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EXECUTIVE SUMMARY 
 
Turning movement count data; that is, vehicle volumes broken down by movement, approach, and time period, are 
the foundation of signal performance evaluations and a crucial component of data-driven decision-making processes 
used by transportation agencies. Unfortunately, the availability of quality turning movement count data is arguably 
not the norm for agencies. In fact, the 2012 National Traffic Signal Report Card conducted by the National 
Transportation Operations Coalition identified traffic monitoring and data collection practices in the United States as 
weak by giving the practices an “F” grade. To this day, some of the current practices rely on manual procedures that 
limit the amount of data available. Automated methods can be temporarily installed at an intersection, but these are 
intended to improve on the traditional manual counts used and not to produce continuous count volumes. Permanent 
counting systems are unable to classify vehicles into their corresponding movements on shared lanes unless 
supplemental infrastructure is installed or additional count zones are defined.  

As part of this NCHRP IDEA Stage 1 project the research team has shown that an algorithm that produces 
turning movement counts reports using vehicle trajectory data extracted from existing vehicle detection 
infrastructure can be created. The algorithm developed in this NCHRP IDEA project differs from existing 
approaches in that it does not rely on count zones on exit approaches or the use of time stamps of detection calls. As 
a proof of concept, the algorithm has shown significant promise in terms of performance at typical intersections. 
While changes to the algorithm are needed, results obtained are encouraging and can be used by those familiar with 
data analysis and collection techniques. 
 
Innovation 
Innovation as part of this project can be classified in two different areas. First, showing that exploiting the 
capabilities of existing infrastructure is possible and, second, developing an analysis procedure for vehicle trajectory 
data. The capability of existing devices was shown by extracting vehicle trajectory data from an existing, 
commercially available, radar-based vehicle detection system that was already installed at a signalized intersection 
as a replacement for inductive loops. Vehicle trajectory data extraction was possible through a custom software 
program that taps into the underlying data stream of the radar-based vehicle detection system without interfering 
with the primary function of vehicle detection. The trajectory data were then analyzed using an algorithm 
implemented in the R programming language to classify the vehicle movements into left, thru, and right. The 
combined data collection and analysis approach is built on top of open source technology, is independent of the 
controller type, and could be deployed in numerous hardware platforms, thus eliminating the need for proprietary 
solutions or significant capital investments that often are part of projects focused on monitoring performance 
measures. 
 
Results 
Performance obtained can be considered better than that of some of existing technologies and can be measured in 
two different areas. First, at intersections with simple geometry such as the main site used for data collection (three 
lanes per approach, no channelization, and a homogeneous stop bar location across all lanes of each approach). At 
the aforementioned type of intersection, performance of the algorithm was measured at the count period and 
movement level. A count period was defined as a 15-minute interval for a specific vehicle movement. Vehicle 
volumes by count period produced by the algorithm were compared with volumes from a manual count obtained 
from video of the intersection. Turning movement count volumes produced by the algorithm had an average error of 
˗0.26 vehicles per 15-minute count period when compared with manual counts and an average absolute error of 2.31 
vehicles. 

The performance of the algorithm was evaluated at what could be considered a non-typical intersection (five 
lanes per approach, one bike lane, and a non-uniform stop bar position on each lane). The mechanics of the 
algorithm performed as expected. However, the nature of the intersection in terms of geometry and traffic resulted in 
a lower than expected algorithm performance, especially for the left-turn movement located the farthest away from 
the radar-based vehicle detection system. In the case of the left turn, accuracy dropped to less than 50%, due to 
occlusion. A review of the scenarios under which significant accuracy reductions by count period were experienced 
reveals the impact that non-typical intersections have on the performance of radar detection systems and 
consequently on the algorithm. Therefore, the need to improve it further in order to handle special circumstances 
related to geometry and traffic characteristics is highlighted. 
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As discussed, performance reported for the algorithm is measured not only every 15 minutes but also by 
individual movement. Therefore, the approach used by the team to report performance is one that goes beyond the 
standard practice of vehicle detection systems manufacturers in which performance is reported once a certain 
volume threshold is met and for entire approaches. This reporting approach was selected because it allows us to look 
at errors at a more detailed level and identify areas for future improvement. 
 
Future Work 
In order to successfully commercialize this innovation, the algorithm needs to be improved, a prototype data 
collection device developed that can be installed inside a signal cabinet, and a centralized software tool devised to 
manage multiple data collection devices. Although the results from the project are encouraging, algorithm 
improvements are needed in order to have a market-ready solution. Future work in terms of algorithm improvement 
should focus on making the algorithm capable of handling the following scenarios: 
 

• Different intersection configurations; the algorithm developed as part of the project provides satisfactory 
performance on what could be considered a textbook intersection. For example, no testing has been done 
on intersections with channelized lanes and testing is required at intersections with a non-uniform stop bar 
location. 

 
• Intersections with significant presence of heavy vehicles. Results from the second supplemental site show 

the need for further development in order to improve movement detection as a result of occlusion effects. 
 

• Intersections with two detection devices per approach. For intersections with 5+ lanes per approach more 
than one radar device is desirable and will require changes to the algorithm in order to properly merge and 
analyze multiple data sources. 

 
Modifications will require data collection across different locations in the country in order to obtain vehicle 

trajectory datasets from a wide array of geometric and traffic conditions.  These modifications will in turn require 
further analysis and performance evaluations as part of an iterative development process.  In terms of data 
collection, the system should be tested on a smaller hardware platform such as a development board and configured 
for an environment in which the data analysis algorithm and data collection system are on separate locations. 

 
INTRODUCTION 
Turning movement count data; that is, vehicle volumes broken down by movement, approach, and time period, are 
the foundation of signal performance evaluations and a crucial component of data-driven decision-making processes 
used by transportation agencies. Unfortunately, the availability of quality turning movement count data is arguably 
not the norm for agencies. The 2012 National Traffic Signal Report Card conducted by the National Transportation 
Operations Coalition identified traffic monitoring and data collection practices in the U.S. as weak by giving the 
practices an “F” grade. To this day, some of the currents methods used to collect turning movement count data are 
still based on manual procedures which limit the amount of data available. Automated methods can be temporarily 
installed by an intersection, but these are intended to improve on the traditional manual counts used and not to 
produce continuous count volumes.  

And while existing vehicle detection systems (e.g., optical, thermal, and radar) can provide counts on a per-lane 
basis, breaking down the volume by movement type for lanes with more than one movement (shared lanes) is not a 
built-in feature of commercially available vehicle detection systems. The limitation of existing systems has not 
stopped researchers from collecting available data from vehicle detection systems and expanding its usability. As 
will be shown in the literature review section, data obtained from additional virtual and physical (inductive loop) 
detection zones on exit lanes has been used to estimate turning movement count volumes regardless of the lane 
configurations by analyzing the time stamp of detection zone actuations. Other attempts include estimation through 
statistical procedures that rely on main lane volumes. However, the aforementioned data analysis approaches can be 
fraught with errors and cannot be used at all locations, such as those that allow right turns on red. Furthermore, 
among the requirements for a valid location include a controller capable of logging high-resolution data, similar call 
monitoring functionality, or supplemental hardware. With the more prominent deployment of radar-based vehicle 
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detection systems there is an opportunity to re-invent the way in which turning movement counts can be obtained 
from existing vehicle detection systems.  

