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EXECUTIVE SUMMARY 

Aiming to provide a safe driving environment, transportation agencies have begun monitoring 

traffic flow, collecting traffic data, and conducting safety analyses by using proactive roadside 

sensing technologies for decades. These sensing technologies consist of radar sensors, Lidar, and 

video cameras. However, those safety analyses at an intersection are restricted by a limited data 

collection time or specific conflict types in a specific traffic scenario. Consistent data collection 

requires consistent power supplies and/or manual operations and maintenance. In addition, a data 

processing algorithm in a safety analysis system is developed for only a specific conflict 

scenario. These restrictions prevent transportation agencies from widely deploying safety 

applications at any targeted intersection for long-term monitoring. To overcome such limitations, 

this IDEA product developed a proactive intersection safety monitoring and visualization system 

that can be implemented at any kind of intersection for any type of safety and operation analysis 

under a long-term data collection period. The product’s contributions, Intersection Proactive 

Safety Visualization (IPSV), can be summarized as follows. 

Innovation 

First, in contrast to other traffic detection products, such as using video cameras, drones, 

or Lidar sensors, the IPSV employs a 24GHz Microwave Doppler radar sensor, which can detect 

an object by the frequency difference received between the transmitted and reflected waveform 

and log the trajectory points with frequency up to 0.3 s/point. As long as the object moves with a 

speed of at least 0.62 cm/s the Doppler radar used in the IPSV can detect and track its trajectory 

of it. In addition, the data storage for the detected trajectories using a radar sensor is minimal in 

comparison with using a video camera; the latter does not only require significant data storage 

and computational power if 24/7 monitoring is performed but also relies on complicated 

algorithms to track objects’ maneuver if the aforementioned range resolution and accuracy is 

targeted. Moreover, the radar sensor is immune to the inclement weather and interference of 

light, whereas this characteristic is not available for other products on the market. 

Second, the IPSV provides safety analyses in terms of traffic conflicts detected at the 

intersection. These conflict types include rear-end/lane-change/left-turn angle/right-

angle/sideswipe/pedestrian-to-vehicle conflicts. The IPSV can be used at either signalized or 

stop-controlled intersections. Most IPSV functions are made automated with limited manual 

configurations. Besides, the conflicts are visualized symmetrically on the intersection satellite 
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map and classified by any identifiers of TTC, movements, or conflict types to supplement the 

information to transportation agencies to facilitate identifying intersection safety issues that are 

difficult to be discovered by historical crash data. Furthermore, an application interface is 

developed along with the IPSV for users to make customized queries, analyses, and 

visualizations. 

In addition to the IPSV development, two field data collections were conducted to 

validate the results of the IPSV. Through validating the results from the perspective of conflict 

severity and quantity of different conflict types, the IPSV system is upgraded from Stage 1 to 

Stage 2 by fixing the algorithm problems identified in Stage 1 and making the system more 

automated and integrated. Finally, the IPSV system upgraded in Stage 2 achieves a high conflict 

severity detection accuracy with an average 4.8% error rate. The system also achieves an 80% 

true positive rate and a 100% true negative rate for conflict quantity detection. The results are 

validated through manual comparisons of ground truth found in videos. 

Furthermore, a data collection manual and a series of tutorial videos are created for 

deploying the IPSV system at an intersection. A system manual consisting of data collection 

devices, field calibration, installation methods, and maintenance procedures are readily utilized 

for transportation agencies to widely deploy the IPSV at more targeted intersections. 

Results 

 In terms of safety issue visualization, the IPSV provides conflict severity distribution 

visualization by TTC value, the speed difference between conflicting objects, and any 

conflict/movement type. From the visualization, more dangerous spots where conflicts occur can 

be identified at an intersection, i.e., the conflict hot spots can be exactly targeted at a satellite 

map of the intersection. 

 In terms of safety issue monitoring, the IPSV also provides conflict quantity analyses 

categorized by time, TTC range, and traffic volume. During different times in a day, the variance 

of the conflict quantity of different conflict types can be obtained from the system. 

 In terms of decision-making on safety improvement at an intersection, the IPSV works as 

a fundamental platform for identifying safety issues of any intersections. Two signalized 

intersections were selected as the test intersection in Stage 1, where several conflicts of rear-end 

type are more than crossing type and illegal left turn and red light running were observed. A 

stop-controlled intersection was selected in Stage 2, where several conflicts of crossing type are 
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more than rear-end type, and conflicts of pedestrian-to-vehicle are mostly observed. Overall, the 

IPSV can identify corresponding safety problems regarding different types of intersections. 

Future Work 

 The first challenge that is learned from the development is that positioning errors caused 

by windy conditions can lead to less accurate TTC measurements and false or missed conflict 

detections. The positioning errors during windy conditions was not anticipated in Stage 1, as this 

error was discovered through field test in Stage 1. In general, positioning errors occur for any 

types of sensors deployed for data collection, including GPS, Lidar, and video cameras. Such 

positioning errors, however, can be mostly eliminated by post-processing algorithms. Such post-

processing algorithms have been developed and implemented in Stage 2 of this project and have 

improved the accuracy.  

 The second challenge comes from the calibration of the trajectory of IPSV with the 

ground-truth trajectory data. It costs huge labor work to obtain the ground truth trajectories from 

videos. Because the greater number of ground truth is retrieved, the more accurate the calibration 

is and so is the conflict severity. More labor calibrations are recommended for better conflict 

detection results. 

 The third challenge arises in radar sensors' field data collection and calibration. For a 

radar sensor set up at a lighting pole, it is important to avoid any blockage within the detection 

width of the radar sensor; otherwise, the data becomes unreliable. In addition, a continuous 

trajectory rather than discrete trajectory points is recommended for visualization in the field of 

radar sensor angle calibration.  
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1. IDEA PRODUCT 

This project develops and tests a real-time intersection proactive safety visualization (IPSV) 

system based on radar sensors' vehicle and pedestrian trajectory data. The IPSV algorithm is 

based on the automated collection of radar sensor data. Vehicle trajectory data is collected from 

radar sensors installed at an intersection. The IPSV involves an automated data preprocessing 

algorithm. The algorithm integrates trajectory data from four radar sensors at the intersection. A 

noise reduction module was developed in the algorithm to remove trajectory noise from the 

analysis. In addition, a coordinate transformation and trajectory data integration module was 

implemented in the algorithm to combine trajectory data from the four radar sensors in the same 

reference coordinate system. A second algorithm that automatically classifies different traffic 

and pedestrian movements was developed to enable automatic computing of time to different 

types of collision. The algorithm finally identifies conflicting traffic/pedestrian movements. 

Based on predefined thresholds of time to collision (TTC), in which 1.5 s and 4 s were 

tentatively used for identifying, respectively, rear-end and crossing conflicts, traffic conflicts of 

different types, and their severities were automatically identified and measured. Traffic safety 

events such as illegal left turns, wrong-way driving, and pedestrian jaywalking are also identified 

by the IPSV. The IPSV has a user interface to configure parameters. The IPSV also maps and 

visualizes the traffic conflicts with different servers, as represented by TTC and speeds. 
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2. CONCEPT AND INNOVATION 

Intersection crashes constitute a significant portion of total crashes nationwide, which amount to 

about 44 percent of all reported crashes. If only considering fatal and injury crashes, The Federal 

Highway Administration reported that more than 50 percent of the combined total of fatal and 

injury crashes occur at or near intersections. Therefore, to improve highway safety, it is 

imperative to target the intersection with priority via long-term and short-term safety treatment 

strategies, considering that the majority of crashes happen at intersections. During any 

intersection safety treatment process, understanding what the typical safety issues are, how 

frequent they happen, and how severe are, are the key to the success of an effective, right-on-the-

point treatment. In this sense, appropriate visualization of a safety problem at intersections is the 

essential first step toward developing the ultimate safety treatment solutions. Traditional methods 

of this type of visualization include (1) an intersection collision diagram and (2) and GIS-based 

intersection crash hot spot map. Figure 1 illustrates these two types of intersection safety issue 

visualization. 

  
(a) (b) 

FIGURE 1 Traditional approaches for intersection safety visualization: (a) intersection collision 

diagram, and (b) GIS-based intersection crash hot spot map. 

 Because all these methods are based on historical crash data, the user of such data must 

wait until crashes to happen to create such collision diagrams and intersection crash hot spot 

maps. However, such reactive methods hinder transportation agencies from effectively 

monitoring and visualizing safety issues. To overcome the limitations, the traffic conflict 

technique has been advocated as a proactive approach to studying traffic safety from a broader 

perspective than relying only on crash data analysis (1, 2). A traffic conflict is defined as “an 
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observable situation in which two or more road users approach each other in space and time to 

such an extent that there is a risk of collision if their movements remained unchanged” (3). Since 

traffic conflicts are easily observant, several conflict detection methods have been developed to 

provide a better representation of traffic situations through radar sensor data (4-9), video data 

(10-17), or Lidar data (18, 19) in real time. 

