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EXECUTIVE SUMMARY 
Fatigue cracks developed under repetitive traffic loads are a major threat to maintaining the structural integrity 
of steel bridges. In fact, it is believed that 50~90% of all mechanical failures in metallic structures are fatigue 
related. The collapse of the Silver Bridge and the Mianus River Bridge are among the most well-known bridge 
failures directly caused by fatigue. Human visual inspection is currently the de facto approach for fatigue crack 
detection because as of today, administrations strongly rely on the experience of the experts to maintain their 
bridges. However, due to human limitations and the complex nature of bridge structures, fatigue crack 
inspections are time consuming, labor intensive, and lack reliability. Although non-destructive testing (NDT) 
techniques such as ultrasonic testing and acoustic emission have been used as supplemental methods to human 
visual inspection, they require complex testing equipment, and thus are not broadly used. As a result, inspecting 
the large steel bridge inventory in the United States remains a great challenge due to the lack of a human-
centered, efficient and cost-effective methodology for detecting, tracking, and documenting fatigue cracks. On 
the other hand, if crack inspections could inform the inspector in the field, more reliable, efficient, and accurate 
assessment of the inventory could be achieved and documented.  

Recently, computer vision has shown great potential as a non-contact, low-cost, and versatile platform for 
structural health monitoring (SHM). However, most computer-vision-based crack detection methods rely on 
still images to extract edge features of cracks. As a result, distinguishing real fatigue cracks from crack-like 
surface features, such as scratches, corrosion marks, and structural boundaries remains a major challenge. 
Moreover, compared with cracks in concrete structures and pavements, which are often easily visible to human 
eyes, fatigue cracks in steel bridge components are much smaller and more difficult to see, and can even be 
invisible upon crack closure, presenting a bigger challenge for crack detection using computer vision. In 
addition, inspectors currently lack an effective way to efficiently interact with new and historic inspection data.  
Such human-centered ability has been identified as one of the top interests of bridge inspectors, as it not only 
improves inspection quality but also facilitates decision-making in the field. 

To overcome the above challenges, as an entirely new concept, we propose to integrate computer-vision-
based motion tracking and augmented reality (AR) techniques to empower bridge inspectors to perform robust 
fatigue crack detection, characterization, tracking, and documentation in the field. First, our computer vision 
algorithm differs from prior ones in that it does not rely on edge features of images – a major advance in terms 
of accuracy and usability for fatigue crack detection. Instead, it is based on recording a short video of the 
structure under fatigue loading, tracking the surface motion of the structure through the proposed computer 
vision algorithm, and analyzing the surface motion pattern to reveal the ‘breathing’ of fatigue cracks. In addition, 
crack width can be quantified with sub-millimeter accuracy using the tracked surface motion. Second, to 
overcome the limitation of the technique in the field for the inspectors, this research will integrate computer 
vision with Augmented Reality (AR), so the inspector can see the crack information such as the crack geometry, 
realized via holograms overlaid on top of the bridge surface. Microsoft Holographic lenses, popularly known as 
HoloLens, have the capacity to track eye movements, listen to voice commands, and follow hand gestures, and 
are currently used in areas such as medicine. The wearable AR device will greatly increase bridge inspectors’ 
ability to perform accurate and reliable on-site inspection in a human-centered manner. Moreover, inspectors 
will be able to interactively manage inspection results and compare with historic data for efficient decision-
making.  

The main findings of the project are summarized as follows: 

1. Videos recorded from non-stationary platforms such as mixed-reality headsets have camera induced 
global motion. Laboratory testing based on compact, C(T) and bridge girder specimens demonstrated 
that GMC is necessary to detect the fatigue crack successfully using feature point displacement-based 
method with unstable videos. The proposed GMC methods were effective at removing camera motion 
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from 2D and 3D videos. The developed displacement-based crack detection algorithm successfully 
detects in-plane and out-of-plane fatigue cracks. However, the computation time for crack detection 
using GMC and displacement-based method is as high as 1.75 seconds per frame for machine with intel 
i9 processor and 64 GB of RAM, making it challenging for near real-time fatigue crack inspection.  
 

2. To facilitate near real-time crack detection, a novel feature point distance-based approach was 
developed. The differential motion due to crack movement is detected by analyzing distance between 
feature pairs on the surface, thus avoiding the need for GMC. The proposed method was validated in 
laboratory testing for near real-time fatigue crack detection in 2D and 3D videos. The computation time 
for the distance-based approach is 0.2 seconds per video frame, making it suitable for near real-time 
fatigue crack inspection. This approach was integrated with the AR software for fatigue crack detection. 
 

3. A method was developed to quantify the detected crack using discrete feature points over continuous 
fatigue crack. The proposed crack detection approach had an IOU score as high as 0.77 implying the 
robustness of the crack detection algorithm in laboratory setting.  

 
4. AR software integrating computer vision-based crack detection algorithm was developed for human-

machine collaboration. A novel AAS system was developed through an invisible rectangle to overcome 
challenges in HL2’s 3D mapping and to anchor the hologram in the right location and orientation. The 
AAS system is practical for inclined surfaces as well as surfaces perpendicular to user’s line of sight. 
The AAS system was validated in both laboratory and field tests.  

 
5. The developed AR software was successfully tested in the laboratory on a half-scale bridge girder 

specimen. This proof-of-concept testing shows that the developed AR-based fatigue crack inspection 
tool integrated with computer vision techniques is functioning seamlessly and smoothly, achieving the 
originally proposed goals. 

 
6. The field test demonstrated the seamless flow of the developed AR-based software integrated with 

computer vision algorithms and the many features to support human-centered bridge inspections. The 
result proves the effectiveness of the proposed crack detection concept by detecting differential surface 
motions. The result also highlights the challenge for field implementation especially for fatigue cracks 
that experience extremely small openings under operational loadings. Further research is needed to 
continue to improve the AR-based software and the crack detection algorithm.   
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IDEA PRODUCT 
The IDEA product developed in this project is a non-contact, human-centered, and interactive fatigue crack 
inspection technique for steel bridges enabled by advanced computer vision algorithms and wearable augmented 
reality (AR) techniques. The goal is to enable bridge inspectors to detect, localize, and measure fatigue cracks 
using AR devices in the field in near real-time, simplifying on-site documentation, tracking, and decision 
making through AR holograms. Using advanced computational imaging and AR, this innovation will greatly 
improve the accuracy and efficiency of bridge inspection, especially for fatigue cracks, which are difficult to 
detect and measure compared with other types of cracks in civil infrastructure. This project is focused on 
developing a human-centered diagnostic technology to enhance field detection and quantification of cracks in 
highway infrastructure, which is a high priority need of state highway agencies. 

The current state of practice for fatigue crack detection relies on human visual inspection. However, 
fatigue cracks are challenging to detect due to small crack lengths and openings, especially in early stages of 
crack propagation. Various nondestructive testing (NDT) methods have been used to supplement human 
inspection, but they still require complex equipment and extensive human involvement for data collection. Using 
the AR device, this innovation will enable bridge inspectors to accurately detect and quantify fatigue cracks by 
tracking motions of the structural surface by recording short videos and uncovering differential motion patterns 
produced by the ‘breathing’ of cracks under traffic loading. Therefore, it is able to distinguish real fatigue cracks 
from crack-like features such as corrosion marks, scratches, and structural boundaries, which pose a major 
challenge to traditional computer-vision-based crack detection methods that rely on edge features. In addition, 
through the holographic images and human-centered environment of AR, bridge inspectors can interact with 
quantitative crack data for automated damage tracking, documentation, and decision-making for bridge 
maintenance in the field during inspection. 

The proposed innovative solution is economically feasible and will be easy to use in practice. It requires 
one set of a wearable AR device such as the Microsoft HoloLens to provide computational imaging for crack 
inspection as well as holograms overlaid on top of the bridge surface for documentation, tracking, and interactive 
decision-making. The world-facing camera on the HoloLens can be used for videotaping if cracks are directly 
accessible by the HoloLens. Otherwise, a hand-held camera can be used. A user-friendly software program is 
created to enable the described functionalities. Adopting the proposed solution in bridge inspection for fatigue 
cracks will achieve major cost savings by reducing inspection time as well as documentation efforts, avoiding 
bridge closures and the need for expensive equipment such as NDT devices. The developed tool is hands free 
and very intuition driven, so is easy to train bridge inspectors to use. It enables inspectors to identify and quantify 
the crack on the actual structural surface they are inspecting. 
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CONCEPT AND INNOVATION 
As an entirely new concept, we propose to integrate computer-vision-based motion tracking and augmented 
reality (AR) techniques to empower bridge inspectors to perform robust fatigue crack detection, 
characterization, tracking, and documentation in the field. First, our computer vision algorithm differs from 
prior ones in that it does not rely on edge features of images – a major advance in terms of accuracy and usability 
for fatigue crack detection. Instead, it is based on recording a short video of the structure under fatigue loading, 
tracking the surface motion of the structure through the proposed computer vision algorithm, and analyzing the 
surface motion pattern to reveal the ‘breathing’ of fatigue cracks. In addition, crack width can be quantified with 
sub-millimeter accuracy using the tracked surface motion. Second, to overcome the limitation of the technique 
in the field for the inspectors, this research will integrate computer vision with Augmented Reality (AR), so the 
inspector can see the crack information such as the crack geometry, realized via holograms overlaid on top of 
the bridge surface. Microsoft Holographic lenses, popularly known as HoloLens, have the capacity to track eye 
movements, listen to voice commands, and follow hand gestures, and are currently used in areas such as 
medicine. The wearable AR device will greatly increase bridge inspectors’ ability to perform accurate and 
reliable on-site inspection in a human-centered manner. Moreover, inspectors will be able to interactively 
manage inspection results and compare with historic data for efficient decision-making. Figure 1 illustrates the 
proposed framework, which consists of the following steps: 
 

 
Figure 1 Fatigue crack inspection using computer vision and AR 

 
Step 1: A short video stream of the target structural surface under operational loading is recorded using 

the world-facing camera in the HoloLens or a hand-held camera depending on the accessibility of the crack 
location. The video is typically several seconds long, capturing multiple fatigue cycles. The video is then 
uploaded to the cloud server for processing through the 4G LTE cellular network, which would take a few 
seconds. 

Step 2: The camera, either hand-held or integrated in the HoloLens, will inevitably introduce extraneous 
motion into the video, which may contaminate the surface motion data to be extracted later. Therefore, camera 
motion compensation will be applied to stabilize the video. 

Step 3: With the stabilized video, a dense set of feature points, which correspond to the pixels with high 
intensity gradient, are detected in each video frame. These feature points serve as the natural targets on the 
structural surface to accurately track the surface motion.  

Step 4: Subsequently, the pattern of the surface motion is analyzed. For regions with no cracks, the feature 
points will move in a similar way. However, for regions with fatigue cracks, the crack breathing under fatigue 
loading will cause differential movement patterns among the feature points around the crack.  
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Step 5: By highlighting the feature points exhibiting significant differential movement patterns, the fatigue 
cracks can be localized. Moreover, using the accurately tracked surface movement, the crack opening width, 
crack length, and positions can be accurately recorded and documented. 

Step 6: Having the feature points that highlight the crack and the calculated dimensions, the hologram for 
the crack can be programmed in the computer server, which can be (1) anchored and (2) displayed on top of the 
crack so the inspectors can see the quantified crack features in the field through the HoloLens. Bridge inspectors 
can also interact with the hologram to perform tasks such as documentation and tracking for decision-making. 

Since this method detects fatigue cracks by capturing crack breathing under traffic loading, false positive 
results due to other crack-like surface features can be avoided. No special lighting and surface preparation are 
necessary to perform the motion tracking.  The use of AR for the field inspector enables for the first time the 
ability of interactively quantifying and observing the crack opening in the field. This project also aims at 
achieving near real-time video processing through algorithm optimization so inspectors can receive almost 
instantaneous results during the inspection. 
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INVESTIGATION 
The investigation is conducted in three tasks. Task 1 is focused on creating and validating the core computer 
vision algorithms for video-based fatigue crack detection. Task 2 develops the augmented reality (AR) interface 
for interactive crack inspection. Task 3 integrates the computer vision algorithm and AR interface to achieve 
near real-time human-centered crack inspection and performs laboratory and field testing. The following 
sections present the detailed investigations and findings from the three tasks.   

