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EXECUTIVE SUMMARY 
 
Raveling is one of the most common asphalt pavement distresses that occur on U.S. highway pavements.  Raveling 
will increase pavement roughness, which results in poor ride quality and road and tire noise.  Besides safety 
concerns, such as loose stones that may break windshield glass and can cause hydroplaning, raveling will also 
shorten pavement longevity.  Thus, a raveling condition survey is required for highway agencies to determine the 
severity levels, the extents, and the locations of raveling so the preservation or rehabilitation treatments can be 
appropriately applied.  However, the traditional raveling survey method, including determination of the raveling 
severity level (e.g., Low, Moderate, or High; or Severity Level 1, 2, or 3), extent, and location is a visual inspection 
that is time consuming, subjective, and hazardous to highway workers.  Thus, there is an urgent need for developing 
an automatic survey method.  Although some algorithms have been developed to detect and classify raveling, they 
are still at the very early research stage and the outcomes were often not acceptable. In addition, they have not been 
thoroughly validated using large-scale, real-world data. Therefore, it has been difficult for transportation agencies to 
implement any of such algorithms. To address the problems in existing raveling detection and classification methods, 
the objective of this study is to develop successful and effective raveling detection, classification, and measurement 
algorithms using three-dimensional (3D) pavement data and macro-texture analysis, and to comprehensively validate 
these methods using large-scale, real-world data. The developed algorithms, using 3D pavement data and the 
accompanying two-dimensional (2D) intensity data, include the following five components: 

• Data pre-processing to remove data outliers, detect pavement markings and edge drop-off, and extract the 
candidate pavement portion for raveling detection;  

• Computation of each subsection with the newly developed feature set for raveling analysis.  Each 3D 
pavement data file covers a 5-m pavement section that is divided into six subsections;  

• Raveling classification using Random Forest models, a supervised leaning technique with the known 
raveling classification as the learning samples;  

• Post-processing to smooth isolated subsections in the six subsection-based raveling classification outcomes 
for determining the raveling severity level; and 

• Aggregation of the detection outcomes to segment-level raveling measurement (e.g., normally 1 mile long), 
and report the raveling condition, including percentage and severity level, at the segment level based on 
highway agencies’ survey practices. 

Without loss of generality, the developed algorithms have been tested and validated using the pavement 
condition survey protocol in the Georgia Department of Transportation (GDOT). The algorithms can be extended to 
other highway agencies’ pavement condition survey protocols by re-training the classification components using 
corresponding ground truth data. The algorithms were comprehensively tested and validated on I-85 and I-285 near 
Atlanta, Georgia. The 3D pavement data were collected on four test sections on I-85 (each of which is 1 mile long) 
and on the entire outer lane of asphalt pavement (61 miles) on I-285 for validation and testing. The testing results on 
I-85 showed that the developed algorithms are very promising for GDOT’s use. The automatic classification results 
on each of the test sections were compared with the ground truth (the ones carefully measured by GDOT pavement 
experts).  The predominant severity levels (Severity Level 1, 2, or 3) for Test Sections #1 and #2 are correctly 
classified.  For Test Sections #3 and #4, there is, essentially, no raveling, and the classification errors are 0.93% and 
0.31%.  The testing on I-285 showed promising results for automatic raveling detection, classification, and 
measurement.  All the pavements (with or without raveling) were 100% correctly detected and classified at the 
segment level (each segment is 1mile long).  Because of the difficulty of correctly rating all the raveling areas using 
videolog images and 3D pavement data and the impact of cracking and flat-tire scratches, the raveling extent 
(percentage) showed a certain level of variation in comparison with the manually labeled ground truth.  The 
differences between the surveyed results by the experienced GDOT pavement engineers and the automatically 
detected and measured results are less than 15%, and most of them are less than 10%.  
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In summary, the proposed algorithms have demonstrated promising capabilities to automatically detect and 
measure asphalt pavement raveling.  Using the proposed algorithms will, potentially, save tremendous amounts of 
manual effort in field surveys, improve data accuracy, and help highway agencies make more informed decisions on 
pavement maintenance and rehabilitation.  The developed algorithms are based on 3D pavement data that had been 
already collected (in this case, for automatic rutting and cracking data collection).  Thus, using the same data 
collected for extracting other types of distresses will save great amounts of time and money by eliminating the need 
to make additional effort for data collections. The research outcome of this study will have a significant impact on 
state transportation agencies and industry by reducing the time and money spent on collecting asphalt pavement 
raveling data. 
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1 IDEA PRODUCT 
 
The product of this IDEA concept exploration research project includes the algorithms developed to automatically 
detect, classify, and measure asphalt pavement raveling using three-dimensional (3D) pavement data obtained from 
3D line laser imaging technology (for brevity, 3D laser technology). The proposed method includes five major 
components: (1) data pre-processing to remove data outliers, detect pavement markings and edge drop-off, and 
extract the candidate pavement portion for raveling detection; (2) computation of each subsection with feature set for 
raveling analysis; each 3D pavement data file covers a 5-m pavement section that is divided into six subsections; (3) 
raveling classification using Random Forest models, a supervised leaning technique with the known raveling 
classification as the learning samples; (4) post-processing to aggregate the six subsection-based raveling 
classification outcomes for determining the raveling severity level; and (5) aggregation of the detection outcomes to 
measure and report the raveling condition, including percentage and severity level, at the segment level based on 
highway agencies’ survey practices; normally, a segment level is 1mile long. 

The proposed algorithms were developed and validated using the raveling severity levels defined by the 
pavement condition survey protocol used by the Georgia Department of Transportation (GDOT) and can be extended 
to other state DOTs’ protocols by re-training the classification components using corresponding ground truth data.  
The proposed algorithms were built based on the commonly used 3D pavement data that had already been collected 
(in this case, for automatic rutting and cracking data collection).  Using common, already-collected data for raveling 
detection could save great amounts of time and money by eliminating or reducing the need for separate field data 
collections.  The research outcome of this study has a significant impact on state transportation agencies and 
industry in that it can reduce time and money spent on collecting asphalt pavement raveling data. 
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2 CONCEPT AND INNOVATION 
 
Raveling is defined as the “wearing away of the pavement surface caused by the dislodging of aggregate particles and 
loss of asphalt binder” in the distress identification manual for the long-term pavement performance (LTPP) program 
(FHWA 2014), and it is one of the most common asphalt pavement distresses that occur on U.S. highways.  Figure 
1 shows that raveling can occur on interstate highways and non-interstate roads.  Raveling will increase pavement 
roughness, which results in poor ride quality and road and tire noise.  Besides safety concerns, including loose 
stones that can break windshield glass and cause hydroplaning, raveling will shorten pavement longevity.  For 
example, interstate highway I-285 in Atlanta, Georgia, has experienced severe raveling issues.  Internationally, 
practitioners from the Netherlands and the United Kingdom (UK) found that for porous pavements paved on the 
Dutch trunk network (70% were paved with porous asphalt) or the hot rolled asphalt (HRA) wearing course paved on 
UK motorways, raveling is the predominant distress.  If the raveled asphalt pavement is not sealed on time, the 
raveling problem could develop quickly.  Roadway surface layers should be replaced quickly after the first 
observation of raveling (Miradi 2004).  Thus, it is very crucial to identify raveling and treat it at its very early stage 
using low-cost, surface coating methods.  Otherwise, much more expensive corrective treatments will be needed, 
which would seriously deplete highway agencies’ already limited budgets.  

 
FIGURE 1  Raveling on interstate highway and non-interstate road. 

 
Although it is crucial to identify and treat raveling in its early stage, the commonly used manual survey method 

has hindered the early discovery of pavement raveling for the following reasons: (1) the manual survey process is 
very time-consuming, and it is impractical for highway agencies to conduct a full-coverage survey; (2) the survey 
protocol is very subjective, and survey results vary from rater to rater; (3) for high-traffic volume interstate highways, 
a raveling survey is often omitted by highway agencies due to the high demand of traffic control; and (4) a 
digital-image-based survey is unreliable because raveling is the change of pavement surface texture, and its 
appearance is susceptible to ambient lighting conditions.  Although there are algorithms developed to automatically 
detect and classify raveling, they have not been thoroughly validated using the large-scale, real-world data.  Thus, it 
is still difficult for transportation agencies to implement any of these algorithms.  Therefore, there is an urgent need 
to develop objective, reliable algorithms for automatic pavement raveling detection, classification, and measurement.  