 As a wealth of ‘big data’ can be utilized nowadays, data that can provides the most 

effective predictions and insights for policymakers to arrive at solutions in a timely fashion is 

needed. The potential data sources such as video data, drone data, Waze data, and social media 

data, are obtained either based on long-time training (video data), manual control (drone data), 

user-oriented trigger mechanism (Waze data), or data scraping (social media data). These data is 

valuable in terms of high-resolution observation and local incidents identification. However, for 

24/7 continuously monitoring and preventing traffic safety issues, these mentioned data sources 

are not capable of meeting the requirements of real-time. Radar sensor data is widely used, 

validated, and proved to be alternatively advanced data in terms of stability, reliability, and 

privacy (4-6). Using this data source, 24/365 traffic safety enhancement becomes a reality. 

Furthermore, by using surrogate safety measures, such as Time-to-collision (TTC), the proactive 

intersection safety issues can be qualitatively and quantitively monitored and visualized. TTC is 

defined as the expected time for two vehicles to collide if they remain at their present speed and 

on the same path (20). 

 The real-time proactive intersection safety monitoring and visualization system is 

illustrated in FIGURE 2. The uniqueness of the developed system, IPSV, can be demonstrated as 

follows: 

1. Provides a cost-effective method to quickly evaluate safety treatment effectiveness for an 

intersection without the need of waiting crashes to happen; This method has potential to 

provide such quick evaluation as TTC and traffic conflicts resulted from IPSV will be 

used as surrogate safety measures to represent the likelihood of a crash to happen. If the 

TTC is less than the threshold, a traffic conflict exists. The probability for a traffic 

conflict to become a real accident is about 0.0001 (35). 

2. Complements the crash data to help transportation agencies and local government better 

understand the safety issues at an intersection with traffic conflicts data collected; 
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3. Recognizes wide ranges of road users including vehicles, bicyclists, and pedestrians via 

an explainable feature-based algorithm; 

4. Detects traffic anomaly consisting of detecting illegal left-turns, jaywalkers, and red-

light-runners in any desired observation period; 

5. Visualizes conflicts severity and quantity straightforwardly with the identifiers of TTC, 

vehicle speed, movements, or conflict types; 

6. Applies to any type/number/geometry shape of lanes of an approach at an intersection by 

an automated and integrated system; 

7. Performs real-time feedback about target intersection safety issues with consecutive 24/7 

traffic monitoring. 

 

  
(a) (b) 

FIGURE 2 Real-time proactive intersection safety monitoring and visualization: (a) TTC-based 

conflict distribution and (b) type-based conflict distribution. 
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3. INTERSECTION PROACTIVE SAFETY VISUALIZATION (IPSV) DEVELOPMENT 

IN STAGE 1 

3.1 ACCOMPLISHMENTS DURING THIS STAGE 

• Development of the automated data preprocessing algorithm that includes trajectory noise 

removal module and coordinate transformation and radar data integration module; 

• Development of the algorithm of automated traffic movement classification and time-to-

collision and traffic conflicts computation;  

• Field radar data collection at two closely spaced urban signalized intersections in Louisville, 

Kentucky to evaluate the safety of these intersections, and at the same time use the data to 

prove the concept of the IPSV algorithm.  

 

3.2 WORK PERFORMED IN THIS STAGE 

3.2.1 Development of the Automated Data Preprocessing Algorithm 

3.2.1.1 Trajectory Noise Removal Module 

A trajectory noise removal module for IPSV was developed to remove noise from the trajectory 

data collected by radar sensors. The radar sensor can detect all moving objects’ trajectories up to 

600 feet from the radar sensor within a 30-degree detection zone. FIGURE 3 illustrates the 

detection zones of radars used in the IPSV system. Noise that represents trajectories of 

pedestrians, vehicles, or other moving objects that are not within the travel lanes, crosswalks, or 

sidewalks needs to be removed. 
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FIGURE 3 Detection zone of radars in the IPSV system. 

FIGURE 4 (a) illustrates the raw trajectory data collected by a radar sensor. As shown in 

FIGURE 4 (a), the noise (marked by red circles) is neither on travel lanes, crosswalks, or 

sidewalks. A trajectory noise removal module for IPSV was developed to automatically remove 

the noise based on the known coordinates of the travel lane, crosswalk, and sidewalk boundaries. 

FIGURE 4 (b) illustrates the processed raw trajectory data with noise being removed.   

 
                      (a)     (b) 

FIGURE 4 Trajectory noise removal: (a) raw trajectory data; (b) process raw trajectory data after 

noise is removed. 
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3.2.1.2 Coordinate Transformation Module and Radar Data Integration Module 

A coordinate transformation and radar data integration module for IPSV was developed, which 

combines trajectory data from multiple radar sensors covering different approaches to the 

intersection. Specifically, a module to combine all processed raw data from different radars was 

developed through coordinate transformation, as the processed raw data from each radar is in its 

own coordinate system. Therefore, the coordinate system of each radar sensor’s processed raw 

data needs to be transformed into a reference coordinate system to combine all radar sensors’ 

data in the same coordinate system. The coordinate transformation module involves two steps. 

Step 1: Tilt angle rotation: There is an angle between the radar’s center beam and the 

center line of the intersection approach where the radar is facing. In the coordinate system of the 

processed raw trajectory data, this angle tilts the trajectory data on that intersection approach 

away from the vertical axis. Therefore, after measuring this angle in the field, a coordinate 

transformation algorithm is developed to rotate the coordinate system to offset the identified tilt 

angle. 

Step 2: System coordinate transformation to integrate radars’ trajectory data from 

different intersection approaches: a system coordinate transformation algorithm was developed 

to integrate trajectory data from all radars into a reference coordinate system. This step involves 

further coordinate rotation based on the intersecting angles of intersection approaches, as well as 

offsetting the coordinate origin to the origin of the reference coordinate system. 

FIGURE 5 illustrates the result of coordinate transformation based on field data collected. 

After coordinate transformation, all three coordinate systems representing trajectory data from 

Southbound, Eastbound, and Westbound approaches are integrated into a reference system with 

origin O. 
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FIGURE 5 Coordinate transformation processing. 

In the coordinate transformation process, the rotation angle and offset distance involved 

are based on measurements from Google Maps, which may cause errors. Therefore, a calibration 

process was developed to address the errors in the radar data integration process.  

A calibration process was developed to correct the errors caused by coordinate 

transformation to ensure data accuracy after the data integration. In the calibration process, a 

drone that flies near the intersection to capture videos was used to record the intersection traffic 

from a bird’s view. Ground truth coordinates of the target vehicle trajectories in the reference 

system were extracted from the drone video with the accurate measurement using Google Map’s 

measurement tool. By matching the synchronized timestamps, the target vehicle in the video is 

then identified from the radar sensor data. The coordinate transformation algorithm is then 

calibrated by fine-tuning the rotation angle and offset distance by minimizing the error by 

comparing the target vehicle’s coordinates after coordinate transformation to the ground truth 

coordinates of the same vehicle as measured from the video. FIGURE 6 illustrates the calibration 

process.  
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FIGURE 6 Calibration process in the radar data integration process: (a) uncalibrated coordinate 

system; (b) calibrated coordinate system. 

Table 1 summarizes the test calibration result after using 10 vehicles in the drone video 

for each approach to calibrate the coordinate transformation algorithm. 

 

TABLE 1 Result of the coordinate transformation algorithm calibration. 

 Average X error (ft) Average Y error (ft) 

West Radar -0.08 0.72 

East Radar 1.57 1.16 

North Radar 1.37 0.44 

 

3.2.2 Development of Time-to-collision and Traffic Conflicts Computation 

3.2.2.1 Time-to-collision (TTC) Calculation Module 

An algorithm that calculates TTC for all possible conflicting movements was developed based 

on the trajectory data for different movements identified/classified by the movement 

classification module. 

A traffic conflict is defined as an observable situation in which two or more road users 

approach each other in space and time to such an extent that there is a risk of collision if their 

(a)                                                                                        (b) 
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movements remained unchanged. Time to collision (TTC) is generally recognized as the most 

frequently used indicator to identify a conflict. In terms of conflict types, two main types were 

defined by Surrogate Safety Assessment Methodology (SSAM) report as a conflict point and a 

conflict line type. The conflict point type reflects right-angle, vehicle-pedestrian, sideswipe, and 

left-turn angle conflict types. The conflict line type reflects rear-end conflict type only. For a 

wide recognition of these terms, right-angle, vehicle-pedestrian, sideswipe, and left-turn angle 

conflict types are generalized as a ‘crossing’ conflict type and rear-end conflict type is still 

denoted as a ‘rear-end’ conflict type. 