DEVELOPMENT OF COMPUTER VISION ALGORITHMS FOR FATIGUE CRACK DETECTION 

This section presents the creation and validation of the core computer vision algorithms for video-based fatigue 
crack detection. The main challenge addressed in this task is reliable fatigue crack detection using a short video 
recorded by a moving camera, as the AR headset would inevitably introduce camera movement during 
inspection. Two solutions are proposed and investigated in this section. The first method is based on post-
processing the unstable video to remove the camera motion through global motion compensation (GMC) 
algorithms, in which both 2D and 3D video scenes are considered. While the GMC-based method produced 
satisfactory crack detection results, its high computation cost makes it challenging to achieve near real-time 
inspection. Therefore, a distance-based crack detection method is proposed which achieved high accuracy 
without the need for GM. The second approach is finally chosen to be integrated with the AR interface for the 
laboratory and field validations.  

Literature Review 

Recent reports on infrastructure surveys (ASCE 2021, ARTBA 2020) reveal that 42% of all bridges in the United 
States are at least 50 years old, and 46,154 out of the 617,000 of the bridges of the bridges are in poor condition 
and structurally deficient. Fatigue cracks in steel bridges develop under repetitive loading and are very small in 
their early stages. However, depending on connection details and secondary load effects, fatigue cracks can 
grow rapidly and lower the structural integrity, leading to catastrophic failure (Haghani et al., 2012). Thus, 
timely detection and monitoring of fatigue cracks becomes important to prevent excessive damage to steel 
bridges and other metallic civil infrastructure. The current practice of fatigue crack inspection mainly relies on 
human vision, but this approach is labor intensive, error-prone, and time-consuming. A study conducted to 
evaluate effectiveness of visual inspection revealed that early-stage fatigue cracks have a low probability of 
detection (Campbell et al., 2020). Moreover, in a bridge inspection study conducted in Virginia and 
Pennsylvania by the Federal Highway Administration (FHWA), only two of 49 bridge inspectors correctly 
identified the fatigue crack (Holusha and Chang, 2007). Various structural health monitoring (SHM) techniques 
have been developed for damage detection and monitoring structural health conditions (Jang et al., 2013; Sirca 
and Adeli, 2012; Amezquita-Sanchez and Adeli, 2016; Asadollahi and Li, 2017). Non-destructive testing (NDT) 
techniques such as acoustic emission (Roberts and Talebzadeh, 2003) and piezoelectric sensors (Inh and Chang, 
2004) were used to monitor fatigue cracks. Fatigue cracks have also been detected using sensors by monitoring 
strain changes (Glišić et al., 2016; Kharroub et al., 2015; Kong et al., 2016, Taher et al., 2022). However, these 
techniques generally require complex system setups including a data acquisition system and sensor installation, 
which often once installed are not easily moveable. Moreover, such sensors and instrumentation can deteriorate 
and malfunction due to harsh outdoor environments.  

Recent advancements in computer vision have automated many human visual tasks. Computer vision-
based algorithms are increasingly being used in SHM as they offer non-contact, low-cost solutions. Some early 
studies using computer vision for crack detection include extracting edge-like features using filters (Abdel-
Qader et al., 2003), image contrast enhancement and filter application for crack segmentation (Iyer and Sinha, 
2006), percolation model to extract texture for crack detection (Yamaguchi et al., 2008), multisequential image 
filtering for crack detection (Nishikawa et al., 2012), and morphological features with support vector machines 
to identify crack thickness (Jahanshahi and Masri, 2013). However, these methods use traditional image 
processing to identify intensity changes and edge features of cracks, making it challenging to differentiate real 
cracks from crack-like features such as corrosion marks, scratches, surface textures, and structural boundaries. 
For example, Yeum and Dyke (2015) proposed a technique for automated crack detection in steel bridges using 
several computer vision techniques and reported that machine-generated scratches were also detected as cracks.  
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Recently, advancements in artificial intelligence (AI) have triggered significant interest in crack detection 
using deep learning and computer vision. Cha and Choi (2017) proposed to use convolutional neural networks 
(CNN) to accurately detect cracks in images of concrete components under various conditions including bright 
lighting, shadow, blur, and close-up. Dung et al. (2019) trained a CNN classifier to detect fatigue cracks in steel 
bridge gusset plates. The dataset images were divided into smaller images for training that do not include crack-
like features, making the trained network susceptible to inaccurate predictions in presence of crack-like features. 
Deep learning-based crack detection methods are strongly dependent on the data used for training, and may also 
face challenges in distinguishing crack-like features from true cracks. Dong et al. (2021) trained an encode-
decoder network based on the modified U-net structure to segment fatigue crack pixels in the image. The trained 
network was detecting marker curves, edges of weld lines, and handwriting as small fatigue crack segments and 
concluded that the model might give wrong predictions when the test image has a large variation in surface 
texture, crack width, and lighting condition from the training dataset.   

While the studies summarized above are primarily focused on processing individual static images which 
provide only spatial information, utilizing a video stream which contains both spatial and temporal information 
of the subject presents new opportunities. For example, a video-based approach for dynamic displacement 
monitoring of civil infrastructure has been extensively studied in SHM through target-based (Wahheh et 
al.,2003); Park et al, 2010; Feng et al. (2015) and targetless approaches (Khuc and Catbas, 2017, Caetano et al. 
2011, Feng and Feng 2017, and Yoon et al., 2016). However, these are focused on tracking global structural 
responses rather than detecting localized damage such as cracks.  

Kong and Li (2018) proposed a novel video-based approach for fatigue crack detection through structural 
surface motion tracking. A short video stream is recorded using a consumer-grade camera to capture a region 
of interest responding under a few fatigue load cycles. Then, salient features are extracted to track the surface 
motion and a fatigue crack is detected by identifying differential motion patterns induced by the crack opening 
and closing under fatigue load that exceed a predefined threshold. This method does not rely on edge features 
of cracks and performs well in the presence of dust, rust, corrosion, other crack-like features, and even can detect 
cracks that are invisible to human eyes. It has been shown to be robust under various lighting conditions and 
camera positions. However, the original design of the approach works only for videos taken by a fixed camera, 
and selecting the appropriate threshold values for different scenarios could be challenging. Furthermore, it is 
not always practically possible to set up a stationary support such as a tripod for the camera to videotape the 
fatigue prone regions of a structure. In such cases, video must be taken from a moving camera such as one 
carried by hand, boat, unmanned aerial vehicle (UAV), or wearable devices. As a result, as will be illustrated in 
this paper, the tracked surface motion will be contaminated by camera movement, leading to failed crack 
detection results. 

Various methods have been developed in the field of computer vision to remove unwanted global motion 
induced by camera movement. The process of removing camera-induced motion is referred to as global motion 
compensation (GMC), which is similar to video stabilization. In general, GMC is focused on removing the 
global motion of the camera, while video stabilization aims at removing high frequency ‘jitters’ for a smoothed 
video. A video scene can be broadly classified into 2D and 3D scenes. A scene is considered 2D if it is planar, 
and/or is sufficiently distant from the camera, or the variations of the distance from the scene to the camera are 
small relative to the overall distance to the camera (Irani and Anandan, 1998). Lee et al. (2019) used digital 
image correlation technique with camera modeling to estimate homography between 2D scene. Darrell and 
Pentland (1991) decomposed a scene into multiple layers for motion compensation using the 2D GMC 
technique. Burt et al. (1991) provided insights into the role of pyramid-based approach in the stabilization 
algorithm. Bergen et al. (1992) developed hierarchical model-based motion estimation approach that has been 
proven to be very robust, even in presence of moving objects. Therefore, the latter method is adopted in this 
study to perform GMC for 2D videos and is discussed in more detail in later sections.  

For GMC of 3D videos, early studies (Lawn and Cipolla, 1994; Torr and Murray, 1994; Torr et al.,1995) 
attempted to interpret global motion in terms of 3D camera motion components, but with low success for videos 
with high parallax effects. In the past decade, numerous methods have been developed for 3D video stabilization 
to remove camera jitter (e.g., Liu et al., 2011; Goldstein and Fattal, 2012; Grundmann et al., 2012). Some of the 
recent deep learning-based video stabilization methods include those reported by Yu and Ramamoorthi (2020), 
Shi et al. (2022), and Lee et al. (2021). These deep learning models need to be retrained on specific video 
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datasets which is computationally expensive, and creating and labeling the dataset is time consuming. 
Safdarnejad et al. (2015) proposed an approach for 3D GMC in the presence of predominant foreground. 
However, this method only estimates a single transformation matrix which is incapable of describing differential 
motion due to parallax effects. Liu et al. (2013) proposed the bundled camera paths method for removing jitters 
from 3D videos. By dividing a 3D scene into a grid of smaller scenes and estimating individual camera paths 
for each cell, this method is able to handle parallax effects.  For GMC of 3D videos for fatigue crack detection 
in bridges, our approach adopts the bundled camera paths method as the basic framework and made 
improvements for removing the global camera motion. 

In this report, we first extended the approach developed by Kong and Li (2018) to detect fatigue cracks 
in videos recorded with a moving camera through GMC. In particular, videos containing 2D and 3D scenes are 
both considered. For 2D videos, the hierarchical model-based motion estimation approach by Bergen et al. 
(1992) is adopted to perform 2D GMC. For 3D videos, a GMC strategy is developed by extending the bundled 
camera paths method by Liu et al. (2013) with high-pass filtering to handle parallax effects. In addition, an 
adaptable threshold scanning strategy is proposed to address the challenge of threshold selection for identifying 
appropriate differential surface motion for crack detection. The proposed methodology is validated through 
laboratory testing, demonstrating its ability to reliably detect realistic fatigue cracks through a moving camera 
for both 2D and 3D scenarios.  

One limitation of the above displacement-based crack detection approach which requires GMC is the high 
computation cost, making it difficult to achieve near real-time fatigue crack detection. To enable the proposed 
AR-based fatigue crack inspection, a novel distance-based approach was developed to address the computational 
challenges of the displacement-based method. Instead of relying on the absolute displacements of feature points, 
the distance-based approach computes distance change between feature points to determine differential surface 
motion due to fatigue crack opening and closing, thus avoiding the need for GMC. The proposed methodology 
is validated through laboratory testing, demonstrating its ability to reliably detect realistic fatigue cracks through 
a moving camera for both 2D and 3D scenarios in near real-time. In the following sections, both methods are 
investigated and presented.  

Displacement-based Fatigue Crack Detection Algorithm  

A new computer vision-based algorithm was developed to detect fatigue cracks in videos recorded from a non-
stationary camera. Figure 2 illustrates the major steps involved in the developed fatigue crack detection method. 
First, a short video of a fatigue crack prone region in the structure is recorded under several fatigue load cycles. 
The video can be recorded with various types of nonstationary devices such as a handheld camera, mixed reality 
head-mounted device, and unmanned aerial vehicle (UAV). Camera motion is introduced in the recorded video 
because camera was not fixed during videotaping. Consequentially, the video frames do not share the same 
coordinate system. To capture the true structural surface motion for fatigue crack detection, camera motion 
needs to be compensated. The process of removing camera-induced motion is referred to as global motion 
compensation (GMC).  

The second step in the proposed approach is to minimize the camera induced motion in the recorded video 
by applying GMC. Generally, for typical steel girder bridges, in-plane fatigue cracks occur in planar surfaces 
such as the girder’s web or flange, and out-of-plane fatigue cracks develop at web-gap regions, such as a 
crossframe to girder connection. These situations result in videos that are considered either 2D or 3D, and 
different algorithms are used to perform GMC.  

The next step after camera motion compensation is to detect salient features within the region of interest 
(ROI) in the first video frame. Movement of each feature point is then tracked through the video stream (Figure 
2c). The crack detection algorithm analyzes the displacement pattern of the features to detect and localize a 
fatigue crack. The features’ movement pattern is evaluated against nearby features within a local circular region 
(LCR). For an LCR that does not contain a fatigue crack, the feature points share a similar movement pattern as 
they reflect the rigid-body movement of the uncracked surface; however, when a fatigue crack is present, feature 
points within the LCR show two different displacement patterns due to crack opening/closing under the fatigue 
load. By scanning all feature points within the ROI using the LCR and detecting differential movement patterns 
that exceed a threshold value, feature points from the LCRs that contain a fatigue crack are isolated and 
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highlighted. In the end, the highlighted feature points collectively trace the location of the fatigue crack. Details 
of each major component of the proposed methodology are described in the following subsections.   