The innovation of the proposed algorithms lies in the following two aspects:   
1) Past studies using point-based laser profilers for pavement surface data collection cannot cover the 

pavement condition on the full lane; therefore, they were not reliable enough. The emerging 3D laser 
technology can reliably capture 3D pavement surface texture data with full lane coverage.  This has 
brought new opportunities for developing more accurate and reliable algorithms for automatic pavement 
condition surveys.  Though some raveling detection algorithms using 3D pavement data have been 
developed in academia [e.g., Mathavan et al. (2014)] and by industry (e.g., LCMS), they have not been fully 



7 

validated using a large-scale data set.  In addition, these algorithms only dealt with raveling detection; 
raveling classification was not included, which should be based on highway agency protocols (e.g., raveling 
severity levels).  Some other algorithms were developed to classify raveling.  However, in those studies 
point-based laser profiles were used and only mean profile depth (MPD) or root mean square texture 
(RMST) was used for correlation.  To the best of our knowledge, we are the first to develop comprehensive 
algorithms for both raveling detection and classification using 3D pavement data and also comprehensively 
test and validate the developed algorithms using a highway agency’s protocol and real-world, large-scale 
dataset.  In this research, the 3D pavement data were captured by highly precise and dense 3D laser 
systems that can capture continuous pavement transverse profiles at highway speed with 1 mm transverse 
resolution and 5 mm longitudinal resolution (driving direction).  The depth precision is about 0.5 mm.  
Sponsored by the U.S. Department of Transportation Office of the Assistant Secretary for Research and 
Technology (USDOT/OST-R), the Principal Investigator and his research team (Tsai and Li 2012; Tsai et al. 
2015) have used the full-lane-coverage 3D pavement data to improve the detection and measurement of 
pavement cracking and rutting.  A sensing van has been developed and is now being used at Georgia Tech; 
the van is equipped with a high-definition line laser imaging device that was used to capture 3D pavement 
surface macrotexture data in support of automatic raveling detection and classification.   

2) A set of comprehensive algorithms based on Random Forest, a supervised machine learning technique, was 
developed for raveling detection and classification.  To the best of our knowledge, we are the first to 
develop both raveling detection and classification algorithms based on 3D pavement data and a highway 
agency’s raveling survey protocol.  The developed algorithms include five components: 

• Data pre-processing to remove data outliers, detect pavement markings and edge drop-off, and 
extract the candidate pavement portion for raveling detection;  

• Computation of each subsection with the newly developed feature set for raveling analysis.  Each 
3D pavement data file covers a 5-m pavement section that is divided into 6 subsections;  

• Raveling classification using Random Forest models, a supervised leaning technique with the 
known raveling classification as the learning samples;  

• Post-processing to smooth insolated subsections in the six subsection-based raveling classification 
outcomes for determining the raveling severity level; and 

• Aggregation of the detection outcomes to segment-level raveling measurement (e.g., normally 1 
mile long), and report the raveling condition, including percentage and severity level, at the 
segment level based on highway agencies’ survey practices. 

Without loss of generality, the developed algorithms have been tested and validated using the pavement 
condition survey protocol in GDOT. The detected and classified raveling data can be the direct input to GDOT’s 
pavement condition survey database, and used by its pavement management system. 
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3 INVESTIGATION 
 
This section is organized into four subsections. The first subsection reviews the current practices of highway agencies 
for asphalt pavement raveling surveys; the second subsection reviews the state-of-the-art of algorithms for automatic 
raveling detection and classification; the third subsection presents the developed raveling detection and classification 
algorithms; and the last subsection presents case studies for algorithm testing and validation. 
 

3.1 REVIEW OF CURRENT PRACTICE ON ASPHALT PAVEMENT RAVELING SURVEY 

Because raveling is one of the most common asphalt pavement distresses, raveling data are collected by highway 
agencies for evaluating pavement conditions and determining proper treatments.  Though raveling is defined in 
almost the same way by different highway agencies, rating methods of its severity levels and extents change from 
agency to agency.  This subsection reviews the current practice in different agencies and summarizes the challenges 
and needs for improvement.   
  

3.1.1 Raveling Definition 

In the asphalt pavement condition survey manual used by GDOT, raveling is defined as the progressive disintegration 
of the surface layer (GDOT 2007).  It is characterized by the loss of stones constituting the layer, which happens 
over time when the surface binder is eroded by friction from tires or when the pavement is damaged by an accident.  
It ranges from the loss of a few stones to the loss of an entire portion of the surface layer.  Once the surface loses a 
few stones, adjacent stones break loose because they have no more support.  Stones are then lost exponentially until 
the surface layer has disappeared and the lower layer lies bare.  Raveling usually occurs in the wheel path and 
should not be confused with other types of distresses, such as cracks or potholes.  Similar definitions can also be 
found in USDOT’s distress identification manual (FHWA 2003) and manuals from other state DOTs (NYSDOT 
2000; ODOT 2010). 
 

3.1.2 Raveling Classification and Survey Practice 

In highway agencies’ practices, raveling is classified based on its severity, which is typically a qualitative definition.  
This can further be used for rating the overall pavement conditions and facilitate the determination of maintenance or 
rehabilitation treatments. The following summarizes the definitions of different raveling classifications and survey 
practices in various state DOTs:  

1) Florida Department of Transportation (FDOT) (FDOT 2015) 

Raveling is classified into three categories: low, moderate, and severe.  Only significant areas of raveling are 
considered.  An isolated area is not counted in a long section if it is not representative of the rated section.  The 
predominant severity level and percent affected area of raveling are recorded. FDOT’s definitions of different 
severity levels are as follows:   

• Light: The aggregate and/or binder has begun to wear away but has not progressed significantly, with some 
loss of aggregate.  

• Moderate: The aggregate and/or binder has worn away, and the surface texture is becoming rough and 
pitted; loose particles generally exist; loss of aggregate has progressed.  

• Severe: The aggregate and/or binder has worn away and the surface texture is very rough and pitted; loss of 
aggregate very noticeable. 
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2) Georgia Department of Transportation (GDOT) (GDOT 2007) 

Raveling is classified into Severity Levels 1, 2, and 3 based on the different raveling conditions.  The following 
are the definitions:  

• Level 1: loss of a substantial number of stones [see Figure 2(a)]. 

• Level 2: loss of most of the surface [see Figure 2(b)]. 

• Level 3: loss of substantial portion of the surface layer (>1/2 depth) (see Figure 2(c)]. 

In field surveys, raveling is closely observed, and an estimate (to the nearest 5%) is made of the extent and the 
predominant severity of the distress within the rated segment. The percent of the length of the rated segment (mile or 
partial mile) that contains raveling is recorded along with the predominant severity level.  On two-lane and 
multi-lane undivided highways, the rater should determine which lane is in the worst general shape and base his or 
her estimate of the extent and severity of the pavement distress on what is observed in the lane selected. Likewise, on 
divided highways, only the lane in the worst condition in a given direction is to be rated; each direction is rated 
separately for divided highways.  

 
FIGURE 2  Raveling classification in GDOT (GDOT 2007). 

3) Minnesota Department of Transportation (MnDOT) (MnDOT 2000) 

The raveling classification in MnDOT is similar to the one in FDOT and is categorized as low, moderate, and 
high as follows:  

• Low: The aggregate or binder has begun to wear away, but has not progressed significantly.  Some loss of 
fine aggregate is visible. 

• Moderate: Aggregate and/or binder has worn away and the surface texture is becoming rough and pitted.  
Loose particles exist, and there is loss of fine aggregate and some loss of coarse aggregate.  

• High: Aggregate and binder have worn away, and the surface texture is very rough and pitted due to the loss 
of coarse aggregate.  
 

4) Nebraska Department of Roads (NDOR) (NDOR 2002) 

The terms for raveling classification in NDOR are the same as those in MDOT.  However, the definitions are 
slightly different as follows:  

• Low: Minimal loss of aggregate or binder [see Figure 3(a)]. 

(a) Severity Level 1 (b) Severity Level 2 (c) Severity Level 3 
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• Moderate: Some aggregate loss; small areas may be stripped away [see Figure3(b)]. 

  
• High: Sections greater than one square foot may be pitted stripped or eroded away [see Figure 3(c)].  

    

FIGURE 3  Raveling classification in NDOR (NDOR 2002). 

5) Oregon Department of Transportation (ODOT) (ODOT 2010) 

Again, the terms for raveling classification in ODOT are same as those in MDOT.  However, the definitions are 
more quantitative and based on the percentage of aggregate loss as follows:  

• Low: The aggregate has worn away resulting in 25% to 50% aggregate loss in a 1ft wide longitudinal strip 
of pavement surface [see Figure 4(a)]. 

• Moderate: The surface texture is noticeably rough and/or pitted with 50% to 75% aggregate loss in a 1-t- 
wide longitudinal strip of pavement surface [see Figure4 (b)]. 

• High: The surface texture is very rough and/or pitted with 75% or more aggregate loss in a 1-t-wide 
longitudinal strip of pavement surface [see Figure 4(c)]. 

In field surveys, raveling can be identified by a roughened or pitted texture on the pavement surface. Mechanical 
abrasion from tire chains, studs, snowplows, or dragging equipment that can significantly roughen the texture should be 
rated as raveling.  Raveling tends to be most often found in the wheel paths, but can be elsewhere on the pavement 
surface.  To measure raveling, the number of linear feet for each severity level in each path (inside, outside, and 
between wheel paths) must be recorded. 

 

(a) Low (b) Moderate (c) High 

(a) Low (b) Moderate (c) High 
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FIGURE 4  Raveling classification in ODOT (ODOT 2010). 

6) Texas Department of Transportation (TxDOT) (TxDOT 2009) 

In TxDOT’s pavement condition survey manual (TxDOT 2009), raveling is classified into low, medium, and 
high based the percentage of raveled area as follows:  

• Low: The percent of raveled pavement area is from 1% to 10%. 
• Medium: The percent of raveled pavement area is from 11% to 50%. 
• High: The percent of raveled pavement area is greater than 50%. 

