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EXECUTIVE SUMMARY 
This report documents the results of IDEA project 179, Development of a Portable Stress Measurement 

Instrument.  An ultrasonic stress measurement (USM) instrument has been developed that provides bridge engineers 

with quantitative measurements of the in-situ stresses in bridge members.  The instrument is very unique because 

there are no other practical total stress measurement methods for in-service steel bridges. The total stress measured 

includes dead load, residual, and live load stresses.  This new technology is a significant improvement over other 

stress measurement technologies such as strain gages, which are not capable of measuring the in-situ residual or 

dead load stresses in a bridge member.  The total stress measurement provided by the USM instrument can be used 

to analyze the structural adequacy of bridge members in ways not possible using conventional technologies. 

The USM instrument uses ultrasonic birefringence to measure the total stress in a steel bridge member.  

Ultrasonic birefringence is a well-established physical phenomenon that has been used as a laboratory method for 

decades.  The technology developed through the research extends the application of the birefringence measurements 

to practical field applications.  The USM instrumentation developed is a portable, battery-operated system designed 

to be suitable for practical stress measurement in the field.   

The USM instrument provides a tool that helps bridge owners assess bridge safety through data previously not 

available.  Currently, accurate safety evaluation of bridges can be difficult due to the uncertainty in knowing the 

actual loads carried by individual bridge members.  Engineers must rely on theoretical assumptions based on design 

drawings to analyze load distributions.  Design drawings typically do not represent the actual conditions in the field.  

Locked or damaged bearings, corrosion damage, impact damage, and misalignment of members can result in 

unanticipated load distributions.  As a result, analysis to determine if a member has adequate capacity to carry the 

applied forces can be inaccurate, because the load distribution is uncertain.  The USM instrument developed can 

now actually measure the in-situ forces and resulting stress directly to provide the data needed to more accurately 

assess structural adequacy and ensure bridge safety.   

The USM instrument was developed by integrating and modifying commercially available equipment into a 

single portable instrument containing all components needed for the measurements.  Instrument development 

included specialized software to automatically process birefringence data to determine the magnitude of stresses.  A 

custom transducer fixture was designed and manufactured that supports the transducer rotation necessary for 

birefringence measurements.  The USM instrument was tested in the laboratory and through field testing that 

verified the accuracy of the total stress measurement.  

Laboratory testing was used to determine key acoustic properties of common bridge steels.  These laboratory 

studies consisted of determining the natural birefringence and acoustoelastic constants for steel, which are used to 

relate measured ultrasonic birefringence to the total stress in the steel.    Laboratory studies were also used to 

develop and test the integrated hardware and software developed through the research.     

The operation and capabilities of the USM instrument were verified through a field test.  The field test 

consisted of measuring the shear stresses in a gusset plate of a truss bridge under different loading conditions.  The 

total stress measurement was verified by removing a core from the gusset plate at the same location where the USM 

was made.  Stresses in the core were measured using a conventional strain gage rosette to determine the stresses 

released when the core was removed from the plate.  It was found that the USM was capable of accurately 

determining the total stress in the gusset plate.   

Future plans to promote this new technology include more experience with field measurements.  Additional 

measurements will improve the instrument and will provide a better understanding of how and where the 

measurements can best be applied.  This project represented a significant step in creation of a portable stress 

measurement instrument and a first-generation prototype was developed.  Additional system integration is planned 

for making the system more portable and easier to use with the end-goal of providing a commercial instrument 

available to the highway bridge community. 
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1 IDEA PRODUCT   
A unique ultrasonic stress measurement (USM) instrument has been developed that provides bridge engineers 

with quantitative measurements of the in-situ stresses in bridge members.  The unique feature of the USM tool is the 

measurement of total stress in a steel member.  The total stress measured includes dead load, residual, and live load 

stresses.  This new technology is a significant improvement over other stress measurement technologies such as 

strain gages, which are not capable of measuring the in-situ residual or dead load stresses in a bridge member.  The 

total stress measurement provided by the new USM instrument technology can be used to analyze the structural 

adequacy of bridge members in ways not possible using conventional technologies such as strain gages. 

The portable USM instrument shown in Figure 1 consists of an ultrasonic transducer, data acquisition, and 

wireless computer interface that interfaces with the data acquisition system to record and process data.  The 

integrated system measures the in-situ stress carried by a steel bridge member.  This tool can be used to identify 

critically-stressed members, identify repair or replacement needs, and ensure bridge safety.  For example, the tool 

can be used to assess the potential for gusset-plate buckling, evaluate the load paths in redundant structures, evaluate 

damage following an extreme event, or to identify load distributions in a truss bridge.   

The key innovations from the research are the ability to measure total stresses in bridge members and the 

development a battery- operated, portable instrument that is practical for field measurements.  These developments 

provide an important new technology for assessing bridge safety.   

 

1.1 HOW DOES THE NEW TECHNOLOGY WORK?  

The instrument uses ultrasonic birefringence to measure the total stress in a steel bridge member.  Ultrasonic 

birefringence is a well-established physical phenomenon that has been used as a laboratory method for decades.  The 

resulting USM is the through-thickness average stress carried by the member being evaluated.  This measurement is 

unique because it includes the total stress in the material, including residual, dead load, and live-load stresses.  The 

instrumentation developed through this research is battery operated and designed to be suitable for practical stress 

measurement in the field.   

 

Figure 1.  Photograph of the portable stress measurement technology developed through the research. 
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Figure 2 illustrates the application of the technology in the field to measure stresses carried by a gusset plate.  

The photograph in Figure 2A shows the instrument developed through the research with the transducer placed on a 

gusset plate, and a truck used to apply different loads on the bridge.  The results shown in Figure 2B indicate the 

total shear stress measured by the USM technology as compared with the actual total shear stress.  These data verify 

the capability of the USM developed through the research to make an accurate measurement of stress in the field.  

1.2 HOW DOES THE INSTRUMENT OPERATE? 

The instrument operates by placing the transducer of the surface of a steel bridge member.  The transducer 

attaches magnetically to the surface of the steel.  The transducer is manually rotated to collect the ultrasonic 

birefringence data needed to determine the total stress carried by the member.  Data is analyzed by using specialized 

software developed through the research.  This software automatically calculates the ultrasonic birefringence data 

needed for analyzing the magnitude and direction of principal stresses.  The USM technology developed is battery 

operated and portable for use in the field, and is simple to operate.  A single measurement takes about 1-2 minutes to 

complete, with the data acquisition and analysis being largely automated through software developed as part of the 

research.   

2 CONCEPT AND INNOVATIONS 
 

The concept of this research was to develop a practical nondestructive technology for measuring the total stress 

carried in bridge members.  This new technology provides a tool that helps bridge owners ensure bridge safety 

through better analysis of existing bridges.  Effective safety evaluation of bridges can be difficult due to the 

uncertainty in the actual loads carried by individual bridge members.  Engineers must rely on theoretical 

assumptions based on design drawings to analyze load distributions, and these design drawings typically do not 

represent the actual conditions in the field.  Locked or damaged bearings, corrosion damage, impact damage, and 

misalignment of members can result in unanticipated load distributions.  As a result, analysis to determine if a 

member has adequate capacity to carry the applied forces is compromised, because the load distribution is uncertain.  

The technology developed measures the in-situ forces and resulting stress directly to provide the data needed to 

assess structural adequacy and ensure bridge safety.   