 

 

Figure 2 Overview of the fatigue crack detection method based on a moving camera 

Global Motion Compensation (GMC) 

GMC removes unwanted camera motion from the video through geometric transformation between two video 
frames such that all frames share the same coordinate system. Figure 3 demonstrates how GMC realigns video 
frames to share a single coordinate system. Figure 3a shows the first frame of a video with its local coordinate 
system which is aligned with the global coordinate system. Due to camera motion, for other frames, such as the 
second frame, their local coordinates are not aligned with the global coordinates, as illustrated in Figure 2b using 
a pure rotation as an example. Note that other deviations such as translation, shear, and scaling can also be 
compensated. Consequently, the coordinate system of the second frame is oriented differently than the first 
frame. After performing GMC, the coordinate system of the second frame is oriented identical to the first frame 
as demonstrated in Figure 3c.   

As explained in the introduction, GMC methods can be broadly categorized into two groups: (i) 2D 
techniques, and (ii) 3D techniques.  A scene is called a 2D scene if it is planar or contains a flat 2D surface, 
and/or is sufficient distant from the camera, or the deviations from a planar surface are small relative to the 
overall distance of the scene from the camera (Irani and Anandan, 1998). In the context of fatigue crack detection 
in steel bridges, a typical scenario of 2D scene is a fatigue crack that propagates in the flange or web of a steel 
girder. For 2D scenes, global motion can be modeled by a single global 2D transformation matrix between the 
two frames as follows: 

 �
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where (𝑥𝑥, 𝑦𝑦, 1) and (𝑥𝑥′,𝑦𝑦′, 1) are the coordinates before and after the 2D transformation, respectively. 𝑎𝑎1, 𝑎𝑎2, 
𝑎𝑎3 , 𝑎𝑎4  are pure affine components, 𝑏𝑏1and 𝑏𝑏2  are the translation components, 𝑣𝑣1and 𝑣𝑣2  are pure projective 
components of the camera motion, and α is the scaling factor that holds the third component of the coordinates 
1. Affine transformations are used to describe scaling, skewing and rotation between two images. Projective 
transformations do not preserve parallelism, length, and angle, while affine transformations preserve 
parallelism. When the scene contains multiple planes and is not viewed from a sufficient distance, significant 
depth variations occur. In this case, a single geometric transformation is no longer sufficient to remove the 
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camera-induced motion. Such a scene is called a 3D scene or multiplanar scene. One typical example of a 3D 
scene, shown in Figure 4a, is the web-gap region of a bridge girder with a fatigue crack developed in the weld 
between the web and connection plate. The three different planes are highlighted in Figure 4b including the 
girder web, flange, and the connection plate. All different members are at different distances from the camera 
lens and are also oriented in different directions. When the camera is translating while recording a 3D scene, 
regions within the scene closer to the camera would appear to be moving faster than those further away, and 
these multiple planes have substantially different 2D motions, a phenomenon called the parallax effect, or 3D 
parallax motion (Longuet-Higgins and Prazdny, 1980; Rieger and Lawton, 1985). Note that parallax motions 
are only induced by camera translation and 3D scene variations, and camera rotation or zoom do not cause 
parallax (Irani and Anandan, 1998). Due to the difference between 2D and 3D scenes, different GMC strategies 
are necessary, which will be discussed as follows. 

 

 

Figure 3 Illustration of geometric transformation for GMC   

 
Figure 4 Web-gap region of a bridge girder (a) with three different planes highlighted (b) 

GMC for 2D Videos 

In-plane fatigue cracks usually develop in the web or flange of a bridge girder. The video of bridge girder web 
with fatigue cracks recorded with a narrow field of view can be considered as a 2D video as the web is a planar 
flat surface. For 2D scene videos, we propose to use the hierarchical estimation framework proposed by Bergen 
et al. (1992) that provides accuracy and efficiency for global motion compensation. The basic components of 
this framework include: 1) pyramid construction, 2) motion estimation, 3) image wrapping, and 4) coarse-to-
fine refinement.   

In this method, GMC is performed by keeping the first video frame as the reference frame and other 
frames as target frames. The first frame is paired with other frames in the video individually. For each pair, a 
multi-scale representation of images, termed the pyramid, is created by generating images with different levels 
of resolution. If the displacement of an object between the two images is larger than 1-2 pixels, computing such 
displacement can be expensive for a matching process. However, computation time can be reduced significantly 
if the large displacements can be computed using low resolution. Subsequently, the accuracy of the displacement 
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estimation is improved by incrementally estimating small displacements using higher resolution images. Motion 
estimation between two images involves minimizing the sum of squared distance (SSD) using Gauss-Newton 
minimization. In our case, motion is defined as affine motion which includes scaling, translation, rotation, and 
shear. So, it is usually possible to approximate the motion of a 2D surface as an affine transformation. Equation 
(2) is used to estimate the motion parameters between the reference image and target image. 

 
 ��𝑿𝑿𝑇𝑇(𝐼𝐼x)(𝐼𝐼x𝑇𝑇)𝑿𝑿� 𝛿𝛿𝑎𝑎 =  − ��𝑿𝑿𝑇𝑇 (𝐼𝐼x)(𝐼𝐼t)� (2) 

 
In the above motion estimation equation, 𝛿𝛿𝑎𝑎  is an unknown vector of affine parameters 

[𝑎𝑎1 𝑎𝑎2 𝑏𝑏1 𝑎𝑎3 𝑎𝑎4 𝑏𝑏2]𝑇𝑇, 𝐼𝐼t is the temporal derivative of image intensities, 𝑿𝑿 is a matrix of pixel coordinates, and 𝐼𝐼x 
is the image gradient vector [𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦]𝑇𝑇 , where, 𝐼𝐼x  and 𝐼𝐼y  are image spatial derivatives in x and y direction, 
respectively. This linear equation can be solved to compute the affine motion parameters between two images.  

The third component of this framework is image warping. The estimated motion parameters are applied 
to the target image to remove the camera motion. It is carried out using bicubic interpolation since it produces 
smoother images and results in fewer interpolation artifacts. The final step is coarse-to-fine refinement, which 
is basically propagation of current estimated motion estimation from one level to the next level of the pyramid. 
Motion estimation is performed in the image with the lowest resolution which is at the top level of the pyramid. 
Then, the global motion parameters are transmitted to the next level of pyramid, where they are used as the 
initial estimate. The entire propagation process is carried out to the bottom level of the pyramid to reach the 
original resolution of the images. More details of the 2D hierarchical GMC method can be found in Bergen et 
al. (1992). 

 

 
Figure 5 Bundled camera paths (a) video frames divided into grid cells (b) camera paths of grid cells (x-

axis translation over time) 

GMC for 3D Videos 

As discussed previously, when multiplane or 3D scenes are present, a single geometric transformation matrix is 
no longer able to remove the camera-induced motion. To this end, we have adopted the bundled camera paths 
method by Liu et al. (2013) and extended it to perform GMC from 3D videos. The key to the bundled camera 
paths method is to divide each video frame by a mesh grid into multiple cells and estimate the camera motion 
of each grid cell individually. Figure 5 illustrates this concept using the 3D scene shown in Figure 4 divided into 
a 3 × 3 mesh grid as an example. The camera motions associated with the cells are different due to their different 
distances to the camera, hence are estimated individually. Therefore, this approach can estimate the 3D parallax 
motion present in the video. However, the original method was aimed at removing high-frequency jitter to 
generate a smoothed video with low camera shaking, rather than removing the global motion. In this study, we 
have extended the bundled camera paths method to further remove the global camera motion through high-pass 
filtering, producing global motion compensated video. Figure 6 shows the flowchart of the proposed GMC 
strategy based on the bundled camera paths method with the extension highlighted in the dashed box.   
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The first step of the bundled camera paths method is to divide the video into multiple grid cells. The 
number of grid cells depends on the complexity of the geometry present in the scene. For example, a larger 
number of grid cells should be selected if the video is recorded very close to the scene to accommodate severe 
differential motion due to the parallax effect. Once the video frames are meshed into grid cells, feature points 
are identified and matched in each grid cell to estimate the spatially varying 2D homographies. This type of 
motion model is between the global homography and per-pixel optical flow field. The outliers or incorrectly 
matched features are eliminated by using the Random Sample Consensus (RANSAC) algorithm applied at 
coarse scale (the whole image) and fine scale (4 × 4 sub-images). Specifically, features with fitting errors 
exceeding 6% of the image width at the coarse scale and 2% of the image width at the fine scale are discarded. 

 

 
Figure 6 Flowchart of the proposed extended bundled camera paths method for GMC of 3D videos 

It may be possible that features are not detected in some grid cells due to the lack of texture/gradient in 
the region. To estimate homography in those grid cells, an ‘as-similar-as-possible’ constraint (Igarashi et al. 
2005, Schaefer et al. 2006) is applied, which estimates the position of cell vertices without features by 
minimizing the distortion among cells. The series of estimated homographies over the video length of a grid cell 
is called camera path. Once the camera paths of all grid cells are estimated, the bundled camera paths are 
smoothed and optimized together to remove the camera jitter by minimizing the following objective function:    
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 (3) 

 
where Pi is the camera path function of the ith grid cell to be optimized, and   includes the eight neighbors of the 
ith grid cell. The first term in Eq. (3) is the objective function for each single camera path to stabilize the path 
while minimizing geometric distortions, and the second term is a regularization term to ensure smoothness 
between adjacent paths. Detailed descriptions of the objective function can be found in Liu et al. (2013). The 
method adopts a Jacobi-based iteration to solve the minimization problem. The optimized camera paths are 
typically obtained after 20 iterations.  

Since the bundled camera path is designed to remove camera jitter, the optimized camera paths still 
contain the global camera motion. Here we extend the bundled camera paths method to further reduce the global 
motion through high-pass filtering. As mentioned previously, parallax motion present in 3D videos can 
introduce differential surface motion, leading to unreliable crack detection. Since parallax effects are only 
induced by the translation parameters of the camera motion, and rotation or zooming do not cause parallax in 
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videos (Irani and Anandan, 1998), to compensate for the global motion and reduce parallax effects for 3D videos, 
we apply high-pass filtering to the translation components of the camera motion. However, individual high-pass 
filtering of each camera path would result in incompatibility and distortion between the grid cells. Therefore, a 
strategy of high-pass filtering of the mean camera path is adopted. Specifically, the means of the translation 
components b1 and b2 are first computed in the x and y directions, respectively, which are then high-pass filtered 
to remove the low-frequency components of the mean camera motions. Subsequently, for each direction, the 
difference between the mean camera paths before and after the high-pass filtering is then applied to adjust the 
individual camera path of each grid cell. This strategy ensures compatibility between adjacent grid cells and 
avoids distortion in the global motion compensated video.  

Feature Point Detection and Surface Motion Tracking 

Feature point detection and tracking are critical to the success of fatigue crack detection, since accurate 
displacement time histories of the structural surface are key to identifying differential motion patterns induced 
by crack opening and closing. Feature points are specific locations in images with high intensity gradient such 
as peaks, corners, edges, objects etc. Feature point-based techniques have wide applications in computer vision 
such as image-stitching (Zoghlami et al., 1997; Brown and Lowe, 2007), automated 3D modelling (Beardsley 
et al., 1996; Schaf-falitzky and Zisserman, 2002; Brown and Lowe, 2003; Snavely et al., 2006), vehicle tracking 
(Coifman et al., 1998), and object recognition (Ta et al., 2009). In the field of SHM, feature tracking has been 
used for global displacement estimation of structures (Yoon et al., 2016; Khuc and Catbas, 2017). Some well-
known algorithms for feature detection include Harris-Stephens (Harris and Stephens, 1998), scale invariant 
feature transform (SIFT) (Lowe, 2004), sped-up robust feature (SURF) (Bay et al., 2006), Shi-Tomasi (Shi, 
1994), and features from accelerated segment test (FAST) (Rosten and Drummond, 2005).  While any of the 
above algorithms can be used for feature detection, we have adopted the Shi-Tomasi algorithm due to its robust 
performance.  