 
7) Washington State Department of Transportation (WSDOT) (WSDOT 1999) 

The terms for raveling classification in WSDOT are same as those in TxDOT.  However, the definition is not 
based on quantitative measures as follows: 

• Low: The aggregate and/or binder have started to wear away but has not progressed significantly. The 
pavement only appears slightly aged and slightly rough [see Figure 5(a)]. 

• Medium: The aggregate and/or binder have worn away and the surface texture is moderately rough and pitted. 
Loose particles may be present, and fine aggregate is partially missing from the surface [see Figure 5(b)]. 

• High: The aggregate and/or binder have worn away significantly, and the surface texture is deeply pitted and 
very rough. Fine aggregate is essentially missing from the surface, and pitting extends to a depth approaching 
one half the coarse aggregate sizes [see Figure 5(c)].   

In a field survey, raveling is measured or observed differently depending on whether the road surface is 
Bituminous Surface Treatment (BST) or Asphalt Concrete Pavement (ACP). Care should be exercised when rating 
chip sealed pavements, as they tend to look raveled because of the inherent nature of the chip seal surface. However, 
raveling in chip sealed pavements (loss of aggregate) actually results in a condition of excess asphalt and should be 
rated as flushing.  In practice, the raveling severity and extent are both estimated and recorded. The extent of 
raveling is estimated and expressed relative to the surface area of the surveyed lane. Recommended ranges for 
estimated extent include: 

• Localized —Patchy areas, usually in the wheel paths. 
• Wheel path —The majority of wheel tracks are affected, but little or none elsewhere in the lane. 
• Entire lane —Most of the lane is affected. 

(a) Low (b) Moderate (c) High 
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FIGURE 5  Raveling classification in WSDOT (WSDOT 1999). 

3.1.3 Summary  

Based on the above review on the current practice of highway agencies for raveling classification and survey 
procedures, the following summarize the major challenges and the needs for research on automatic raveling detection 
and classification:  

1) Unlike cracking, raveling is the change of surface texture and could be continuously distributed.  The 
survey procedure for raveling is tedious, time-consuming, and error-prone.  For example, in GDOT 
raveling is surveyed by means of a windshield survey.  Raveling appears different when it is observed from 
standing on the ground or from a moving vehicle.  Also, it is difficult for one riding in a car to accurately 
measure raveling extent.  Thus, though raveling is one of the most common and critical asphalt pavement 
distresses, it is difficult to measure by means of in-field visual inspection.  There is an urgent need to 
develop an automatic method for detecting and classifying raveling with emerging sensing technology and 
machine learning theory. 

2) The classification of raveling in all major highway agencies is defined as the purpose of in-field visual 
inspection, which is subjective.  This will cause variations in survey data.  Some state DOTs, such as 
ODOT and TxDOT, use a quantitative measure (e.g., percentage of raveled area or percentage of aggregate 
loss) for raveling classification. However, it is unclear about how to quantitatively measure percentage of 
raveled area or percentage of aggregate loss. 

3) Raveling is the change of asphalt pavement surface texture due to the disintegration of coarse aggregates. 
Different pavement texture patterns can be observed on the different raveling severity levels, specified by 
transportation agencies. It develops quickly after it starts.  Hence, it is critical for highway agencies to 
identify it in its early stage so that preventive maintenance treatments (e.g., fog seal) can be applied before it 
deteriorates to higher severity levels and require more expensive corrective treatments.  For low severity 
levels of raveling, the appearance of roadway surface texture changes under different lighting conditions; 
therefore, classifying it accurately depends on how one observes it.  Under direct sunshine, it is hard to 
recognize lightly raveled surfaces.  Also, if one conducts a windshield survey in a moving vehicle at 
highway speed, it is hard to recognize low-severity raveling.  Thus, visual inspection under natural lighting 
conditions is difficult for a raveling survey, especially for low severity level raveling.  To overcome this 
shortcoming, using 3D pavement data is a better alternative for capturing pavement surface texture because 
it is independent of ambient lighting conditions and can be accurately collected at highway speed.  Thus, 
raveling data extracted from 3D pavement data is more reliable than the one collected visually under 
ambient lighting conditions. 

 

(a) Low (b) Medium (c) High 
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3.2 REVIEW OF ALGORITHMS FOR AUTOMATIC RAVELING DETECTION AND 
CLASSIFICATION 

Before the proposed algorithms for automatic raveling detection and classification are presented, the state-of-the-art 
practices of the existing methods are reviewed as follows. 
 

3.2.1 Sensing Data for Raveling Detection and Classification 

Due to the merit of being independent from ambient lighting conditions, laser sensors were used for collecting 
pavement surface texture data.  Ooijen et al. (2004) started to use laser data [3.2 m Field of View (FOV), 25 points 
per scan] in detecting and classifying raveling.  Since then, laser sensors with increasing FOV and resolution have 
been applied in raveling detection and classification.  McRobbie et al. (McRobbie and Furness 2008; Scott et al. 
2008; McRobbie et al. 2012) used laser data with 3.6 m FOV and 25 points per scan.  Laurent et al. (2012a, b) 
worked on range data with 4 m FOV and 4,096 points per scan.  Mathavan et al. (2014) presented a method to 
detect raveling from 3D pavement image (intensity and range). 
 

3.2.2 Algorithms 

Ooijen et al. (2004) developed the “Stoneway” algorithm to detect raveling on porous asphalt pavement.  The 
Stoneway model calculates the percentage of lost stones per meter.  The idea is that if somewhere on the surface 
there is a Stoneway, it will show up on the texture profile in one way or another.  Two main parameters in the model 
are the height and the length of a gap (i.e., the imprint of a lost stone), which are referred to as the “highgap” and 
“greatgap,” respectively.  Furthermore, the severity of raveling is classified by the percentage of aggregate missing 
on the surface. 

In this method, the raveling regions are defined as those gaps in the longitudinal sampling data that are large and 
deep (shown in Figure 6).  Due to the nature of 25-line laser sensing, the method runs in one dimension per line. 
The parameter “greatgap” is used as the threshold between large and small. The other one, “highgap,” is used to help 
judge if the gap is deep enough.  

 
FIGURE 6  Stoneway algorithms (Ooijen et al. 2004). 

Validation was performed in a test in which two datasets consisting of the Visual Condition Survey (VCS) data 
and the Stoneway data were correlated.  The VCS method does not assess the actual amount of raveling; rather, it 
estimates the intervention year directly during the survey.  Therefore, the comparison was held on the intervention 
year predicted by two approaches. 

About 500 sections, each 100 m long, of different age classes and of the same age class but with differing 
severities of raveling, were chosen to validate the Stoneway derived intervention years and derived by applying the 
SHRP-NL propagation model against the direct VCS estimated year of intervention.  Note that the testing data were 
from a porous asphalt surface. 
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As the validation result, analyses of standard deviations were run on both outputs. The result, Stoneway/SVCS = 
0.87, suggests that the standard deviation of the Stoneway model is significantly smaller than the VCS standard 
deviation. 

The second comparison was run on the means of the estimated intervention years. From the results shown in 
Figure 7, it can be seen that the Stoneway model tends to schedule the intervention later than the VCS estimation, 
except for the first planned years. 

   

FIGURE 7  Results of comparison between “Stoneway” and VCS methods (Ooijen et al. 2004). 

Two challenges are observed for the Stoneway method.  First, the road surface is assumed to be flat in the 
horizontal direction; therefore, it may not work on inclined surfaces.  Second, the sampling rate of the road profile is 
quite low.  The transverse sampling rate is 500 mm per point.  Under such a low rate, the collected profile may not 
be sufficient to represent the whole surface; therefore, the overall raveling detection and classification results can be 
influenced. 

Laurent et al. (2012a, b) developed a Raveling Index (RI) to quantify raveling.  The RI is calculated by 
measuring the volume of aggregate loss (holes due to missing aggregates) per unit of surface area (square meter). The 
3D line laser imaging technology was used for surface range data collection.  This high-resolution 3D laser data 
allow for the detection of missing aggregates.  The formula for RI estimation is given below: 

𝑅𝑅𝑅𝑅 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 
Limited tests have been done on raveling detection.  The general method used here is to perform raveling 

detection on the same road section repeatedly.  If the results tend to be similar, then the robustness of the detection 
approach is proved (on a limited level, though).  The results of a repeatability test (three passes) on road sections in 
the Netherlands are shown below (see Figure 8). 

 

FIGURE 8  Repeatability test results (three passes in three different colors) (Laurent 2012a). 
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In addition, some visual comparison was carried out.  By watching the RI on surfaces with different raveling 
severities, the RI seems to be relevant to raveling severity.  A comparison figure is given below (shown in Figure 9). 

 

(a) LCMS data of pavement surface with high raveling index (RI). 

 

(b) LCMS data of pavement surface with low raveling index (RI). 

FIGURE 9  Results comparison with different raveling index (RI) (Laurent 2012a). 