Conventional technologies such as strain gages are only capable of measuring the live load portion of stresses 

in a bridge member.  Strain gages cannot measure the dead load stresses resulting from the weight of bridge 

materials, locked-in stresses resulting from member misalignment, or residual stresses.  These stresses are often 

larger than the live load stresses applied by traffic loading.  The safety evaluation of bridges can be greatly improved 

 

Figure 2.  Photograph showing the USM technology applied to a gusset plate (A) and the resulting total stress 

measurement (B).  
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by a technology that measures the total stresses carried in a bridge member, including the live load, dead load, 

locked-in, and residual stresses.  In fact, the measurement of total stresses in bridge members was identified as the 

number two research priority by a working group of state bridge engineers, industry, and academics assembled by 

the FHWA in 2016[1].  The concept of the research was to develop a nondestructive tool that can address the need 

for practical, quantitative measurement of total stress to assist bridge owners in ensuring bridge safety.   

The USM technology developed is based on measuring the ultrasonic birefringence in a steel plate.  

Birefringence is the difference in ultrasonic wave velocity between orthogonally polarized shear waves, which 

varies as a function of stress.  Figure 3A shows a schematic diagram of the test arrangement for making the stress 

measurement using polarized shear waves.  As shown in the figure, the transducer is placed on the surface of the 

steel, and a polarized shear wave is launched from the transducer.  The wave propagates through the thickness of the 

plate, reflecting from the opposite surface and detected by the transducer.  The travel time for the wave to propagate 

through the plate is determined as shown in Figure 3B.  When the transducer is rotated, the travel time varies 

revealing a “fast” direction and a “slow” direction.  The birefringence is the difference between the ultrasonic 

velocities in the “fast” and “slow” directions.  As shown in the figure, the magnitude of the birefringence varies as a 

function of the stress.  For the data shown in the figure, the birefringence is larger for a stress of 25,000 psi as 

compared with a stress of 0 psi.    

The concept of USM based on birefringence has been the subject of study in the past, primarily utilized for 

research and laboratory applications.  Practical instrumentation, sensor technology and software for applying USM 

for measuring total stress in bridge members has not been developed previously.  

The research reported herein developed a practical field instrument for performing ultrasonic birefringence 

measurement to determine the total stress in steel plates.  The key innovations from the research are the ability to 

measure total stresses in bridge members and the development a battery operated, portable, practical instrument for 

field measurements.  These developments provide an important new technology for assessing bridge safety. 

 

  

 

Figure 3.  Schematic diagram of the test arrangement for USM (A) and ultrasonic birefringence data used 

to determine stress (B)  
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3 INVESTIGATION 
This portion of the report describes the investigation and testing completed as part of the research.  Section 3.1 

provides background on the underlying theory governing the use of ultrasonic waves to measure total stress, and 

discusses the application of the technology for the evaluation of gusset plates in truss bridges.  Section 3.2 describes 

the development of the USM instrument and supporting software.  The ultrasonic measurement of stress in bridge 

steels has been the subject of limited previous research with only a few field applications for stress measurement in 

bridges.  Therefore, the research included laboratory testing to assess key parameters and develop the operation of 

the USM technology.  Section 3.3 describes the laboratory testing completed as part of the research.  These testes 

were used to evaluate key ultrasonic properties of bridge steel such as the acoustoelastic constants needed to convert 

birefringence measurements to stress measurements.    

To demonstrate the implementation of the technology in the field, the research included a field trial in which 

the new USM technology was used to evaluate shear stresses in a gusset plate of a truss bridge.  This application 

was selected due to its relevance the 2007 collapse of the I-35W bridge over the Mississippi River in Minneapolis, 

in which a gusset plate failure resulted in the collapse of the entire bridge.  Section 3.4 describes the field testing 

completed as part of the research to demonstrate field implementation of the technology and verify the stress 

measurements.  

3.1 BACKGROUND  

3.1.1 Ultrasonic Stress Measurement with Birefringence 

Ultrasonic testing (UT) utilizes high frequency sound energy for characterization and examination of material 

properties of structural members in a bridge.  Typical UT systems consist of a pulser/receiver, a transducer, and a 

display window for measurement analysis.  UT inspection is currently used for flaw detection in welds, dimensional 

measurements (e.g. plate thickness) of materials, and material characterization (e.g. modulus).   

The use of ultrasonic waves for stress measurement is a less common use of the technology.  Ultrasonic stress 

measurement is based on the variation of wave velocity caused by applied strain.  The elastic properties of a metal 

are a function of strain in the material; therefore, when the material undergoes strain the velocity of the wave will 

change [2].  This phenomenon is known as the acoustoelastic effect.  For small changes in an wave velocity a 

relationship between the measured velocity of the acoustic waves and stress can be linearly characterized by 

Equation 1: 

 𝑉 = 𝑉0 + 𝑘𝜎 (1) 

where 𝑉0 is the wave velocity in an unstressed medium, 𝑘 is a material-dependent acoustoelastic constant, and 

𝜎 is the stress in the material [2, 3].  This general relationship has been used in the past for applications such as 

determining the stress in prestressing strand, measuring fatigue loading in steel bridges, and measuring stress in 

railroad tracks[4-6].  In this research, ultrasonic birefringence has been applied for measuring stress in the gusset 

plates and other steel bridge members.     

In an isotropic homogeneous material, ultrasonic shear waves propagate at a single velocity regardless of wave 

polarization direction.  In steel, the shear wave velocity is approximately 10,500 ft/sec.  However, if a material 

exhibits anisotropy, the velocity of the shear waves will become dependent of the polarization direction of the wave.  

Anisotropy in a material occurs for two reasons; texture and stress [7].  The texture effect, or the natural 

birefringence, is typically due to the fabrication process of the material.  Mechanical process introduces a texture to 

the material by elongating the polycrystalline grain structure into a preferred orientation in the rolling direction.  

This causes a “natural” birefringence effect, 𝐵0, in the steel when the stresses in the material are nominally zero.  As 

a result, the fast pure – mode polarization direction is coincident with the rolling direction of the unstressed steel 

material, and the slow pure – mode polarization direction is transverse to the rolling direction in the same unstressed 

steel material. 

Stresses in the material that result in strain relative to the natural positions of the atoms also cause anisotropy in 

the material.  The ultrasonic birefringence method measures the anisotropy (as manifested through the wave 

velocities) caused by stress in the material to quantify the level of stress, relative to the unstressed state.  In this way, 

the USM measurement includes any stresses causing the material to be strained.  This includes residual stresses, live 

load stresses, and dead load stresses.   

The material anisotropy results in polarization orientations where the wave velocity is at a maximum and 

minimum, typically termed the “fast” and “slow” wave direction.   These orientations are known as pure – mode 
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polarization directions and are orthogonal to one another.  The normalized difference in velocity of the pure-mode 

polarization directions is the acoustic birefringence, B, defined by Equation 2: 

 𝐵 =
𝑉𝑓 − 𝑉𝑠

𝑉𝑎𝑣𝑔
 

(2) 

where 𝑉𝑓 is the velocity of the fast wave, 𝑉𝑠 is the velocity of the slow wave, and 𝑉𝑎𝑣𝑔 is the average velocity of the 

wave.  These types of measurements are independent of material thickness because the wave propagates over the 

same material distance.  Therefore, the difference between those measurements can be characterized as the transit 

time, or time-of-flight (TOF), of the wave through the material thickness.  Acoustic birefringence can then be 

rewritten as follow in Equation 3: 

 𝐵 =
𝑡𝑓 − 𝑡𝑠

𝑡𝑎𝑣𝑔
 

(3) 

where 𝑡𝑓 is the TOF of the fast wave, 𝑡𝑠 is the TOF of the slow wave, and 𝑡𝑎𝑣𝑔 is the average TOF of the wave.   