Radar-based vehicle detection systems continuously monitor vehicle trajectories. If a vehicle is within the 
range of the radar and is traveling toward the radar, the system will constantly keep track of the vehicle position, 
speed and length estimate. If the trajectory of each vehicle is known then each vehicle can be classified as going 
thru, left, or right and assigned to a specific time period. The objective of this report is to document a proof of 
concept that demonstrates how vehicle trajectory data produced by an existing radar-based vehicle detection system 
can be used for producing automated turning movement count reports. The concept presented eliminates the need for 
supplemental detection zones, a cornerstone of existing research. Furthermore, the concept presented does not rely 
on high-resolution data extracted from the traffic signal controller, thus making the approach a platform-independent 
one compatible with legacy controller systems such as the TS1 platform. 

Vehicle trajectory data from a radar-based vehicle detection system was logged at three intersections using 
custom software developed by the team. An algorithm was created in the R programming language to analyze the 
trajectory data and produce vehicle turning movement counts in 15-minute intervals. The algorithm does not require 
the user to define detection zones or specify the intersection geometry. The proof-of-concept results are promising 
and demonstrate that a product developed based on this algorithm can eliminate the need for manual counts (or 
automated counts that rely on temporary hardware installations) at intersections with radar-based vehicle detection 
or any other detection system capable of monitoring vehicle trajectories. 

 
LITERATURE REVIEW 
Detailed turning movement count information from an intersection is key to understanding the performance of any 
signalized intersection. The required data, even with the technological advances available today, are too often not 
available to end users such as transportation engineers and planners that rely on the data to retime intersections, plan 
developments, and prioritize the installation of safety countermeasures. The limited availability of crucial volume 
data is well-known in the transportation community. In fact, the 2012 National Traffic Signal Report Card published 
by the National Transportation Operations Coalition identified traffic monitoring and data collection practices in the 
United States as the Achilles heel by giving it an “F” grade (NTOC 2012). The report highlights that even when data 
are available there are few quality checks performed that can lead to signals that operate without considering actual 
traffic conditions, therefore causing delays for roadway users. A review of the report suggests that a data collection 
system with a properly documented and auditable quality assurance process is one of the components key to 
supporting the needs of the transportation network such as the crucial retiming of signals. 
 
The Need for Signal Retiming 
Enabling signal retiming is the most direct application of detailed turning movement counts. Improper traffic signal 
timing is responsible for 5%–10% of traffic delay on major U.S. roadways (Chin et al. 2004). In fact, 75% of 
approximately 300,000 traffic signals in the United States could be improved through equipment updates and signal 
retiming. Retiming of traffic signals is one of the most cost-effective measures of improving traffic flow in 
urbanized areas (ITE 2015). Examples of signal timing benefits include decreased travel time by 13% and an 
average delay reduction of 23% in Anchorage, Alaska, after implementation of an inclement weather signal timing 
plan (Bernardin Lochmueller and Associates 1995).  Similarly, in Minnesota a study revealed a 13% reduction in 
average delay along with a 6% reduction in average number of stops per vehicle (Maki 1999). In general, signal 
retiming can result in a benefit-cost ratio of 40:1 (Sunkari 2004). Consensus exists about the need to retime signals 
frequently and that different timing plans should be used to account for seasonal factors, weather conditions, and 
special events. However, maintaining optimized signal timing is a challenge for agencies because it requires turning 
movement volumes that are one of the most costly items in retiming signals (Robertson and Hummer 1994).  

Although signal retiming is a key process that requires detailed turning movement count data, a review of 
commercially available vehicle detection systems manufactured by Autoscope, Iteris, FLIR, Peak, MsSedco, 
Wavetronix, and LeddarTech shows that for shared lanes their systems do not provide a vehicle volume by 
movement type breakdown. Based on the nature of existing systems it is not a surprise that researchers have been 
trying to find a solution to the problem. Existing approaches focus on the estimation of turning movement counts 
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based on loop detector calls or from the use of virtual calls from video- or radar-based vehicle detection systems. 
The estimation approach is discussed ahead followed by a discussion of how data radar-based vehicle detection 
devices have been used in the past. 
 
Approaches Relying on Video and Traditional Loop Detection 
Attempts to automatically break down vehicle volume by movement type started more than three decades ago by the 
use of volume balancing (Hauer et al. 1981; Virkler and Kumar 1998) and continues to this day (Tian et al. 2004; Hu 
and Liou 2012). Most of the early attempts, along with some recent ones, focused on the estimation of counts from 
existing datasets instead of obtaining direct counts. Estimation attempts focus primarily on analyzing detection calls 
at the stop bar of the intersection along with detection calls on zones placed in exit lanes.  

A problem with procedures that require the monitoring of calls on exit lanes is that the installation of loops 
to monitor vehicles on the exit lanes results in additional expenses. Additional expenses are not a problem when the 
procedure relies on the use of virtual loops defined using non-loop-based vehicle detection systems (Tian et al. 
2004; Hu and Liou 2012; Kun et al. 2013). However, when virtual loops are used at intersections monitored by 
alternative detection the definition of the virtual count zones is not always possible. Situations that can make it 
impossible to define virtual loops on exit approaches include optical systems that need to be zoomed into a 
particular area of the primary approach, thus making the exit lanes invisible to the system.  

Furthermore, the use of virtual loops makes the estimation methodology vulnerable to false and missed 
calls produced by the vehicle detection system (Tian et al. 2004). When the aforementioned limitation is combined 
with the possibility of right turns on red the limitations of methodologies that rely on monitoring exit lanes are clear. 
Limitations in the setup, along with uncertainty in the measurements, force the use of advanced statistical 
procedures to produce acceptable results such as the estimation of turning movement proportion through genetic 
algorithms (Jiao et al. 2005). 
 
Potential of Data from Radar-Based Vehicle Detection Systems 
Radar-based vehicle trajectory data from an intersection have been used in the past to push the boundaries of 
operational and safety evaluations at signalized intersections. Using the speed, position, and time stamp of vehicles 
logged from radar devices at a rate of 2 Hz, vehicle trajectories have been used to obtain direct stopped delay 
measurements at signalized intersections. The direct delay measurements show how vehicle trajectories can be used 
to replace delay estimates from analytical procedures (Santiago-Chaparro et al. 2012b). Existing work relies on 
custom software designed to monitor the underlying data stream produced by a radar-based vehicle detection system 
that goes unused once the purpose of detecting the presence of a vehicle over a virtual loop is fulfilled. 

Vehicle trajectory data from radar-based devices has also been used to detect red light running at 
intersections by combining trajectories and signal status (Santiago et al. 2014), thus showing the application of 
vehicle trajectory for safety evaluations. More recently, the same type of trajectory data has been used to estimate 
vehicle emissions at intersections, thus showing applications beyond the realm of operations and safety (Zhixia et al. 
2015). As shown, trajectory data obtained from radar-based vehicle detection provides researchers with a powerful 
and rich dataset that can be used for numerous applications. Since vehicle trajectory data show the actual path 
followed by vehicles on an intersection, a natural extension of existing work is to classify vehicles using an 
intersection approach into their corresponding movement.  
 
DATA COLLECTION 
Three data collection sites were used to develop and test performance of the classification and noise removal 
algorithms developed in this project. The main site from which data were extracted to guide the development of the 
algorithm presented in this report was the intersection of Wisconsin Avenue and Mead Street (Appleton, 
Wisconsin). The second location, used to test the performance of the algorithm, was the intersection of Wisconsin 
Avenue and Oneida Street (Appleton). Finally, a third intersection, Fish Hatchery Road and Greenway Cross 
(Madison, Wisconsin) was also used to test the algorithm performance. The details of the cabinet instrumentation 



7 
 

used to log vehicle trajectories along with the characteristics of data obtained at the main site (Wisconsin and Mead 
intersection in Appleton) are discussed in the next section. The same procedures were used in the second and third 
data collection sites. 
 