Different from Ooijen et al. (2004), the density of 3D laser data used here was high enough to cover the entire 
lane transversely.  Therefore, the performance of the raveling detection and classification was expected to be better.  
However, the tests for raveling detection are very limited and without systematic validation using a large-scale 
dataset.   
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McRobbie et al. developed two raveling detection and classification methods (McRobbie and Furness 2008; 
Scott et al. 2008; McRobbie et al. 2012).  The first method is based on MPD (Scott et al. 2008).  Locations that 
differ from the characteristic level by a sufficient depth and over a significant length are deemed to be raveled.  The 
proportion of the road affected by raveling is reported.  Two parameters used here are D (the required difference 
that must be observed between the baseline and the filtered profile before fretting can be reported) and L (the length 
of profile over which D must be exceeded before fretting can be reported).

 

FIGURE 10  Visual representation of surface using root mean square texture (RMST) (McRobbie and 

Furness 2008). 

In the second approach, RMST was calculated and reported (McRobbie and Furness 2008; McRobbie et al. 
2012).  By assigning a color to each of the RMST values in the data, it was possible to produce a visual 
representation of the surface texture in which features such as road markings, metalwork, surface changes, potholes, 
and raveling could be seen (see Figure 10).  Based on RMST, a raveling detection algorithm is introduced.  The 
basic underlying concept for the algorithm is the comparison of the distribution of RMST values in a small (“Local”) 
area against those from a much larger surrounding (“Global”) area (see Figure 11). 

 

FIGURE 11  An example of distribution difference between “Local” area and “Global” area (McRobbie and 

Furness 2008). 

To provide a good range of reference (i.e., ground truth) data, a group of sites totaling approximately 90 km was 
selected (see Figure 12), representing a combination of different surface types (thin surface course, porous asphalt, 
hot rolled asphalt, etc.) and surface conditions.  Then, the coarse visual inspection (CVI) method was proposed as a 
suitable means of collecting larger volumes of reference data using a two-stage process: 

• Stage 1 - Validation and refinement of the driven survey methodology against a walked survey based on trial 
sites; and 
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• Stage 2 - Driven survey of approximately 100 lane km of network based on a mixture of surface types and 
surface conditions upon the successful completion of Stage 1. 

 
FIGURE 12  Sites selected for testing the RMST method (McRobbie and Furness 2008). 

Figure 13 presents the output of RMST method (this is shown as a single value every 100 m) and the reference 
data (displayed as the sum of all weighted sum values within a 100 m length) on two validation datasets. This shows, 
generally, a good agreement; the same areas were usually picked out by higher values and a few areas in which the 
local trends and shapes of the lines followed each other well. 
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FIGURE 13  Results comparison between proposed method output and reference data (McRobbie and 

Furness 2008). 

The first method, MPD, is an extension of the Stoneway method proposed by Ooijen et al. (2004).  Similar to 
the Stoneway method, MPD suffers from its assumption that the surface should be horizontally flat. Though the 
baseline used in MPD is calculated on each relatively short length (e.g., 200 m), it still fails on surfaces with large 
inclines (obvious in short lengths).  As for the second method, RMST, some challenges exist due to its basic 
assumption.  The first one is how to determine local and global. The criteria should not be the same for different 
surfaces and under different road conditions.  The other challenge is how to accurately estimate surface conditions 
based on the inaccurate representation; that is, an RMST histogram.  Many different surface conditions may appear 
similar in the RMST histogram. 

The aforementioned two methods are estimating absolute measurements of raveling condition.  However, the 
estimation of the absolute raveling measurement is difficult and would require detailed knowledge of the surface 
material.  Therefore, McRobbie et al. (2015) reported a method that estimates raveling condition in a relative 
manner.  It is composed of two stages: (1) aligning 3D data collected from successive surveys, and (2) identifying 
the changes in surface condition among successive collected data.  In the first stage, the profile data are aligned in 
two directions sequentially; first in longitudinal direction, then in transversal direction (Figure 14).  After aligning 
3D data, seven parameters are selected from 30 parameter candidates to detect changes in 3D pavement data (Figure 
15).   

For validation, the ground truth with various raveling conditions is collected in the lab, where a real pavement 
sample is worn by a MLPC rutting machine to simulate deteriorating raveling conditions.  Then a large number of 
standard surface shape parameters are tested on the ground truth to determine if any of these could be used to 
quantify surface disintegration at any stage.  In the end, there was a large degree of uncertainty in the reported 
results. 

 

FIGURE 14  The framework of 3D data alignment (McRobbie et al. 2015). 
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FIGURE 15  Parameters used to indicate changes in aligned 3D pavement data (McRobbie et al. 2015). 

 
Mathavan et al. (2014) presented a method to detect raveling from 3D pavement image (intensity and range).  

First, a texture descriptor method called Laws’ texture energy measure is used in conjunction with the Gabor filter 
and other morphological operations to distinguish road areas from others.  Then raveled road areas are detected by 
estimating STD on the corresponding range data. By heuristically setting the thresholds for STD values, the raveling 
condition (within a limited grid) can be characterized into good, average, or bad. 

Their method was tested on 900 3D pavement images (intensity and range).  According to the cases presented 
in the paper, their method successfully removed unwanted pavement areas, such as those with white markings, and 
rated the raveling condition for the rest of pavement areas.  However, there is a lack of comprehensive validation in 
this paper. Detailed information on the validation dataset, such as the location of data collection, the distribution of 
raveling conditions in these data, are not mentioned in this paper.  Moreover, the outcome of raveling quantification 
is not compared with any kind of ground truth (e.g., visual survey results).  Therefore, there is still a gap between 
the practical raveling classification protocol used by transportation agencies and the method proposed by Mathavan 
et al. (2014). 

3.2.3 Summary  

First, most of the raveling detection and classification research is still at the research stage.  Compared with the 
extensive studies for other pavement distresses; for example, cracking and rutting, there are only a very limited 
number of studies on raveling detection and classification.   

Second, there are no global indicators that can be universally accepted for reliable raveling detection and 
classification.  In addition, many indicators are based on certain assumptions about the surface that might not be 
applicable to other cases.  For example, MPD, the commonly used indicator, employs two parameters to describe 
the volume of losing aggregates to classify raveling.  However, it only works on horizontally flat surfaces due to the 
nature of its definition.  Another indicator, RMST, relies on the concept that raveled areas have a different texture 
pattern than non-raveled ones.  When applying RMST on a long stretch of consistently fretted pavement, this 
indicator might fail to identify the raveled areas.  

Third, even with only a limited number of indicators that can be potentially used for raveling detection and 
classification, the existing methods frequently require parameter tuning and adjustment based on empirical 
experiment.  These empirical trial-and-error approaches might constrain the existing algorithm from a broad 
application for different surfaces, different raveling conditions, or even different data sources.   
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Finally, most of the validation methods used in literature only contain a limited amount of data.  More 
importantly, among the limited amount of data, the diversity of the data might not be adequate to objectively reveal 
the true performance of the automatic method (e.g., only on one or two2 types of pavement) or its limitations.  

To summarize, automatic raveling detection and classification is still in its early stage of development.  Some 
algorithms using 3D pavement data have been developed by academia and industry, but they only dealt with raveling 
detection.  Some other algorithms dealt with raveling classification, but only point-based laser profiles were used.  
Thus, in this research, we developed comprehensive algorithms to consider both raveling detection and classification 
using GDOT’s raveling survey protocol.  More importantly, to make it possible for practical application, a 
large-scale testing and validation was conducted using the real-world 3D pavement data. 
 

3.3 PROPOSED RAVELING DETECTION AND CLASSIFICATION ALGORITHMS 

3.3.1 Introduction to 3D Laser Technology 

As previously mentioned, digital images captured under varying ambient lighting conditions are not suitable for 
raveling detection because the ambient lighting has significant impact on the appearance of surface texture.  With 
the advancement of sensing technology, 3D laser technology can capture high-accuracy and high-resolution 3D 
pavement data that preserve the fine granularity of 3D surface textures shown in Figure 16.  Thus, the proposed 
raveling detection and classification algorithms based on 3D pavement data are expected to be more reliable and 
accurate.   

Figure 17 shows the Georgia Tech Sensing Vehicle (GTSV) used for 3D pavement data collection. The GTSV 
was applied in the research project, A Remote Sensing and GIS-Enabled Asset Management System (Tsai and Wang 
2013), sponsored by USDOT/OST-R.  This vehicle is equipped with a 2D imaging system, a 3D laser system, a 
mobile Light Detection and Ranging (LiDAR) system, an Inertial Measurement Unit (IMU), and a Differential GPS.  
IMU and GPS systems establish very high-accuracy location references.  Through the location references, 2D 
images and 3D laser data can be related to help establish the ground truth data.  Unlike the laser profiler, collecting 
only two laser lines, the 3D line laser imaging system can capture 3D full-lane-width pavement surface data.  There 
are 4,096 points at each transverse line, and the interval between two adjacent points is 1 mm.  In the longitudinal 
direction, the interval between two adjacent transverse lines is 5 mm if the vehicle is operated at 100 km/h.  Sample 
surface texture images are shown in Figure 17.  The PI and his research team have used 3D pavement data to 
automatically detect and measure cracking (Tsai and Feng 2012; Jiang and Tsai 2015), rutting (Tsai et al. 2015), 
concrete joint faulting (Tsai et al. 2012), and micro-milling pavement surface texture quality control (Tsai et al. 
2014).  The PI has also been invited by the committee of TPF-5(299) of “Improving the Quality of Pavement 
Surface Distress and Transverse Profile Data Collection and Analysis” to present the 3D pavement data 
characteristics and the validation procedures developed to ensure 3D data quality (Tsai and Wang 2015).  