Pure – mode polarization directions are aligned with the rolling and transverse direction of a material when the 

material is unstressed and when the principal stress directions are coincident with the rolling and transverse 

directions.  Under the presence of shear stress, the fast and slow polarization directions will deviate causing a 

rotation of the pure – mode polarization direction through an angle from the rolling direction [3, 8, 9].  Figure 4 

shows a representation of this phenomenon where X0 and Y0 represent the rolling and transverse direction, while X 

and Y represent the pure – mode polarization directions rotated by an angle 𝜙 [9].   

 

Figure 4.  The pure – mode polarization direction, X and Y axis, rotated through the angle ϕ  with respect to 

the transverse and rolling direction, X0 and Y0 axis, due to the presence of shear stress. 

The relationship between stress and birefringence was first studied by Iwashimizu in [10]; these relationships 

were later simplified by Okada [11, 12] and Clark [8, 9].  The relationship between birefringence and stress as 

referenced to a coordinate system parallel and perpendicular to the rolling direction of the material is shown 

Equation 4: 

 𝐵2 = [𝐵0 + (𝑚1 +𝑚2)𝜎𝑥 + (𝑚1 −𝑚2)𝜎𝑦]
2
+ (2𝑚3𝜏𝑥𝑦)

2
 (4) 

where 𝐵0 is the natural birefringence of the material in an unstressed state, 𝑚1, 𝑚2, and 𝑚3, are acoustoelastic 

constants, 𝜎𝑥 and 𝜎𝑦 are the in – plane principal stresses parallel and perpendicular to the rolling direction of the 

material, and 𝜏𝑥𝑦 is the shear stress in the material.   

As previously discussed, the pure – mode polarization directions will be aligned with the rolling and transverse 

direction of an unstressed material.  However, shear stresses, like those experienced in gusset plates, will cause a 

rotation of these directions through an angle 𝜙.  This can be characterized by Equation 5. 

 
𝑡𝑎𝑛2𝜙 =

2𝑚3𝜏𝑥𝑦

𝐵0 + (𝑚1 +𝑚2)𝜎𝑥 + (𝑚1 −𝑚2)𝜎𝑦
 

(5) 

When the principal stresses are aligned with the texture direction in the steel, such as would be the case in most 

open steel shapes, rotation of the fast and slow directions does not occur.  A combination of Equation 4 and 

Equation 5 with trigonometric identities yields Equation 6 and Equation 7 for normal and shear stress respectively: 
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 𝑚1(𝜎𝑥 + 𝜎𝑦) + 𝑚2(𝜎𝑥 − 𝜎𝑦) = 𝐵𝑐𝑜𝑠2𝜙 − 𝐵0 (6) 

 

and 

 𝜏𝑥𝑦 =
𝐵 sin 2𝜙

2𝑚3

 
(7) 

It is notable that the final equation does not depend on the natural birefringence in the material, but rather only 

on the measured birefringence at a given stress level, and the appropriate stress-acoustic constant, m3. These 

equations demonstrate the relationship between the stress state of a material and birefringence measurements.  In 

this research, these relationship have been used to measure the total stress in steel gusset plates, focusing on the 

shear stress measurement that requires calculating both the angle of the pure mode rotations and the birefringence.    

3.1.2 Stress Measurement In Gusset Plates 

A key motivation for the research was the need for improved methods to evaluate the structural capacity of 

steel bridge members, including gusset plates in truss bridges.  The need for structural evaluation of gusset plates 

was revealed by the collapse of the I35W bridge in 2007.  This tragic accident, in which 13 motorist were killed, 

was caused by the failure of an over-stressed gusset plate in one of the bridge joints [13].  The gusset plates that 

failed were not adequately sized to properly support the large compressive forces transmitted from the primary truss 

members.   

Previous research by Mentes indicated gusset plates fail in one of two ways.  For thin gusset plates, less than 

3/8 in thickness, the plate fails due to buckling, while thick gusset plates, greater than 5/8 in  thickness, fail due to 

shear failures [14].  The work performed by Ocel with the Federal Highway Administration determined the main 

cause of gusset plate failure was due to the high shear stresses in the gusset plates.  This work included full-scale 

testing of 13 gusset plate members using experimental and analytical methods.  The results from these investigations 

determined that half of the test specimens failed due to buckling and the other half failed due to shear yielding [15].  

Ocel concluded that: 

Although it may seem odd to use a shear formulation to predict buckling, the research showed that 

once a partial shear plane in the gusset plate along a compression member yields, its elastic 

modulus decreases and thus reduces the out-of-plane rotational restraint the plate can provide to 

the idealized column [15]. 

The work performed by Ocel is further reiterated in a study of in-service gusset plates in bridges performed by 

the University of Washington for the Washington State Department of Transportation.  This study concluded that 

buckling in gusset plates did not occur prior to yielding of the gusset plate in any of the connections studied.  The 

interaction of the complex stresses generated in the gusset plate members, as previously described by Whitmore, 

initiated the yielding of the members [16].  Therefore, it is of the upmost importance to assess the magnitude of 

shear stresses in gusset plates to identify members potentially at risk of failure.   

This previous research indicates that the analysis of shear stresses in the gusset plates is key to assessing the 

risk of failure.  However, analytical determination of the forces and stresses in the gusset plate is complicated by the 

need to estimate the load induced from the axial-force members joined by the gusset plate.  As previously discussed, 

determining the force carried in these members and transferred by the gusset plate is complicated by the uncertain 

load distribution in truss bridges.  An additional complication for gusset plates is that the plates commonly have 

corrosion damage resulting in section loss.  Therefore, even if the forces were known, the total section of the plate 

carrying those loads may be uncertain.  A direct measurement of total stress, such as offered by the USM technology 

developed through this research, overcomes these challenges. Since the USM instrument measures total stress, the 

effect of any section loss is measured directly in the stress measurement.  The unknown distribution of forces is also 

mitigated, since the total stress measurement assesses the effect of those loads, even if the loads themselves are 

unknown.  For these reasons, the research focused on the measurement of shear stresses in gusset plates to 

demonstrate the unique characteristics and utility of the USM technology. 

It should be noted that there are other more conventional applications for the USM, some of which have been 

developed in the past.  For example, Lozev et. al. [3] explored measuring the locked-in forces in an I-shaped 

member of a jointless bridge.  Clark et. al. [8] implemented USM as a tool to determine if a pin and hanger 

connection were locked by measuring the bending stresses in the hanger plate.  Fuchs et. al. [5] developed USM for 
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monitoring applied live loads for the purpose of measuring stress ranges for analyzing remaining fatigue life.  Axial 

stresses in truss members and bending stresses in open and closed steel bridge members are additional applications 

where the ability of USM to measure normal stresses could be applied.  USM in this research focused on the unique 

application of gusset plates as described above, although much of the developmental laboratory testing that will be 

described illustrates the measurement of axial stresses that could be applied to primary bridge members.  