In general, TTC is calculated assuming velocity vectors of a leading and following 

vehicle are on the same line, which can cause an error without considering the offset between 

these two vectors. Therefore, the algorithm uses two TTC calculation methods that are 

formulated respectively to target the rear-end conflict type and the crossing conflict types. 

 

3.2.2.1.1 TTC Calculation for Rear-end Conflict Type 

First, for each pair of leading-following vehicles without offset between their velocity vectors, 

the TTC can be continuously estimated over time in the following form: 

 

  (1) 

Where  denotes a time instant,  denotes the leading vehicle,  denotes the following 

vehicle, denotes the vehicle position,  denotes the vehicle, speed, and  denotes the 

vehicle length. 

Second, for each pair of the leading-following vehicles with the offset between their 

velocity vectors, the TTC can be continuously estimated in time in the following form: 

 

  (2) 
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Where  denotes the rear-end conflict type,  denotes the offset term,  denotes the 

rear bumper of vehicles,  denotes the front bumper of vehicles,  denotes the offset,  and  

denotes the position vertices in a two-dimension coordinate system, and other parameters are 

defined as the same as Equation (1). This TTC calculation method is illustrated in FIGURE 7. 

 

 
FIGURE 7 Rear-end TTC calculation with offset in a two-dimension coordinate system. 

3.2.2.1.2 TTC Calculation for Crossing Conflict Types 

For the crossing conflict indicator, different from Equations (1) and (2), it is formulated based on 

a two-dimension coordinate system because the offset exists as long as the velocity vectors of 

conflicting vehicles are not on the same line. The indicator is derived in the following form: 

 

  (3) 

Where in the denominator, the relative speed is a sum of velocity vectors of conflicting 

vehicles. The TTC indicator calculation method for the crossing conflict type is illustrated in 

FIGURE 8. 
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FIGURE 8 Crossing TTC calculation with offset in a two-dimension coordinate system. 

3.2.2.2 Traffic Conflicts Identification Module  

An algorithm was developed to identify traffic conflicts based on the TTC data calculated and 

create an output file of all identified traffic conflicts by conflict types, i.e., rear-end conflict type, 

and crossing conflict type. The output file includes coordinates of all conflicts identified, which 

will be used to display all the traffic conflicts on the intersection map. The output file also 

includes each conflict’s type and severity as represented by TTC. Types of conflicts that are of 

concern in this algorithm are illustrated in FIGURE 9. FIGURE 9 (a) illustrates the rear-end 

conflict type, while FIGURE 9 (b) to (f) represent different crossing conflict types. 
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FIGURE 9 Types of traffic conflicts of concern: (a) rear-end conflict; (b) right-angle conflict; (c) 

left-turn angle conflict; (d) sideswipe conflict; (e) left-turn vehicle with pedestrian conflict; and (f) 

right-turn vehicle with pedestrian conflict. 

Based on these specific conflict types of concern, TTC can be calculated for every 

conflicting trajectory data pair at every conflicting point, and a minimum TTC value of this event 

can be identified as the measurement for the severity of the conflicting trajectory data pair. 

Whether the severity qualifies for a traffic conflict is determined by the minimum TTC threshold 

to define a traffic conflict. This threshold is usually different for rear-end type conflicts and 

crossing type conflicts and is configurable in IPSV. 

 

3.2.2.2.1 Minimum TTC Threshold for the Rear-end Conflict Type 

For the rear-end conflict type, the TTC threshold of 1.5 s is commonly used by researchers to 

define conflicts (21). To determine the TTC thresholds ranging from 1 to 3 s explicitly, using an 

interval of 0.5 s provides a better understanding of different levels of risks (22, 23). Therefore, a 

threshold of 1.5 s is tentatively selected as the minimum TTC threshold to define a rear-end 

traffic conflict, however, this parameter was still kept configurable in the algorithm. 

 

3.2.2.2.2 Minimum TTC Threshold for Crossing Conflict Types 

For crossing conflict types, there is still a lack of a specific, common TTC threshold. Hirst and 

Graham (24) reported that a TTC of 4 s could be used to distinguish between higher risk and 
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lower risk situations. In a driving simulator experiment, Hogema and Janssen (25) indicated that 

the critical TTC threshold is 3.5 s and 2.6 s for non-supported and supported drivers, 

respectively. The minimum TTC threshold for a crossing conflict type is assumed as a higher 

value than that of a rear-end conflict type in terms of a longer distance headway between 

conflicting vehicles (26). Therefore, to be on the safe side, a minimum TTC threshold of 4 s was 

tentatively used to determine crossing conflict types, however, this parameter was still kept 

configurable in the algorithm. 

3.2.3 Proof-of-Concept Field Study 

A field study at two closely spaced urban intersections in Louisville has been performed to 

evaluate the safety performance of these two intersections for the Kentucky Transportation 

Cabinet, and at the same time to prove the concept of IPSV. The radar trajectory data collection 

was conducted from July 10th, 2019 to July 16th, 2019 at Eastern Parkway @ S Preston St, and 

from July 24th, 2019 to July 30th, 2019 at Eastern Parkway @ S Shelby St. FIGURE 10 illustrates 

the study sites. 

  
(a) (b) 

FIGURE 10 Study site and radar setup: (a) Eastern Parkway @ S Preston St data collection; (b) 

Eastern Parkway @ S Shelby St geometry. 

The IPSV algorithm was applied to the collected data. Due to the report length 

requirement, this section briefly summarizes the result for the Eastern Parkway @ S Shelby St 

Intersection only. 
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3.2.3.1 Movement Trajectories Classification 

After data was preprocessed, trajectories of all traffic and pedestrian movements were identified 

and classified. FIGURE 11 illustrates the trajectories for various movements at the intersection.  

 

FIGURE 11 Classification of trajectories of various movements at Eastern Parkway @ S Preston 

St. 

3.2.3.2 Traffic Conflict Detection Method 

Traffic conflicts considered in this study include crossing conflicts and rear-end conflicts. 

Crossing conflicts consist of the following four types:  

• Right-turn conflicts, as illustrated by black squares in FIGURE 12 (a). 

• Right-angle conflicts, as illustrated by black moon shapes in FIGURE 12 (b).  

• Left-turn conflicts, as illustrated by black triangles in FIGURE 12 (c). 

• Pedestrian-vehicle conflicts, as illustrated by the black lightning shapes in FIGURE 12 

(a). 
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(a) (b) (c) 
FIGURE 12 Crossing conflict types: (a) right turn conflicts; (b) right angle conflicts; (c) left turn 

conflicts. 

Rear-end conflicts were detected for every movement from each approach. Movements, 

where rear-end conflicts were considered, are represented by black circles in FIGURE 13 (b). 

  

(a) (b) 
FIGURE 13 Pedestrian and rear-end conflict types: (a) pedestrian-vehicle conflicts; (b) rear-end 

conflicts. 

Time-to-collision (TTC) was used as a measure to define traffic conflicts. For rear-end 

conflicts, the TTC threshold is 1.5 s. For any crossing conflicts, Ozbay et al. (27) suggested a 

TTC threshold of 4 s. Therefore, 4 s was selected as the threshold to define a crossing conflict 

and 1.5 s was used as the threshold to define a rear-end conflict in this study. 
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3.2.3.3 Conflict Identification and Severity Analysis 

Traffic conflicts including both crossing types and rear-end types were identified based on the 

TTC calculated. The severity of a traffic conflict is represented by the conflict’s TTC. A lower 

TTC means a more severe conflict. All identified traffic conflicts are plotted on aerial maps, 

which are color-coded by TTC. More severe conflicts (lower TTC) are represented by red color.   

3.2.3.3.1 Crossing conflict severity 

All crossing conflicts with TTC under 4 s were extracted based on their minimum TTC value. 

Accordingly, conflict locations and conflicting vehicles’ speeds were also extracted. The severity 

map for all crossing conflicts is illustrated in FIGURE 14 (a). Conflicts within the northeast 

corner of the intersection are of higher severity. 

3.2.3.3.2 Rear-end conflict severity 

All rear-end conflicts with TTC ≤ 1.5 s were extracted based on their minimum TTC value. 

Accordingly, conflict locations and conflicting vehicles’ speeds were also extracted. The severity 

map for all rear-end conflicts is shown in FIGURE 14 (b). Most of the rear-end conflicts are 

detected in the right lane of the eastbound Eastern parkway and the right through lane of the 

southbound S Preston St approach. 

  

(a) (b) 

FIGURE 14 Conflict severity by TTC: (a) crossing conflicts; and (b) rear-end conflicts. 
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3.2.3.4 Conflict Severity Determination by Speed 

3.2.3.4.1 Crossing conflict severity 

All crossing conflicts with TTC under 4 s were also analyzed by the speed at the minimum TTC. 

As shown in FIGURE 15 (a). The speed of crossing conflicts between movements of eastbound 

approach and southbound approach is higher than those between movements of westbound 

approach and southbound approach. 