3.3.2 Overview of Proposed Algorithms 

The overall procedure for raveling detection and classification is as follows.  First, 3D pavement image (5 m by 4 m 
in length and width) is divided into six subsections.  Then, raveling detection and classification algorithms are 
applied on each subsection to detect and classify raveling.  Based on GDOT’s pavement condition survey protocol, 
raveling is classified as Severity Levels 0, 1, 2, and 3.  Severity Level 0 means there is no raveling.  After raveling 
is detected and classified in each subsection of a 3D pavement image, the raveling survey results can be aggregated 
for each 1-mile segment based on GDOT’s pavement condition survey protocol.  In GDOT, only the predominant 
severity level of raveling in each mile is recorded.  It should be noted that the intermediate results shown in the 
above procedures can also be used to fit in with other highway agencies’ survey protocols. 
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(a) Pavement surface near a manhole. 

 
(b) A 3D close-out view of pavement surface. 

FIGURE 16  Visualization of 3D pavement surface data. 

 

FIGURE 17  Georgia Tech Sensing Vehicle. 

Figure 18 illustrates the general framework of the proposed raveling detection and classification method.  3D 
pavement data are stored in individual files; each image covers a 5-m pavement section.  To consider the 
non-uniformity of a 3D pavement image, it is divided into six equal-size subsections: three in each wheel path. The 
number of subsections in each wheel path is determined as a balance between two factors: the non-uniformity of 
raveling, and the manual rating effort.  Each image is processed independently and outputs image-level raveling 
severity levels.  This process is divided into the following four steps:    

1) First, a detection algorithm quantifies raveling by outputting a set of features; that is, statistical 
characteristics of the pavement surface texture are calculated.  These features are calculated after splitting 
the section into six subsections, three in each side of the lane.   

2) Second, a properly trained classifier labels each subsection with a severity level (0, 1, 2, or 3), given the 
features calculated by the detection algorithm for that subsection.  Severity Level 0 indicates no raveling.  
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Severity Levels 1 to 3 comply with GDOT’s definitions of raveling severity levels.   
3) Third, for each 3D pavement image, a single severity level is assigned based on a predefined aggregate rule. 
4) The last step of the process is to aggregate the classified outcomes into one-mile segment-level ratings, 

which are compatible with GDOT’s raveling survey protocol.  For each segment, the percentage of each 
raveling level is generated, along with the predominant raveling level of the section.  

 

 
FIGURE 18  General framework of raveling detection and classification. 

In the proposed algorithms, the most important step is to automatically classify raveling based on pre-defined 
pavement surface texture features.  This is implemented by using a classification (or prediction) model.  Figure 19 
shows the procedures to find a prediction model.  Finding a prediction model that accurately assigns a label to new 
data required us to manually label a significant number of examples (i.e., ground truth data).  

 
FIGURE 19  Methodology used to obtain classifiers. 
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3.3.3 3D Pavement Data Pre-Processing 

Before the detection algorithms can be applied, the raw 3D laser data needs to be pre-processed.  First, the invalid 
data points, which are indicated by invalid depth values in the data file (shown in Figure 20) should be removed.  
Second, pavement marking needs to be detected because only the portion between two pavement markings is used 
for raveling detection and classification.  Because of their high reflectivity, pavement markings produce higher laser 
reflectance values, so they can be detected by using intensity data (a simple grayscale picture aligned with the 3D 
range data).  The pixels in the pavement edge drop-off area are also removed because they might trigger false 
positives.  Figure 21 highlights the detected pavement marking and edge drop-off in green. 
 

 
FIGURE 20  Removal of invalid data point. 

 

 

FIGURE 21  Pavement marking and edge drop-off detection. 

Finally, the pre-processing algorithm rectifies the range data in order to eliminate the cross slope of the 
pavement.  The curvature of the pavement surface can induce false positives and negatives.  The rectification 
algorithm blurs the range image with a normalized box filter and subtracts the blurred image from the original.  This 
operation removes the local mean from the data and makes edges and raveling easier to identify.  Figure 22 
illustrates this pre-processing step. 
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FIGURE 22  Before and after rectification of range data. 

3.3.4 Raveling Detection Algorithms 

As previously discussed, each 5-m pavement section, which is stored in a data file, is divided into six subsections, as 
shown in Figure 23.  In each subsection, two types of statistical factors (i.e., features) are calculated based on the 
range data that indicate the pavement surface texture: 

1) Pavement surfaces with light raveling (e.g., Severity Level 1) have the isolated aggregate loss.  The 
distributions of range data collected on these surfaces will be less uniform than pavement surface without 
raveling.  As the raveling conditions deteriorate to Severity Level 2, more aggregate loss occurs and gets 
channelized.  Therefore, the distributions of range data become non-uniform.  When the pavement 
surfaces have severe raveling (e.g., Severity Level 3), the distribution of range data on these surfaces will be 
uniform again (since the entire surface layer is lost).  Thus, the selected statistical features need to capture 
the characteristics of surface texture changes under different severity levels of raveling.  Based on our 
study, seven statistical features are selected and extracted from each subsection, as listed in Table 1. 

2) To better capture the statistical characteristics of a raveled surface, the distribution of some indicators on all 
small patches of a subimage are approximated and applied as features.  For example, the distribution of 
standard deviation values along all 0.1 m * 0.1 m patches within a subsection can be used to distinguish 
raveling levels 0 and 1 (as shown in Figure 24), which illustrates the distributions of standard deviation in 
subsections with class 0 (no raveling) and class 1 (Severity Level 1).  The distributions of STD on raveled 
subsections are likely to expand wider than those of non-raveled subsections, which might be because the 
raveled surface is more non-uniform.  The distributions are estimated for each one of the seven features 
mentioned above.  Each distribution is discretely represented by a histogram with 100 bins.  Therefore, in 
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total, 700 features are computed to capture the distributions of the seven defined features. 
 
 

TABLE 1 Features Estimated on Range Data of Each Subsection 

Feature Physical Meaning 
Dimension of Statistical 

Value  
Dimension of 
Distribution 

Standard deviation Quantify the amount of 
variation or dispersion of 
range values on 2D 
pavement surface 

1 100 

Interquartile range  1 
 

100 

Arithmetic average of 
absolute values 

Characterize the surface 
based on the vertical 
deviations of the 
roughness profile from 
the mean line 

1 100 

Root mean square  1 100 

Skewness  

A measure of symmetry, 
or more precisely, the 
lack of symmetry on the 
range values of 2D 
pavement surface 

1 100 

Kurtosis 

A measure of whether the 
range values of 2D 
pavement surface are 
peaked or flat relative to a 
normal distribution 

1 100 

Aggregate loss volume 

Directly estimate the 
volume of aggregate loss 
by differentiating range 
image with reference 
surface (assumed to have 
no raveling) 

1 100 

 
After summing up the two types of features, there are total of 707 features for each subsection.  With such a 

large feature vector extracted from the range data, the key is to establish a relationship between the feature vector and 
the true raveling severity level, which will be presented next.   
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FIGURE 23  Statistical feature output for a pavement section. 

 

FIGURE 24  Distribution of indicators for pavement with different raveling level. 
 

3.3.5 Development of the Raveling Classification Algorithms  

According to GDOT’s pavement condition survey protocol, raveling is classified as three types of severity levels 
(Level 1, Level 2, and Level 3).  For convenience, we use Level 0 to indicate the conditions of no raveling.  A 
supervised learning technique, Random Forest (RF), was adopted in the raveling classification algorithms.   
 In a supervised learning, a classifier is trained on a correctly (manually) labeled set (i.e., ground truth data).  
The numerical value corresponding to each labeled pavement subsection is called a feature.  In the proposed 
algorithms, 707 statistical values form a feature vector for each subsection.  