Main Data Collection Site 
A top view of the main data collection site, Wisconsin Avenue and Mead Street, is shown in Figure 1. The 
intersection is four-legged with three lanes (one exclusive left and thru lane each and a shared right thru lane) on 
each approach. The estimated average daily vehicle volume of the intersection is 21,550. Each approach of the 
intersection is monitored by an Intersector system, a commercially available, radar-based (microwave technology) 
vehicle detection system manufactured by MsSedco. 
 

 
Figure 1. Schematic of data collection site. 

Cross-sectional photos for each of the approaches of the intersection are shown in Figure 2. The main data 
collection site has business activity adjacent to the intersection. Due to the characteristics and range of the vehicle 
detection system vehicle activity in those adjacent businesses is often detected by the system. Pedestrians are also 
often detected by the radar. The non-intersection vehicle activity and pedestrian detection results in undesired noise 
from the device that needs to be accounted for during the data analysis process. 
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Figure 2. Photos of main data collection site (Wisconsin Avenue and Meade Street). 

 
Instrumentation 
In order to log vehicle trajectory data for all the four approaches, a laptop computer running custom data collection 
software was placed inside the signal cabinet. The software used for logging vehicle trajectory data from the radar 
devices relies on the technology previously developed by the authors (Santiago-Chaparro et al. 2012b). The data 
collection software monitors the underlying data stream of the radars without interfering with the main function of 
the vehicle detection system; that is, detecting vehicle presence over virtual detectors.  

The data collection software was written in Python 3 and stored the underlying data stream into a SQLite 
database that was later converted to a MySQL database. Monitoring of the underlying radar data stream is possible 
because the radar devices expose their dataset via a web server accessible through the IP address assigned to each 
radar device. Network communication between the laptop computer running the data collection software and the 
radar devices is possible because the radars and the laptop computer are both connected to the same network via an 
Ethernet switch placed inside the signal cabinet. The connections between the switch, computer, and radar devices 
were made in accordance with the guidance provided in the radar device installation manual (MsSedco 2015) as 
shown in Figure 3. 
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Figure 3. Connections made between switch, radars, and laptop computer. 

Figure 4 shows the details of the instrumentation inside the signal cabinet. A solid state drive was used in the 
computer configuration to avoid any potential issues resulting from below freezing temperatures. No issues were 
experienced with the operation of the computer during the December 2014 to February 2015 period when the lowest 
monthly temperatures recorded in Appleton, Wisconsin, ranged from ˗19°C (˗2°F) to ˗27°C (˗16°F) (Weather 
Underground 2015). There was an instance in April 2015 when the computer turned off automatically because  of 
overheating concerns; the situation will be discussed in the considerations section. 
 

 
Figure 4. Cabinet instrumentation on main data collection site. 

Trajectory Data 
Figure 5 shows a visualization of the vehicle trajectory information (data points) that are obtained every 500 
milliseconds using the cabinet instrumentation. Each of the dots in Figure 5 represents the position of a vehicle at an 
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instance of time as detected by the radar devices. It should be noted that the image was transformed to make every 
approach align with the actual position on the intersection through rotations and position shits along the X and Y 
axes. Each data point is associated with a unique vehicle identifier, position, speed, and vehicle length estimate. 
Vehicle position is logged as Cartesian coordinates; that is, a pair of X and Y coordinates. 
 

 
Figure 5. Visualization of data obtained using cabinet instrumentation. 

All the data included in the visualization is stored in a MySQL server running on the laptop computer. As a 
result of the MySQL server the trajectory data are available from any other computer that is connected to the same 
network as the switch. Figure 6 shows a screenshot of the structure of the data included in the MySQL server. As the 
figure shows, all information associated with each data point is included in a table format that enables the data to be 
queried by approach, time period, and speed, among others. The data shown in Figure 6 is used by the algorithm 
developed in this research to generate the turning movement count reports. 
 



11 
 

 
Figure 6. Sample dataset included in the MySQL server database. 

Supplemental Data Collection Sites 
The instrumentation and data collection procedures discussed in the previous sections were implemented at two 
supplemental intersections. The first intersection, Wisconsin Avenue and Oneida Street, is located in Appleton, 
Wisconsin. The second intersection, Fish Hatchery Road and Greenway Crossing, is located in Madison, Wisconsin. 
The purpose of collecting data from the two supplemental sites is not for the development of the algorithm but for 
evaluating the performance. As the reader will see, the algorithm development is based on global concepts about the 
behavior of traffic on an intersection approach and not on characteristics of individual intersections. Therefore, data 
collected for the main site were sufficient for algorithm development and performance evaluation. The purpose of 
the two supplemental sites was to ensure that the algorithm performed adequately under different geometric 
conditions. 
 The first supplemental intersection contains a mix of shared lanes and dedicated lanes. On two of the 
approaches, northbound and southbound, left, thru, and right turning vehicles have a dedicated lane each. On the 
eastbound and westbound approaches there are three lanes for traffic. Of the three lanes, one is an exclusive left-turn 
lane, one is an exclusive thru lane, and one is a shared thru-right lane. Figure 7 shows a photograph of the Wisconsin 
Avenue and Oneida Street intersection. Each of the approaches of the intersection is monitored by a radar device. 
 The second supplemental site, Fish Hatchery Road and Greenway Cross, in Madison, is a much larger 
intersection (based on the number of lanes) than the main data collection site as well as the first supplemental site 
(Figure 8). The southbound approach of the intersection contains five dedicated movement lanes, one for the right 
turn, two for the thru movement, and two for left turns, as well a dedicated bicycle lane. On the northbound 
approach there are four lanes, one dedicated for left turns, two dedicated for the thru movement, and one shared lane 
for right and thru vehicles. The eastbound approach contains two shared lanes, one left-thru, and one thru-right. The 
westbound approach contains one exclusive left-turn lane, one dedicated thru, and a right-turn channelized lane. 
However, due to the configuration of the vehicle detection equipment, trajectory data were obtained only for the 
southbound approach of the intersection. 

Site = WiscMeade
Approach = Westbound
Date = 2015-02-17
Time = 08:18:35.7
Id = WB_3_2015_2_17_8_18_13

Y Coordinate = 174.2 ft
X Coordinate = 24.9 ft
Speed = 0 mph
Length = 11.2 ft
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Figure 7. Wisconsin Avenue and Oneida Street (Supplemental Site 1). 

 
 

 
Figure 8. Fish Hatchery Road and Greenway Cross (Supplemental Site 2). 

Video Recordings and Manual Vehicle Counts 
Manual counts were conducted at each of the sites to compare the results of the algorithm. Manual counts were 
obtained from video recordings using a computer program to help streamline the count process. Figure 9 shows the 
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computer program displaying video of the main data collection site, Wisconsin Avenue and Meade Street. A user 
counts vehicles by clicking on a button on the screen corresponding to the vehicle movement or through a series of 
shortcut keys on the keyboard. Every time that a vehicle movement is logged by the user a correct time stamp, based 
on the date and time of the video recording, is assigned to the observation. The data are post-processed to obtain 
counts aggregated over 15-minute intervals. 
 

 
Figure 9. Software used to streamline the manual count process from video. 

