NCHRP 12-68

FY 2004

Rotational Limits for Elastomeric Bearings

Final Report

Appendix I

John F. Stanton

Charles W. Roeder Peter Mackenzie-Helnwein

Department of Civil and Environmental Engineering University of Washington Seattle, WA 98195-2700 TABLE OF CONTENTS

APPENDIX I NOTATION

I-1

APPENDIX I Notation

a	= dimensionless coefficient in fatigue model
A	= area of the bearing $= WL$
A_a	= dimensionless coefficient in axial stiffness
A_{az}	= dimensionless coefficient in axial stiffness = A_a (App. E)
a_{ij}	= dimensionless coefficient in FEA error analysis
A _{net}	= plan area of bearing based on net dimensions
AR	= aspect ratio = the smaller of L/W and W/L .
A_r	= dimensionless coefficient in rotational stiffness
A_{ry}	= dimensionless coefficient in rotational stiffness = A_r (App. E)
b	= dimensionless coefficient in fatigue model
B_a	= dimensionless coefficient in axial stiffness
B_{az}	= dimensionless coefficient in axial stiffness (App. E)
B_r	= dimensionless coefficient in rotational stiffness for compressible layers
B_{r0}	= dimensionless coefficient in rotational stiffness for incompressible layers
B_{ry}	= dimensionless coefficient in rotational stiffness = B_r
С	= Right Cauchy-Green strain tensor
C ₁₀ , C ₂₀ , C ₃₀	= Material parameters for Yeoh's model
C_a	= dimensionless coefficient in shear strain due to axial load
C_{azzx}	= dimensionless coefficient in shear strain due to axial load = C_a (App. E)
C_n	= dimensionless coefficient in fatigue model
C_r	= dimensionless coefficient in shear strain due to rotational
C_{ryzx}	= dimensionless coefficient in shear strain due to rotational = C_r (App. E)
C_S	= limiting permissible of S^2/n for Method A design
C_{σ}	= dimensionless stress coefficient (lift-off equations)
D	= debonding level
D	= diameter of the bearing (App. G)
D_a	= dimensionless shear strain coefficient for axial load
D_r	= dimensionless shear strain coefficient for rotation
e	= Euler's constant (basis of Napieran logarithm)

Е	= Green-Lagrange strain tensor
Ε	= Young's modulus
E_{az}	= apparent Young's modulus for axial loading
E_{ry}	= apparent Young's modulus for rotational loading
F_r	= dimensionless coefficient for rotation (uplift equations)
G	= shear modulus
<i>g</i> ₀ , <i>g</i> ₁	= dimensionless coefficients in fatigue model
H_a	= dimensionless coefficient for axial load (uplift equations)
H_r	= dimensionless coefficient for rotation (uplift equations)
h _{ri}	= thickness of i^{th} interior layer of elastomer
h _{rt}	= total thickness of all interior layers of elastomer
Ι	= moment of inertia (second moment of area)
Κ	= bulk modulus
Ka	= total axial stiffness
K _r	= total rotational stiffness
L	= length of bearing based on gross dimensions (= plan dimension of the bearing perpendicular to the axis of rotation under consideration)
l	= span of a girder
L _{net}	= net length of bearing (average of gross and shim dimensions)
Μ	= moment on bearing
т	= exponent in fatigue model
Ν	= number of cycles
n	= number of interior layers of elastomer
N _{cr}	= characteristic number of cycles
p	= force per unit length
Р	= total axial force
P_{sd}	= minimum vertical force due to permanent loads
S	= 2 nd Piola-Kirchhoff stress tensor
S	= shape factor
S_i	= shape factor of instantaneous compressed region (lift-off equations)
t	= thickness of elastomeric layer
W	= gross width of elastomeric layer (= plan dimension of the bearing parallel to the axis of rotation under consideration)

W _{net}	= net width of elastomeric layer (average of gross and shim dimensions)
<i>x</i> , <i>y</i> , <i>z</i>	= coordinates in Cartesian system
Δ_a	= axial deflection
Δ_s	= maximum total shear displacement of the bearing at the service limit state.
$I_{l}, ({I_{l}}^{*})$	= first invariant of \mathbf{C} (specialized for uniaxial tension)
α	= dimensionless load combination parameter = $\varepsilon_a / S \theta_L$
δ_{bottom}	= vertical displacement of bottom shim
δ_{top}	= vertical displacement of top shim
\mathcal{E}_a	= average axial strain for bearing under axial load
E _{ai}	= axial strain at the middle of the instantaneous compressed region (lift-off equations)
\mathcal{E}_{az}	= average axial strain = ε_a
\mathcal{E}_{ZZ}	= local vertical normal strain in rubber layer
Ya	= shear strain in z - x plane due to axial loading
Ϋ́a,cy	= cyclic portion of shear strain in z - x plane due to axial loading
Ya,max	= absolute maximum shear strain in z - x plane due to axial loading
Ya,st	= static portion of shear strain in z - x plane due to axial loading
Ycap	= shear strain capacity
γr	= shear strain in z - x plane due to rotation loading
γ́r,cy	= cyclic portion of shear strain in z - x plane due to rotation loading
γr,max	= absolute maximum shear strain in z - x plane due to rotation loading
γr,st	= static portion of shear strain in z - x plane due to rotation loading
Yr0	= shear strain constant in fatigue model
γ_s	= shear strain in z - x plane due to shear displacement
γs,cy	= cyclic portion of shear strain in z - x plane due to shear displacement
$\gamma_{s,st}$	= static portion of shear strain in z - x plane due to shear displacement
Ytot,max	= maximum total shear strain in z - x plane
γ_{zx}	= local shear strain in z - x plane
η	= relative length of the instantaneous compressed region (lift-off equations)
λ	= compressibility index = $S\sqrt{3G/K}$

$\lambda_{I_{1}}$ $\lambda_{2_{1}}$ λ_{3}	= principal stretches (App. E)
θ	= end rotation of a girder (rotation demand on bearing)
$ heta_c$	= characteristic rotation for which the vertical displacement on the "tension" side becomes net upwards
$ heta_i$	= rotation of the i^{th} layer of elastomer
$ heta_L$	= rotation per layer
θ_x , θ_y	= rotation of whole bearing about x or y axis
ρ	= dimensionless rotation ratio (lift-off equations)
σ_{a}	= average axial stress
σ_{a0}	= fictitious average axial stress for entire bearing surface (lift-off equations)
σ_{hyd}	= hydrostatic stress (mean direct stress)
$\sigma_{rupture}$	= (hydrostatic) rupture strength of rubber
σ_{zz}	= local vertical normal stress in rubber layer
$ au_{zx}$	= local shear stress in z - x plane
ξ	= dimensionless position parameter = $2x/L$