RF is used because it is one of the most commonly used supervised learning techniques (Breiman 2001; Cutler et 
al. 2007).  It is an ensemble learning method for classification and regression that builds many decision trees at the 
training time and combines their output for the final prediction.  RF corrects for the decision tree habit of over 
fitting to their training set, which is especially effective when there is a large dimension of features.  Since the 
dimension of the feature vector for each pavement subsection is as high as 707, it is natural to take RF into 
consideration as one possible classifier.  Meanwhile, two other widely used classification techniques, Support 
Vector Machine (SVM) and AdaBoost, were also evaluated and compared using a ground truth dataset with 23,467 
feature vectors (15,118 vectors for raveling level 0; 5,091 for raveling level 1; 3,053 for raveling level 2; and 205 for 
raveling level 3).  The evaluation results of all three classification techniques are listed below: 
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TABLE 2 Evaluation Results of AdaBoost Classification Technique on Raveling Ground Truth Dataset 

Classified 
Ground Truth 

Class 0 Class 1 Class 2 Class 3 Precision Recall 

Class 0 14,531 576 11 0 0.961 0.933 
Class 1 1,014 3,388 689 0 0.665 0.833 
Class 2 5 97 2,951 0 0.966 0.772 
Class 3 25 8 172 0 0 0 

 
TABLE 3 Evaluation Results of SVM Classification Technique on Raveling Ground Truth Dataset 

Classified 
Ground Truth 

Class 0 Class 1 Class 2 Class 3 Precision Recall 

Class 0 14,757 359 0 2 0.976 0.956 
Class 1 653 4,129 304 5 0.811 0.878 
Class 2 3 208 2,817 25 0.923 0.897 
Class 3 19 4 19 163 0.795 0.836 

 
TABLE 1 Evaluation Results of RF Classification Technique on Raveling Ground Truth Dataset 

Classified 
Ground Truth 

Class 0 Class 1 Class 2 Class 3 Precision Recall 

Class 0 14,756 375 1 4 0.976 0.961 
Class 1 577 4,169 327 2 0.819 0.869 
Class 2 3 241 2,791 16 0.914 0.888 
Class 3 15 11 24 155 0.756 0.876 

 
From the precision and recall rates listed above, we can see that the performance of SVM and RF are both much 

better than the AdaBoost classification.  Based on the fact that most of the asphalt pavements have no raveling and 
the rest of them have mostly with level 1 raveling, the number of misclassification cases between Class 0 (no 
raveling) and Class 1 (level 1 raveling) provide us a hint for the comparison between SVM and RF.  RP slightly 
outperforms SVM in terms of the misclassification cases between Class 0 and Class 1 (577 + 375 = 952 vs. 653 + 
359 = 1012).  Therefore, RF is selected as the classification technique in our raveling classification algorithm.  
Figure 25 shows the training process of a RF. 
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FIGURE 25  Training process of a Random Forest (Benyamin 2012). 

3.3.6 Development of the Raveling Aggregation Algorithms  

This section develops an aggregation method with algorithms to mimic and automate GDOT’s current raveling 
survey protocol for the recording at each segment (~1 mile).  The raveling aggregation might be adjusted slightly 
based on different state DOT practices in the implementation.  Erroneously classified subsections can be identified 
and removed by checking isolated subsections based on the assumption that raveling pavements are continuous to 
some certain extent.  In addition, a small spot of raveling (e.g., raveling in an isolated subsection) is normally 
neglected in a practical survey, which would not affect the decision making on network-level pavement maintenance.  
Therefore, in the proposed aggregation method, an isolated subsection with raveling is not to be counted at the 
segment level.  Based on the extensive discussion with GDOT’s engineers, the aggregation algorithms were 
developed to aggregate the subsection-level raveling into the one at the segment level.  The algorithms are divided 
into two phases: the first phase removes outliers, such as the isolated subsection with raveling, and the second phase 
smooths the raveling distribution. Finally, the outcomes are aggregated to a 1-mile segment to support GDOT’s 
pavement management system.  The following describes the steps for outlier removal: 

1) For a given subsection, compare its assigned severity level with the severity levels of its direct neighbors.   
2) Each subsection has five neighbors, as shown in Figure 26.  A neighbor can be in the next or previous image.  

For subsections at the boundary (first and last image), there are only three neighbors instead of five.  
3) If the severity level of the subsection is isolated among its neighbors (e.g., Level 1 surrounded by five at Level 

0) then change the severity level to the majority severity level in the neighbors.   
4) Repeat the above steps for all subsections.  Figure 27 shows an example of outlier removal. 
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FIGURE 26  Subsection and its neighbors. 

 

 
FIGURE 27  Outlier removal example. 

 
After outliers are removed, the next step conducts a smoothness function to retain a continuous, predominant 

raveling portion by mimicking the actual field survey practice.  Based on the field survey practice, it is assumed that 
the length of pavement with a uniform raveling condition is approximately 200 ft. This interval can be adjusted for 
other state DOTs.  Therefore, a window of approximately 202 ft., with 37 subsections, is used for smoothing.  The 
following describe the major steps:  

1) Treat the left wheel path and right wheel path separately.  For each subsection in a wheel path, as shown in 
Figure 28, compute a weighted average on a 2 * 18 + 1 window centered on the subsection (18 subsections 
backwards, the subsection itself, and 18 subsections forward; therefore, the total length of the window is 202 
ft). 

2) The weights are defined as a Gaussian distribution along the window with 37 subsections, so the subsections 
that are further away from the center subsection have less influence in the weighted average.  The generated 
weighted average will be a real number in [0, 3] that is further discretized into 0, 1, 2, or 3.  The key parameter 
here is the variance of Gaussian, which determine how much the nearby subsection influences the raveling level 
of the center subsection.  It is determined by means of a set of comparison experiments that evaluate the 
performance after applying the Gaussian distribution with different variance values to the raveling classification 
results. 

3) For subsections at boundary (i.e., subsections that are less than 18 positions away from the beginning or the end 
of the mile), the number of subsections within the side of the windows will be less than the required number of 
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18.  To generate consistent weighted average on boundary subsections, a technique that is commonly used in 
signal processing is applied here; some subsections are padded over the boundary using mirroring; then the 
weighted average can be consistently applied over the entire wheel path.  Mirroring consists of extending the 
length of the array by reversing the data.   
Repeat the above steps for each subsection.  Figure 28 shows an example of subsection smoothness, Figure 
29 an example of smoothness. 

 

 
FIGURE 28  Subsection smoothness. 

  

 
FIGURE 29  Smoothness example. 

Finally, within each 1-mile section, the outcomes are aggregated and summed–up; the total percentage of each 
raveling level is generated.   
 

3.4 TESTING AND VALIDATION OF DEVELOPED ALGORITHMS 

The developed algorithms have been tested and validated using the 3D pavement data collected on I-85 and I-285 
near Atlanta, Georgia.  All the asphalt pavements have open-graded friction course (OGFC).  On I-85, four 1-mile 
test sections were selected.  In each test section, a 500-ft sample section was further marked and investigated with a 
GDOT pavement engineer’s assistance.  The aggregated test results were compared with GDOT’s pavement 
condition database.  On I-285, raveling detection was conducted on the entire highway clockwise and 
counterclockwise.  A GDOT engineer also performed an in-field validation.  The following sections present the 
detailed test results. 

3.4.1 Test Sections 

3.4.1.1 I-85 Test Sections 

Four 1-mile test sections were selected on I-85.  In GDOT’s pavement condition survey practice, the basic survey 
unit is about 1 mile.  For example, a 10-mile survey project will be divided into ten 1-mile segments.  The 
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pavement condition survey will be conducted on each segment.  For raveling, the windshield survey method was 
used and the total percentage of raveled sections and the predominant severity level were recorded.  In our test, four 
test sections were selected so that each severity level of raveling (including 0; i.e., no raveling) occurs. Figure 30 
shows four selected test sections on I-85.  The following describe these four test sections: 
1) Test Section #1 

This test section is located on I-85 South from milepost 87 to 88.  The majority of this test section has Severity 
Level 1 raveling, but some spots show Severity Level 2 and 3 raveling.  A 500-ft sampling section was selected for 
field investigation.  A 50-feet-long surface layer loss can be seen clearly from the photos, as shown in Figure 31.   

 

FIGURE 30  Test sections on I-85. 

 

FIGURE 31  Severe raveling on test section #1. 

2) Test Section #2 
This test section is located on I-85 South from milepost 99 to 100.  The majority of this test section shows no 

raveling.  A 500-ft sampling section was selected for field investigation.  Figure 32 shows the typical pavement 
surface. 

 

 

FIGURE 32  Typical pavement surface on test section #2. 

Test Section #1 

Test Section #2 

Test Section #3 

Test Section #4 
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3) Test Section #3 
This test section is located on I-85 South from milepost 101 to 102.  The majority of this test section shows no 

raveling.  A 500-ft sampling section was selected for field investigation.  Figure 33 shows the typical pavement 
surface. 

 
FIGURE 33  Typical pavement surface on test section #3. 

4) Test Section #4 
This test section is located on I-85 South from milepost 102 to 103.  The majority of this test section shows no 

raveling.  A 500-ft sampling section was selected for field investigation.  Figure 34 shows the typical pavement 
surface. 

 
FIGURE 34 Typical pavement surface on test section #4. 

3.4.1.2 I-285 Test Section 

I-285 is a major bypass around Atlanta for 18-wheel trucks.  As shown in Figure 35, I-285 is about 64 centerline 
miles.  About 47.6% of pavements on I-285 are asphalt concrete (AC) pavements; the other 52.4% are portland 
cement concrete (PCC) pavements.   

To validate the developed raveling detection and classification algorithms, a large-scale test was done on the 
entire I-285 AC pavement in two directions.  The total length is approximately 61 lane-miles.  The automatically 
detected results were validated by a GDOT engineer using a field drive-through. 
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FIGURE 35 I-285 in Atlanta. 
 

3.4.2 Collecting Ground Truth Data Using a Rating Tool 

As discussed above, the developed raveling detection and classification algorithms employed a supervised machine 
learning method that needs to be trained using data with known raveling conditions.  This type of data is also known 
as ground truth.  The algorithm has to learn how to recognize raveling Severity Levels 0, 1, 2, and 3 from a large 
number of ground truth data.  Therefore, the correctness and richness of ground truth are very important for the 
project.  