Using the software results in better quality of counts obtained from video than that from live manual counts 
conducted in the field. For example, the user of the program can slow down or speed up the video to make the count 
process more efficient based on traffic conditions. Furthermore, the user can also pause the count to avoid fatigue. 
The sources of video used for each of the data collection sites depend on what equipment was available at the 
intersection. At the Wisconsin Avenue and Meade Street intersection, video was obtained from a PTZ camera 
mounted on one of the intersection poles. At the supplemental data collection sites video was obtained from a video 
camera temporarily attached to a sign pole next to the intersection by the research team as shown in Figure 10.  

The position of the cameras (PTZ and handheld) limit the approaches from which manual counts can be 
obtained and thus the movements that can be included to evaluate the performance of the algorithm. The section 
ahead details the manual count data periods available by approach and movement along with the characteristics of 
the raw data obtained using the cabinet instrumentation. 
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Figure 10. Camera mount used for video recording at supplemental data collection sites. 

 
DATASET CHARACTERISTICS 
Using the data collection procedures discussed in the previous section, vehicle trajectory data were obtained from 
the three data collection sites. The trajectory data collected played two important roles. First, to understand the 
nature of trajectory data in order to develop the algorithm for detecting vehicle movements regardless of lane 
configuration. Second, as a data source to verify the performance of the algorithm. A discussion of the 
characteristics of trajectory data is presented in the sections ahead.  

Video recordings were also obtained for all data collection sites and manual turning movement counts 
performed. The results from the manual counts are also presented in the sections ahead as ground truth data by 
movement and approach. The ground truth data were used to test the performance of the classification algorithm 
developed in this research. 
 
Raw Trajectory Data Characteristics 
Vehicle trajectory data were collected at the three locations. Regardless of the location the characteristics of the data 
are similar. In Figure 11, sample trajectory data from the main data collection site are presented. The data shown in 
Figure 11 corresponds to a 1-hour period. While the data points in Figure 11 appear to resemble the shape of the 
approach, there are observations that do not appear to be constrained to the travel lanes. The out of boundary 
observations are primarily vehicles that were entering or exiting commercial establishments adjacent to the 
intersection and detected by the radar system. Other points outside the boundary of the travel lanes represent 
pedestrians and bicycles using the sidewalks. These points must be filtered out by the classification algorithm prior 
to computing the turning movement counts.  
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Figure 11. Nature of raw data obtained using the data collection process. 

 In the lower Y coordinates of each approach, shown in Figure 11, there are also points that appear to represent 
vehicles traveling perpendicular to the approach direction. These points are caused by cross traffic from other 
approaches briefly detected by the radar units monitoring the approach shown. For example, in the southbound 
approach some vehicles exiting the westbound approach are briefly captured by the radar system. These points also 
need to be filtered out by the classification algorithm. Each of the points in Figure 11 has an associated unique 
vehicle id. As a result, trajectories can be obtained for individual vehicles as they approach the stop bar as shown in 
Figure 12. As the figure shows, the nature of vehicle approach to the stop bar and eventual departure can be 
analyzed at the individual vehicle level.  
 
Manual Count Data Characteristics 
Using the data collection procedures described previously, manual turning movement counts were obtained for all 
data collection sites. As previously mentioned, due to the position of the video recording equipment it is not possible 
to obtain counts for all approaches and movements. Furthermore, because not all intersection approaches were 
equipped with radar devices, there was no need to obtain counts for all approaches and movements. The sections 
ahead summarize the manual count data available. The data are reported in terms of the number of count periods 
available for each data collection site. A count period is defined as a 15-minute period for a specific approach and 
movement. For example, a count period represents the number of vehicles turning left on the southbound approach 
between 13:00 and 13:15. 
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Figure 12. Sample individual vehicle trajectories. 

 
Wisconsin Avenue and Meade Street (Main Data Collection Site) 
At the main data collection site, video coverage was not available for all approaches simultaneously. The PTZ 
camera permanently mounted at the intersection provided coverage to adequately perform manual counts on the 
southbound approach and partial counts on the westbound approach (thru and right movements). Regardless of the 
limitation, the site was selected because it already had radar devices, access to video that could be recorded, and the 
engineer in charge of the system was willing to provide support and access to the cabinet when required. Table 1 
shows a summary of the 190 count periods for which video and trajectory data are available. The count periods are 
summarized by approach and movement. The 190 count periods are the result of 9.5 hours of video recording 
available from the main data collection site. These 9.5 hours translate into a total of 19 approach-video hours. An 
approach-video hour is defined as an hour of video recording for a single approach. 
 

Table 1. Manual Counts Summary (Wisconsin Avenue and Meade Street) 

Approach Movement Count Periods Manual Vehicle Count 

Southbound 

Left 38 307 

Thru 38 1,816 

Right 38 1,178 

Westbound 
Thru 38 2,364 

Right 38 325 

 
Wisconsin Avenue and Oneida Street (Supplemental Data Collection Site 1) 
At the first supplemental data collection site, video coverage for all approaches is available through the use of a 
handheld camera mounted on a sign pole next to the intersection. Table 2 shows a summary of the 48 count periods 
for which video and trajectory data are available. The count periods are summarized by approach and movement. 
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The 48 count periods are the result of 1 hour of video recording available from the supplemental data collection site 
1. The 1 hour of video translates into a total of 4 approach-video hours. 
 

Table 2. Manual Counts Summary (Wisconsin Avenue and Oneida Street) 

Approach Movement Count Periods Manual Vehicle Count 

Eastbound 

Left 4 36 

Thru 4 305 

Right 4 23 

Northbound 

Left 4 21 

Thru 4 92 

Right 4 28 

Southbound 

Left 4 30 

Thru 4 114 

Right 4 48 

Westbound 

Left 4 39 

Thru 4 360 

Right 4 24 

 
Fish Hatchery Road and Greenway Cross (Supplemental Data Collection Site 2) 
At the second supplemental data collection site, radar data were extracted from only the southbound approach. The 
limited radar data coverage was the result of the setup used by the city of Madison that prevented monitoring more 
than one radar at a time without the installation of an Ethernet switch. As a result, video was obtained only for the 
southbound approach using a handheld camera. Table 2 shows a summary of the 45 count periods for which video 
and trajectory data are available for this site. The 45 count periods are the result of 4.75 hours of video. At this site, 
the 4.75 hours of video translates into an equivalent 4.75 approach-video hours since video and data from only one 
approach are used. 

Table 3. Manual Counts Summary (Fish Hatchery Road and Greenway Cross) 

Approach Movement Count Periods Manual Vehicle Count 

Southbound 

Left 15 1,218 

Thru 15 3,453 

Right 15 953 
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ALGORITHM DESCRIPTION 
The turning movement count classification algorithm described in this section is applied to raw trajectory data from 
each approach. The algorithm steps are repeated for each approach of the intersection in order to produce a full 
turning movement count report. The approach raw data are referred to herein as Subset R0. The classification 
algorithm is a two-stage process: Noise Removal and Movement Classification and is described here. 
 
