians 

Allowance for uncertainty:  0.0100  

Thermal camber:   0.0015 

Traffic: 2.0*0.004 =    0.0080 

Total     0.0195 

 

The 0.0195 was then rounded to 0.02 radians.  In each case shown in Figure F.43 through 
Figure F.49the total rotation of 0.02 radians was then divided by n to give the rotation per 
layer, θL, on the horizontal axis. The S2/n values in Figure F-49 are 9.98, 14.04 and 15.86 
for aspect ratios 0.25, 0.50 and 1.0 respectively. 

The rotation of 0.02 radians is relatively conservative, but this is appropriate for a design 
method that is intended to be simple and ignores rotation.  In particular, the allowance for 
uncertainty, which is given as 0.005 radians in the present AASHTO Specifications, is 
taken as 0.01 radians here.  The reason is that, first, 0.005 radians is a very small angle, 
and it is not clear that it will be achieved on a regular basis on site.  To give an idea of its 
magnitude, it corresponds to a movement from center of about one tenth of the bubble 
length in a carpenter’s level.  Second, it is likely that smaller bearings, such as might be 
designed using Method A, will be installed to a lower level of accuracy, simply because 
the errors in level are harder to see.  Third, no check is required for construction 
conditions, when large girder cambers and correspondingly large rotations might exist, 
albeit in combination with relatively light axial loads.  (See for instance, Design Example 
3 in the main body of the report). For these reasons, the foregoing assumptions are 
regarded as reasonable.  The traffic rotation is estimated at its worst-case value of 0.004 
radians (Equation (F-78)), as is appropriate if no other control exists on it. 

The question of determining a value for the allowable stress remains.  In the existing 
AASHTO Specifications Method A, the stress may not exceed 1.0 GS or 1.0 ksi in the 
presence of shear deformations.  However these limits refer to loads and rotations to 
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which no cyclic amplification factor has been applied.  A choice must be made over the 
use of an amplification factor.  If Method A were to be changed to include a cyclic 
amplification factor, then either all the bearing types allowed under those rules would 
have to be changed, or the design method for steel-reinforced bearings would be 
inconsistent with the others. The other possibility would be to not use an amplification 
factor, but then Method A would be inconsistent with Method B.   

The second option is the course of action proposed here, on the basis that it is preferable 
to maintain consistency within Method A, at the expense of external inconsistency with 
Method B.  Furthermore, no information was gathered during the research program about 
cyclic behavior of other bearing types that are presently allowed under Method A, so a 
basis for changing them is lacking.  Thus the total shear strain capacity, which in Method 
B applies to amplified loadings, must be suitably reduced to apply to non-amplified 
loadings in Method A.  This cannot be done exactly, because different bearings 
experience different ratios of static and cyclic loading.  However, bounds can be obtained 
based on maximum and minimum likely ratios of live to dead load. 

The Live Load/Dead Load ratio of a bridge lies between about 0.5 (for medium spans) 
and 1.0 (for short spans).  Recall that the cyclic amplification factor in Method B for 
cyclic loading is 2.0.  Therefore, the axial stress limit for a non amplified load should lie 
between 2/3 (for a short bridge) and ¾ (for a medium span bridge) of the limiting stress 
for amplified loading.  If the average of these values is taken, the non-amplified stress 
limit should be 71% of the amplified one.  For S2/n = 16, the amplified axial stress limit 
(in the absence of shear displacements) is 1.85GS, so the non-amplified equivalent is 
0.71* 1.85GS = 1.31GS.  It varies slightly with G, because that affects the compressibility 
index, λ.  It is therefore taken here as 1.25GS, which is 25% higher than the present 
Method A limit. A corresponding 25% increase, to 1.25 ksi, is also proposed in the 
absolute stress limit. 