The Georgia Tech research team closely worked with the GDOT engineer to establish the ground truth data.  
The following major steps were used in the process of establishing ground truth: 

1) Data preparation.  3D pavement data collected at some representative sections were used for establishing the 
ground truth.  The sections included four miles of asphalt concrete (AC) pavement on I-85 and 61 miles of 
asphalt pavement on I-285.  Sufficient raveling areas, from Severity Level 0 to Level 3, were covered in the 
selected sections.  For reference, we also collected video log images of the pavement surface using the GTSV. 

2) Field raveling survey.  After picking the sections, the Georgia Tech research team went to the field with the 
GDOT engineer (Figure 36).  By looking at raveling areas closely, the Georgia Tech research team determined 
the raveling condition of the selected sections, which was also confirmed by the GDOT engineer.   

3) Drive-through evaluation.  To validate the automatic raveling detection and classification results, the reference 
data were collected by the GDOT engineer.  Table 5 shows the raveling percentage and the predominant 
severity level for each test section on I-85. 

4) Manual rating. With the knowledge provided by the GDOT engineer, the Georgia Tech research team manually 
rated the 3D pavement data with different severity levels.  The rating process was repeated by several people.  
This allowed comparison of the manual ratings among different people and identified “difficult” cases 
(uncertain levels) from “easy” ones (certain levels).   
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TABLE 5  Raveling Survey on I-85 Test Sections Conducted by GDOT 

Test Section # Percentage (%) Predominant Severity Level 

1 21 1 

2 0 0 

3 10 1 

4 0 0 

5) Cross checking.  The GDOT engineer helped to double-check the “difficult” cases.  By providing both video 
log (mimicking the input of the manual survey) and 3D pavement data (input of automatic algorithm), the 
raveling level of most “difficult” cases could be determined.  

 

 
FIGURE 36  Field raveling investigation on I-85 with GDOT pavement engineer. 

 
To ensure the richness of the ground truth, data from 65 miles (4 miles on I-85 and 61 miles on I-285) of AC 

pavements to be rated manually, were selected.  There were more than 22,000 3D pavement images reviewed.  To 
perform the manual rating process faster and more easily, two rating applications were developed.  

1) The first application was used for subsection rating.  It displayed the entire 16-ft image (left image in Figure 
37) or an individual subsection (right image in Figure 37).  It allowed users to choose a severity level and to 
switch between subsections using keyboard shortcuts.  

2) The second one was for image-level rating. It displayed both the 3D pavement data (left image in Figure 38) 
and the video log image (right image in Figure 38).  To simulate the drive-through survey for a manual 
raveling survey, the application can play the video log images and 3D pavement data at an adjustable speed.  
When a raveling section was observed, the reviewer pressed a button indicating the raveling level. All the 
images following are rated as the select level until the raveling section ends or the raveling condition changes. 
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FIGURE 37  Application for subsection-level raveling rating.  
 

 

FIGURE 38  Application for image-level raveling rating.  

3.4.3 Testing Results on I-85 

In highway agency practices, the details at the subsection level are not needed for a raveling condition survey.  
Normally, raveling is recorded for a certain length of pavement section.  In GDOT, the basic unit for a raveling 
survey is a segment that is normally 1 mile long.  More importantly, in a field visual investigation, an engineer often 
checks a large area for raveling, rather than counting all the small raveled spots.   

To mimic the field visual inspection procedures and ensure the raveling condition data were consistent with the 
past engineering practices, an aggregation algorithm was developed to aggregate all the subsection-level raveling 
data and report the raveling conditions at segment levels (i.e., 1-mile long pavement section).   

3.4.3.1 Comparison Between In-office Rating and In-field Investigation 

For validation purposes, manual rating was done for each subsection in the four test sections of I-85.  After 
smoothing using the aggregation algorithm, segment-level ground truth was obtained.  This ground truth data were 
acquired by in-office rating rather than field investigation.  Thus, a comparison was needed to assess its accuracy. 

As shown in Table 6, although the predominant severity level for each test section was consistent with the field 
investigation result, the percentage of raveling identified in-office was much less than that acquired in the field.  To 
further validate the results, a forensic study was conducted with the GDOT engineers.  After careful review of every 
single pavement image, GDOT engineers agreed that the in-office result should be more accurate than the in-field 
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investigation because field investigation was performed by a windshield survey.  Because of the difficulties of 
perceiving pavement texture change accurately from a vehicle traveling at highway speed, the in-office ground truth 
was adopted. 

 
 TABLE 6  Ground Truth Comparison on I-85 Test Sections between In-Office and In-Field Results 

Test Section # Test Method Percentage (%) Difference 
Predominant Severity 

Level 

1 
In-Field 21 

10.67 
1 

In-Office 31.67 1 

2 
In-Field 0 

0 
0 

In-Office 0 0 

3 
In-Field 10 

-9.07 
1 

In-Office 0.93 1 

4 
In-Field 0 

0 
0 

In-Office 0 0 

3.4.3.2 Comparison Between In-Office Ground Truth and Automatic Classification Results 

The following will compare the aggregated raveling data for each test section based on the automatic detection and 
classification results with the ground truth acquired from in-office rating. 

1) Test Section #1 
Table 7 shows the validation results for Test Section #1.  Based on GDOT’s protocol, the predominant severity 
level is 1, and the total raveling percentage is 32.6% (31.67% + 0.93% + 0%).  The automatic classification 
results show total 37.88%.  There is a difference of 6.21%.  In considering the subjective factor in the manual 
rating, this difference should not be significant. 
 

 TABLE 7  Segment-level Comparison for Test Section #1 

 
Level 0 (%) Level 1 (%) Level 2 (%) Level 3 (%) Predominant 

Ground Truth 67.4 31.67 0.93 0 1 

Automatic Results 62.12 37.88 0 0 1 

Absolute Error 5.28 6.21 0.93 0 — 

 
Figure 39 compares the distribution of raveling between the ground truth and the automatic results, which were 

aggregated every 0.01 mile.  It can be seen that the distribution of the automatic detected and classified raveling is 
close to that from the ground truth data. 

  
               (a) Ground Truth                             (b) Automatic Results 

FIGURE 39  Raveling distribution in test section #1. 
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2) Test Section #2 
Table 8 shows the validation results for Test Section #2.  It can be seen that the automatic results exactly match 

the ground truth, in which no raveling appears. 
 

 TABLE 8  Segment-level Comparison for Test Section #2 

 
Level 0 (%) Level 1 (%) Level 2 (%) Level 3 (%) Predominant 

Ground Truth 100 0 0 0 0 

Automatic Results 100 0 0 0 0 

Absolute Error 0 0 0 0 — 

 
Figure 40 compares the distribution of raveling between the ground truth and the automatic results, which were 

aggregated every 0.01 mile.  It can be seen that the distribution of the automatic detected and classified raveling is 
exactly same with that from the ground truth data.   

 

(a) Ground Truth                             (b) Automatic Results 

FIGURE 40 Raveling distribution in test section #2. 

3) Test Section #3 
Table 9 shows the validation results for Test Section #3.  Based on GDOT’s protocol, the predominant 

severity level is 1; however, the raveling extent is very small, 0.93%, which is essentially 0.  The automatic 
results show no raveling.  In GDOT’s pavement condition survey protocol, the required accuracy for raveling 
extent is 5%.  Thus, the difference for Test Section #3 can be ignored.  It can be considered that the automatic 
results coincide with the ground truth. 
 

 TABLE 9  Segment-level Comparison for Test Section #3 

 
Level 0 (%) Level 1 (%) Level 2 (%) Level 3 (%) Predominant 

Ground Truth 99.06 0.93 0 0 1 

Automatic Results 100 0 0 0 0 

Absolute Error 0.93 0.93 0 0 — 

 
Figure 41 compares the distribution of raveling between the ground truth and the automatic results, which were 

aggregated every 0.01 mile.  It can be seen that the automatic detected and classified results underestimated the 
raveling at mile 0.503 and 0.615.  However, the value is small. 
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      (a) Ground Truth                              (b) Automatic Results 

FIGURE 41  Raveling distribution in test section #3. 

4) Test Section #4 
Table 10 shows the validation results for Test Section #4.  The ground truth shows no raveling in this 

section.  However, the automatic results show 0.31% of Severity Level 1 raveling.  Since the number is very 
small, the automatic results and the ground truth are, essentially, the same. 
 

 TABLE 10  Segment-level Comparison for Test Section #4 

 
Level 0 (%) Level 1 (%) Level 2 (%) Level 3 (%) Predominant 

Ground Truth 100 0 0 0 0 

Automatic Results 99.68 0.31 0 0 1 

Absolute Error 0.31 0.31 0 0 — 

 
Figure 42 compares the distribution of raveling between the ground truth and the automatic results.  The 

automatically detected and classified results are very close to the ground truth. 

 

                   (a) Ground Truth                               (b) Automatic Results 

FIGURE 42  Raveling distribution in test section #4. 