In feature detection, an ROI is first selected in the first video frame. The ROI can either be the entire 
image or a specific region in the image. Feature points in Shi-Tomasi algorithm are selected based on the 
eigenvalues of following matrix: 
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where 𝑤𝑤(𝑥𝑥,𝑦𝑦) is a Gaussian window function, and 𝐼𝐼𝑥𝑥 and 𝐼𝐼𝑦𝑦 are spatial derivatives of pixel intensity in x and y 
directions, respectively. The two eigenvalues of M are 𝜆𝜆1 and 𝜆𝜆2.  Feature points are determined if the minimum 
of 𝜆𝜆1 and 𝜆𝜆2 is greater than a cutoff threshold. A large threshold leads to a more stringent requirement hence 
fewer feature points. Therefore, depending on the application, the density of detected feature points can be tuned 
by changing the cutoff threshold.  

With the feature points determined in the first video frame, their displacements can be tracked throughout 
the video stream. To this end, the Kanade-Lucas-Tomasi (KLT) tracker (Tomasi and Takeo, 1991; Lucas and 
Takeo, 1981) is adopted. The KLT tracker computes the movement of feature points between the two adjacent 
frames and the coordinates of each feature point are stored. KLT also uses image pyramids to robustly estimate 
larger displacements. Five pyramid levels are used in this study. Moreover, forward backward tracking (Kalal 
et al., 2010) was used to track feature points from a previous frame to the current frame and then from the same 
feature back to the previous frame. If the error between forward and back tracking is high, then corresponding 
points are considered invalid. Other conditions for invalid points include points that fall outside of the image or 
the computed spatial gradient matrix in its neighborhood is singular. In our study, only robustly tracked feature 
points are considered for crack detection.  

Note that the KLT tracker used here is based on sparse optical flow since it does not compute motion of 
every pixel of the image. Obtaining dense optical flow is computationally expensive, and it increases the 
computation cost for the crack detection algorithm, which will be introduced in the next subsection. For accurate 
feature tracking, light conditions should remain relatively constant between consecutive frames. Since the crack 
detection algorithm relies on a relatively short video with a length of a few seconds, this condition can easily be 
satisfied in practice. 
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Crack Detection Algorithm 

The fundamental principle of the proposed fatigue crack detection algorithm is to identify the discontinuities in 
the structural surface motion induced by fatigue crack opening/closing under live load. Fatigue crack induced 
surface movements are usually very small, which can easily be disguised by larger global rigid-body movement 
due to camera motion. With global motion compensated videos, it becomes possible to use the tracked 
displacement history of feature points to analyze small movements and identify the fatigue crack. To this end, 
the crack detection algorithm by Kong and Li (2018) is adopted and extended in this study. First, we establish 
the origin of the coordinate system at the top left corner of the first frame of the global motion compensated 
video. The location of each feature point throughout the video stream is stored during the feature tracking 
process. The relative movement of feature point I between the first frame and frame t is given by:  

 
 𝑥𝑥𝑟𝑟𝑖𝑖 (𝑡𝑡) =  𝑥𝑥𝑖𝑖(𝑡𝑡) −  𝑥𝑥𝑖𝑖(1)  and 𝑦𝑦𝑟𝑟𝑖𝑖(𝑡𝑡) =  𝑦𝑦𝑖𝑖(𝑡𝑡) −  𝑦𝑦𝑖𝑖(1) (5) 

where subscript r denotes relative displacement,  𝑥𝑥𝑟𝑟𝑖𝑖(𝑡𝑡), and 𝑦𝑦𝑟𝑟𝑖𝑖(𝑡𝑡) are the relative displacements of the ith feature 
point in x and y directions, respectively. Thereafter, the total displacement can be obtained by combining 𝑥𝑥𝑟𝑟𝑖𝑖 (𝑡𝑡) 
and 𝑦𝑦𝑟𝑟𝑖𝑖(𝑡𝑡) as: 

 
 𝑑𝑑𝑖𝑖(𝑡𝑡) =  �𝑥𝑥𝑟𝑟𝑖𝑖(𝑡𝑡)2 +  𝑦𝑦𝑟𝑟𝑖𝑖(𝑡𝑡)2 (6) 

The displacement with respect to the first frame is computed for all detected feature points. A 3rd degree 
polynomial trend is computed and removed from the displacement histories to eliminate any inaccuracy 
introduced during the tracking process.  To provide a single-value metric for analyzing the variation of tracked 
displacements, the standard deviation 𝑆𝑆𝑖𝑖of 𝑑𝑑𝑖𝑖(𝑡𝑡) is adopted to quantify the magnitude of the feature point 
movements under fatigue loading.  

To facilitate efficient analysis of the motion of the entire structural surface within the ROI, an LCR is 
deployed to group feature points for localized analysis. First, a random feature point is selected as the center for 
the LCR, and a search is performed to gather features within the LCR. Subsequently, the displacement pattern 
within the LCR is computed using the coefficient of variation (CV) of the standard deviations (𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝑖𝑖) of 
all feature displacements within the LCR. No differential movement pattern is detected if the CV is lower than 
a certain threshold, hence no fatigue crack is detected. However, if the CV exceeds the threshold, a fatigue crack 
is considered to exist within the LCR, hence the center feature point of the LCR is retained and highlighted as 
a part of the final crack detection result.  This process is repeated by choosing another feature point as the center 
of the LCR until all feature points have been analyzed. The final crack detection result consists of all the 
highlighted feature points for which differential movement pattern was discovered within the associated LCR. 
Since these highlighted feature points trace along the fatigue crack, they signal the location and extent of the 
detected crack in an intuitive way. 

The crack detection algorithm by Kong and Li (2018) uses a single predefined threshold value for CV. As 
the criteria for determining differential movement pattern, the threshold of CV is a critical parameter. The 
threshold value depends on several factors such as fatigue load level, distance of the camera from the structural 
surface, and the amount of crack opening/closing. However, the inspector may not have all the information 
during the field inspection for selecting the most appropriate threshold value. To alleviate this challenge, we 
have extended crack detection algorithm in this paper by scanning across a range of threshold values and provide 
a series of crack detection results associated with those thresholds. Compared to Kong and Li (2018) which uses 
a single predefined threshold, our crack detection algorithm produces a series of crack detection results 
corresponding to a range of threshold values. Too-low threshold values will result in many feature points spread 
over a large portion of the structural surface. However, as the threshold increases, feature points that are not 
associated with a fatigue crack get filtered out, leaving a smaller group of features clustered in one or multiple 
groups surrounding the actual crack(s). If no fatigue crack is present, feature points will not be clustered but 
rather distributed sparsely over the ROI. In practical applications, the inspector can start with a large and coarse 
threshold range, then adjust the range and resolution by observing the crack detection result. The goal is to 
capture a series of smooth transitions of the clustering result of feature points, which will be further explained 
in Section 4. 
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Figure 7 Illustration of the proposed crack detection algorithm using a cracked steel plate under fatigue 

loading 

Figure 7 illustrates the crack detection algorithm using a steel plate with a fatigue crack as an example. A 
repetitive fatigue load F is applied to the top of the plate, and the bottom of the plate is fixed. A ROI is selected 
that leaves small margins on all four sides of the plate, and feature points are detected using the Shi-Tomasi 
algorithm. Two LCRs, one over the crack and another one away from the crack, both containing 5 feature points, 
are considered for demonstration purpose. LCR 12 is located away from the crack, hence feature points 11 to 
15 are subjected to rigid body movement, hence the displacements of all feature points δ11(t) to δ15(t) are similar 
under the fatigue load F. The standard deviations of feature point movements δ11(t) to δ15(t) should have similar 
magnitudes denoted as S1, resulting in a very small coefficient of variation CV12 for LCR 12, where the 
superscript 12 denotes the center feature point of the LCR. On the contrary, LCR 7 is over the crack, leading to 
two distinct displacement patterns: the three feature points above the crack share a similar displacement and the 
two feature points below the crack have a small displacement because of the fixed boundary condition. 
Therefore, the coefficient of variation is higher for LCR 7, denoted as CV7. With the CV for all LCRs computed, 
a range of threshold values (Γ1-Γn) is used to filter out the feature points as described previously, generating a 
series of feature point maps. As the threshold increases, the feature points start to concentrate around the actual 
fatigue crack, serving as the crack detection result, as shown in Figure 7.    

Experimental Setups 

The proposed methodology was experimentally validated using two laboratory setups for fatigue crack detection 
through both 2D and 3D videos. The two test setups are described in this section.  

In-plane Fatigue Crack Setup for 2D Video 

An experimental test based on a compact, C(T), specimen was performed to validate the proposed approach for 
GMC of 2D videos and the subsequent in-plane fatigue crack detection. The specimen was loaded in tension to 
develop an in-plane fatigue crack. Figure 8 shows the specimen and the test setup. The C(T) specimen is made 
of grade A36 steel with a thickness of 6.35 mm. Other dimensions of the specimen are shown in Figure 8a. A 
servo-hydraulic uniaxial load frame was used to apply cyclic fatigue loading to the specimen. The specimen 
was installed in the load frame with two clevises. The top clevis was fixed, and the fatigue load was applied 
through the bottom clevis. Kong et al. (2017) developed a realistic loading protocol following ASTM E1820-
15 (ASTM, 2015) to ensure realistic fatigue crack openings. A constant range of stress intensity factor ΔK = 22 
MPa√m and a stress ratio R = 0.6 were used. A fatigue crack was initiated and propagated under a loading 
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frequency of 10 Hz. During the loading, ΔK was kept constant by continuously lowering the magnitude of the 
load cycles as the crack propagated. An adhesive tape measure was affixed to the C(T) specimen to visually 
observe crack growth over time. For every 1.6 mm of crack growth, ΔF was decreased to maintain the constant 
ΔK of 22 MPa√m throughout the test. Fatigue crack propagation was stopped at 50.8 mm of crack length 
measured from the notch of the specimen.  

 
Figure 8 Test setup for 2D videos: (a) C(T) specimen; and (b) loading scheme 

After the fatigue crack was developed, a cyclic load ranging from Fmin = 2.67 kN to Fmax = 6.23 kN at 1 
Hz frequency was applied. An 8-second video was recorded using a hand-held Samsung Galaxy s9 Plus mobile 
phone. The side view of the experimental setup for in-plane fatigue crack detection using the C(T) specimen is 
illustrated in Figure 9. Note that the video captures not only the specimen, but also the top and bottom clevises, 
whose surfaces are not on the same plane as the specimen, leading to two different focal distances Z1 and Z2, 
and hence depth variation within the video scene. To ensure that the recorded video can be considered as a 2D 
scene, the camera was located roughly 135 cm away from the clevises, which is sufficiently far to make the 
depth variation negligible. However, in actual field inspections, the clevis conditions do not exist and video can 
be recorded from a closer distance to the structural surface. The video was recorded at a resolution of 3,840 
pixels × 2,160 pixels at 30 frames per second. Supplemental lighting was used while recording due to poor 
indoor lighting condition, to increase robustness of feature detection. 

 
Figure 9 Schematic of the test setup including the camera position 
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After the fatigue crack was developed, a cyclic load ranging from Fmin = 2.67 kN to Fmax = 6.23 kN at 1 
Hz frequency was applied. An 8-second video was recorded using a hand-held Samsung Galaxy s9 Plus mobile 
phone. The side view of the experimental setup for in-plane fatigue crack detection using the C(T) specimen is 
illustrated in Figure 9. Note that the video captures not only the specimen, but also the top and bottom clevises, 
whose surfaces are not on the same plane as the specimen, leading to two different focal distances Z1 and Z2, 
and hence depth variation within the video scene. To ensure that the recorded video can be considered as a 2D 
scene, the camera was located roughly 135 cm away from the clevises, which is sufficiently far to make the 
depth variation negligible. However, in actual field inspections, the clevis conditions do not exist and video can 
be recorded from a closer distance to the structural surface. The video was recorded at a resolution of 3,840 
pixels × 2,160 pixels at 30 frames per second. Supplemental lighting was used while recording due to poor 
indoor lighting condition, to increase robustness of feature detection. 