  

(a) (b) 

FIGURE 15 Conflict type severity by speed: (a) crossing conflicts; (b) rear-end conflicts. 

3.2.3.4.2 Rear-end conflict severity 

All rear-end conflicts with TTC under 1.5 s were analyzed by speed at the minimum TTC. As 

shown in FIGURE 15 (b), most of the conflicts happened between a stopped vehicle and a 

moving vehicle. A severer conflict trend is detected in the right lane of the eastbound approach. 

3.2.3.5 Crossing Conflicts by Conflicting Movements and Crossing Type 

This section analyzes conflicts by conflicting movements and crossing types. 

3.2.3.5.1 Crossing conflicts by conflicting movements 

As shown in FIGURE 16 (a), different crossing conflict groups by conflicting movements are 

illustrated by different shapes. Most of them are between SB through movements and EB 
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through movements. One conflict between a vehicle and a pedestrian on the east side crosswalk 

and EB movements is also detected, as well as one conflict between WB illegal left turn and EB 

through movements.  

  

(a) (b) 

FIGURE 16 Crossing conflict analysis: (a) by conflicting movements; (b) by crossing type. 

3.2.3.5.2 Crossing conflicts by crossing type 

As shown in FIGURE 16 (b), four conflict types are illustrated by a different shape. Most of them 

are of right-angle conflict type. Some of them are left-turn angle, pedestrian-vehicle, or side-

swipe conflicts. 

3.2.3.6 Conflict Frequency Analysis 

3.2.3.6.1 Crossing conflict frequency by weekday and time of day 

As shown in FIGURE 17, the frequency of crossing conflicts increases at peak hours and 

decreases at off-peak hours. Crossing conflicts are rarely detected before 5 AM. They mainly 

happen during work hours. Especially on Tuesday, an obvious upward trend is detected. 
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FIGURE 17 Crossing conflict frequency by the time of day and weekday. 

In total, 823 crossing conflicts including all crossing types were detected during the week 

of data collection. FIGURE 18 illustrates the distribution of crossing conflicts by crossing type 

and weekday. Weekends have lower conflict frequency compared to weekdays, possibly due to 

lower traffic volume.   

 

FIGURE 18 Crossing conflict frequency by type and weekday. 
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3.2.3.6.2 Rear-end conflict frequency by weekday and time of day 

FIGURE 19 illustrates how rear-end conflicts are distributed in hours on different days of a week. 

As shown in FIGURE 19, an obvious trend of increase before and decrease after peak hours is 

detected on weekdays. This trend is particularly reflected in the evening peak hours. 

Accordingly, rear-end conflicts are rarely detected before 5 AM. 

 

FIGURE 19 Rear-end conflict frequency by the time of day and weekday. 

In total, 1,349 rear-end conflicts were detected during the week of data collection. 

FIGURE 20 illustrates the distribution of rear-end conflicts by weekdays. Friday has the highest 

frequency while Monday and Sunday have the least frequency. 
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FIGURE 20 Rear-end conflict frequency by weekday. 

3.2.3.7 Conflict Frequency by TTC Range 

3.2.3.7.1 Crossing conflict frequency by TTC range 

As shown in FIGURE 21, crossing conflicts are mostly distributed in the TTC range between 1.5 

s and 4 s. Crossing conflicts within the TTC range of 3.5 s to 4 s have the most frequency. 

 

FIGURE 21 Crossing conflict frequency by TTC range. 
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3.2.3.7.2 Rear-end conflicts by TTC range 

As shown in FIGURE 22, no rear-end conflict was detected with TTC under 0.5 s. Rear-end 

conflicts are distributed the most on Thursday and Friday. The frequency of rear-end conflicts 

with TTC between 0.5 s and 1 s is less than that of conflicts with TTC between 1 s and 1.5 s. 

 

FIGURE 22 Rear-end conflict frequency by TTC range. 

3.2.3.8 TTC Variance vs. Traffic Volume 

3.2.3.8.1 Crossing TTC vs. traffic volume 

As shown in FIGURE 23, with traffic volume increasing at peak hours, especially evening peak 

hours, a decreasing TTC trend is detected during weekdays. The traffic volume of the 

southbound approach is higher than the other two approaches. The traffic volume of the 

westbound approach is the least. While volume keeps consistent at off-peak hours, the average 

TTC of crossing conflicts keeps relatively constant. However, there is high volatility of TTC on 

Saturday early morning with low traffic volume. Speeding issues could be the potential cause. 
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FIGURE 23 Crossing TTC variance vs. traffic volume. 

3.2.3.8.2 Rear-end type TTC vs. traffic volume 

As shown in FIGURE 24, the average TTC of rear-end conflicts decreases during morning peak 

hours while the traffic volume increases rapidly.  

 

FIGURE 24 Rear-end TTC variance vs. traffic volume. 

An obvious TTC decreasing trend is revealed during Monday evening peak hours. 

Similarly, high volatility of TTC is detected on Saturday early morning. Speeding issues could 

be the potential cause. 
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3.2.3.9 Traffic Events Analysis 

3.2.3.9.1 Illegal left turns for westbound traffic 

As shown in FIGURE 25, illegal left turns are detected at different times of day, as westbound 

left turns are prohibited by the traffic sign. No illegal left turns were detected on Friday. Most 

illegal left turns happened on Tuesday afternoon. In addition, 5 cases in total were detected 

before 5 AM during the week of data collection. 

 

FIGURE 25 Illegal left turn counts. 

3.2.3.9.2 Jaywalking Analysis 

Jaywalking activities and counts were detected and summarized along with a comparison to 

counts of the pedestrian using the crosswalks. The 7-day jaywalking data was aggregated by 

hours to represent the pedestrian activities for the 24 hours within the week. FIGURE 26 

illustrates an example that shows the jaywalking activities during the hour between 5 AM and 6 

AM of the whole week. The trajectories represented by white color indicate the jaywalkers. 
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FIGURE 26 Example of jaywalking activities. 

3.3 CONCLUSIONS 

The proof-of-concept field study has proven the prototype of IPSV and demonstrated its ability 

to capture vehicle-vehicle and vehicle-pedestrian traffic conflicts and their severity. In 

conclusion, FIGURE 27 visualizes a summary of the tasks that have been completed in Stage 1. 

The IPSV algorithm has been developed, which includes intersection mapping, data integration 

from different radar data sources, data preprocessing, radar data calibration, movement 

classification for all approaches, computation of TTC for rear-end and crossing conflict events, 

and identification and visualization of traffic conflict results by location and severity.  
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FIGURE 27 Stage 1 Tasks of IPSV Algorithm Development and Proof-of-Concept Field Study. 

The next stage of work will focus on further addressing the issues identified in Stage 1, 

developing the configuration interface, achieving the real-time feature, finalizing the prototype, 

and testing and validating the IPSV. 
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4. IPSV DEVELOPMENT IN STAGE 2 

4.1 IMPROVEMENTS IN IPSV ALGORITHMS 

The algorithms in Stage 2 of the IPSV are updated from two aspects: fully automated application 

for any kind of intersection and more accurate conflict detection based on severity and quantity. 

The new characteristic of the IPSV, a more automated algorithm that can be applied to both 

unsignalized and signalized intersections, is realized by configuring lane/movement/stop bar 

values of any approach and measuring boundary values of an intersection from a satellite map. 

The other characteristic of the IPSV, more accurate conflict detection based on severity and 

quantity, is updated by distinguishing pedestrians/bicyclists from vehicles, smoothing trajectory 

based on in/extrapolated points, estimating the baseline of each lane, classifying trajectories by 

lanes, removing stopping trajectories, distinguishing rear-end/lane-change/left-turn angle/right-

angle/sideswipe/pedestrian-to-vehicle conflicts based on conflict angle and introducing a new 

surrogate conflict index. The latter characteristic of the IPSV is also achieved in full automation. 

 

4.1.1 Accurate Conflict Severity and Quantity Detection 

4.1.1.1 Target Trajectory Retrieval for Each Radar 

To distinguish trajectory points from conflicting approaches that are collected by a radar sensor 

that faces the other approach, a distance between the radar sensor and the stop bar of the 

oncoming approach is critically needed. Since the removal algorithm of this type of noise 

performed in Stage1 requires much time-demanding manual configuration in the IPSV, the 

method to remove this type of noise is updated in Stage 2. As shown in the FIGURE 28, the 

distance from the stop bar of the oncoming (target) approach to the radar sensor facing the 

approach is required to distinguish the conflicting trajectories from the other approach (shown in 

blue) from the target trajectories (shown in red). The conflicting trajectories will be removed, 

and the target trajectories will be kept to the most extent by this easy step. This target trajectory 

retrieval for each radar is also used in (4). 
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FIGURE 28 Target trajectory retrieval for each radar. 