Noise Removal 
The first step is removing noise from R0. Noise is defined as observations detected by the radar-based vehicle 
detection system that do not correspond to vehicles using the monitored approach to either go right, thru, or left. 
Vehicles making U-turns are grouped into the left turns category since they are using the same left-turn lane. Figure 
13a shows the type of data points included in R0. As shown in Figure 13a, data points corresponding to vehicles 
entering or exiting access points next to the approach are included in the subset along with vehicles that are traveling 
on the crossing approach. Furthermore, pedestrians are occasionally detected by the radar-based vehicle detection 
system thus increasing the noise in R0. It should be noted that Figure 13 contains observations used to illustrate the 
algorithm steps. While real steps of the classification process are shown, the periods of data included in each part of 
the figure are not the same. The use of different periods provides a visualization of the process given the limitations 
of a written document. The subsections ahead described the steps associated with the noise removal process. First, 
data adjustments are made if needed; second, the stop bar of the approach is identified; finally, trajectories 
representing potential pedestrians are removed. 
 
Data Adjustments 
The algorithm works under the assumption that vehicle trajectories on the thru lanes follow a path that is close to 
parallel to the Y axis of a Cartesian plane. Under certain conditions there is the possibility that the radar-based 
vehicle detection system for one or more of the approaches is configured in such a way that trajectories are angled. 
If this situation is present, then an adjustment to all trajectory coordinates is applied to all points defining the 
trajectory of vehicles of the approach. The adjustment is based on the angle between the path followed by thru 
vehicles and the Y axis. The transformation applied to the coordinates of the trajectories is based on Equations 1 and 
2. 
 

X’ = X * cos (-β) – Y * sin(-β)  (Equation 1) 
 

Y’ = X * sin (-β) + Y * cos(-β)  (Equation 2) 
 
 Where, 
 X’ and Y ‘ = Transformed X and Y coordinates, 
 X and Y   = Original X and Y coordinates, and 
 β   = Adjustment angle. 
 
Stop Bar Identification 
The identification of the stop bar requires estimating the geometric boundaries of the approach. A subset of 
observations (A0) that only includes those data points found in R0 with a speed greater than zero is created. The 
lower 1 percentile of Y coordinate values in A0 is then computed. The computed value is used to determine the 
position of the horizontal asymptote labeled as Bar 1 in Figure 13a.  
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Figure 13. Algorithm Process Overview (Part 1). 

Based on A0, a new subset (A1) is then created, which includes points from A0 found downstream of Bar 1 
and with a speed greater than 5 mph. The speed threshold is used to eliminate points corresponding to possible 
pedestrian observations. A1 is used to determine the limits (measured along the X axis) of an area that defines lanes 
with thru movements. These limits are shown in Figure 13a as vertical asymptotes X Limit 1 (X1) and X Limit 2 
(X2). The X1 position is equal to the lower 1 percentile value of the trajectory points X coordinate while the X2 value 
is equal to the upper 1 percentile value. The boundary computation is possible since in a typical installation vehicles 
going thru have a final Y coordinate lower than vehicles going left or right given that the radar will keep these 
vehicles in range for a longer period of time. 

The next step in the stop bar identification process is selecting an arbitrary location for the position of Bar 2 
shown in Figure 13a. The Y coordinate position of Bar 2 is determined by adding 75 feet to the position of Bar 1. 
The 75 feet is an arbitrary value used by the authors; however, any value larger than the width of a single lane of 
traffic will be sufficient since it is used to filter out noise from the crossing approach. Using the limits defined by the 
[X1, X2] boundary along with the Bar 1 and Bar 2 positions two new subsets, B1 and B2, are defined based solely on 
coordinate values.  
 

• B1 includes points from R0 with X coordinates in the [X1, X2] range and Y coordinates are in the [Bar 2, ∞] 
range.  

• B2 includes points from R0 with X coordinates are in the [X1, X2] range and Y coordinates are in the [0, Bar 
1] range. 

  
B1 and B2 are used to identify points useful in computing the Y coordinate value of a horizontal asymptote 

(YSB) that defines the stop bar position. Useful points are identified by finding unique vehicle identifiers found both 
on B1 and B2. If a vehicle identifier is found in both B1 and B2 then trajectory points in R0 with the same identifier 
are added to a new subset, C1. A visual representation of the type of data points included in C1 is shown in Figure 
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13b. Observations representing stopped vehicles are highlighted. The lowest 1 percentile value of Y coordinates 
corresponding to stop observations is assigned to YSB. 
 
Identification of Valid Trajectories 
Through the use of YSB a new subset of valid data points can be identified. Data part of R0 can be grouped into two 
subsets, R1 and R2. R1 includes data points with Y coordinates greater than YSB while R2 includes observations with 
Y coordinates smaller than or equal to YSB. Unique identifiers found in both R1 and R2 are considered as identifiers 
of valid trajectories for analysis. Trajectory data points containing the aforementioned identifiers are copied from R0 
into a new subset V0 (shown in Figure 13c). Therefore, subset V0 contains possible vehicle trajectories found 
upstream and downstream of the stop bar (YSB), thus eliminating partial trajectories caused by the radar device 
dropping the tracking of a vehicle and picking it up again but with a different identifier. Furthermore, noise caused 
by vehicles on adjacent properties as well as vehicles on other approaches is eliminated. The risk of undercounting 
vehicles as a result of the filtering approach is minimal since the dropping and picking up of vehicles by the radar 
device is lower near the stop bar. A vehicle that is dropped will still be counted as long as it is picked up again by 
the radar upstream of the stop bar and if a vehicle is dropped past the stop bar it would still be counted. 
 
Removing Pedestrian Observations 
The potential for pedestrian observations exists in V0. Potential pedestrian observations are removed from V0 using a 
set of rules intended to identify trajectories that likely are not from vehicles. Vehicle trajectories are excluded from 
V0 if:  

• length of the vehicle is less than 6 feet, and  
• average X coordinate value is less than X1. 
As a result of the exclusion process, V0 ultimately contains the best possible estimate of trajectories that 

can be classified as a left, thru, or right movement. This pedestrian observations removal approach allows bicycle 
observations that are part of V0 to remain in the dataset since these observations contributed to the computation of 
X1 even if on an exclusive bicycle lane. 
 
Movement Classification 
The subset V0 shown in Figure 14d (obtained after noise and pedestrian observations removal) contains vehicle 
trajectories that need to be classified into left, thru, and right movements. Classification into corresponding 
movements is achieved using count zones defined based on the values of X1, X2, and YSB. Two additional values YR 
and YL (defined later in this section) are also used. The count zones are automatically computed by the algorithm. 
Each vehicle trajectory in V0 is then analyzed and classified by movement based on their position within the count 
zones using a two-step process designed to deal with two levels of uncertainty.  
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Figure 14. Algorithm Process Overview (Part 2). 

Count Zones Definition 
Three count zones are defined for each approach (left, thru, and right) using limits defined in Cartesian coordinates 
as shown in Figure14e. The limits rely on stop bar position (YSB), vertical asymptotes X1 and X2, as well as YR and 
YL values. YR is defined as the lowest 1 percentile value of the Y coordinate of trajectory points with an X 
coordinate less than X1. YL is defined as the lowest 1 percentile value of the Y coordinate of trajectory points with 
an X coordinate greater than X2. Each of the aforementioned count zones can be defined as follows: 
 

• Thru movement count zone limits on the Y axis are [0, SB] and [X1, X2] on the X axis.  
• Right movement count zone limits on the Y axis are [YR, YSB] and [-∞, X1] on the X axis.  
• Left movement count zone limits on the Y axis are [YL, SB] and [X2, ∞] on the X axis.  