Out-of-plane Fatigue Crack Setup for 3D Video 

For steel girder bridges, out-of-plane distortion-induced fatigue cracks commonly occur in web-gap regions 
where the girder web, flange, and the crossframe connection plate meet. As shown in Figure 10, a half-scale 
girder-to-crossframe subassemblage was used for validating the proposed methodology for detecting out-of-
plane fatigue cracks using 3D videos. The girder has a length of 2,845 mm and a depth of 917 mm, and the web 
thickness is 9.5 mm. The bottom flange of the steel girder was restrained by steel channels connected to the 
laboratory strong floor to approximate the condition of a real bridge restrained by the concrete deck. A 
crossframe was attached to a stiffener at the center of the girder web through a connection plate. The connection 
plate was only welded to the web of the girder to produce the web-gap region as shown in Figure 9. When load 
is applied at the far end of the crossframe, it simulates traffic load that causes differential vertical displacement 
between adjacent girders, resulting in out-of-plane fatigue cracking in the web-gap region. As illustrated in 
Figure 11, a complex fatigue crack with three distinct branches labeled as A, B, and C, respectively, was 
generated with a fatigue load with a range of 2.2 kN to 25.5 kN. In particular, branch A was first generated 
within the weld between the connection plate and web after 21,000 load cycles (Dellenbaugh et al., 2020). After 
that, at around 1,700,000 cycles, branch A crack continued to grow and bifurcated into two separate branches, 
B and C, into the web (Al-Salih et al., 2021). In this study, for video collection, a cyclic fatigue load of 0.89 kN 
to 17.8 kN was applied at 0.5 Hz to the far end of the crossframe by a hydraulic actuator. It was noticed that the 
crack movement under fatigue loading was dominated by branch A, as the propagation of the branched cracks 
reduced the driving force at the two crack fronts. A short, 5 second video was recorded using a head-mount 
Microsoft HoloLens 2 (HL2) as shown in Figure 11. The video resolution was 1,920 × 1,080 pixels with a 
framerate of 30 frames per second. Similar to the 2D case, supplemental LED lighting was used due to the poor 
indoor lighting in the laboratory.  
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Figure 10 Bridge girder test setup for 3D videos (unit: mm) 

 
Figure 11 Out-of-plane fatigue crack and video recording using the HL2 headset 

Results and Discussions 

In-plane Fatigue Crack Detection using 2D Video 

Result Based on Unstable Video 

To demonstrate the necessity of GMC for 2D videos, the raw unstable video recorded by the hand-held 
smartphone camera was first applied for fatigue crack detection. To reduce computation, the recorded 2D video 
for the C(T) specimen was first reduced to a resolution of 1,980 × 1,080 pixels. Figure 12a shows the initial 
frame of the video and the selected ROI. Generally, ROI can be selected by leaving a 10% to 15% margin from 
all four sides of the frame as boundary regions can fall outside of the camera field of view due to camera motion. 
Here, ROI is selected to remain inside of the C(T) specimen to avoid capturing the differential motion between 
the edge of plate and the background. A total of 3,000 feature points were detected using the Shi-Tomasi feature 
detection algorithm, shown in Figure 12b. The diameter of LCR mainly depends on the camera resolution and 
the distance of camera to the structural surface. It was found an LCR with a radius of 35 pixels is adequate for 
videos recorded from a 10 to 15 cm distance from the structural surface with a standard HD resolution of 1,920 
× 1,080 pixels. More details on the impact of LCR radius can be found in Kong and Li (2018). In this study, the 
radius of LCR for the C(T) specimen video was selected as 30 pixels. Figure 12 shows a series of crack detection 
results over the selected range of threshold values. The actual fatigue crack is highlighted by a solid black line 
for reference. The first result with a low threshold value of 0.001 is shown in Figure 13a. Because of very low 
threshold, almost all features detected in the initial frame passed the threshold. Next, results based on two larger 
threshold values, 0.005 and 0.009, are shown in Figure 13b and Figure 13c, respectively. These threshold values 
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are still below the noise level of the tracked feature point displacement, hence providing no obvious 
improvement. Starting from the threshold value of 0.013, as shown in Figure 13d, more features points away 
from the crack are removed. However, the detected point cloud spreads sparsely over a wide area. Further 
increasing the threshold to 0.017 and 0.021, as shown in Figure 13e and Figure 13f, the point cloud density is 
further reduced, and some of them surround the fatigue crack. However, due to the global camera motion present 
in the unstable video, the detection results also contain many feature points sparsely distributed over the entire 
ROI, which are considered as false positive results, making the interpretation challenging. Upon further 
increasing the threshold value, all feature points are filtered out. Hence, without removing the global motion 
due to the moving camera, the algorithm was not successful in detecting the in-plane fatigue crack.  

 

 
Figure 12 The initial frame of the 2D video with the selected ROI (a) and all feature points detected by 

the Shi-Tomasi algorithm (b). Note that the brightness of image in (b) is enhanced to highlight the 
feature points 

 
Figure 13 In-plane fatigue crack detection result of a C(T) specimen using the raw unstable 2D video 

Result Based on Global Motion Compensated Video 

In this study, to apply the 2D GMC algorithm, eight pyramid levels are adopted for the standard HD resolution 
of 1,980 × 1,080 pixels. At each pyramid level, 2 iterations are performed before propagating motion parameters 
to the next level. In particular, we first estimate affine parameters between the target image and the reference 
image at the lowest resolution based on Equation 2. Subsequently, the target image is warped using the estimated 
affine model. Then, the affine parameters are estimated again between the warped image and the reference 
image. The newly estimated motion parameters are then used to warp the target image at the next level of 
pyramid. The process was performed for all 247 pairs of video frames in the 8 second video with 248 image 
frames. In each pair, the first frame was selected as the reference frame. To demonstrate the effectiveness of the 
2D GMC algorithm, Figure 14 compares the mean of all frames in the unstable video with that of the global 
motion compensated video. Due to the presence of camera motion, the mean of all frames in the unstable video 
(Figure 14a) is very blurry. However, since the GMC algorithm aligns the coordinates of all frames, the mean 
of all frames in the global motion compensated video (Figure 14b) is much clearer. In other words, the tracked 
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feature point displacement will be less contaminated by the camera motion, reflecting the true differential motion 
pattern due to the fatigue cracking.  

 

 
Figure 14 Comparison between the mean of all frames in the 2D video before (a) and after (b) the GMC 

   
Figure 15 In-plane fatigue crack detection result of a C(T) specimen using the global motion 

compensated 2D video 

With the global motion compensated video, the crack detection algorithm was applied to detect the fatigue 
crack using the same parameters (ROI, LCR, and thresholds) as the raw unstable video case, and the results are 
listed in Figure 15. Similar to the unstable video case, the first and second threshold values are too small to filter 
out feature points in uncracked regions. However, unlike the unstable video, the third threshold value (Γ = 0.009) 
is now able to remove majority of the feature points far away from fatigue crack, as shown in Figure 15c. For Γ 
= 0.013, the improvement over the unstable video is much more pronounced, as the majority of detected feature 
points now form a single cluster surrounding the fatigue crack. However, some sparse features isolated in small 
groups are still present, hence it is not selected as the final result. By further increasing the threshold to 0.017, 
as shown in Figure 15e, the detected feature points form a single group around the crack and no significant 
isolated feature points are detected. Therefore, it is selected as the final crack detection result.    

 
Figure 16 Surface motion tracking of the 2D video: (a) feature points for cracked and uncracked 

regions; (b) differential displacement before GMC; (c) differential displacement after GMC 
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To further understand the impact of camera movement and GMC on the effectiveness of the crack 
detection algorithm, surface motions are extracted from both cracked and uncracked regions of the C(T) 
specimen for illustration. The two selected feature groups on the C(T) specimen are shown in Figure 16a, and 
differential displacements of two feature point pairs, one from the cracked and another from uncracked region, 
are shown in Figure 16b and Figure 16c for the raw unstable video and the motion compensated video, 
respectively. As shown in Figure 16b, for the unstable video, the displacements of feature points in both cracked 
and uncracked regions are dominated by the global camera movement, resulting in higher differential movement 
in the uncracked region compared to the cracked region. This would further lead to false positive crack detection 
using the unstable video.  Hence, the tracked surface movement from the unstable video is not able to correctly 
distinguish movement patterns between regions with and without a fatigue crack. On the contrary, after the 
GMC, the feature point displacements are dominated by the surface motion induced by fatigue crack opening 
and closing. As a result, as depicted in Figure 16c, the differential motion of the feature points over the cracked 
region exhibits a much larger amplitude than the that from the uncracked region. In addition, the GMC algorithm 
demonstrated significant improvement in the quality of tracking the fatigue crack induced surface motion, as 
Figure 16c clearly shows the eight fatigue load cycles.  

Quantification of the Detected Crack 

Once the fatigue crack is detected and localized, the length of the detected crack can be estimated and 
compared with the actual crack length. The reason to quantify the length of the detected crack is twofold. First, 
crack length is a critical part of standard inspection reports for steel bridges. Second, compared to crack width, 
which is dependent on the load level, crack length at any given stage is independent from the load level. As 
show in Figure 15f, the two feature points located at the left and right extreme positions are located from the 
detected feature point cluster presented in Figure 15e. The distance between these two feature points is 364 
pixels. This pixel distance is then converted to the physical unit based on the plate dimension from the notch to 
the end of the specimen, which is 108.3 mm and 1,194 pixels, resulting in a scaling factor of 0.091mm per pixel. 
Using the scaling factor, the detected crack length is determined as 33.5 mm. Since the actual crack length is 
measured as 50 mm, 67% of the fatigue crack is detected using the proposed methodology. As noted by Kong 
et al. (2018), the level of crack opening/closing decreases significantly near the crack tip, making it challenging 
to locate the crack tip using the proposed methodology.  

 

 
Figure 17 The initial frame of the 3D video with ROI (a): and all feature points detected by the Shi-
Tomasi algorithm (b). Note that the brightness of image in (b) is enhanced to highlight the feature 

points 

 

Crack Detection Results for Out-of-plane Fatigue Crack 

Result Based on Unstable Video 

Again, to demonstrate the necessity and effectiveness of the proposed 3D GMC algorithm presented in Section 
2.2.2, the raw unstable 3D video recorded using the head-mounted HL2 for the out-of-plane fatigue crack was 
first processed for crack detection. Figure 16a shows the initial frame of the video and the selected ROI. A total 
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of 3,000 feature points were selected using the Shi-Tomasi feature detection algorithm as shown in Figure 17b. 
The radius of LCR was selected as 30 pixels. The crack detection results for a range of threshold values are 
presented in Figure 18. In Figure 18a, most features are retained due to the very low threshold value of 0.01. 
Then, the threshold value was gradually increased by an increment of 0.005. Results in Figure 18b and Figure 
18c are similar to Figure 18a, with minimum feature points filtered out. As threshold value kept increasing, 
feature points were eliminated from the results. However, the feature points did not cluster around the actual 
fatigue crack. Thus, crack detection using the raw unstable 3D video is considered unsuccessful.  