3.4.4 Testing Results on I-285 

Similarly, automatic raveling detection and classification were performed on I-285.  The following compares the 
aggregated raveling data for each test section with the ground truth acquired from in-office rating.  For better 
visualization, only the comparison results of the south half of I-285 pavement are shown, which shows raveling.  
The north half are neglected since the pavement is either concrete or newly resurfaced asphalt.  In general, all 
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segments without raveling were 100% detected and classified.  The predominant raveling severity level of all 
raveled segments was also 100% classified (which is severity level 1).   

Figure 43 and Figure 44 compare the extents (i.e., percentage) of portions with no raveling or predominant 
raveling level (Severity Level 1) in each segment.  The reference is obtained by manually rating the raveling levels 
on the complete I-285 loop (clockwise and counterclockwise).  In most sections, the difference in the percentage of 
predominant raveling between aggregation results and ground truth is around 10%.  However, there are some cases 
in which the differences are larger than 15%, which may be due to several reasons: 

1) Ground truth rating: As mentioned before, there are several “difficult” cases for manual rating.  Although they 
are assigned ratings, the consistency between these cases is hard to ensure.  There are two challenges: (1) 
definition of Severity Level 1 or in the border; and (2) the measurement of a mixed raveling condition, 
including no raveling.  

2) Noise in 3D data: Other surface distresses, such as scratches and cracking, have strong effects on the raveling 
classification algorithm.  Although some noise removal modules have been developed and applied, it is still 
not possible to remove all the noise from the testing data at current stage. 

3) In some sections, the sum of no-raveling percentage and predominant raveling percentage is much less than 
100%.  Those cases are due to the existence of concrete pavements in the section, which were contributing to 
the denominator of the percentage.  A precise pavement type classification algorithm will be helpful in solving 
the issue in the future.  At this moment, we can still evaluate the performance of raveling detection and 
classification by checking the relative difference between ground truth percentage and algorithm percentage. 
 

 
FIGURE 43  Segment-level comparison for I-285 clockwise test sites. 

To get a better idea of the raveling aggregation results, the aggregation results of I-285 test sections on a map 
(Figures 45 and 46) were overlaid.  On the left part of the figure, a map is displayed with raveling aggregation 
results.  Sections with red lines are classified as raveling sections (Level 1 in this case).  Green sections are 
considered as no-raveling. On the right part of the figure, a histogram showing the raveling percentage along driving 
direction of I-285 is given.  According to a previous field survey, the southbound lane of I-285 has severe Level 1 
raveling.  Similar observations can be found in both the map-representation and the histogram-representation. 
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FIGURE 44  Segment-level comparison for I-285 counter clockwise test sites. 
 

 

FIGURE 45  Percentage of predominant raveling (Level 1) along I-285 clockwise testing sites. 
 



41 

 
FIGURE 46  Percentage of predominant raveling (Level 1) along I-285 counterclockwise testing site. 

 
To further check the correctness of the raveling classification results, a visualization tool is proposed for 

reviewers to investigate the data at different scales.  The idea is shown in Figures 47 and 48.  On the left, an 
overview of the aggregation results is provided. In the middle, a zoom-in view of a 1-mile test section is displayed.  
At the right, a video-log image of a specific 5-m section is given for in-detail validation. Such a tool can be very 
helpful for both results validation and visualization. 

 
FIGURE 47  Visualization example of no-raveling spot. 

 
FIGURE 48  Visualization example of raveling spot. 
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4 PLANS FOR IMPLEMENTATION 
 
With the support of the IDEA concept exploration research project, a set of algorithms has been developed to 
automatically detect and classify asphalt pavement raveling using 3D pavement data. The preliminary tests 
demonstrate that these developed algorithms are promising and provide new capabilities to significantly reduce the 
cost and time spent by state DOTs for visual asphalt pavement raveling surveys. 

The IDEA concept exploration research outcomes, including the developed algorithms and applications, could be 
migrated to national demonstration for a large-scale implementation in the future. The research will, also, allow the 
developed algorithms tested under real-world environmental conditions in which different raveling protocols in 
different highway agencies and different surface materials can be adapted.   

Based on the developed algorithms, software will be developed to effectively perform raveling detection and 
classification. GIS technology can also be incorporated into the pavement raveling survey and management system.  
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5 CONCLUSIONS AND RECOMMENDATIONS 
 
As one of the most common asphalt pavement distresses, raveling increases pavement roughness, which results in 
poor ride quality, road and tire noise, and safety issues. Besides safety concerns, including loose stones that may 
break windshield glass and potential hydroplaning, raveling shortens pavement longevity. Thus, a raveling condition 
survey is critically needed so highway agencies know where and how severe their raveling is.  Then, appropriate 
preservation or rehabilitation treatments can be applied. To address the above urgent need, the Georgia Tech research 
team developed new raveling detection and classification algorithms using 3D pavement data with artificial 
intelligence and machine learning. 

The raveling detection and classification algorithms presented in this final report were the first to be 
comprehensively validated using large-scale 3D pavement data with real-world transportation agencies’ raveling 
survey protocol (e.g., severity levels 1, 2, and 3 of GDOT).  Although it was tested and validated using GDOT’s 
pavement condition survey protocol, the proposed framework, including the algorithms and procedures could be 
extended to other transportation agencies with some modification.  If a different raveling classification protocol is 
used, the proposed raveling classification algorithms could be re-trained using a set of ground truth data classified by 
the targeted raveling classification protocol.  The framework, algorithms, and process are the same, although the 
testing and validation are still needed for different raveling protocols.  

The algorithms were comprehensively tested and validated on I-85 and I-285 near Atlanta, Georgia.  The 
following summarizes the research outcomes and major findings:  

1) Using 3D pavement data and the accompanying 2D intensity data, the proposed raveling detection and 
classification algorithms consist of five major components:  
a) data pre-processing,  
b) pavement texture feature computation,  
c) subsection-level raveling classification,  
d) post-processing for section raveling data smoothing from subsection-level raveling classification, and 
e) aggregation of the detection outcomes to segment-level measurement of raveling. 

2) To validate the proposed algorithms, four test sections were selected on I-85, and the entire AC pavements 
were selected on I-285 in Atlanta, Georgia. A total of 65 miles (4 miles on I-85 and 61 miles on I-285) of 
pavement sections were selected to establish the ground truth.  Working with GDOT engineers, ground 
truth data were established through in-field survey and in-office review of videolog image and 3D pavement 
data.   

3) The following are the comprehensive testing results of four test sections on I-85: 
a) In GDOT’s raveling survey protocol, only the predominant severity level and the total raveled 

percentage is recorded.  Given the fact that Severity Level 1 is the most predominant one in most cases 
on interstate highways, the currently trained algorithms are very accurate for GDOT’s use, since the 
lump sum of all types of raveling is very accurate. 

b) A comparison was performed between the in-field survey and the in-office manual rating.  The results 
showed the difference.  Working with GDOT engineers, the Georgia Tech research team carefully 
reviewed the entire 3D pavement data and the video log images.  The in-office results are considered 
to be more accurate because the perception of pavement surface texture change by a person sitting in a 
vehicle at highway speed can be very different.  Thus, the in-office manual rating results were 
considered as the ground truth. 

c) After aggregating the classified subsection results, the automatic classification results on each test 
section were compared with the ground truth.  The difference of total raveled percentage on Test 
Section #1 is about 6.21%, and is less than 1% for the other three test sections.  The predominant 
severity levels (Severity Levels 1, 2, or 3) for Test Sections #1 and #2 are also correctly classified.  
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For Test Sections #3 and #4 there is essentially no raveling, and the classification errors are 0.93% and 
0.31%. 

4) The testing on 61 lane-miles of I-285 AC pavements shows promising results for automatic raveling 
detection and classification.  All the pavements with or without raveling were 100% correctly detected and 
classified at the segment level; each segment is 1mile long.  However, due to the difficulty of correctly 
rating all the raveling areas using video log images and 3D pavement data and due to the impact of cracking 
and flat-tire scratches, the raveling extent (percentage) shows a certain level of variation in comparison with 
the manually labeled ground truth.  The difference between the surveyed results that were conducted by the 
experienced GDOT engineer and the automatically detected and measured results is less than 15%, and most 
of them are less than 10%.  

 
In summary, the proposed algorithms have demonstrated the promising capabilities of automatically detecting, 

classifying, and measuring asphalt pavement raveling.  This will potentially save tremendous amounts of manual 
effort for field surveys, improve the data accuracy, and help highway agencies make more informed decisions on 
pavement maintenance and rehabilitation.   

The following are recommendations for future research: 
1) More testing and validation are suggested to evaluate the performance of the developed algorithms on 

pavements of different raveling conditions, ages, and surface types [e.g., dense grade asphalt pavement, 
stone matrix asphalt (SMA) pavement, etc.].  

2) Further refinement is suggested to reduce the impact of other distresses, such as cracking and flat-tire 
scratches, on raveling detection and classification.  It will require the detection of those unrelated distresses 
and performance of a removal process. 

3) Beyond GDOT’s pavement condition survey protocol for raveling, a more detailed indicator developed for 
raveling; for example, percentage of aggregate loss, is recommended.  The current raveling classification 
method (Severity Levels 1, 2, and 3) is somewhat coarse for depicting the loss of aggregate on asphalt 
pavements, which might not be sufficient to indicate the best timing for a preventive maintenance method; 
for example, fog seal.  Thus, a finer indicator is desirable. 
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