 
Classification by Movement: Level 1 
As part of the Level 1 classification, vehicle observations with a high degree of certainty (in terms of belonging to a 
specific movement) are identified. Points part of V0 and with a Y coordinate value lower than YSB are copied into a 
new subset V1. Points part of V1 are assigned an “Unknown” movement value. The following steps are then taken on 
V1 points: 
 

• Points inside the right-turn count zone that are at least 5 feet from the X1 asymptote are copied into subset 
T0. 
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• Points inside the left-turn count zone that are at least 5 feet from the X2 asymptote are copied into subset 
T1. 

• Points inside the thru count zone that are at least 3 feet from X1 and 3 feet from X2 are copied into Subset 
T2. 

 
The 5 and 3 feet values were determined by the authors after observing the characteristics of the data. The 5 feet 

value was selected based on the typical width a bicycle lane. The 3 feet value was selected based on the 1/4 to 1/3 of 
the typical width of a highway lane. Tests conducted by the authors revealed limited sensitivity in the vicinity of 
these values, but do contribute to an improved accuracy. 

As a result of the aforementioned steps subsets T0, T1, and T2 contain points belonging to vehicles going right 
(T0), left (T1), and thru (T2). Unique vehicle identifiers found in T0, T1, and T2 are used to change the movement 
value assigned to points part of V1. For example, a list of unique identifiers found in T0 is generated; the list of 
identifiers is then used to change the movement value of all trajectory points part of V1 to “right.” 
 
Classification by Movement: Level 2 
After the completion of the Level 1 classification, V1 contains points with movement values equal to unknown, 
right, thru, and left. Points with an unknown movement value were those points not classified as part of the Level 1 
classification. A list (L1) of unique vehicle identifiers in V1 with an “unknown” movement value is created. L1 is 
used to classify each remaining vehicle trajectory as right, thru, or left. The classification is achieved by tallying the 
number of points found by trajectory on each count zone. The steps are summarized here: 
 

• For each identifier part of L1, points in V1 with the same identifier are extracted as P1. 
• Percentage of P1 points on the left, thru, and right count zone is computed. 
• The count zone with the highest percentage of points determines the vehicle movement.  
• If more than one count zone contains an equal percentage of points the movement is defined based on the 

position of the last (in terms of time) point observation. 
• The steps are repeated for each identifier part of L1. 

 
Presentation of Results 
Once all vehicle trajectories are classified into the corresponding movement, the trajectories (vehicle observations) 
are then filtered by approach and time period. To simplify the analysis of the data and make it compatible with a 
wide range of software the summarized data are exported as a CSV file with content similar to the one shown in 
Figure 15. The format used enables the computation of peak hour periods of volume during the day as well as the 
peak hour factors for each movement of the intersection. Furthermore, when multiple CSV files are combined an 
analysis of volume fluctuations over different days and months can be performed, thus enabling the computation of 
seasonal adjustment factors that are key to understanding yearly traffic fluctuations when only limited volume 
observations are available. 
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Figure 15. Algorithm output. 

RESULTS 
The counts produced by the classification algorithm were grouped into 15-minute counts periods. As previously 
mentioned, a count period is defined as a 15-minute period for a specific approach and a movement. For example, a 
count period represents the number of vehicles turning left on the southbound approach between 13:00 and 13:15. 
Results from each count period from the algorithm; that is, volume for a specific movement on an approach, will be 
compared with the corresponding manual count data to evaluate the performance of the algorithm.  

Performance results are presented individually for each of the data collection sites. However, it should be noted 
that the site for which the largest comparison dataset is available is the main data collection. Therefore, any 
discussions about the performance of the algorithm outside of this results section will be based on the main data 
collection site performance. The performances on the supplemental sites were computed as a confirmation value to 
make sure that performance values were comparable across different locations. 

Performance values for the algorithm at the count period level will be reported using average error as well as 
average absolute error. The error of the algorithm for a single count period is measured based on the ground truth 
data as shown in Equation 3. The average error is computed by adding all error values and dividing the result by the 
number of count periods. The average absolute error is computed by adding absolute values of all errors and 
dividing the result by the number of count periods. 

 
𝐸𝐸 =  𝑉𝑉𝐴𝐴 − 𝑉𝑉𝑀𝑀  (Equation 3) 

 
 Where, 
  E  = Error of algorithm for count period, 
  VA = Algorithm reported by algorithm for count period, and 
  VM = Volume for count period (from manual count). 

  
Performance reporting will focus on the count period level because the authors believe that reporting the 

performance by aggregating observations into periods of time larger than 15 minutes is misleading to end users. The 
idea behind the reporting interval is that transportation engineers traditionally use 15-minute volume periods when 
making design and operational decisions. 
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Wisconsin Avenue and Meade Street (Main Data Collection Site) 
Over the 190 count periods included in the main data collection site, a total of 5,941 vehicles were counted and 
classified by the algorithm, whereas 5,990 vehicles were manually classified and counted. The 49 vehicle difference 
between manual and algorithm results is equivalent to an average error of ˗0.26 vehicles per count period (˗0.81%). 
A breakdown of the algorithm and manual count differences by count period is shown as a histogram in Figure 16 
and grouped by approach. As shown in the figure, a significant portion (62.3%) of the count periods experienced 
either no error or a difference of at most one or two vehicles.  

A general view of the performance of the algorithm reveals that the average error for a count period in the 
southbound (SB) approach was ˗0.24 vehicles per count period, whereas for the westbound (WB) approach was 
˗0.27 vehicles per count period, thus making the results similar across two different approaches. Average absolute 
error values for the southbound and westbound approach were 2.26 and 2.38 vehicles, respectively. Across all 
approaches included in the comparison dataset (southbound and westbound) the average absolute error was 2.31 
vehicles. Therefore, the results suggest similar performance across different approaches.  
 
 

 
Figure 16. Distribution of error. 

 
When data from the 190 count periods is analyzed, 62.3% of the count periods have an absolute error of at most 

two vehicles between the algorithm and the manual count as shown in the cumulative distribution presented in 
Figure 17. In other words, for approximately 62% of the count periods absolute error will be two vehicles or less. 
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Figure 17. Absolute error cumulative distribution. 

Until now, absolute errors have been discussed as a number of vehicles instead of a percentage. Error 
percentages can be a misleading indicator especially when the ground truth values are low. Figure 18 shows the 
absolute error values for individual count periods as a percentage of the ground truth count period volume. As the 
figure shows, high percentage errors are observed when the volumes of a count period are low. In other words, the 
100% error shown in Figure 18 is the result of the algorithm counting four vehicles while the manual count indicated 
two. From a traffic engineering perspective, counting four vehicles on an approach when there were in fact two 
vehicles will likely have a negligible effect on analyses. However, when higher volume count periods are 
considered, a trend toward lower percentage errors is shown in Figure 18. 
 

 
Figure 18. Absolute error as percentage of manual count volume. 
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Sources of Error 
As Figure 16 shows the nature of the errors is close to evenly distributed in the sense that sometimes the difference 
between the algorithm count and the manual counts is either negative or positive. Based on previous work by the 
authors, the likely source of this error is not the result of missed calls by the radar-based detection system (Santiago-
Chaparro et al. 2012a). Also, the same work suggests that weather and illumination conditions are not likely to 
impact the performance of the radar-based vehicle detection system. However, as with other vehicle detection 
systems, when volumes are high and vehicle composition includes larger vehicles there is a chance for occlusion as 
well as for double tracking. 