Last, in order to avoid the complication of hydrostatic tension, Method A should not be 
permitted for bearings with external plates. 
It is possible that external plates may be used as the base for a PTFE slider on top of the 
bearing. It may then be argued that hydrostatic tension is not possible because the 
stainless steel plate will lift off from the PTFE if the rotation becomes large, thereby 
protecting the elastomer. This may be true in some cases, but not all. For example, if a 
relatively large PTFE slider is used for the purpose of avoiding such lift-off, which might 
in turn lead to edge loading of the PTFE and possible gouging of the stainless steel, then 
the desired protection for the elastomer will not be available.  Method B should be used 
for such bearings so that the rotation is accounted for properly.  

In summary, Method A consists of limiting the axial stress to the smaller of 1.25 ksi and 
1.25 GS, with a 10% increase permissible if shear displacements are prevented. However, 
the method may not be used if one or more of the following is true: 

• S2/n > 16 
• Primary rotation is about the strong axis. 
• External plates are bonded to the bearing. 
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Many states use a 9” x 22” bearing, with three internal layers of ½” rubber, under 
prestressed concrete girders.   Such a bearing has effective dimensions of 8.75” x 21.75”, 
and Seff = 6.24.  It has S2/n = 13.0, and so may be designed by Method A. If G = 110 psi 
(about 50 durometer), GS = 687 psi, and this limit, rather than the 1250 psi absolute limit 
controls.  The rated axial capacity of the bearing under Method A would be 131 kips.  
The rated axial capacity could be increased by adding more layers or using a stiffer 
elastomer.   

To reach the axial stress limit of 1250 psi, and the corresponding largest possible load 
under Method A of 238 kips, GS must be greater than 1000 psi.  For G = 110 psi, S must 
then be increased to 9.1, for which hri = 0.343”.  To still qualify for the Method A design 
procedure, the number of layers must be increased to S2/16, or 5.16, rounded to 6.  The 
total elastomer thickness is therefore 2.058”.   

The bearing can therefore be designed for a wide range of conditions using Method A, as 
is desirable.   The Method A design uses slightly more rubber and steel than would be 
necessary under Method B, but, design under Method A is still perfectly feasible.  This 
result simply demonstrates the fact that methods A and B represent two different points 
along the curve of design simplicity vs. bearing efficiency.  It should not be surprising to 
find that a more precise design method (Method B) leads to a more efficient product. 

F.5.3 Discussion of Methods A and B. 
Until recently the AASHTO Specifications linked the use of Method B to additional, 
more rigorous, testing. That testing costs time and money, so it acted as a disincentive to 
designers to use Method B.  That in turn discouraged the use of high shape factors, 
because the present Method A is subject to limits of both 1.0 ksi and 1.0GS (in the 
presence of shear displacements).  A high shape factor bearing would be limited by the 
absolute stress limit of 1.0 ksi and the potential load capacity of the high shape factor 
could not be realized.   

However, the tests conducted for this research showed that bearings with high shape 
factors behaved exceptionally well and that encouraging their use would be beneficial.  
The recent elimination of the long term test encourages use of Method B and the 
proposed removal of the existing absolute stress limits in Method B encourage high shape 
factors because, under those circumstances, the allowable stress under Method B 
becomes largely a function of GS.  A high S will then lead to a high allowable stress, 
provided that rotations are not excessive. 

The long-term test should not be eliminated lightly.  Previously, it was applied to 
bearings designed using Method B, partly because test data were not available on 
rotations, in which case some doubts remained over the methodology, and partly because  
Method B bearings were likely to be large, and manufacturing a large bearing is more 
difficult than making a small one.  For example, maintaining the correct shim spacing 
may become more difficult as the bearing becomes thicker, if it is achieved simply by 
monitoring the thickness of the layers as they are placed in the mold.  Ensuring the 
correct temperature distribution throughout the rubber is also more difficult as the 
bearing’s plan dimensions increase, because of the risk of over-curing the outer regions 
before the middle has cured enough.   
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The tests conducted for this research program provide a considerable data base of 
experimental evidence to support the design methodology, so the design issue is of less 
concern than it was.  But the difficulties of curing large bearings are still real, and it is 
proposed that the more rigorous testing be retained for use with large bearings rather than 
being dependent on the method by which they are designed.  Relating the need for 
additional testing to the size of the bearing is logical because, according to the existing 
provisions, a large bearing designed under Method A would not need additional testing, 
even though it may present considerable manufacturing challenges. That weakness would 
be rectified by this proposal. 