   

 
Figure 18 Out-of-plane fatigue crack detection result of the bridge girder specimen using unstable 3D 

video 

Result Based on Global Motion Compensated Video 

The proposed 3D GMC approach based on the extended bundled camera paths was applied to the recorded 
unstable video. We divided the video frame into a 10×10 grid. 20 iterations were applied to minimize the 
objective function in Equation (3) to obtain the optimized and smoothed camera paths. In the second stage, a 
high-pass filter with a cutoff frequency of 0.11 Hz was used to remove the low-frequency global motion. 
Because the 3D GMC is computationally expensive, the video resolution was reduced from 1,980 × 1,080 pixels 
to 1,280 × 720 pixels. To illustrate the result of the proposed GMC algorithm for 3D videos, Figure 19 compares 
all 100 translation parameters associated with the grid cells of the 3D video before and after the GMC. In Figure 
18, three sets of camera paths in both x and y directions are illustrated, including the camera paths from the 
original raw video (Figures 18a and 18d), the optimized and smoothed camera paths (Figure 19b and Figure 
19e), and the final global motion compensated camera paths after high-pass filtering (Figure 19c and Figure 
19f). As shown in the figures, the translation movements in the x direction of the original camera paths reach 
up to 92 pixels, which then reduce to 77 pixels in the smoothed paths. Similarly, in the y direction, translation 
parameters b2 reach 51 pixels in the original camera paths, which then reduce to 45 pixels in the smoothed paths. 
Even though the bundled camera paths approach removed the high frequency components from the camera 
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paths, low frequency translation is still present. After filtering the mean camera path and subtracting the filtered 
component from each individual camera path, the new translation parameters reduced to less than 31 pixels 
(Figure 18c) in the x direction and 12 pixels (Figure 18f) in the y direction. The homographies obtained using 
the new translation parameters represent not only the smoothed camera paths but also global motion 
compensated transformation matrices. These transformation matrices are then used to warp the video frames to 
obtain the motion compensated 3D video.  Figure 19 compares the mean of all video frames before and after the 
GMC. Figure 19 (a) shows the blurry mean image due to the camera motion that leads to misaligned video 
frames. After applying the proposed 3D GMC approach, although still some residual camera motion remains, 
the mean of motion compensated video frames became much clearer. 

 

 
Figure 19 Bundled camera paths of the two translation parameters  

Subsequently, the motion compensated video was processed by the proposed crack detection approach. 
The ROI was set the same as in Figure 16a. The radius of LCR was selected to be 15 pixels because of the 
reduced resolution, and a total of 3,000 feature points were detected using the Shi-Tomasi feature detection 
algorithm. The crack detection results are shown in Figure 20. As the threshold values increase, feature points 
start to be filtered out from the crack detection result. Compared with Figures 20a and 20b, a significant 
reduction of feature points can be seen in Figure 20c. By continuing the increase of threshold, as shown in Figure 
20h, feature points start to cluster in three different groups. The final result shown in Figure 20j was selected 
when the feature points are grouped in a single cluster, showing the actual fatigue crack location marked by the 
solid line. The result demonstrates the effectiveness of the proposed fatigue crack detection methodology using 
videos that contain 3D scenes. As mentioned previously, branch A dominated the crack movement as the 
propagation of the branched cracks reduced the driving force at the two crack fronts. As a result, the fatigue 
crack branches into the girder web were not detected due to reduced stress demand in branched cracks.   

To further explore the impact of GMC on surface motion tracking of the 3D video, differential 
displacement patterns of feature points associated with two LCRs extracted from the 3D video of the bridge 
girder are compared in Figure 21 before and after GMC. The fatigue crack is highlighted by a solid black line, 
while the feature points over the crack are shown in blue crosses, and feature points away from the crack are 
displayed in red crosses. Figures 21b and 21c present the differential displacement patterns of feature points 
from the 3D video before and after GMC, respectively. As can be seen, before motion compensation, the 
differential motion of feature point pair in the uncracked region is much higher than the cracked region. This 
explains the failure in crack detection using the unstable 3D video. On the other hand, the differential 
displacement of feature points over the cracked region in the global motion compensated 3D video clearly shows 
a larger amplitude corresponding to surface motion due to crack opening and closing than that of the uncracked 
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region. The ability to uncover the differential motion pattern despite the global camera movement is the main 
contribution of the proposed methodology in achieving robust detection of fatigue cracks using a moving 
camera.  

 

 
Figure 20 Mean of all frames in the 3D video before (a) and after (b) GMC 

 

 
Figure 21 Out-of-plane fatigue crack detection result of the bridge girder specimen using the global 

motion compensated 3D video 
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Figure 22 Surface motion tracking of the 3D video: (a) feature points for cracked and uncracked 

regions; (b) differential displacement before GMC; (c) differential displacement after GMC 

Computation Time of the Proposed GMC Algorithms 

The computation time for GMC of the 2D video is around 274 seconds (4.5 minutes) on a machine with an intel 
i9 processor and 64 GB of RAM. The 2D video contains 248 frames with standard HD resolution of 1980 × 
1080 pixels making computation cost about 1.1 seconds per video frame. For GMC of the 3D video, the 
computation time is around 261 seconds (4.4 minutes) on the same machine. The 3D video has 149 frames of 
standard HD resolution, which was reduced to 1280 × 720 pixels for GMC. Hence, the computation cost is about 
1.75 seconds per video frame. The proposed vision-based approach can be utilized with mixed reality devices 
to enable human-machine collaboration to help inspectors have more accurate visual inspection and expedite 
the decision-making process. The achieve this goal, future developments will focus on further reducing the 
computation time of the algorithm to enable near real-time result delivery and decision making.  

    
Distance-based Fatigue Crack Detection Algorithm 

This section describes the proposed distance-based methodology for vision-based fatigue crack detection on a 
structural surface. Figure 23 demonstrates the concept and steps involved in the proposed method. In the first 
step, a short video of a fatigue crack prone region in the structure is recorded under several fatigue load cycles 
similar to the displacement-based approach. Videos can be recorded from moving platforms such as UAVs, 
mixed reality headset, etc. The second step is to detect salient feature points within the ROI in the first video 
frame and track their locations throughout the video (Figure 23b). Unlike the displacement-based approach, 
GMC is not required before tracking the location of the surface feature points.  

Once locations of feature points are tracked, features are grouped in LCR. The distances between unique 
feature point pairs within LCR are computed. Distance of feature point pair remain unchanged if there is no 
crack between features. However, the distance between feature pair changes when fatigue crack present between 
them open and close under fatigue loading. By scanning all unique feature point pairs within ROI using the LCR 
and detecting differential movement patterns that exceeds a threshold value, are highlighted as highlighted and 
shown as detected crack. In the end, collection of all highlighted feature point pairs shows location of the fatigue 
crack. The details of each component are provided in the following subsections.  
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Figure 23 Overview of the distance-based fatigue crack detection method 

Crack Detection Algorithm 

The crack detection algorithm analyzes the structural surface motion for discontinuities caused by fatigue crack 
opening and closing under live load. Fatigue crack movement is usually very small; hence, the surrounding parts 
of a structural surface share the same global rigid movement. First, we establish the origin of the coordinate 
system at the top left corner of the image. Hence, the bottom right corner of the video frame would be the last 
coordinates of the system. The location of 𝑖𝑖𝑡𝑡ℎ feature point of 𝑡𝑡𝑡𝑡ℎ frame is denoted by 𝑃𝑃𝑖𝑖𝑡𝑡 = (𝑥𝑥𝑖𝑖𝑡𝑡,𝑦𝑦𝑖𝑖𝑡𝑡) where 𝑥𝑥𝑖𝑖𝑡𝑡 
and 𝑦𝑦𝑖𝑖𝑡𝑡 are  𝑥𝑥 and 𝑦𝑦 coordinate, respectively. The location of each feature point throughout the video stream is 
stored during the feature tracking process. The distance between the ith feature point and jth feature point of the 

tth frame is denoted as Di,j
t and can be computed by ��𝑥𝑥𝑖𝑖𝑡𝑡 −  𝑥𝑥𝑗𝑗𝑡𝑡�

2 +  �𝑦𝑦𝑖𝑖𝑡𝑡 −  𝑦𝑦𝑗𝑗𝑡𝑡�
2.  

To illustrate the displacement-base crack detection algorithm, consider four video frames from a video 
stream as shown in Figure 24. The top left corner has coordinate (0,0) as the origin and the bottom right corner 
has coordinate (1920, 1080) corresponding to the video resolution. The field of view of the camera is shown by 
the grey rectangle, which covers a steel plate with a fatigue crack shown by the blue rectangle. In the first frame, 
the top left corner of the steel plate is at the origin of the coordinate system. The feature points within the ROI 
are shown by plus marks. Consider two LCRs, including LCR 1 located on the fatigue crack and LCR 2 located 
away from the fatigue crack. LCR 1 has a total of 7 feature points, with feature point 1 located at the center of 
the LCR. Feature points 1 to 4 are below the fatigue crack and 5 to 7 are above the fatigue crack. The distance 
between feature point 1 and feature points 2 to 7, denoted by 𝐷𝐷1,2

1 ,𝐷𝐷1,3
1 , … ,𝐷𝐷1,7

1 ,  respectively, are depicted next 
to the enlarged view of the LCRs. LCR 2 has a total of 6 feature points with feature point 10 located at the center 
of the LCR. The distance between feature 10 and feature points 11 to 15 are denoted as 𝐷𝐷10,11

1 ,𝐷𝐷10,12
1 , … ,𝐷𝐷10,15

1 , 
respectively.  

In the second video frame, the camera has moved during the videotaping; as a result the steel plate has 
moved to the right within the camera field of view. In this frame, fatigue crack has not opened due to the lack 
of live load. The distance of feature point pairs in LCR 1 and LCR 2 are computed and shown next to the 
enlarged LCR views. The distance between feature point pairs within LCR in the first frame and the second 
frame remains virtually identical, i.e. 𝐷𝐷1,2

1  ≈ 𝐷𝐷1,2
2 ,…, 𝐷𝐷10,15

1  ≈ 𝐷𝐷10,15
2 , because feature points within a local 

vicinity move in an almost identical manner under the global camera motion. Even though the coordinates of 
feature points have changed due to the camera motion, their distances have remained the same. This is true for 
all the feature points located within the LCR.  

In the third video frame, the camera has moved further, and the fatigue crack has opened under the live 
load. The steel plate has moved left and down in the camera field of view resulting in a large change of 
coordinates of feature points compared to frame 2. LCR 1 is located on the crack, and as presented in the 
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enlarged view, the distances between feature point pairs 1-5, 1-6, and 1-7, 𝐷𝐷1,5
3 , 𝐷𝐷1,6

3 , 𝐷𝐷1,7
3  has increased due to 

the crack opening. However, the distance between the remaining feature pairs 𝐷𝐷1,2
3 , 𝐷𝐷1,3

3 , 𝐷𝐷1,4
3 , and 𝐷𝐷10,11

3  to 
𝐷𝐷10,15
3  continued to remain unchanged under the camera motion as well as fatigue crack opening. As illustrated 

in the figure, the increased distances between feature point pairs 1-5, 1-6, and 1-7 indicate that LCR 1 has 
differential motion compared to LCR 2.  

In the fourth frame, the steel plate has moved up in the camera field of view and the fatigue crack has 
closed. The distances between feature point pairs are presented in the figure. 𝐷𝐷10,11

4  to 𝐷𝐷10,15
4  remain the same 

compared with 𝐷𝐷10,11
3  to 𝐷𝐷10,15

3  as the camera movement imposes the same motion to the feature points. 
However, 𝐷𝐷1,5

4  to 𝐷𝐷1,7
4  are different compared with 𝐷𝐷1,5

3  to 𝐷𝐷1,7
3  due to the crack closure. Moreover, 𝐷𝐷1,2

4  to 𝐷𝐷1,4
4  

remain unchanged compared to 𝐷𝐷1,2
3  to 𝐷𝐷1,4

3 . While LCR 1 demonstrates two distinct distance patterns due the 
differential motions caused by the crack opening and closing under live load, LCR 2 observes only one uniform 
distance pattern due to the lack of crack movement. For both LCRs, the rigid body motion imposed by the 
camera movement does not affect the distance pattern.  As a result, camera motion compensation is not necessary 
when distance is employed as the criteria.  