 

4.1.1.2 Correction of Trajectory Points by Longitudinal Displacement 

Certain trajectory points of certain turning vehicles or vehicles moving with low speed, e.g., 2ft/s 

or 3 ft/s, sometimes will jump over their last trajectory point along the Y-axis in terms of the 

radar used for collecting the trajectories. In other words, the trajectory points will have 

longitudinal displacement error sometimes. This kind of problem happens during vehicles 

making a turn or move at a low speed because the radar is insensitive to moving objects in a 

direction perpendicular to the facing direction of the radar, and to the objects moving at a low 

speed. 

The situation was observed in Stage 1 and the related points were directly deleted once they 

are identified by IPSV. In Stage 2, these kinds of points will not be deleted but estimated with 

new ones based on their adjacent last point to keep the quantity of the points and maintain the 

consistency of the points in terms of the longitudinal direction. After this step is updated in Stage 

2, the quality of the trajectory points will be further improved. 

The FIGURE 29 shows the trajectories with longitudinal displacement error from a test 

field database, where the identified errors are marked with red points. The figure also shows the 
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before-and-after displacement error correction, where (a) describes the shape of errors when 

making a turn and (b) describes the estimated trajectory, in which all the errors are estimated 

based on their adjacent last trajectory point by assigning the same longitudinal coordinate of their 

last one to the following one in terms of time. 

 

  
(a) (b) 

FIGURE 29 Correction of trajectory points by longitudinal displacement. 

4.1.1.3 Trajectory Smoothing and Extrapolation 

Positioning errors of tracking objects by radars may be caused by the radar itself shaking by 

winds. This kind of error is inevitable for any kind of sensor for object tracking on the road. This 

type of error was identified in trajectories and the whole trajectory was snapping onto a baseline 

of a lane, where the trajectory belongs, in Stage 1. This snapping method could eliminate the 

errors of each trajectory, however, could also eliminate lane-changing maneuvers if the trajectory 

is a lane change. In addition, vehicles may not exactly move along with the baseline of a lane in 

reality; regarding this situation, new errors may be introduced into the trajectories after snapping. 

Therefore, the snapping method is removed from Stage 2 and replaced by the smoothing method 

for each trajectory individually. As shown in the FIGURE 30, the bearing angle of each 

trajectory point is first calculated. Those points with a bearing angle more than the 85th percentile 
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value of all bearing angles of the individual trajectory will be ‘virtually’ removed from the black 

line in FIGURE 30 (a) to the red line in FIGURE 30 (b). 

   
(a) (b) (c) 

FIGURE 30 Trajectory smoothing. 

 The bearing angle is calculated as shown in the following FIGURE 31. 

 
FIGURE 31 Bearing angle calculation (28). 

 After the virtual removal of each trajectory, the new trajectory will be extrapolated by the 

remaining points and those removed points will be extrapolated on the new trajectory. Such as in 
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FIGURE 30 (c) and FIGURE 32 (c), the blue trajectory is the extrapolated trajectory of the 

original black trajectory. The smoothing method is applied based on local polynomial regression 

fitting (Loess) (29, 30). 

 

   
(a) (b) (c) 

FIGURE 32 Trajectory smoothing and extrapolation. 

4.1.1.4 Trajectory Data Time Synchronization 

The 24GHz microwave doppler radar sensor has a 102 millisecond time precision. The time 

format of each trajectory point is recorded as 10.49 s or 10.52 s. The value in milliseconds differs 

for each vehicle and each radar sensor. When calculating conflicts, the value in milliseconds 

should be synchronized in the same format, e.g., 0 or 500 milliseconds. Each trajectory point is 

projected for its position from its original data time to a new data time based on the new format. 

As shown in FIGURE 33, the blue trajectory with red points is the new projected polyline from 

its old trajectory on the right. The time synchronization of each point is based on its proximity to 

the new format, e.g., 10.49 s is synchronized to 10.50 s and 10.8 s is synchronized to 11 s. 

Therefore, the conflict can be calculated across different radar sensors in a synchronized time. 

The synchronization is further made automated in Stage 2. 
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FIGURE 33 Trajectory point data time synchronization. 

  

4.1.1.5 Estimation of Center Baseline of Each Lane 

The center baseline of each lane of an approach is critical information for automated movement 

classification, lane changing detection, and further, conflict type classification. The baseline was 

manually measured from a Google satellite map in Stage 1. However, this step was time-

demanding and manual errors would be introduced into the classification steps. In Stage 2, this 

baseline estimation step is made automated and able to apply to any type/number/geometry 

shape of lanes of an approach. 

 First, trajectories that are coming from upstream at top of the stop bar of the oncoming 

approach and moving downstream from the stop bar of the opposite approach are retrieved from 

all trajectories collected by a radar. As shown in FIGURE 34 (b), these trajectories are retrieved 

from four lanes at the upstream intersection. 

 Second, those retrieved trajectory points are clustered by a given number of center(s) 

every 50-feet segment along the longitudinal direction. The given number of center(s) of an 

approach is a predetermined number based on the number of lane(s) crossing through the 

intersection upstream to downstream. The number of lane(s) is called number of center lane(s). 
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As shown in FIGURE 34 (a), the number of centers is 2 in this case. The clustering method is 

based on K-Means clustering (31).  

  

(a) (b) 

  

(c) (d) 

FIGURE 34 Methodology of center baseline estimation. 

 Third, a standard deviation of trajectory points at each 50-feet segment of the center 

lane(s) is calculated. Those cluster centers in certain segments are removed for further estimation 

if their standard deviation values are larger than the 90th percentile value of all standard deviation 

values of all the segments. As shown in FIGURE 34 (c), these removed segment centers are 
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marked as green points. This step could eliminate statistically insignificant centers if trajectory 

points at these segments have larger deviations than others. 

 Fourth, the center baseline of each lane is further smoothed based on the statistically 

significant centers, as shown in black points in FIGURE 34 (c). The smoothing method is also 

based on Loess. Based on the new smoothed baseline(s), an average lane width can be estimated. 

Therefore, the center baseline(s) of any lane on the right or left side of the center lane(s) can be 

estimated based on the average lane width. As shown in FIGURE 34 (d), center baselines of 

left/right and center lanes are smoothed and estimated. 

 It should be noted that this estimation method is immune to data loss or significant 

deviation at the upstream intersection. In this case, as shown in FIGURE 34 (a), trajectory points 

at center lanes above 400 feet and left lanes above 300 feet are statistically insignificant for 

baseline estimation. In addition, it is noted that this estimation method is made automated by 

acquiring the basic lane information from Google Maps, including the number of center/right/left 

lanes. 

4.1.1.6 Movement Classification and Lane Change Detection 

Based on the estimated baselines, each trajectory can be assigned a movement based on a 

minimum average mean distance difference between each point and baselines. If the average 

mean distance difference is larger than half of the average lane width, the movement is assigned 

based on the last point of each trajectory in terms of time. Furthermore, lane change maneuvers 

can be detected based on a minimum distance between each point and baselines at each time 

stamp. The movement classification and lane change detection are made fully automated in Stage 

2. Such classification results are shown in FIGURE 35, where every trajectory is assigned a 

specific lane/movement. Further note that every trajectory will not be assigned multiple times on 

different lanes/movements based on the algorithm illustrate above. 
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(a) (b) (c) (d) 

FIGURE 35 Movement classification and lane change detection. 

4.1.1.7 Removing Outlier/Stopping Trajectories 

Some vehicles may stop in front of a stop bar for a period of time waiting for a green signal or 

waiting at a stop-controlled intersection. In such a case, the radar would lose tracking a vehicle 

and restart tracking this vehicle as a new vehicle if the vehicle stops for a long time and moves 

again. This problem could raise false positive conflicts when a following vehicle ‘passes’ the 

‘stopped’ vehicle, and actually the following vehicle cannot pass its leader from the same lane. 

This problem was observed in Stage 1 and the number of false positive conflicts were not 

removed from conflict results in Stage 1. In Stage 2, such stopping trajectories are identified by a 

moving distance after a vehicle stops. Those trajectories that are first stopping and then moving 

again with the same vehicle ID are not removed. A threshold of the moving distance is the 85th 

percentile value of all such stopping trajectories. Those stopping points with a moving distance 

less than the threshold are removed. The FIGURE 36 shows the travel distances of vehicles from 

a sample dataset after the stopping points are removed. Given the empirical rule, more than 95% 

of the trajectories are retrieved for each dataset if the travel distance of a trajectory is larger than 

minus 2 standard deviations of the mean of all the distances. Given this step, statistical outliers 

are removed for each dataset. Those trajectories with a too short travel distance are not 

explainable. 
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FIGURE 36 Histogram of travel distances. 

  

4.1.1.8 Distinguishing Pedestrians/Bicyclists from Vehicles 

Pedestrians/bicyclists (PBs) are marked by radar with a smaller object length than vehicles. 