3.2 DEVELOPMENT OF THE USM INSTRUMENT 

A field-ready instrument was developed through modification of commercially-available hardware and 

integration into a practical system suitable for field implementation.  The primary components of the system 

consisted of the following: 

1. A pulser-reciever for launching and detecting polarized shear waves 

2. Computer software for signal analysis  

3. Wireless link for communication 

4. Rotational ransducer fixture with encoder    

The design of the system is intended to create a small, portable system that is easy to use in the field.  This 

system contains a minimum number of components and operates in a near – automatic mode.  Figure 5 shows a 

block diagram of the instrument developed through the research.  The design incorporates a self-contained data 

acquisition system, a wireless router, battery and signal conditioning module.  Each of these components was 

mounted in a suitable field-ready enclosure.  A specialized rotational transducer fixture was designed and 

manufactured that allowed the transducer to be rotated in a circular fashion to support the birefringence 

measurement.  A laptop computer was used for data collection and signal processing of the data.  The synchronized 

data collection is triggered by the transducer position, and processed via the remote laptop computer that 

communicates with the system through a wireless router or via a USB connection.  The following section describes 

each of the components of the USM instrument developed through the research.  

 

Figure 5  Block diagram of the field portable instrument design concept (FCI). 

3.2.1 Ultrasonic Pulser- Receiver 

A commercially available ultrasonic instrument (Innerspec Temate® Powerbox H (PBH)) was used to provide 

the pulser-receiver for launching and receiving ultrasonic waves.  The commercial instrument was used to because it 

integrated several key components necessary for USM such as an ultrasonic pulser, high speed ultrasonic receiver, 

and a transducer for launching and receiving ultrasonic waves.  The transducer is an Electromagnetic Acoustic 
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Transducer (EMAT) that launches and receives ultrasonic waves through electromagnetic interactions with the 

specimen under test.  The PBH provides the high-power pulser characteristics necessary for use of an EMAT sensor.  

The EMAT provided with the commercial PBH instrument was used for launching and receiving polarized shear 

waves.  A signal conditioner module containing a multiplexer and tuning module provided the first stage of 

amplification for the low-level signals generated from the transducer.  The multiplexer permits the use of the pulse – 

echo technique by merging the transmitted and received signals onto a single line.   

3.2.2 Transducer 

EMATs were used in the research to generate and detect ultrasonic shear waves in the steel plate.  EMATs 

were used because no coupling medium is required to transmit the ultrasonic wave between the transducer and the 

steel plate.  Waves are generated through electromagnetic interactions within the steel plate itself.  In contrast, 

conventional ultrasonic transducers consist of a piezoelectric sensor element that produces acoustic waves in the 

transducer.  The acoustic waves are transmitted from the transducer into the material using a coupling medium.  The 

coupling of the waves between the transducer and the material can be inconsistent, resulting in variations in the 

signal amplitude.  For USM, the variation in the coupling can make it difficult to achieve the timing accuracy 

required to make repeatable measurements.  For this reason, the use of an EMAT is desirable, since an EMAT does 

not require mechanical coupling and consequently produces more consistent signals.   

Figure 6 shows photograph of the 1.88 in. diameter EMAT used in the research to produce polarized shear 

waves.  A marker placed on the transducer housing indicates the shear wave polarization direction; the polarization 

direction is adjusted by rotating the transducers to the desired orientation on the steel specimen during testing.  The 

magnetic force from the permanent magnet inside the EMAT holds the transducer onto the surface of the steel; this 

allows for rotation of the transducer while it is still in contact with the surface of the steel by the application of 

sufficient rotational force.  A specialized transducer fixture was designed to allow for rotation of the transducers and 

integration of an encoder device for determining the polarization orientation during testing, as described in the 

following section.  

 

Figure 6.  EMAT fixed to the surface of a steel specimen. 

3.2.3 Transducer Fixture Design 

Birefringence measurements require the detection of ultrasonic waves at different polarization directions as the 

transducer is rotated.  A special transducer fixture was designed and manufactured that allowed for data collection at 

specific transducer orientations.  This fixture allows rotation of the EMAT sensor and for automated collection of 

the ultrasonic data at known rotational positions.  Figure 7A shows a 3D CAD rendering of the transducer fixture 

design.  Figure 7B is an image of the final fixture after fabrication.  The transducer is housed in an outer tube with a 

rotation handle that allows for easy rotation of the transducer.  An encoder is attached to the outer tube with its own 

encoder housing.  The encoder is used to synchronize data collection with the rotational angle of the transducer.  The 

whole fixture attaches to magnetic materials via a plate with embedded magnets allowing for the fixture to remain 

stationary while the transducer is allowed to rotate.  Several different attachment plates were designed to allow for a 
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variety of different mounting options to address different possible geometric restraints.  For example, for large plates 

where there are few spatial constraints, an attachment plate with four magnetic-arm plates was designed that 

provides for maximum stability of the transducer.  For situations where spatial constraints are significant, such as 

where connected members intersect, a ring-shaped magnetic attachment without magnetic-arm plates was designed.  

 

 

Figure 7.  (A) EMAT fixture 3D solid model. (B) Fabricated EMAT fixture. 

3.2.4 Custom Enclosure 

A custom enclosure was constructed for the field portable system as shown in Figure 8.  This custom enclosure 

houses the PBH and all of its necessary components for operation.  It features a removable front panel for access to 

the PBH control panel and display.  It also has easy access to external connections for connectivity with the EMAT 

sensor and to allow for hardwiring to the remote laptop computer via USB connection, if desired.  The enclosure 

was fabricated using 80/20 aluminum extrusions with red and black expanded polyvinyl chloride (PVC) panels.  The 

materials used for the custom enclosure were selected because of their low weight, durability, and weather 

resistance.  These materials were used to form an enclosure with suitable durability for field operations.  
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Figure 8.  3D solid model of the custom enclosure used to house the field portable instrument. 

3.2.5 Final System Design  

Figure 9 is an image of the final field-portable system developed during this research.  The final system is 

comprised of a custom enclosure, specifically fabricated for the housing of the pulser – receiver (PBH) system and 

signal conditioner; a transducer fixture that retains and allows for rotation of the EMAT transducer during testing; 

and a laptop computer for collecting and processing data.  Software developed by Fuchs Consulting, Inc. (FCI) for 

data processing.  All components of the system can be operated by battery for field operations.   

 

Figure 9.  Image of the final portable ultrasonic stress measurement instrument. 

3.2.6 Data Processing Software 

Special software was developed to analyze the unique data generated for the birefringence measurement, which 

consists of multiple ultrasonic wave timing measurements as the transducer is rotated through 360 degrees.  

Software was developed by FCI to provide the necessary timing measurements to determine stress.  

Figure 10 shows an example signal produced by the polarized shear waves generated by the EMAT transducer 

propagating through the thickness of a steel plate.  The wave reflects multiple times through the thickness of the 
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plate, producing multiple echoes as shown in the figure.  Figure 10A shows a sample A – scan obtained from shear 

wave propagation through the thickness of a specimen with an individual wave packet displayed in Figure 10B.  As 

shown in the figure, a three cycle pulse was typically used for to generate the ultrasonic wave in the material under 

test.  

 

Figure 10.  (A) Sample A – scan of shear waves propagating through the thickness of a material. (B) 

Individual wave packet showing the three-cycle pulse. 

Signals such as those shown in Figure 10 were collected at appropriate polarization directions, and then 

processed to determine the birefringence.  Figure 11 shows the graphical user interface of the software developed to 

automatically perform the necessary data processing.  Selected start and end gates are used to identify the limits of 

the timing interval to be analyzed.  Five or six “echoes” were typically included between the gates.  After setting the 

gates for timing measurements, all of the A – scans obtained during one test are processed to obtain timing 

measurements.  For example, if the test consisted of rotating the transducer through 360° of rotation with 

measurements at 1° intervals, then the software would batch process all 360 signals to produce the timing 

measurements and associated polarization directions.  
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Figure 11.  Graphical user interface of the software developed for timing measurements. 