 
Figure 24: Crack detection algorithm 

For efficient analysis of the surface motion through distance, a random feature point within the ROI is 
selected as the center of the first LCR, and a search is performed to gather feature points within the LCR. After 
that, unique feature point pairs are determined, and their distance histories are computed through all the video 
frames. A 3rd-degree polynomial trend is computed and removed from the distance history to eliminate any 
inaccuracy introduced during the tracking process. The distance histories of feature point pairs are then analyzed 
to uncover differential patterns caused by fatigue crack movements. To provide a single-value metric for 
analyzing the variation of distance, the standard deviation 𝑆𝑆𝑖𝑖,𝑗𝑗 is adopted to quantify the magnitude of the feature 
point movements under fatigue loading, where subscripts i and j indicate the ith and jth feature point, respectively. 
If the standard deviation 𝑆𝑆𝑖𝑖,𝑗𝑗 is higher than a threshold value, then that feature point pair is highlighted as part 
of the fatigue crack detection result. This process is repeated by choosing another feature point as the center of 
the LCR until all feature points have been analyzed. The final crack detection result consists of all the 
highlighted feature point pairs for which differential movement pattern was discovered within the associated 
LCR. Since these highlighted feature points trace along the fatigue crack, they signal the location and extent of 
the detected crack in an intuitive way.  
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Quantification of Detected Fatigue Crack  

There are several ways to quantify the accuracy of prediction results. Image classification models assign each 
image with a categorical label, and it is then compared with the true categorical label. In computer vision, most 
segmentation tasks use intersection over union (IOU) as a metric to measure goodness of fit of the model. Vision 
based deep learning model for semantic segmentation assigns label to each pixel of the image. These labels of 
each pixel are then compared to labels of the corresponding ground truth pixels. Our vision-based approach uses 
salient feature points to analyze differential surface motion, and features surrounding the crack are highlighted 
as the detected crack, which can be considered as segmenting the area associated with the detected features as 
the crack region. The crack detection result has sparse data points rather than a continuous area labelled as the 
crack region. Moreover, the width of the cluster of detected feature points depends on the radius of the LCR. To 
provide a quantitative measure of the crack detection result, a new approach is developed to quantify the 
predicted sparse data points using IOU. The proposed method consists of three major steps: 1) clustering the 
detected feature points and obtaining the boundaries, 2) determining the boundary of the ground truth, and 3) 
evaluating the result through IOU. Each step is explained in detail as follows. 

Clustering  

Clustering is a process of grouping data points based on similarities. Data points in a group are comparatively 
more similar to data points in another group.  To quantify similarity or distinction, a dissimilarity measure 
(or distance metric) specific to the domain of application and data set is used. There are several clustering 
algorithms such as K-means, gaussian mixture models (GMM), hierarchical clustering, density-based spatial 
clustering algorithm (DBSCAN), and spectral clustering. Hierarchical clustering and K-means are distance-
based clustering algorithms. DBSCAN is based on density of regions, and GMM is based on mixture of gaussian 
distribution. K-means and GMM require manual input such as the number of clusters while hierarchical 
clustering provides multiple clusters. On the other hand, DBSCAN clusters the detected feature points based on 
density, and it does not require any manual input hence is adopted in this study.  

DBSCAN requires two key parameters: 1) epsilon (ε), and 2) minimum number of points (MinPts). ε is 
the neighborhood distance that determines if a point is in the cluster or not. For example, a point is 11 units 
away from the cluster K. If ε is 11 or less, then the point is considered in the cluster K. Otherwise the point is 
considered outside of the cluster K. The second parameter MinPts decides how many points are required to form 
a cluster.  

 

 
Figure 25: Clustering of detected feature points  

We define ε as the radius of LCR and 10 as MinPts. DBSCAN starts with an arbitrary feature point. Then 
the point’s neighborhood is defined based on ε. If it contains at least MinPts features, it is considered as a cluster. 
Otherwise, that point is labeled as noise. After that, the second point is considered, which can be clustered in 
the same group or a new group or determined as noise. Figure 25(a) shows the crack detection result with a low 
threshold value, and Figure 25(b) shows the clustering result, in which three clusters of feature points are shown 
as red, black, and blue. Feature points located on the bottom clevis and the clevis to plate boundary are more 
than ε pixels away from all the three clusters. Moreover, those isolated feature point groups contain less than 
MinPts points (10) hence are removed as noise. For the three clusters, the outermost points of each cluster are 

(a) (b) 
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determined to create a boundary. Then, each pixel inside the boundary is labeled as a crack pixel. Thus, the 
detected sparse feature points are now converted into the continuous areas for quantification.  

 

 
Figure 26: Ground truth labeling  

Ground truth 

The second step is to determine the ground truth based on the actual crack length and location. Figure 26(a) 
shows the in-plane fatigue crack path of the C(T) specimen in a solid blue line. The Ground truth is determined 
as a rectangular region with its length equal to the crack length plus the notch of the specimen. Since the width 
of the detected feature point cluster depends on the diameter of the LCR, the width of the ground truth is defined 
as the diameter D of the LCR. The crack is located in the middle of the rectangle region. For the bridge girder, 
the fatigue crack has three distinct branches A, B, and C. Since the crack movement is dominated by branch A, 
only branch A is considered as the ground truth for quantification. As shown in Figure 26b, branch A constains 
three linear segments, hence a polygon with height as D is selected as the ground truth.  

Intersection over Union (IOU) 

The third step is to computer the IOU of the detected crack region with respect to the ground truth. The IOU 
describes the extend of overlap between two regions, and is formulated as:  
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝑡𝑡𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼𝑡𝑡𝑖𝑖𝑜𝑜𝐼𝐼 

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝑖𝑖𝑜𝑜𝐼𝐼
 

 
The IOU ranges between 0 to 1, where 0 indicates no overlap and 1 indicates perfect overlap. Figure 27 

demonstrates the three examples of IOU values. The red box denotes the predicted label, and the green box 
represents the ground truth. As illustrated in the figure, an IOU of 0.40 shows good localization but poor 
coverage, and an IOU of 0.73 indicates good localization and coverage, while an IOU of 0.92 shows very high 
overall accuracy in both detection and coverage. 

 
Figure 27: Illustration of different values of IOU 

(a) (b) 
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Experimental setups 

The proposed distance-based method was experimentally tested using the same laboratory setups as the 
displacement-based method through both 2D and 3D videos.  

Results and Discussions 

To compare the accuracy and performance of both methods, same videos were used to detect fatigue crack using 
the proposed distance-based approach. Results are discussed in the following section.  

In-plane Fatigue Crack Detection using 2D Video 

The selected ROI and initial detected features identical to the displacement-based method are shown in Figure 
28. A total of 3,000 feature points were detected using the Shi-Tomasi feature point detection algorithm. The 
radius of LCR was selected as 35 pixels. The crack detection results for a range of threshold value are presented 
in Figure 29. The actual crack is highlighted by a black line as the reference. Figure 29a shows the crack 
detection result with a very low threshold value of 0.01. Therefore, almost all feature points are kept in the 
result. Figures 29b and 29b show the crack detection results for threshold value 0.06 and 0.07, respectively. In 
both results, feature points still cover the entire ROI, so they are not considered as the final crack detection 
result. Figure 29d presents the crack detection for the threshold value of 0.09. In this result, features are clustered 
in a single group and do not spread over the entire ROI. Thus it was determined to be the final crack detection 
result.  

 
Figure 28: The initial frame of the 2D video with the selected ROI (a) and all feature points detected by 

the Shi-Tomasi algorithm (b). Note that the brightness of image in (b) is enhanced to highlight the 
feature points 

 
Figure 29: In-plane fatigue crack detection result of a C(T) specimen  

To understand the effectiveness of the distance-based method to discover differential surface motion 
patterns, the distance histories of two feature pairs from the cracked and non-cracked regions are plotted in 
Figure 30. A feature pair from the cracked region are represented by blue marks, while a pair from non-cracked 
region are highlighted by orange marks as shown in Figure 30a. The distance history of the cracked region 
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(Figure 30b) shows eight cycles corresponding to the 0.5Hz fatigue load applied to the C(T) specimen leading 
to a higher standard deviation. On the other hand, the feature point pair from non-cracked region has very low 
distance change resulting in a much lower standard deviation. In the threshold scanning process, as the threshold 
value increases, feature pairs with low relative differential motion will be filtered out while feature pairs with 
higher relative differential motion will remain in the crack detection result.  

 
Figure 30: Feature point distance history for crack and uncracked region 

Quantification of the Detected Crack 

Once the fatigue crack is detected and localized, the accuracy of the detected crack is computed for both the 
displacement-based approach and the distance-based approach. First, clustering is performed for the crack 
detection results. Figure 31a shows the final crack detection result using the displacement-based method, and 
Figure 31b illustrates the clustered crack detection results. In the analysis, ε was set as 35 corresponding to the 
radius of LCR, and MinPts was set as 10. The crack detection result was then clustered into three groups based 
on the parameters and a few isolated feature points were removed as noise. Figure 31c shows the clustering 
result overlaid on top of the ground truth. Similarly, the quantification of crack detection using the distance-
based approach is shown in Figure 32. The IOU scores for the displacement-based and distance-based crack 
detection results are calculated as 0.38 and 0.73, respectively. Evidently, the distance-based approach achieved 
a  significantly higher accuracy in fatigue crack detection using the 2D video.  

 
Figure 31: Quantification of detected crack in the C(T) speicmen using the displacement-based method 

(a) detetcted crack; (b) clustered crack; and (c) ground truth and clustered crack 

 
Figure 32: Quantification of detected crack in the C(T) speicmen using the distance-based method (a) 

detetcted crack; (b) clustered crack; and (c) ground truth and clustered crack 

(a) (b) 
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Figure 33: The initial frame of the 3D video with ROI (a) and all feature points detected by the Shi-
Tomasi algorithm (b). Note that the brightness of image in (b) is enhanced to highlight the feature 

points 

 
Figure 34: Out-of-plane fatigue crack detection result of the bridge girder specimen  

Out-of-plane Fatigue Crack Detection using 3D Video 

The selected ROI and the initial detected features identical to the displacement-based method are shown in 
Figure 33. A total of 5,000 feature points were detected using the Shi-Tomasi feature point detection algorithm. 
The radius of LCR was selected as 35 pixels. The crack detection results for a range of threshold values are 
presented in Figure 34. The actual crack is highlighted by black lines as the reference. Figure 34a shows crack 
detection with a low threshold value of 0.1; therefore, almost all feature points are kept in the result. Figures 
34b and 34c illustrate the crack detection results for threshold values of 0.2 and 0.3, respectively. In both results, 
feature points were still distributed over the entire ROI, so they are not considered as the final crack detection 
result. Figure 34d presents the crack detection for the threshold value of 0.4. In this result, features are clustered 
in a single group and do not spread over the entire ROI. Thus it was determined to be the final crack detection 
result.  

The effectiveness of the proposed distance-based crack detection approach is also evident in the distance 
history of feature pairs from the cracked and non-cracked regions, as shown in Figure 35. One feature pair is 
selected from cracked region denoted by blue marks, while a feature pair from no-cracked region is shown by 
orange marks. Their distance histories are plotted in the Figure 35b. The distance history of the non-cracked 
region feature pair shows no significant change over time because the feature points are moving similarly due 
to the rigid body movement. However, the distance history of the feature pair from the cracked region cleary 
shows two cycles corresponding to the applied fatigue load due to the crack movement. Capturing the cyclic 
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motion leads to a higher standard deviation, enabling successfully crack detection through the differential 
motion pattern.  

 

 
Figure 35: Feature point distance history for crack and uncracked region 

Quantification of the Detected Crack 

Once the fatigue crack was detected and localized, the accuracy of the detected crack was computed for both 
the displacement-based approach and the distance-based approach. Figure 36a shows final crack detection result 
using displacement-based method, and Figure 36b represents the clustered crack detection results. Again, in the 
analysis, ε was set as 35 corresponding to the radius of LCR, and MinPts was set as 10. The crack detection 
result was clustered into one group based on the parameters and a few isolated feature points were removed as 
noise. The clustered result is overlaid on top of the ground truth as shown in Figure 36c. The corresponding 
results for the distance-based approach are shown in Figure 37. The IOU scores for the displacement-based and 
distance-based approaches are 0.35 and 0.66, respectively. Similar to the 2D video , the distance-based approach 
achieved significantly higher accuracy in fatigue crack detection in 3D video.  

 

 
Figure 36: Quantification of the detected crack in the bridge girder speicmen using the displacement-

based method (a) detetcted crack; (b) clustered crack; and (c) ground truth and clustered crack  
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Figure 37: Quantification of the detected crack in the bridge girder speicmen using the distance-based 

method (a) detetcted crack; (b) clustered crack; and (c) ground truth and clustered crack  

Parametric Study 

A parametric study was conducted to understand the impact of fatigue load level on the crack detection accuracy. 
Videos were taken from two different views as shown in Figure 38. View 1 looks at the cracked region at roughly 
an equal distance from the connection plate and the girder web. In view 2, the video is captured by staying 
almost parallel to web of the girder, leading to a much higher parallax effect compared with view 1. A total of 
10 load cases were considered in this parametric study. The minimum load level (Fmin) in each load case was 
0.2 kip and the maximum load level (Fmax) started at 0.5 kips for LC1 and was increased by 0.5 kip in each 
subsequent load case. As a result, the first load case has a load range of 0.2 kip to 0.5 kip and the last load case 
ranges from 0.2 kip to 5 kip. Table 1 summarizes the parameters for all the load cases considered in the 
parametric study and their respective IOU results.  
 