However, some PBs may be recorded with an object length the same or larger than vehicles. In 

Stage 1, originally recorded object lengths, including vehicles’ and PBs’, are kept for TTC 

calculation during conflict events. To distinguish PBs from vehicles and improve the accuracy of 

TTC calculation, PBs are additionally marked in Stage 2 if their mean speed is less than 4 ft/s 

and maximum speed is less than 7 ft/s. PBs are thereby assigned a smaller object length than 

vehicles’. As shown in FIGURE 37, PBs are retrieved as red lines from a sample dataset, where 

blue lines are the same trajectories as left without smoothing. 
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FIGURE 37 Distinguishing pedestrians/bicyclists from vehicles. 

  

4.1.1.9 Estimation of Object Shape 

The radar sensors only record the front (bumper) points of an object, including vehicles/PBs. The 

rear (bumper) points are also necessary for identifying the start and end of conflict events of any 

conflicts other than rear-end type and calculating TTC for rear-end type. After distinguishing 

PBs from vehicles in terms of an object length, the rear (bumper) points are estimated based on a 

slope of every point along its trajectory at each time stamp. This step is further made automated 

in Stage 2. As shown in FIGURE 38, the black points are estimated rear points along a trajectory 

with red points as front points. The purple dashed line measures the object length. The object 

shape is defined as both the front and rear points of an object. The trajectory on the left denotes 

variations of the object shape along a trajectory; the object shape is separated as front- and rear-

point trajectories on the right. 
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FIGURE 38 Estimation of object shape. 

  

4.1.1.10 Distinguishing Conflicts Based on Conflict Angles 

Conflict angles are used to distinguish different types of conflicts. Conflict types were identified 

by predetermined movement-pair methods in Stage 1. Such methods cannot calculate the conflict 

angles for each conflicting-vehicle pair; in addition, the method requires a manual configuration 

of conflicting movement pairs. In Stage 2, any conflict type is classified by calculating conflict 

angles, which are shown in the FIGURE 39, based on Surrogate Safety Assessment Model (23). 

As shown in FIGURE 39, a rear-end conflict is identified if the conflict angle between two 

conflicting vehicles is less than 30 degree; a lane-change conflict is identified if the conflict 

angle between two conflicting vehicles is more than 30 degree and less than 85 degree; and a 

crossing conflict is identified if the conflict angle between two conflicting vehicles is more than 

85 degree and less than 180 degree. Calculating conflict angles is also made automated in Stage 

2. 
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FIGURE 39 Conflict angles between conflicting vehicles (23). 

4.1.1.11 Surrogate Safety Measurements Based on Conflicts 

In some cases, especially those crossing conflicts, i.e., two vehicles may collide at a 

conflict point rather than on a line, the surrogate safety measure, time-to-collision (TTC) may not 

be calculated accurately. Such as in FIGURE 40 (b), two conflicting vehicles may collide at a 

specific conflict point, however, with a gap. In such a case, the relative TTC (RTTC) (32, 33), 

i.e., the gap, will be calculated to serve as one of the surrogate safety measures; whereas the TTC 

cannot be calculated based on its definition (20). In FIGURE 40 (a), the TTC can be calculated 

because the conflicting vehicles would collide at the same point if they remain their trajectory 

and speed unchanged; whereas the RTTC equals zero based on its definition. 
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(a) (b) 

FIGURE 40 Surrogate safety measurements based on conflicts. 

Overall, RTTC is introduced as a new surrogate safety measure in Stage 2, whereas in 

Stage 1 only TTC was used as the measure. Therefore, if a conflict type of two conflicting 

objects belongs to rear-end type, only TTC is calculated by a basic method in (34). If a conflict 

type does not belong to the rear-end type, RTTC is calculated, in addition, if RTTC equals zero, 

TTC will be also calculated. 

 

4.1.2 Automated Application for Any Kind of Intersections 

The IPSV can apply to any kind of intersection for detecting conflicts, retrieving speed/volume 

for any movement, and creating figures based on customized visualization needs. The automated 

application for any kind of intersection in Stage 2 is realized by configuring lane/movement/stop 

bar information of any approach in an intersection. Such information can be easily obtained from 

Google Maps. Boundary coordinate vertices for a base map figure of an intersection can also be 

obtained from Google Maps for automated visualization needs of any type of conflict-based 

figure. Such a base map is created based on a main radar sensor’s location in the intersection. As 

shown in FIGURE 41, four radars sensors are located in vicinity of the target intersection, and a 

main sensor is located in the bottom of the figure. Once the main sensor is determined, the 

coordinate rotation angle of the other three sensors can be determined from the Google Map 

based on facing directions of the other three sensors. Similarly, the coordinate displacement of 

the three sensors to the main sensor can also be determined from the Google Map. 
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FIGURE 41 Automated data integration and base map creation. 

4.2 VALIDATION OF ACCURACY 

4.2.1 Data Collection in Stage 2 

In Stage 2, the field test intersection was selected as S 24th St @ W Broadway, Louisville. The 

data collection time was from 14th to 21st, September 2021. The FIGURE 42 gives a presentation 

of collected trajectories at the intersection. 
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FIGURE 42 Trajectories at 24th St @ Broadway intersection. 

4.2.2 Conflict Severity Validation 

4.2.2.1 Conflict Severity Validation by TTC 

Conflicts detected at this intersection are visualized by rear-end (including lane-changing during 

a conflict line) type and crossing type (including all others). Rear-end type TTC is also retrieved 

by a threshold of 1.5 s as in Stage 1; crossing type TTC is retrieved by 4 s. Except rear-end 

conflict type, all other types are calculated based on RTTC; for these types, a bigger TTC of an 

object in a conflict pair is retrieved as the TTC for the conflicting pair if both the TTC and RTTC 

are less than 4 or 1.5 s. As shown in FIGURE 46, FIGURE 43 (a) indicates the distribution of the 

crossing type conflicts with TTC of less than 4 s, and FIGURE 43 (b) indicates the distribution of 

the rear-end and lane-change type conflicts with TTC less than 1.5 s. 
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(a) (b) 

FIGURE 43 Conflict severity validation by TTC. 

  

4.2.2.2 Conflict Severity Validation by Speed Difference 

In Stage 2, speed differences of each conflict pair are used as a measure to identify the severity 

of the conflicts. The larger the speed difference is, the more likely a conflict event is a crossing 

conflict; the smaller the speed difference is, the more likely the conflict event is a rear-end 

conflict. FIGURE 44 (a) indicates the distribution of the crossing type conflicts with speed 

different less than 60 ft/s and FIGURE 44 (b) indicates the distribution of the rear-end/lane-

change type conflicts with speed different less than 60 ft/s. 

 

  
(a) (b) 

FIGURE 44 Conflict severity validation by speed difference. 
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4.2.2.3 Conflict Severity Validation by Conflict Type 

For crossing type-based conflicts, the conflict severity is classified by detailed types and 

movements. The detailed types include sideswipe, left-turn angle, right-angle and pedestrian-to-

vehicle types. The FIGURE 45 respectively indicates the type- and movement-based conflict 

severity validation and distribution at the intersection. 

 

  
(a) (b) 

FIGURE 45 Conflict severity validation by conflict type. 

  

4.2.3 Conflict Quantity Validation 

4.2.3.1 Conflict Quantity Validation by Time 

Conflict quantities of each conflict type are classified by hours in a day or days in a week to 

validate the variance of conflicts during the data collection time. As shown in FIGURE 46, 

different crossing-based conflict types are respectively counted during every hour in a day by 

conflict quantity. 
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FIGURE 46 Crossing-based conflict quantity validation by hours. 

  

As shown in FIGURE 47, mostly detected conflict type is the left-turn angle-based. The 

left-turn angle-based conflict measures a conflict with a conflict angle of more than 30 degrees 

and less than 85 degrees. The right-angle-based conflict measures a conflict angle of more than 

degrees and less than 180 degrees. The sideswipe conflict measures all other angle ranges except 

pedestrian-to-vehicle, left-turn, and right-angle conflicts. The left-turn angle conflicts mostly 

occur between eastbound through movements and south/northbound through movements at the 

intersection. 
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FIGURE 47 Crossing-based conflict quantity validation by days. 

  

As shown in FIGURE 48, rear-end and lane-change conflict types are respectively 

counted during every hour in a day by conflict quantity. 

  

 
FIGURE 48 Rear-end/lane-change conflict quantity validation by hours. 
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As shown in FIGURE 49, rear-end conflict type occurs more often than lane-change 

conflict during conflict line-based events. 

  

 
FIGURE 49 Rear-end/lane-change conflict quantity validation by days. 

  

4.2.3.2 Conflict Quantity Validation by TTC Range 

Rear-end and lane-change conflict quantity is validated and classified by TTC range under 1.5 s. 

Crossing conflict quantity is validated and classified by TTC range under 4 s. As shown in 

FIGURE 50, crossing conflicts with TTC in less than 0.5 s indicate a most dangerous conflict 

event. Starting from more than 2.5 s, the conflict quantities increase sharply. 
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FIGURE 50 Crossing-based conflict quantity validation by TTC range. 