The software supports the data processing for a full 360° rotation of the transducer if necessary to achieve a 

stress measurement.  For plates where the rolling direction and principle stress directions are known, as few as two 

measurements at 90° to each other could be used to make the stress measurement.  For the case of gusset plates, 

where the stress field in more complex and the direction of principal stresses is not known, a full rotation of the 

transducer is used to identify both the magnitude and direction of principal stresses.   

3.3 LABORATORY TESTING 

Laboratory testing was performed to test the operation of the USM instrument developed through the research 

and to analyze the ultrasonic properties of the different steel specimens.  Steel specimens were fabricated to 

investigate the acoustic properties of different types of steel used in bridge construction.  Testing was also 

performed to determine the variation in acoustoelastic properties between different types of steel.   

3.3.1 Experimental 

This section describes the experimental details of the laboratory testing.  This includes a description of the test 

specimens, the test setup, and data collection.   

3.3.1.1 Specimens   

Steel plate specimens were manufactured to analyze the variations in acoustoelastic properties of typical 

materials.  Specimens were manufactured with their rolling direction in different orientations to allow for 

acoustoelastic measurements when principle stresses are not aligned with rolling direction.  For example, specimen 

A is a 90° specimen with the rolling direction aligned with the specimen axis, while specimen B is a 0° specimen 

oriented with the rolling direction perpendicular to the specimen  axis.  These specimens were fabricated using 

different types of steel grades used in typical bridge construction: A7, A36, and A588.  The A7 steel in 

representative of steel common in older bridges (pre-1960’s), A36 and A588 specimens represented contemporary 

steels that might be used for bridge construction.  The steel for the A7 steel specimen originated from steel angle on 

a MoDOT truss bridge over the Lake of the Ozarks in Missouri, which had recently been removed from service.  

This type of steel is similar to the steel of the bridge used in the field testing of the ultrasonic system and is still 

readily found in older truss bridges.  Specimens of different thickness were tested, as described in Table 1.  

Specimens were cut from different plates to provide some information regarding the potential scatter of 

acoustoelastic properties in the base materials.  The surface of the steel specimens was typical mill scale as delivered 

by the local provider with the exception of the A7 steel specimen, which had typical steel coatings that were 

removed by grinding.   
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Figure 12.  Photograph of the steel specimens fabricated to determine the texture and stress acoustic 

constants. The red arrows represent the rolling direction of the steel material. 

The specimens were fabricated with a reinforcement plate and a hole at each end to accommodate a pin through 

which the loads are applied.  Loads were applied using a Materials Testing Systems (MTS) loading machine during 

testing.   

Table 1.  Summary of the characteristics of the fabricated test specimens. 

Plate Specimen Steel Grade 
Plate 

Angle (°) 
Plate Thickness (in.) 

A A7 90 5/16 

B A36 0 1/4 

C A36 45 1/4 

D A36 60 1/4 

E A36 90 5/16 

F A588 0 1/4 

G A588 90 5/16 

  

3.3.1.2 Test Setup 

Figure 13 shows a picture of the basic uniaxial tension experimental setup.  The setup consisted of an 

individual test specimen fixed via pin – and – clevis connections on the top and bottom of the specimen.  The plate 

was loaded in tension in a uniaxial stress condition.  The testing was load – controlled by a computer program 

created in LabView, which controlled the displacement of the hydraulic ram in the MTS machine until the desired 

level of loading was achieved.   

The resulting strains induced in the specimens were measured using typical 350Ω strain gages.  The USM were 

compared with the strain gage measurements for verification of the birefringence stress measurement and to 

determine the acoustoelastic constants needed for stress calculations. 
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Figure 13.  Basic test setup consisting of the loading apparatus, strain gage acquisition system, and portable 

ultrasonic instrumentation. 

3.3.1.3 Data Collection  

The laboratory testing was completed using two different procedures depending on the orientation of the 

rolling directions with respect to the axis of loading.  For specimens where the rolling direction was parallel or 

orthogonal to the loading direction, such that the principal stresses align with the rolling direction, there is no 

rotation of the pure-mode polarization angles.  As a result, less data is necessary to achieve the stress measurement.  

For these specimens, waveforms were collected at 30° intervals while the transducer was rotated from 0° through 

360°.  For specimens where the rolling direction is off-axis with the principal stress directions, rotation of the pure 

mode polarization angles is expected.  These specimens simulate the conditions that are found for a gusset plate, 

where complex stress may exist due the interaction of forces from different truss members being joined by the plate.  

For these specimens, waveforms were collected at 1° intervals from 0° to 360°.   

Each test consisted of a texture measurement at 0 psi loading to determine the natural birefringence in the 

specimen, followed by USM at different load steps.  Load steps of 5,000 psi were applied, ranging from unloaded up 

to approximately 70% of the yield strength of the steel grade that was being tested.   A summary of the load steps for 

different steel grade types can be seen in Table 2.  The ultrasonic measurements were analyzed to determine the 

pure-mode polarization orientation, the natural birefringence value due to texture, and the birefringence at each load 

increment.  These birefringence values were compared with the measured stresses to obtain the acoustoelastic 

properties of each material.   
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Table 2. Loading steps for the different types of grades tested (0.7Fy = 25,200 psi for A7 and A36 and 0.7Fy = 

35,000 psi for A588). 

Load 

Step 

Stress (psi) 

A7 A36 A588 

0 0 0 0 

1 5,000 5,000 5,000 

2 10,000 10,000 10,000 

3 15,000 15,000 15,000 

4 20,000 20,000 20,000 

5 25,000 25,000 25,000 

6 N/A N/A 30,000 

7 N/A N/A 35,000 

3.3.2 Results  

This portion of the report documents the results of the laboratory testing.  Results are reported in several 

sections.  First, the results of texture testing are reported.  These tests were used to determine the typical anisotropic 

behavior of the different materials tested.  The second section reports results on specimens where the applied tensile 

loading was coincident with the rolling direction of the steel plates.  These results are useful, for example, for stress 

measurement in open steel shapes in bending or axially loaded, where the principal stresses are aligned with the 

rolling direction of the plate.  In this case, there is no rotation of the polarization orientations, and the determination 

of stress is simplified.  Finally, results are reported for specimens where that applied tensile loading is not coincident 

with the rolling direction of the plate.  For this orientation, both birefringence time measurements and rotation of the 

fast and slow directions are necessary for determining the applied stress.  

3.3.2.1 Texture Results  

Figure 14 illustrates typical time-of-flight (TOF) curves for an axially loaded specimen of A36 steel with 

ultrasonic waveforms captured at 30° intervals.  The data in figure shows the actual TOF for the shear wave at each 

position.  A fitted curve has been applied for illustration purposes.  Data collection for one test rotation from 0° to 

360° was initiated at the horizontal and the transducer was rotated in a clockwise direction.  Figure 14 shows a 0° 

specimen in which the rolling direction in orthogonal to the direction of the applied load.  As shown in this figure, 

the fast direction (smallest time) is aligned with the rolling direction (i.e. 0° and 180°).  TOF varies as the 

polarization angle is rotated, with the maximum TOF occurring at 90° and 270°.  For the 0° specimens, the 

difference between the maximum and minimum TOF increased as the tensile loading of the specimens was 

increased.  As shown in the figure, the application of tensile loading results in a slowing of the wave with applied 

stress.  This signified a positive rate of change of the birefringence values.  The natural birefringence (i.e. texture 

effect) was determined from specimen in the unstressed state (0 psi in Figure 14).  