It is proposed that special testing be required for any bearing for which the thickness 
exceeds 8 inches or the plan area exceeds 1000 in2.  The designer is, of course, at liberty 
to impose the stricter testing requirements on smaller bearings.  The matter of testing is 
discussed in greater detail in Section 3.3 of the main report. 

  

F.6 Summary and Conclusions 
In this Appendix the issues of cyclic shear strain demand and capacity on the bearing 
have been addressed.  Sections F.6.1 through F.6.4 summarize the findings. 

F.6.1 Summary and Conclusions on Computation of Cyclic 
Shear Stress 

Bearing behavior is inherently nonlinear, but nonlinear theory is too complex to be 
acceptable for design.  However, the linear theory developed by Gent and Lindley 
(1959a) provides an approximate approach that is accurate and simple enough to be used 
in practice.  The numerical stiffness and stress coefficients for all bearing aspect ratios 
developed by Stanton and Lund (2004), based on Gent’s theory, provide the necessary 
numerical support for using the linear theory.  The nonlinear Finite Element studies 
described in Appendix E demonstrated that, at small strains, the errors introduced by 
using the linear approximations are acceptably small.  Exact correlation is not possible 
because the FEA included cover rubber to simulate the test results, whereas the linear 
theory ignores it.   

Previous editions of the AASHTO Specifications have contained bearing design 
provisions that prohibit any net upward movement of any point on the bearing relative to 
its unloaded position.  This has been a major source of frustration for designers, who 
have found that that provision controls when the load is light and the rotation is large, as 
may occur during construction.  It is proposed here that that restriction be eliminated.  
Doing so necessitates that protection be provided against the possibility of internal 
rupture through hydrostatic tension, which is mostly likely to occur when external plates 
are bonded to the bearing.  A computational method was developed for determining the 
hydrostatic tension stress in a bearing that is equipped with bonded external steel plates 
and that is subjected to light axial load and large rotations. This condition is referred to as 
“uplift”.   The calculation method forms part of the proposed specification provisions.  

Rupture is unlikely to occur in bearings from which the girder can experience partial lift-
off if there is no tension connection between the bearing and the sole plate.  In that case 



 - F-71 - 

the peak shear strains due to combined compression and rotation can be conservatively 
predicted using the linear theory while ignoring lift-off.  Furthermore, this approximation 
is likely to be needed only rarely, because lift-off during service loading was shown to be 
improbable for the magnitude of the service rotations expected in practice.  

F.6.2 Summary and Conclusions on Cyclic Shear Stress 
Capacity 

Cyclic shear strain capacity is controlled by debonding of the elastomer from the steel 
shim plates.  Cyclic rotation tests were conducted to investigate the initiation and 
propagation of debonding, and they are described in Appendices A and D.  Those test 
results were analyzed in this appendix and two models were developed to predict the 
relationship between applied loading and debonding.   

The Nonlinear Model provides a more detailed fit with the test data, because it is able to 
relate the debonding damage level to the number of cycles.  It has a rational form that 
ensures logical behavior as the various parameters, such as cycle count, tend to extreme 
values.  It is expressed in a form that is suitable for use in design, and was calibrated to fit 
the test data.  The fit was good, despite the wide variety of conditions represented by the 
test series. However, the resulting equations are quite complicated.  Problems also arose 
because the shear strains caused by cyclic axial loads were found to be much larger than 
the shear strains due to rotation.  During this research, no tests were conducted on cyclic 
axial load, so suitable data were not available for calibrating the model to account for it. 
To overcome this difficulty, the assumption was made that the same shear strain, whether 
caused by axial load or rotation, would contribute equally to debonding damage.  
However, use of this assumption led to predicted levels of debonding in common 
bearings used for freeway overpasses that are at odds with field experience.   No simple 
way could be found to overcome this drawback of the method. 

The second candidate design method, referred to as the Linear Model, is simpler but 
cannot be calibrated to the entire load history, because the cyclic amplification factor in it 
is a constant rather than a function of the number of cycles.  However, it fitted the major 
trends in the data, and it was able to predict very low levels of debonding in the typical 
field bearings.  Such bearings typically display very little or no debonding. 