  

As shown in the FIGURE 51, conflicts with TTC of less than 0.5 s occur on Tuesday and 

Sunday. Conflicts are mostly detected with TTC more than 1 s. 

  

 
FIGURE 51 Rear-end/lane-change conflict quantity validation by TTC range. 
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4.2.3.3 Conflict Quantity Validation by Traffic Volume 

Each conflict type is also investigated with the variance of both TTC and traffic volume during a 

week. As shown in FIGURE 52, the same crossing conflict TTC variance pattern was observed 

in the early morning on Wednesday and Thursday. TTC variance keeps consistent during 

business hours except on Wednesday. 

 

 
FIGURE 52 Crossing conflicts TTC variance with traffic volume. 

  

As shown in FIGURE 53, no significant TTC variance based on traffic volume is 

observed due to a limited quantity of rear-end and lane-change conflicts. Similar TTC variance 

can be observed on Tuesday and Saturday. 
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FIGURE 53 Rear-end and lane-change conflict TTC variance with traffic volume. 

  

4.2.4 Validation of Rear-end Conflict Accuracy 

It is assumed that a rear-end conflict can occur as long as two adjacent vehicles are on the same 

lane in Stage 1. The trajectories are all snapped onto a lane, on which an average deviation error 

between points and baseline of the lane is minimal in Stage 1. However, this method would lead 

to the wrong prediction when a vehicle is making a lane change or the trajectory of the vehicle is 

not exactly on the baseline. Therefore, the trajectories are only smoothened rather than snapped 

in Stage 2. 

When the following vehicle is making a lane change, the conflict would disappear even if 

the following vehicle is still in the same lane as the leading vehicle. Furthermore, radar 

positioning error would still exist even after trajectories are smoothened/predicted. These two 

factors would cause inaccurate TTC values. In addition, most trajectories leave the detection 

zone of the radar ending at zero speed and lasting up to several minutes. This would increase the 

false positive rate of conflict identification. This kind of false positive identification is removed 

in Stage 2. 
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By sampling from a dataset, rear-end scenarios are detected and classified into three 

categories: true rear-end scenarios if two conflicting vehicles are in a rear-end conflict event, and 

false rear-end scenarios caused by lane changing or radar positioning errors. Such sampling 

result is listed in the following table. Based on TABLE 2, the lane change and positioning error 

scenarios are removed from rear-end conflict calculation in Stage 2. To compare the 

improvements in rear-end conflict accuracy from Stage 1 to 2, rear-end conflict results from a 

sample dataset are classified as follows before false conflicts are removed. 

 

TABLE 2 Rear-end scenario analysis. 

All rear-end lane change position error 

534 409 22 103 

Percentage 77% 4% 19% 

  

In Stage 1, all conflicts listed in TABLE 3 are counted as rear-end conflict types; whereas 

in Stage 2, the true negative cases are removed and the false positive cases are classified as lane-

change conflict types. Therefore, confusion matrix values under Stages 1 and 2 are calculated as 

follows. 

 

TABLE 3 Rear-end conflict classification. 

All TP: rear-end TN: stopping/short travel distance FP: lane change 

77 5 68 4 

 

 Based on TABLE 4, the TPR decreases from 100% to 80% in Stage 2 because positioning 

error cases are removed from rear-end conflict identification, however, such cases still lead to 

inaccurate TTC calculation in Stage 1. The FPR decreases from 100% to 0% in Stage 2 because 

lane-change cases are separated from rear-end cases. 

 

TABLE 4 Confusion matrix values calculation. 

 Stage 2 Stage 1 

TPR 
5

5 + 5
0.77 ∗ 0.19

= 80% 5
5 + 0

= 100% 
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FNR 
5

0.77 ∗ 0.19

5 + 5
0.77 ∗ 0.19

= 20% 
0

5 + 0
= 0% 

FPR 
0

68 + 5
0.77 ∗ 0.04

= 0% 68 + 4 + 5
0.77 ∗ 0.04

68 + 4 + 5
0.77 ∗ 0.04

= 100% 

TNR 
68 + 5

0.77 ∗ 0.04

68 + 5
0.77 ∗ 0.04

= 100% 
0

68 + 4 + 5
0.77 ∗ 0.04

= 0% 

 

4.2.5 Validation of Crossing Conflict Accuracy 

When calculating crossing conflicts, any vehicle-to-vehicle and vehicle-to-pedestrian pairs are 

calculated for a crossing TTC. Therefore, the method of crossing conflict detection in Stage 2 

remains the same as in Stage 1. To further validate the crossing conflict accuracy, crossing TTC 

is calculated respectively based on trajectories and ground truth observation. Four crossing cases 

are retrieved for validation, which are shown in the FIGURE 54. 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 54 Validation of crossing conflict accuracy. 

 The RTTC and TTC of the crossing conflicts are respectively validated through videos 

and measurements from Google Maps. Based on the above four cases, the average RTTC error 

rate is 6.2%, and the average TTC error rate is 4.8%, i.e., a crossing TTC calculated by IPSV 

ranges [𝑇𝑇𝑇𝑇𝑇𝑇, 1.048 × 𝑇𝑇𝑇𝑇𝑇𝑇]. 
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5. PLAN FOR IMPLEMENTATION 

5.1 TOOLS FOR IMPLEMENTATION 

To facilitate implementing IPSV, the research team has developed an IPSV configuration tool. 

Figure 55 illustrates the framework of the IPSV configuration and query interface. 

 

 
Figure 55 Framework of the IPSV configuration and query tool 

Once field data collection is finished, the user can use the interface to configure the data. 

First, the user will add query data with desired range, i.e., which duration of time on which 

period of day(s), then click the ‘Add’ button. The data range input by the user will then be passed 
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to the IPSV interface. This configuration tool is programmed using the .NET framework based 

on C#; second, the user will input the location info of the main reference radar sensor and other 

radar sensors. Distance from the stop bar of the oncoming approach of each radar sensor will 

also be input into the IPSV configuration interface. Similarly, the location information will be 

received by the IPSV interface after the user clicks the ‘Process data’ button; third, the user 

needs to load and configure the background image, which is manually retrieved from Google 

aerial map. The map coordinates need to be configured to reflect the reference radar sensor’s 

coordinates The tool also helps generate customized queries through the IPSV interface to run R 

script to map certain traffic conflicts and severities. As shown in Figure 56, the user can also 

analyze speed or volume by approach or movement under the “operation” section. The user can 

analyze conflict counts, illegal left turns, etc. under the “safety” section. Similarly, the user can 

visualize the data analysis results and get the processed data in detail by clicking ‘export data’. 

For example, in Figure 56, 24-hour data on each day during the whole data collection week is 

visualized, after the query information is input into the IPSV configuration and query interface. 

The intersection conflicts and operation data analyses are also visualized in the interface tool. 
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Figure 56 IPSV configuration and query interface with visualization of the results. 

 

The research team also developed a Field Data Collection Manual to facilitate field 

engineers (state DOT personnel or consultants) to install, calibrate and start the radar data 

collection at the study site. Figure 57 illustrates a sample page of the field data collection 

manual.  
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 Figure 57 Sample IPSV Field Data Collection Manual  

 

5.2 TECHNOLOGY TRANSFER 

Throughout this report, a proof-of-concept intersection safety monitoring and visualization tool 
is developed based on processing radar sensor data in real-time. This tool proactively identifies 
traffic conflicts in the vicinity of an intersection without passively waiting for a crash occurring. 
This feature enables state DOTs to measure the safety performance of any intersection and 
finally decide which intersection of interest for installing safety countermeasure facility, such as 
rectangular rapid-flashing beacon (RRFB), or other safety or operational upgrade. Overall, some 
steps for this technology transfer are needed and summarized as follows. 

1. Train engineers of state DOTs to efficiently install radar sensors and calibrate and collect 
trajectory data based on the field data collection manual. 

2. Train engineers of state DOTs to operate the IPSV Graphical User Interface (GUI) and 
obtain needed safety and operational results. 

3. Facility the visualization of traffic conflicts at an intersection based on the IPSV GUI for 
state DOT decision makers and making decisions about any potential upgrades at the 
intersection. 