Table 3 shows the results of the natural birefringence measurements determined by experiment.  The values 

represent the texture effect in the materials, i.e., the anisotropy caused by rolling.  These data indicate that the 

natural birefringence ranged from approximately 0.002 to 0.006 among the different steel plates tested.  The 

measurement were repeatable, exhibiting standard deviations of less than 1% for all of the plates.  These data 

indicate that there is variation in the natural birefringence resulting from the rolling process.  These data are 

significant for the measurement of axial stresses in bridge members, where the natural (unstressed) birefringence 

needs to be known in order to make a quantitative measurement of stress.  The data suggests that it may necessary to 

establish the natural birefringence for a given steel plate by either identifying a portion of the plate that where 

stresses are zero, or by physically removing a core to establish the natural birefringence. 

 



Development of a Portable Stress Measurement Instrument                                                    DRAFT FINAL 

REPORT    

17 

 

 

Figure 14.  Time-of-flight measurements showing variation in arrival time as the transducer is rotated 

through 360° at different levels of applied stress.  

 

Table 3.  Natural birefringence measurements for steel specimens. 

Test # 
A7 A36 A588 

90° 0° 45° 60° 90° 0° 90° 

1 0.006188 0.005929 

0.002474 0.001967 

0.003118 0.005977 0.003039 

2 0.006176 0.005927 0.003067 0.005952 0.002988 

3 0.006174 0.005892 0.003141 0.005963 0.003036 

Avg. 0.006179 0.005916 0.002474 0.001967 0.003109 0.005964 0.003021 

Stdev.  0.000006 0.000017 0 0 0.000031 0.000011 0.000024 

 

3.3.3 Stress Relationship  

This portion of the report describes the results of laboratory testing to evaluate the relationship between 

ultrasonic birefringence and applied stresses for common bridge steels.  The specimens shown in Figure 12 and 

listed in Table 1 were tested in an MTS load frame as described in section 3.3.1.2.  The data processing for each test 

consisted of collecting ultrasonic data at each load and then processing the ultrasonic data to measure the 

birefringence.  Results are presented for on-axis stresses.  For these specimens, the rolling direction is aligned with 

either the fast or the slow wave velocity orientation.  Consequently, there is no rotation of fast and slow orientations, 

since the anisotropy from rolling is aligned with the anisotropy induced by the application of stresses.  Results are 

also presented for the off-axis specimens (45° and 60° specimens) where the material anisotropy is not aligned with 

the stress-induced anisotropy such that rotation of the fast and slow directions occurs with stress-induced anisotropy.   

3.3.3.1 Acoustoelastic Measurement of On-axis Stresses 

Figure 15 shows the relationship between birefringence and uniaxial tensile stress for specimens with 0° and 

90° orientations.  Birefringence showed a linear relationship between stress for both the 0° and 90° specimens.  The 

relationship has a positive rate of change for the 0° specimens while a negative rate of change is observed for the 

90° specimens.  In other words, the sign of the slope depends on whether the tensile stress aligns with the rolling 
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direction or is perpendicular to the rolling direction.  When the tensile stress is aligned with the rolling direction, the 

slope is negative.   

 

Table 4 summarizes the rate of change of the birefringence for the 0° and 90° specimens.  The average rate of 

change for the 0° specimens is 6.5x10
-8

 psi
-1 

while for the 90° specimens it is -7.0 x10
-8

 psi
-1

.  These data indicate 

that for the different types of steel tested, the acoustoelastic constants were similar in magnitude.  It should be noted 

that the modern steels (A36 and A588) had very similar results, with an average acoustoelastic constant of 7.5 x 10
-8

 

psi
-1

.  The historic A7 steel tested had a different slope than the modern steel.  This results is probably associated 

with the different manufacturing methods used at the time the steel was produced.   

Table 4.  Summary of the acoustoelastic constants for the 0° and 90° specimens. 

Material 
0° 90° 

x10
-8

 psi
-1

 (x10
-5

 Mpa
-1

) x10
-8

 psi
-1

 (x10
-5

 Mpa
-1

) 

A7 N/A (N/A) -4 (-0.6) 

A36 7 (1) -9 (-1) 

A588 6 (0.9) -8 (-1) 

Average 6.5 (1.0) -7.0 (-0.9) 

3.3.3.2 Acoustoelastic Measurement of Off-Axis Stresses 

For specimens with off-axis rolling directions, the anisotropy induced by rolling is not aligned with the stress-

induced anisotropy.  This results in a rotation of the fast and slow orientations of the polarized shear wave when 

stress is applied.  Figure 16 shows the TOF curves for the specimens fabricated with the rolling direction at an angle 

of 45° relative to the specimen axis.  Notice that the minimum TOF corresponding to the rolling direction (fast 

direction) of the 45° specimen corresponds to 135°.  This is due to the testing of one rotation from 0° to 360° that 

Figure 15.  Stress-acoustic relationship for 0° and 90° specimens.  
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was started at the horizontal with a clockwise rotation of the transducer.  A sine-regression was applied to the data to 

obtain the TOF curves in Figure 16B to reduce noise.  As the loading increases a noticeable phase shift can be 

observe.  This phase shift corresponds to the rotation through an angle φ of the pure-mode polarization direction. 

 

Figure 16.  Time-of-flight measurements of the 45° specimen. (A) the average data of  two rotations from 

three tests. (B) sine regression obtained from the average data. 

 

Figure 17 illustrates the relationship between birefringence and stress for the 0°, 45°, 60°, and 90° specimens 

fabricated out of A36 steel.  As previously explained, the 0° and 90° specimens have a linear relationship.  

Meanwhile, the 45° and 60° specimens are not linear, and data was fit with a 2
nd

 order polynomial line.  This means 

that the specimens have a slight nonlinear relationship between birefringence and stress associated with the rotation 

of the pure-mode polarization direction.  The relationship between the pure-mode polarization rotation through the 

angle φ can be seen in Figure 18.  From the figure, it can be seen that the pure-mode polarization rotation increases 

as stress increases in the both the 45° and 60° specimens.  The 45° specimen, however, has a lower rate of change 

than the 60° specimen.  

 

Figure 17.  Relationship between birefringence and uniaxial tensile stress for the specimens fabricated out of 

A36 steel. 
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Figure 18.  Relationship between the pure-mode polarization rotation φ and uniaxial tensile stress for the 45° 

and 60° specimens. 

Table 5 is a summary of the birefringence, pure-mode polarization direction rotation angle φ, and shear stress 

obtained during testing of the 45° specimen.  These data were used to determine the acoustoelastic constant 𝑚3using 

Equation 7, this constant was calculated for each loading step.  The average of all the values calculated was 

determined to be the stress acoustic constant 𝑚3= 5.79x10
-8

 psi
-1

.  The calculated value of 𝑚3 was then used to 

calculate the shear stress of the 45° and 60° specimen.  Figure 19 shows the relationship shear stress measured with 

USM and shear stress measured with a conventional strain gage rosette.  It can be observed from this figure that the 

USM determines values close to those measured using a conventional strain gage rosette.  The error was calculated 

by assuming the strain gage value as the true value.  The absolute average percent error of the 45° specimen was 

7.6%, while the absolute average error of the 60° specimen was 10.5%.      