Occlusion can result in the radar not being able to constantly track a vehicle throughout the approach (i.e., 
upstream and downstream of the stop bar) if a larger vehicle blocks the line of sight between the vehicle and the 
radar. Based on the algorithm design, if a vehicle is not seen both upstream and downstream of the stop bar it is not 
considered a valid trajectory, thus resulting in the algorithm computing a lower volume for a movement than a 
manual count. Double tracking is another source of error present for vehicles with an attached trailer. Double 
tracking can happen when a vehicle with an attached trailer is tracked throughout the approach as two separate 
vehicles. As a result, count periods with vehicle volume higher than those obtained through a manual count can be 
the result of a vehicle being tracked as two by the radar. 

 
Wisconsin Avenue and Oneida Street (First Supplemental Data Collection Site) 
Manual count and algorithm volumes were available for a total of 48 count periods for the first supplemental data 
collection site. Over the 48 count periods, a total of 1,129 vehicles were manually counted while the algorithm 
counted 1,120 vehicles. The nine vehicles over the entire period represents a difference of 0.80%. When analyzed at 
the count period level the average error for the algorithm is equal to ˗0.19 vehicles, while average absolute error 
equals 1.56 vehicles. Figure 19 shows a histogram of the algorithm error for each of the count periods. As shown in 
the figure, the error values with the highest frequency of observations are 0, ˗1, and 1. In fact, 77% of the count 
periods reported have an absolute difference between the manual count and algorithm results of two vehicles or less. 
The error values reported for this site suggest that the algorithm is capable of producing similar results (in terms of 
performance) across multiple sites. 
 

 
Figure 19. Distribution of error (Supplemental Data Collection Site 1). 
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Fish Hatchery Roads and Greenway Cross (Supplemental Data Collection Site 2) 
The intersection of Fish Hatchery Road and Greenway Cross is significantly different when compared with that of 
the main data collection site and the first supplemental data collection site. In terms of volume, the intersection more 
than doubles the volume of the main data collection site (estimated average weekly traffic = 52,100 vehicles). The 
geometry is also significantly different. For example, on the studied approach there are a total of five lanes for traffic 
and one bicycle lane. Due to the geometry of the intersection each lane has a different stop bar location. There is 
also a significant presence of large vehicles at the intersection in all movements as a result of the area 
characteristics, which include three auto dealerships that continuously receive shipments in car trailers that can 
block the line of sight between the detection system and other vehicles. An example of the heavy vehicle presence is 
shown for the right-turn movement in Figure 20, which took place in a period of less than 30 minutes.  
 

 
Figure 20. Potential line of sight obstructions. 

Manual count and algorithm volumes were available for a total of 15 count periods for the second supplemental 
data collection site. Over the 48 count periods, a total of 5,624 vehicles were manually counted, while the algorithm 
counted 4,787 vehicles. Figure 21 shows a distribution of the efforts by count period. The accuracy of the algorithm 
decreased on this intersection and this was expected by the research team due to the nature of the vehicle detection 
configuration at the location. For example, the size of the intersection and placement of the detection warrants the 
use of two detection units per approach, but only one was used. This is the result of the radar-based system acting as 
supplemental detection and not as the primary source.  
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Figure 21. Distribution of error (Supplemental Data Collection Site 2). 

 However, the findings at the intersection are still encouraging. For instance, the procedures for automatic zone 
detection worked as expected, which is a critical part of the automated turning movement count process. The sources 
of error shown in Figure 21 are primarily the result of two undercounting situations.  

A review of the data and intersection characteristics suggests that undercounting on the left turn can be the 
result of occlusion, larger vehicles on one of the left-turn lanes blocking other left turning vehicles, and that the stop 
bar of the left-turn lanes is further upstream than the other lanes. The further upstream stop bar position could 
increase the occlusion effects since large vehicles on the adjacent through lanes can block the line of sight between 
the detection system and vehicles. 

Undercounting of vehicles on the right turn movement has been primarily attributed to large vehicles on the 
right-turn lane such as the ones shown in Figure 20 blocking the line of sight between the radar and smaller vehicles 
behind the larger one. Furthermore, due to the non-uniform location of the stop bar the temporary stop bar identified 
by the algorithm will be detected further upstream, thus increasing the chance of vehicles on the right-turn lane 
being dropped and considered upstream noise. These situations suggest the need to improve the nature of the 
algorithm and highlight the need for further testing in order to handle non-typical intersections such as the ones on 
the main data collection site and the first supplemental data collection site. 
 
POTENTIAL IMPLEMENTATION PATH (CONCEPTUAL PROCESS) 
The current version of the algorithm has been implemented and packaged as a group of Python and R data collection 
and analysis scripts. Furthermore, trajectory data were stored using a relational database. Existing code enables the 
deployment of a proof-of-concept version of the algorithm. However, while the results are encouraging, further 
refinement of the algorithm is required to handle a wider array of intersection scenarios and traffic conditions. Once 
these improvements are made the project presented will be able to move into a market-ready solution by wrapping 
the analysis and data collection process into a user-ready solution. The following are a set of recommendations by 
the authors to implement a more refined version of the trajectory classification algorithm. There recommendations 
are conceptual and intended to provide guidance, but do not represent a blue print for the process. 
 
Data Collection Process 
The procedures used by the authors to log vehicle trajectory data from the radar-based vehicle detection system rely 
on a consumer grade laptop running inside the signal cabinet of the intersection. The computer runs Windows 7 and 
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includes a Python interpreter. Furthermore, the computer also runs a MySQL server where data collected via the 
Python program are stored and made available to any computer located on the same network. The data collection is 
made possible because the computer is connected to the same network (via an Ethernet switch) as the radar-based 
vehicle detection system through an Ethernet cable. 

The data analysis happens on a different machine; therefore, the computer placed inside the signal cabinet is 
technically acting simply as a data storage device capable of serving on-demand vehicle trajectory data. With the 
rapid growth experienced in the field of single board computers, the possibility of replacing the laptop computer 
used by the research team with a credit card size device is a real possibility. Figure 22 shows a potential device and 
approach that can be used to replace the vehicle trajectory data collection process. 

Figure 22 shows a Raspberry Pi single board computer the size of a credit card that runs a version of the Linux 
operating system (OS). The computer is capable of running Python as well as a MySQL server and includes an 
Ethernet port. Therefore, the single board computer can be used a replacement to the Windows 7 laptop used by the 
research team to collect the vehicle trajectory data. The single board computer is powered through the use of a USB 
port similar to that of a phone, which makes concerns about power availability inside the signal cabinet a non-issue.  

Because the single board runs a version of the Linux operating system there are some changes that will be 
required in the data collection scripts and the database structure used. For example, the Python program used to log 
vehicle trajectory relies on libraries that enable communication with the servers running on the radar devices needs 
to be modified and configured to work on a computer running a Linux OS. Other platform changes such as error 
recovery and performance monitoring would also need to be added. Finally, given the lack of a display on the device 
a web-based management interface will need to be created in order to allow the configuration of the data collection 
unit prior to installation in the field. The management interface should rely on a lightweight web server that can be 
accessed by any device with a web browser and an Ethernet port; for example, a laptop computer or tablet with the 
proper adapter. 

 
Figure 22. Potential data collection unit. 