The Linear Model is therefore recommended for implementation at this time.  However, 
the Nonlinear Model is described in full in this appendix so that, when suitable test data 
on cyclic axial load become available, they may be used to complete the calibration of the 
model. 

F.6.3 Summary and Conclusions on Cyclic Shear Stress 
Demand 

Rotation and axial force demands on the bearing were analyzed by considering truck and 
lane loading on a bridge.  Several parameters were varied to study the range of possible 
demands. 

It was found that the live load rotation demand on the bearing is always less than or equal 
to 0.004 radians and often less than 0.003 radians, provided that the bridge satisfies the 
AASHTO requirement that the mid-span deflection is less than l/800.  In many cases, 
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particularly when prestressed concrete girders are used, the deflection will be only one 
half or one third of that permissible value, and the rotation will also be correspondingly 
smaller.  Coefficients were developed to account for continuity, which reduces the end 
rotation still further.  The cyclic shear strains in the elastomer caused by these rotations, 
for a typical bearing design, are small compared with the elastomer’s capacity. 

By contrast, the shear strains caused by cyclic axial forces are significantly larger than 
those caused by cyclic rotations.  The ratio can be a factor of 5 or more, particularly if the 
girders are spaced quite widely.  If shear strain in the elastomer is indeed the best metric 
of debonding damage, then cyclic axial load effects are much more important than 
rotation for bearing design. 

Truck loading causes both axial load and rotation on the bearing. However, each of these 
two effects reaches its individual maximum when the truck is in a different location on 
the bridge.  Therefore it is necessary to find the truck location that causes the largest 
combined effect.  That value depends to some extent on the geometry of the bearing 
selected, but, for common bridges (with spans less than about 200 ft), the critical 
condition occurs when the truck is just entering the bridge, with the rear axle over the 
bearings.  (The values obtained when the truck is just leaving the bridge were found to be 
only slightly smaller).  Unless the conditions are unusual, the combination of rotation 
angle and axial load that correspond to that truck location will be the critical one. 

F.6.4 Summary and Conclusions on Model Evaluation 
Two possible design approaches are possible.  In the first, the Nonlinear Model could be 
implemented, with the proviso that the fatigue effects of cyclic shear strain due to axial 
load effects would be ignored, and it would simply be treated as a static loading.  Cyclic 
shear strain due to rotation would be evaluated according to the model developed from 
the test results.  This would cause the predicted debonding levels to agree with field 
experience on common bearings, which is dominated by cyclic axial effects, and with the 
test data, which was dominated by cyclic rotation.  However it would be illogical because 
it would treat the two sources of cyclic shear strains differently. 

In the second approach, the Linear Model could be implemented.  The restrictions on lift-
off in the present specifications would be removed, but new restrictions on uplift would 
be included to prevent the damage by internal hydrostatic stress that could occur in 
bearings with external plates.  

Because of the relative simplicity of the Linear Model, and the fact that it both fits the 
test data and provides reasonable predictions for a common class of bearings used in 
practice, it is recommended for implementation at this time.  The proposed Specification 
provisions in Appendix G are based on it. No specification provisions based on the 
Nonlinear Model are presented. 

The proposed specification provisions contain both design Methods A and B.  Method B 
was built on the Linear Model for strain capacity, and Method A was derived from it.  
Because Method A ignores rotations, restrictions were developed to prevent it from being 
used under circumstances when rotation effects are especially important.  Those 
restrictions unavoidably and correctly penalize the use of high shape factors.  It is 
therefore appropriate to encourage the use of Method B, which is not only much simpler 
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to use than the existing version but also provides an incentive to use higher shape factors 
where appropriate.   

The more rigorous testing requirements that were formerly associated with Method B 
designs have recently been eliminated by the AASHTO T-2 Committee. In order to guard 
against failure caused by the difficulties of fabricating large bearings, it is proposed that 
large bearings should be tested using the more rigorous test procedures that used to be 
applicable to Method B bearings.   
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