 

Table 5.  Summary of the birefringence, φ, shear stress, and calculated stress acoustic constant for the 45° 

specimen. 

Load 

Step 
B ϕ (°) 

τxy 𝒎𝟑 

psi (MPa) x10
-8

 psi
-1

 (x10
-8

 MPa
-1

) 

0 0.002474 0 0.0 (0.0) N/A (N/A) 

1 0.002513 3 1928.5 (13.3) 6.81 (9.88) 

2 0.002557 5 4441.8 (30.6) 4.99 (7.25) 

3 0.002762 8 6926.2 (47.8) 5.5 (7.97) 

4 0.002902 11 9386.3 (64.7) 5.79 (8.4) 

5 0.003163 13 11798.2 (81.3) 5.88 (8.52) 

   
Average 5.79 (8.40) 
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Figure 19.  Birefringence shear stress versus strain gage shear stress for the 45° and 60° specimens. 

These data show good correlation between the theoretical birefringence predictions and the actual test results 

under laboratory conditions.  These data also showed that the rotation of the polarization angles results from the 

presence of shear stress could be measured and related to the actual shear stresses.  The results are significant for 

demonstrating the birefringence measurements needed to assess that shear stresses in gusset plates.   

3.3.3.3 Surface Conditions 

Measurements were made in the laboratory to evaluate the effect of different surface conditions on the 

ultrasonic waves generated and received by the EMAT.  Ultrasonic shear wave propagation through typical bridge 

components may experience signal degradation.  Prior research activities performed by FCI have noted significant 

signal loss under certain types of surface coatings, particularly on the opposite face of the measured surface.  

Degradation in the signal appears to mainly come from the back side of the specimen.   

Laboratory specimens were fabricated to test the surface condition effect on ultrasonic characteristics.  The 

specimens consist of bare steel, primed steel, and painted steel.  These parameters were chosen to test the effects of 

each type of surface with the generation/reception of ultrasonic waves using the EMAT.  The test specimens were 

unstressed (zero loading) during testing. The purpose of this test was to observe the quality of the waves generated 

under specific surface conditions typically observed in steel bridge members. 

Figure 20 are the waveforms obtained from testing specimens with different surface conditions.  The paint on 

the specimens was from the original paint on an out-of-service truss bridge.  From the resultant waveforms, strong 

waveforms were observed with the bare surface condition, but weaker signals for the painted and primer surface 

condition.  From these tests it was shown that the EMAT was sensitive to the surface conditions, and worked best 

when surfaces were bare.  These data indicated that improved sensor technology to increase the signal to noise ratios 

for the EMATs may be required for implementation of the technology in the future.   
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Figure 20.  Images of the waveforms obtained from testing varying surface conditions including (A) bare, (B) 

primer, and (C) painted. 

3.4 FIELD TESTING 

The USM technology developed through the research was field-tested to evaluate its capability for measuring 

total stress in gusset plates.  The field testing consisted of performing USMs on a gusset plate of a truss bridge in the 

field.  The field testing provided an opportunity to evaluate the field performance of the technology, and also 

validate the total stress measurement provided by the birefringence measurement approach.  The field test included 

removing cores from the gusset plate to evaluate the total stress present in the gusset plate using a conventional 

strain gage.  These data were then compared with the quantitative stress measurements made with the USM 

technology.  The field test demonstrated the successful operation of the portable USM technology developed 

through the research, and helped verify the accuracy of the shear stress measurements obtained under field 

conditions.  The following section of the report describe the field testing of the technology.   

3.4.1 Test Description 

An 80 ft long pony truss bridge that was scheduled to be demolished was selected for the field testing.  The 

through-truss design of the bridge provided good access to the gusset plates on the bridge for testing.  Figure 21 is a 

photograph of the truss bridge with the gusset plate testing location marked.  

A dump truck containing different amounts of gravel was used to load the bridge.  The dump truck was 

stationary on the bridge deck while the ultrasonic data was collected.  Data was collected without the truck, with the 

truck empty, ½ full, and full of gravel.  In this way, different stress levels were obtained in the gusset plate and 

measured ultrasonically.  

Data on the load induced in the gusset plate was documented by strain gage rossettes mounted to the gusset 

plate.  The strain gauge rosettes were mounted on the back side of the gusset plate at the location where USM data 

was collected.  A 0°/45°/90° planar strain gage rosette from Omega Engineering was used to measure shear stresses. 

This rosette incorporates 6 mm grids with 350Ω resistance gages and pre-attached leads.  Paint was removed from 

the front and back of the gusset plate to enable placement of the strain gages and ensure sufficient signal strength to 

perform ultrasonic measurements.  The axial members connected by the gusset plate were also measured.  For axial 

members the strain gages were installed on the same side of the member as where the USMs were made.   Access to 

the back side of the members was not possible due to the geometry of the built-up members.  Consequently, paint 

could not be removed from the back side of the plates, which presented difficulties in acquiring data of adequate 

quality to perform USM.  
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Measurements with the new ultrasonic technology were made by attaching the EMAT sensor onto the selected 

gusset plate and recording data while the transducer was rotated manually through 360° of rotation.  In this way the 

magnitude and direction of the birefringence could be measured.  Data from the ultrasonic testing was processed 

using the software developed through the research.  The magnitude and direction of the birefringence was used to 

determine the shear stresses in the gusset plate using the acoustoelastic constants determined for A7 steel determined 

through the laboratory testing.  To verify the accuracy of the stress, strain gage measurements were obtained as 

described below.    

 

 

 

Figure 21. Side view photograph of the pony truss bridge used for field testing. 

3.4.2 Verification of Total Stress Measurements 

The USM technology developed is unique from other measurement technologies because it measures total 

stress, as previously described.  Strain gages are only capable of measuring the stresses that occur after the strain 

gage has been installed, and therefore cannot measure the dead-load and residual stresses already present at the time 

the gage is installed.  To overcome this limitation, the research implemented a unique plan to remove a core of 

material surrounding the strain gage rosette to release any dead load or residual stresses.  In this way, the stresses 

that were present when the strain gage was installed are released when the core is cut from the parent material, and 

the resulting strains were then be detected by the strain gage.  The strain gage measurements including the released 

stresses could then be compared with the USM measurement directly.  The sum of the dead load and live load 

stresses determined via the strain gage measurement was the total stress measurement obtained with the strain gages 

and was subsequently compared with the total stress measurements obtain with the new USM technology.   

A magnetic drill with a 3 in. core drill bit was used for coring of the steel specimens.  Figure 22 shows the 

removal of the core from the gusset plate.  As described previously, the strain gages were mounted on the back side 

of the plate, and the USM were made on the front side of the plate in the same location.  The strain gages remained 

attached and data was collected throughout the removal process.  The strains were measured continuously until the 

removed core had completely cooled following the extraction.  These date were then used to measure the total stress 

present in the gusset plate in-situ for comparison with the measurement made by the USM.   
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Figure 22.  Photograph of extracted core and coring tool. 

3.4.3 Results  

The field test resulted in measurements of the shear stress in the gusset plate.  The measurement of shear stress 

was successful as shown in Figure 23.  In this figure, the shear stresses calculated from the USM and the 

corresponding strain gage measurements are both shown.  The strain gage measurements were adjusted to include 

those strains measured when the core was removed from the gusset plate.  The USM measurement were direct 

measurements of stress made in-situ.  The figure shows the stresses measured in the field for different truck loading 

conditions, as indicated on the horizontal axis.  The USM instrument was able to detect the changes in stress of ~500 

psi that resulted from different trucks loads.  Quantitatively the magnitude of the total stress was very close to actual 

total stress. 