The Windows version is able to handle time stamp values that contain millisecond precision; a capability that is 
not currently available on the corresponding Linux version of the software. Therefore, the structure of the database 
needs to account for this limitation of the Linux version and include supplemental fields that can store millisecond 
values given that the millisecond-level accuracy is valuable when analyzing vehicle trajectory data. The changes in 
the structure of the database, while trivial, do open doors for potential applications of the data collection 
methodology to areas such as surrogate safety evaluations and highlight the need for understanding how every small 
change in the process can impact the long-term potential of a system. 
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Analysis Process 
For purposes of this NCHRP IDEA Stage 1 project, when the data analysis algorithm is executed it will 
communicate with the MySQL server containing the vehicle trajectory data and generate a data file containing 
vehicle trajectory information for the previous day. In other words, if the program is executed at 3 a.m. on July 15, a 
turning movement count report will be produced for the period of July 14 (12:00 a.m.) to July 15 (12:00 a.m.), a 24-
hour period. This process can be automated through the use of the task scheduler included in virtually all versions of 
the Windows operating system. Figure 23 shows a concept of how the analysis process can be automated. 
 

 
Figure 23. Conceptual data analysis implementation process flow. 

 
 The idea behind the workflow show in Figure 23 is the use of idle computer time to produce and archive turning 
movement count reports daily without the need for user interaction. A dedicated folder can be established on a 
computer for every intersection for which a turning movement count report is desired. The Windows Task Scheduler 
will then execute a script that will make the computer establish a connection with the server containing the vehicle 
trajectory, create a vehicle trajectory file on the computer for the previous day, and launch a process that analyzes 
the trajectory data using the algorithm described in this report. A folder structure for each intersection that includes a 
place to store the raw data and reports can be created. The reports folder should include graphs and data summaries 
that are sorted by date.  
        The aforementioned procedure can be achieved manually, but will require knowledge about computer 
programming. The data analysis algorithm code needs to be established as a template that relies on supplemental 
information passed as arguments at run time pointing to a correct intersection on the network from which vehicle 
trajectory data will be extracted. Furthermore, end users will have to configure how the operating system handles the 
execution of code written in R to analyze the trajectory data. R will also need to be installed on the computer of the 
end user. Therefore, a computer program that wraps the data retrieval, data analysis, and scheduling task needs to be 
created. The program will also need to include an embedded version of the R programming language in order to be 
functional. The final goal of the program should be to make the data analysis process configuration as simple as 
opening a text file and changing the IP address of the intersections from which data is required. 
 
CONCLUSIONS 
Through this NCHRP IDEA Stage 1 project the research team demonstrated a proof of concept of an algorithm that 
produces turning movement counts reports using vehicle trajectory data extracted from existing vehicle detection 
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infrastructure. At the heart of this concept is a previously developed data collection methodology that continuously 
extracts vehicle trajectories from radar-based vehicle detection systems, without the need for specialized hardware 
or changes to the vehicle detection system configuration. The algorithm developed in this NCHRP IDEA project 
differs from existing approaches in that it does not rely on the definition of count zones on exit approaches or the use 
of time stamps of detection calls. As a proof of concept, the algorithm has shown significant promise in terms of 
performance. 

The performance of the classification algorithm was evaluated by comparing count period volumes from 
manual counts with volumes produced by the algorithm at three intersections with varying characteristics. A count 
period was defined as a 15-minute period for a specific approach and movement. The average difference between 
manual counts and algorithm results was ˗0.26 vehicles (˗0.81%). The average absolute difference was 2.31 
vehicles. Furthermore, for 62.3% of the count periods reported the difference between manual and counts from the 
algorithm was at most two vehicles.  Similar results were obtained at a supplemental data collection site, thus 
suggesting that the algorithm performance is stable when geometric conditions are not significantly different from 
those of the main data collection site, which arguably correspond to those of a typical signalized intersection. 

Considering the errors in manual counts, which arguably provide the most accurate turning movement count 
data, for a typical intersection the performance of the algorithm is deemed satisfactory. The algorithm is capable of 
handling noise in the data produced by adjacent businesses and pedestrian traffic as demonstrated by the results. 
Furthermore, because the methodology presented can be used for long-term data collection efforts (weeks and 
months) the daily fluctuations of traffic volumes by count period at a location will make the absolute error a 
negligible factor. The performance of the algorithm is expected to improve when used at rural locations because 
traditionally the volume is lower and the noise from adjacent business and pedestrians will be lower or non-existent. 

The performance of the algorithm was tested at a wide, non-typical signalized intersection in Madison, 
Wisconsin. The algorithm performed as expected; however, it was found that detection limitations, traffic 
characteristics, and large geometry contributed to the reduced accuracy. As a result, performance at the Madison site 
revealed the need to make adjustments to the algorithm in order to support non-typical and larger intersections. The 
required changes should focus on triggering different classification procedures based on detected intersection 
characteristics. Furthermore, the findings highlight that the algorithm is only as good as the configuration and 
placement of the detection systems. 

In addition to describing the characteristics of the algorithm and performance experienced, a potential 
implementation path has also been presented.  If the implementation path is followed, the process of generating 
turning movement count reports for intersections could be made as simple as opening a text file on a computer and 
typing IP addresses of radar detection systems at intersection. If the procedures presented are refined and packaged 
into a market ready solution through further development and testing, performance measures reporting for signalized 
intersections could be simplified and made accessible to small agencies without the need for significant capital 
investments. 
 
FUTURE WORK 
As an NCHRP IDEA Stage 1 project, the goal of the work presented was to show a proof of concept that can evolve 
into a tool from which transportation agencies can benefit. The algorithm presented by the authors has shown that, in 
fact, turning movement count reports can be produced for a signalized intersection regardless of the lane 
configuration. To successfully commercialize this innovation, the algorithm needs to be improved, a prototype data 
collection device that can be installed inside a signal cabinet constructed, and a centralized software tool to manage 
multiple data collection devices needs to be developed. The goal of the centralized software would be to run the 
classification algorithm on data collected across multiple field data collection units. 

While the results from the project are encouraging, there are still improvements to the data analysis algorithm 
that need to be performed in order to have a market-ready solution. Future work should focus on making 
improvements to the algorithm in order to handle the following scenarios: 
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• Different intersection configurations. the algorithm developed as part of the project provides satisfactory 
performance on what could be considered a textbook intersection. For example, no testing has been done 
on intersections with channelized lanes and testing is required at intersections with a non-uniform stop bar 
location. 

• Intersections with significant presence of heavy vehicles. Results from the second supplemental site show 
the need for further development in order to improve movement detection as a result of occlusion effects. 

• Intersections with two detection devices per approach. For intersections with 5+ lanes per approach more 
than one radar device is desirable and will require changes to the algorithm in order to properly merge and 
analyze multiple data sources. 

 
The aforementioned modifications and requirements will require data collection across different locations in the 

country in order to obtain vehicle trajectory datasets from a wide array of geometric and traffic conditions.  These 
modifications will in turn require further analysis and performance evaluations that will trigger an iterative 
development process. The iterative process will not only extend to the underlying data analysis procedures, but also 
to the reporting process and data collection procedures. 

In terms of data collection, the system should be tested on a smaller hardware platform such as a development 
board.  Furthermore, it should be configured for an environment in which the data analysis algorithm and data 
collection system are on two separate locations. The configuration of the data collection system, and corresponding 
analysis environment, will require gathering feedback from different transportation agencies across the country in 
order to identify a reporting and analysis procedure that serves end users. As with the algorithm changes, the 
feedback received will trigger the need for an iterative development process and testing in order to produce a 
market-ready solution. 

The centralized software tool will also manage the execution of the code for the improved version of the 
algorithm across multiple intersections to produce and store daily turning movement count reports for a group of 
intersections. The report will be available on demand, thus eliminating the need for constant user interaction and 
allowing end users of the data to access the reports when needed without the need for daily interaction with the 
system. 
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