 
 
 
 
 
 
 

If the trajectories of pedestrians and turning 
vehicles from certain approach are needed (in 
terms of one radar sensor) in the safety 
assessment of the intersection:
1. Confirm candidate lighting poles on Google 

Map street view
2. Test if the lighting poles can cover 

crosswalks by geometry tools (a 30-degree 
detection width from the radar sensor) on 
the computer

3. Confirm the selected lighting poles exist as 
where it is at the field as on Google Map

4. Confirm there is not any blockage at front 
of the radar sensor on one lighting pole, 
such as tree leaves; otherwise select 
another candidate lighting pole
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6. CONCLUSIONS 

A proactive intersection safety monitoring and visualization system, IPSV, was developed 

through the fund from the NCHRP IDEA program. Unlike other safety analysis applications on 

the current market, the IPSV can be implemented at any kind of intersection for any type of 

safety and operation analysis under a long-term data collection period. Results obtained from the 

IPSV can be concluded from the following perspectives: 

1. The IPSV is a readily used system that can be commercially deployed by transportation 

agencies for operational or safety analyses at any kind of intersection. The operational 

and safety analysis functions are automated and integrated into the IPSV system, along 

with a user interface for customized queries, analyses, and visualizations. 

2. The IPSV provides conflict severity distribution visualization by TTC value, the speed 

difference between conflicting objects, and any conflict/movement type. From the 

visualization, more dangerous spots where conflicts occur can be identified at an 

intersection, i.e., the conflict hot spots can be exactly targeted at a satellite map of the 

intersection. In addition, the speed difference between conflicting objects can be analyzed 

along with the hot spots. Conflict-/movement-type based visualization can also help 

understand what kinds of conflicts the safety issues of the intersection are. 

3. The IPSV also provides conflict quantity analyses categorized by time, TTC range, and 

traffic volume. During different times in a day, the variance of the conflict quantity of 

different conflict types can be obtained from the system. By setting TTC thresholds for 

different conflict types, quantities of conflicts that fall in different TTC ranges can be 

easily summarized. Additionally, the TTC variance can also be investigated along with 

the variance of the traffic volume during a day. 

4. To validate the conflict results obtained from IPSV, ground truths found in videos are 

manually compared with corresponding conflicts in terms of severity and quantity. It is 

found that the conflict quantity achieves an 80% true positive rate and a 100% true 

negative rate after upgrading the IPSV in Stage 2. It is also found that the conflict 

severity achieves an average 95.2% accuracy in terms of the TTC of a conflict. 

5. The IPSV works as a fundamental platform for identifying safety issues of both the 

signalized and stop-controlled intersections. Two signalized intersections were selected 

as the test intersections in Stage 1, where the number of conflicts of rear-end is more than 
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the crossing type and illegal left turn and red light running were observed. A stop-

controlled intersection was selected in Stage 2, where number of conflicts of crossing 

type is more than rear-end type, and conflicts of pedestrian-to-vehicle are mostly 

observed. Overall, regarding different types of intersections, the IPSV can identify 

corresponding safety problems. The IPSV can facilitate transportation agencies in making 

decisions on which intersections need to be improved in terms of safety based on 

quantitative performance measures (conflicts and their severities) by the IPSV. 
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7. FUTURE WORK 

During the development of the IPSV and deploying the system at an intersection, several 

challenges were found, and potential solutions are provided for the potential future proof-of-

concept project.  

The first challenge that is learned from the development in Stage 1 is that positioning 

errors caused by windy conditions can lead to less accurate TTC measurements and false or 

missed conflict detections.  In general, positioning errors occur for any types of sensors deployed 

for data collection, including GPS, Lidar, and video cameras. Such positioning errors, however, 

can be mostly eliminated by post-processing algorithms. Such post-processing algorithms have 

been developed and implemented in Stage 2 of this project and have improved the accuracy. 

During the IPSV development in Stage 2, detected trajectories are smoothed and extrapolated, 

however, there still exists a few trajectories (very rare) with sharp slope changes, which are 

unrealistic on the road. This sharp slope change may be caused by disruptions to radar signals on 

tracking an object. Since such sharp slope changes are unrealistic, those trajectories with the 

characters can be further projected to either a through or turning movement without considering 

those trajectory points with sharp slope change.  

 The second challenge comes from the calibration of the trajectory of IPSV with the 

trajectory in the ground truth. It costs labor work to obtain ground truth trajectories from videos. 

Because the greater number of ground truth is retrieved, the more accurate the calibration is and 

so is the conflict severity. More labor calibrations are recommended for better conflict detection 

results. To facilitate calibration, this project has developed a field installation/calibration 

guidebook, which can be directly used in future proof-of-concept implementation project.  

 The third challenge arises in radar sensors' field data collection and calibration. For a 

radar sensor that is mounted on a lighting pole, it is important to avoid any blockage of view 

within the detection zone of the radar sensor, which is also noted in the field 

installation/calibration guidebook; otherwise, the data can become unreliable. In addition, a 

continuous trajectory rather than a discrete trajectory is recommended for visualization in the 

field when doing the radar sensor angle calibration. Especially, for a scenario where the 

trajectories of pedestrians are the main targets, probe pedestrian data needed to be tested in the 

calibration process to make sure that the radar sensor can track the trajectories of pedestrians 

because the pedestrians’ trajectories can be lost due to distance or blockage of view. 
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Research Results 
Real-Time Proactive Intersection Safety Monitoring and Visualization 

A proactive intersection safety monitoring and visualization tool that can be implemented at any 
kind of intersection 

WHAT WAS THE NEED? 
Monitoring and visualization of traffic safety at 
intersections is an essential step leading to the 
ultimate development of safety treatment solutions. 
Traditional visualization methods include 
intersection collision diagrams and GIS-based 
intersection crash hot spot maps. As all these 
methods are based on historical crash data, the 
visualizations cannot be created until sufficient crash 
data are collected, which may take years and is at the 
cost of potential injuries and fatalities. Such reactive 
methods hinder transportation agencies from 
effectively addressing intersection safety issues. 
Aiming to enhance safety more effectively and 
efficiently, transportation agencies have begun 
monitoring traffic flow, collecting traffic data, and 
conducting safety analyses by using proactive 
roadside sensing technologies for decades. These 
sensing technologies mainly consist of radar sensors, 
Lidar, and video cameras. However, those safety 
analyses at an intersection are restricted by a limited 
data collection time or specific conflict types in a 
specific traffic scenario. Consistent data collection 
requires consistent power supplies and/or manual 
operations and maintenance. In addition, a data 
processing algorithm in a safety analysis system is 
developed for only a specific conflict scenario. These 
restrictions prevent transportation agencies from 
widely deploying safety applications at any targeted 

intersection for short-term or long-term safety monitoring. 

  
Proactive intersection safety monitoring and visualization on a satellite map 
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WHAT WAS OUR GOAL? 
This IDEA product aimed to develop a proactive intersection safety monitoring and visualization 
system (IPSV) that can be implemented at any kind of intersection for any type of safety and 
operation analysis under a long-term data collection period. 
WHAT DID WE DO? 
First, in contrast to other traffic detection products, such as using video cameras, drones, or Lidar 
sensors, the IPSV employs a 24GHz Microwave Doppler radar sensor, which can track all detected 
approaching vehicles and pedestrians’ trajectories with update frequency up to 0.3 s/object. Second, 
based on the vehicle trajectory data, the IPSV calculates time-to-collision (TTC) and detects all 
possible traffic conflicts at the intersection. These conflict types include rear-end/lane-change/left-
turn angle/right-angle/sideswipe/pedestrian-to-vehicle conflicts. Finally, two field data collections 
were conducted with assistance from the Kentucky Transportation Cabinet (KYTC) to validate the 
accuracy of the IPSV. 
WHAT WAS THE OUTCOME? 
An application interface was developed 
along with the IPSV for users to 
configure IPSV, and run queries and 
visualizations. IPSV was validated at 
both signalized and unsignalized 
intersections. The improved IPSV 
system in Stage 2 achieves a high traffic 
conflict severity detection accuracy with 
an average 4.8% error rate. The system 
also achieves an 80% true positive rate 
and a 100% true negative rate for 
conflict quantity detection. The results 
are validated through manual 
comparisons of ground truth found in 
videos based on field-collected traffic 
data. 
WHAT IS THE BENEFIT? 
The IPSV provides a cost-effective method to quickly evaluate safety treatment effectiveness for 
an intersection without the need of waiting crashes to happen; complements the crash data to help 
transportation agencies and local governments better understand the safety issues at an intersection 
with traffic conflicts data collected; recognizes wide ranges of road users including vehicles, 
bicyclists and pedestrians via an explainable feature-based algorithm; detects traffic anomaly 
consisting of detecting illegal left-turns, jaywalkers, and red-light-runners in any desired 
observation period; visualizes conflicts severity and quantity straightforwardly with the identifiers 
of TTC, vehicle speed, movements or conflict types; applies to any type/number/geometry shape 
of lanes of an approach at an intersection by an automated and integrated system; performs real-
time feedback about target intersection safety issues with consecutive 24/7 traffic monitoring. 
Furthermore, a data collection manual and a series of tutorial videos are created for deploying the 
IPSV system at an intersection. A system manual is readily utilized for transportation agencies to 
widely deploy the IPSV at more targeted intersections. 
LEARN MORE 
To view the complete report from https://engineering.louisville.edu/research/centersinstitutes/cti/ 

IPSV graphical user interface 
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