Table 6 shows the quantitative stress measurements made at location 1 using the USM as compared with the 

strain gage measurements.  These data illustrate that that measurements made by the USM were accurate, with an 

absolute average error of 7.7%.  The data indicate that the birefringence measurement was effective for estimating 

the shear stresses in the gusset plate.   

 

 

Figure 23.  Results of field testing showing shear stress measurement made with USM as compared 

with strain gage measurements of stress. 
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Table 6.  Shear stresses measured with USM and strain gages at location 1.   

Loading 
Birefringence, τmax Strain Gage, τmax 

% Error 
psi (MPa) psi (MPa) 

Removed 0 (0) 0 (0) N/A 

Zero 4744.73 (32.7) 4415.2 (30.4) 7.5 

Empty 5585.69 (38.5) 4990.5 (34.4) 11.9 

Half-Full 5695.78 (39.3) 5410.1 (37.3) 5.3 

Full 6306.29 (43.4) 5937.3 (40.9) 6.2 

   
Average 7.7 

 

A second location on the gusset plate where measurements were made did not produce signals of adequate 

quality to determine the stress at that location.  This is thought to be due to the location of the strain gage on the 

back side of the plate, which interfered with the reflection of the ultrasonic wave.  The measurements on axial 

members was also not successful due to the paint on the back side of the members, which could not be removed due 

to the closed geometry of the members. Laboratory tested confirmed that the surface conditions on the back side of 

the plate affected the ultrasonic signal quality, as discussed in section 3.3.3.3.  A sensor with improved signal-to-

noise characteristics is needed to overcome this limitation.  

4 CONCLUSIONS  
The objective of the research was to develop a portable instrument for measuring the total stress in steel bridge 

members.  A portable USM instrument was developed that was capable of measuring total stress. The USM 

instrument was demonstrated in a field test.  During the field test, the results of the USM total stress measurement 

were compared with total stress as determined by removing a core instrumented with strain gages.  To the 

knowledge of the research team, this approach to verifying the performance of the USM is unique.  The results of 

this field test demonstrated that the technology was implementable under field conditions, and was capable of 

making a total stress measurement of shear stresses in gusset plates.  USM results compared well with the total 

stress measured by the strain gage on the removed core, with an average error of only 7.7%.  The field test also 

indicated the surface conditions affected ultrasonic signal quality at some locations tested.  

Laboratory testing showed that the different bridge steels tested had different ultrasonic properties that need to 

be considered in the performing stress measurements with the USM technology.  Both the natural birefringence 

(texture effect) and acoustoelastic constants varied somewhat between different steel specimens tested in the 

laboratory.  For specimens with principal stresses aligned with the rolling direction, it was found that there was a 

linear relationship between the birefringence and the applied stresses.  For specimens loaded with principal stresses 

unaligned with the rolling direction, the relationship was nonlinear and rotation of the polarization angle was 

observed as expected.  

This project represented a significant step toward creation of a portable stress measurement instrument and a 

first-generation prototype was developed.  The prototype was utilized both in the laboratory and during field test the 

demonstrated the capabilities of the technology.  

4.1.1 Future research needs 

Future research needs include obtaining addition measurements and experience with the prototype instrument, 

as describe below in the implementation plans.  Further testing will help prove-out the technology, demonstrated its 

utility, and help develop methodologies for more wide-spread implementation.   

Ultrasonic sensor performance needs to be improved to reduce the effect of surface preparation such that 

coatings do not need to be removed to make measurements.  The EMAT sensors used during the research a capable 

of generating and receiving ultrasonic waves without the removal of coatings.  For birefringence measurements, the 

precise timing control requires high-quality ultrasonic signals.  Improvements to the signal to noise characteristics of 

these sensors is needed to produce USM without requiring removal of coatings.       

5 PLANS FOR IMPLEMENTATION 
The USM instrument developed through the research created a first-generation prototype that was able to make 

measurements of total stress on a bridge in the field.  Future implementation plans are as follows: 



Development of a Portable Stress Measurement Instrument                                                    DRAFT FINAL 

REPORT    

26 

 

1. Instrument refinement 

The instrument developed in the project was significant in that it was a field-portable total stress 

system that was demonstration to operation under typical field conditions.  Further refinement 

would improve the ease with at which the instrument can be used.  The instrument will be further 

integrated to make a smaller and even more portable package.  Software functions that now 

operate on a separate field laptop computer will be integrated directly into the instrument. 

2. Additional field and laboratory work 

The research completed under this project produced and tested a technology for total stress 

measurement.  Additional testing and implementation of the prototype and the USM methodology 

is needed to further develop and prove the technology under realistic field conditions.  The 

research team is currently performing additional testing of the USM technology in the laboratory 

and the field.  Laboratory testing is being used to measure the natural birefringence and 

acoustoelastic constants of different bridge steels.  Field measurements are focused on further 

developing the technology, improving data processing, and developing a larger database of 

experiences that can be used to promote implementation of the technology by bridge owners. 

3. Commercialization 

The research team is further developing the technology toward inclusion of the USM instrument 

as another tool available from the commercial company Thermalstare, LLC (see investigator’s 

profile).  Discussions are on-going with commercial partners to facilitate instrument 

commercialization. 

4. Exposing highway bridge community to this new technology. 

The USM instrument represents a very new measurement to bridge engineers and it will require 

some effort to expose the community to this new tool.  Some of this effort has already been 

conducted.  Research results have already been published in topical conference proceeding 

sponsored by the FHWA and attended by bridge owners.  The research team has also made 

presentations are regional meetings of maintenance and inspection personnel.  A journal article in 

an archival journal is planned. 
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Dr. Glenn Washer is a Professor at the University of Missouri – Columbia (MU).  Before joining the 

University, Dr. Washer was with the Federal Highway Administration (FHWA) at the Turner Fairbank Research 

Center (TFHRC) where he served as the director of the FHWA Nondestructive Evaluation (NDE) program. Dr. 

Washer has expertise in a wide variety of NDE technologies for the condition assessment of highway bridges, 

including ultrasonics, thermography, ground penetrating radar, radiography and the visual inspection of bridges. 
Dr. Paul Fuchs is a private consultant and business owner.  He develops commercial technology to assess civil 

structures, including laser measurement technologies, infrared imaging instrumentation and systems, and ultrasonics.  

Dr. Fuchs received his Ph.D. in Electrical Engineering from West Virginia University in 1995. Dr. Fuchs has over 

nineteen years of experience as an entrepreneur and business owner. This includes experience developing, 

managing, and conducting research projects and related activities for an engineering consulting, instrumentation 

design and development company. 

 

Drs. Fuchs and Washer began the company ThermalStare, LLC in 2015 to commercialize products developed 

through their research.  The products ThermalStare is commercializing were developed under funding programs 

such as the FHWA Small Business Innovative Research (SBIR) program, the National Pooled Fund Program, and 

the NCHRP IDEA program.  A suite of technologies that were initiated as research projects are now commercially 

available from Thermalstare.  Applications include, but are not limited to, bridge deck and soffit inspection, thermal 

stress measurement, coating assessment, and long-term bridge monitoring systems.  ThermalStare clients include the 

US Navy, state Departments of Transportation, and engineering consulting companies.   
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