 
Figure 38: Two camera angles, view1 and view 2, for the distortion-induced fatigue test setup 

Using the proposed IOU measure, we further quantified the results for the parametric study based on the 
large-scale bridge specimen with out-of-plane fatigue crack. Figure 39 and Figure 40 show the detected crack 
overlaid on top of the ground truth. In particular, the ground truth is shown in a blue polygonal area and the 
crack detection results are shown with regions with yellow boundaries and the contained feature points. The 
IOU results are summarized in Table 1.  

View 1

View 2
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Table 1: IOU results for parametric study variations of out-of-plane fatigue crack in bridge girder 
specimen 

Load Case Load Level (kips) Crack Opening (mm) IOU 
Fmin Fmax View 1 View 2 View 1 View 2 

LC1 0.2 0.5 0 0 0 0 
LC2 0.2 1 <0.5 <0.5 0 0.42 
LC3 0.2 1.5 0.6 0.6 0.34 0.44 
LC4 0.2 2 0.7 0.72 0.40 0.43 
LC5 0.2 2.5 0.9 1 0.72 0.44 
LC6 0.2 3 1 1.2 0.68 0.68 
LC7 0.2 3.5 1.1 1.5 0.77 0.64 
LC8 0.2 4 1.3 1.64 0.66 0.68 
LC9 0.2 4.5 1.5 2 0.71 0.70 

LC10 0.2 5 1.8 2.2 0.62 0.69 
 

As shown in Table 1, videos recorded with View 1 angle have IOU values ranging from 0 to 0.77. In 
general, as expected, increasing the load level increases the IOU value, making it easier to detect the crack. IOU 
is 0 for lower load cases such as LC1 and LC2, and is 0.34 and 0.40 for LC3 and LC4. For load cases LC5 to 
LC10, the IOU values are higher than 0.66, indicating the detected crack area covers more than 2/3 of the actual 
crack area. For View 2, the IOU ranges between 0.42 and 0.44 for LC 2 to LC5. The detected crack area is more 
than 64% for load cases LC6 to LC10. Table 1 also lists the crack opening levels associated with each load case 
under View 1 and View 2, which indicate that the algorithm consistently detected the fatigue crack when the 
crack opening is higher than 0.5 mm.  

 

 
Figure 39: Crack detection results with the ground truth from videos with View 1: (a) LC1, (b) LC2, (c) 

LC3, (d) LC4, (e) LC5, f) LC6, (g) LC7, (h) LC8, (i) LC9, and (j) LC10 
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Figure 40: Crack detection results with the ground truth from videos with View 2: (a) LC1, (b) LC2, (c) 

LC3, (d) LC4, (e) LC5, f) LC6, (g) LC7, (h) LC8, (i) LC9, and (j) LC10 

 

Computation Time of the Proposed Distance-based Algorithm 

Since no GMC is required, the distance-based method has much higher computation efficiency compared with 
the displacement-based method. The computation time for the distance-based crack detection for the 2D video 
is around 29 seconds on a machine with an intel i9 processor and 64 GB of RAM. The 2D video contains 248 
frames with standard HD resolution of 1980 × 1080 pixels, resulting in computation cost of about 0.12 seconds 
per video frame. For the 3D video, the computation time is around 31 seconds using the same machine. The 3D 
video has 149 frames of standard HD resolution, which was then reduced to 1980 × 1080 pixels. Hence, the 
computation cost is about 0.2 seconds per video frame. The proposed vision-based approach can be utilized with 
mixed reality devices to enable human-machine collaboration to help inspectors achieve more accurate visual 
inspection and expedite the decision-making process.  
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DEVELOPMENT OF AUGMENTED REALITY SOFTWARE FOR HUMAN-CENTERED FATIGUE 
CRACK INSPECTIONS 

Augmented Reality (AR) software has been developed for fatigue crack localization during visual 
inspection. The software localizes the fatigue crack using a holographic interface for this purpose. The 
hologram is converted from the feature points generated by the computer vision algorithm developed 
in this project. Therefore, the software creates holograms based on the feature points generated by the 
MATLAB software. Figure 41 schematically shows the AR software’s information circulation and 
workstream.  

 

Figure 41: Architecture of the developed AR software for fatigue crack inspection 

As shown in Figure 41, the AR software integrates various components to enable human-centered 
fatigue crack inspection. The research team developed an automatic workstream between all the 
components to achieve a user-friendly platform. The following section describes each part involved in 
the AR software. Note that to establish the connection between the different components, a hotspot 
connection is employed through a wireless router. 
AR Headset 

Augmented Reality (AR) has recently attracted great attention in SHM because of its unique abilities (Sadhu et 
al., 2023, Moreu et al., 2022). As a wearable technology with the ability of on-board processing and augmenting 
the real-world view with virtual objects, AR has the potential to improve inspector’s perception during 
inspections. For example, Malek et al. (2022) deployed the simple Canny edge detection algorithm to an AR 
device utilizing its limited computational capacity, enabling real-time calculation of crack width through AR. 
Meanwhile, other researchers have explored AR technology through the connection with a central processing 
unit for more complex analyses (Mascarenas et al., 2021; Wang et al., 2021; Outay et al., 2022).  

In this study, the Microsoft HoloLens 2nd generation (HL2) is adopted as the AR device. HL2 can conduct 
3D scanning (spatial mapping) of the surrounding environment, programming, and projection (Napolitano et 
al., 2019). Spatial mapping, further described in this report, is utilized to find the correct place of fatigue cracks 
for hologram anchoring. In this study, HL2 is utilized to generate and anchor the holographic image to the real 
world in near-real-time. As shown in Figure 42, the HL2 is equipped with four depth cameras (two on each 
side), enabling high-quality 3D mapping of the surrounding environment. In addition, HL2 has two eye-tracking 
sensors for following the inspector's vision and a high-quality camera to capture photos or record videos of the 
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environment. Moreover, HL2 is able to blend the real and virtual medias and provide photos and videos of 
surroundings, including the anchored virtual holographic objects.  

 
Figure 42 Microsoft HoloLens 2nd generation (HL2) 

SQL Cloud Database 

To establish the connection between the HL2 and the server that runs the crack detection algorithm, an SQL 
(Structured Query Language) database is created, and a wireless router is used to provide a hotspot to connect 
the various components (MATLAB, SQL database, and HL2), as shown in Figure 1. All connections provided 
two-way communication, enabling the SQL database to send and receive data from other components. For this 
purpose, three different tables are created in the SQL database, as shown in Figure 43, with each table 
performing a specific task. Specifically, the “preprocessed_videos” table detects the short video recorded by the 
HL2 using the "Video Upload" virtual button. Then the software sends the video to the database through the 
wireless hotspot. The server downloads the uploaded video and analyzes it with the MATLAB algorithm to 
generate feature points and detect possible fatigue cracks from the recorded video. Then, the server sends the 
coordinates of all the feature points back to the database through the hotspot connection. The 
“postprocessed_data” table receives the coordinates of the feature point group and sends it to the HL2 to generate 
a hologram and project it over the actual fatigue crack. The “lastframe_transform” table is a part of the developed 
Auto Anchoring System (AAS), which helps HL2 to accurately anchor the hologram. It is worth noting that all 
the steps are performed automatically without any need for user intervention. 

 
Figure 43 The SQL database established to connect different software’s components 

Auto Anchoring System (AAS) 

A novel AAS is developed to achieve automated anchoring and hologram surface projection. For this 
purpose, the innate ability of HL2 to conduct a 3D analysis of the surrounding area called spatial 
mapping is utilized. The software produces a hologram using the feature points generated from the 
video analysis and anchors it based on the HL2's spatial understanding of the surrounding environment. 
Although the HL2 provides reasonable 3D mapping of the surrounding area, two main challenges 
remain, including: 1) identification of the correct surface for projecting the hologram, and 2) anchoring 
the hologram over the crack in correct position and orientation. To address these challenges, the 
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research team first developed an invisible rectangle parallel to the last frame of the video recorded by 
the HL2 using the last user’s eye direction saved by HL2 during recording. In addition, to prevent the 
projection of the invisible rectangle behind the cracked surface, a short distance between the last video 
frame and the invisible rectangle is considered. The invisible rectangle hence floats in a constant 
position parallel to the last video frame between the last video frame’s 3D position and the actual 
cracked surface.  
 

 
FIGURE 44 Illustration of the Auto Anchoring System (AAS) 

Figure 44 schematically illustrates the developed AAS. A constant independent position for the 
invisible rectangle is provided by detaching its dependence on the camera position. Although this 
rectangle  is the preliminary placement for the hologram, it is invisible to the user, hence the hologram 
appears to be floating in the air in the virtual media. In the next step, invisible rays are utilized to 
convey each holographic feature point from the invisible rectangle to the cracked surface. The 
endpoints of these rays are their hit points with the first HL2-detected spatial map surface. This surface 
is the desired surface for anchoring the holograms because the user looks directly at the area to record 
the short video, hence there are no other surfaces between the last video frame and the cracked surface. 
As a result, the software anchors the hologram on the crack in the correct direction. Moreover, this 
approach anchors the hologram in the right location as the projection is independent from the user’s 
angle. Therefore, the user does not need to look at the surface perpendicularly during video recording, 
making this approach practical for inclined surfaces as well as surfaces perpendicular to the user’s line 
of sight.  

 

 

Figure 45 Virtual menu of the AR software for fatigue crack inspection 
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AR Virtual Menu 

To enable a user-friendly AR interface, a virtual menu is created for the AR software to allow the user to easily 
operate the software. Figure 45 shows the virtual menu with its functionalities labeled. The functionalities are 
explained as follows. 

Virtual Mesh: A ‘Visual Mesh’ button (Figure 45) is accessible on the top right part of the software’s 
virtual menu. The visual mesh button utilizes HL2's understanding of the surrounding environment, referred to 
as “spatial mapping.” This function enables the user to see every object the HL2 analyzes as its 3D surrounding 
environment, enabling the inspector to verify that the HL2 is analyzing the appropriate surface during the 
inspection. 

Figure 46 shows the spatial mapping of the half-scale laboratory steel bridge girder specimen utilized for 
indoor testing, illustrating the level of detail captured by HL2. In addition, the mesh generated Figure 46 shows 
the HL2's ability to provide a detailed representation of the steel structural element surfaces. 

 
Figure 46 Visual mesh button reveals the HL2’s representation of real-world surfaces steel girder test 

Digital Indicator: A digital indicator, shown in Figure 45, is developed to measure and indicate in real-
time the distance from the user to the closest perpendicular surface. This function helps the inspector maintain 
an appropriate distance from the surface, ensuring high-quality video recording for the subsequent analysis.  
Figure 47 (a) shows the testing of the digital indicator using a tape measurer as the reference. Figure 47 (b) 
shows the accuracy testing at various distances. Those photos were captured by the HL2’s camera from the 
HL2’s view. 

Video Upload: As mentioned earlier, this method utilizes a short video to analyze and localize fatigue 
cracks. The HL2 records a short video including the direction of the user’s vision in the last video’s frame. Then, 
the video, along with the direction of user’ vision and the 3D position of the HL2 camera, is automatically 
uploaded to the database described in the next section. An automatic connection between  this function and the 
cloud database is established through a hotspot. Additionally, the same connection is provided between the 
MATLAB algorithm and the cloud database, so that MATLAB can automatically detect the new video uploaded 
to the database from the HL2. MATLAB then analyzes the recorded video and provides feature points of the 
detected fatigue crack, of which the coordinates are then uploaded back to the cloud database.  

In the next step the software automatically detects a new group of feature points uploaded to the cloud 
database by MATLAB. Afterwards, it extracts the feature points as a group and relates them to the last video 
frame coordinates uploaded from HL2. HL2 then creates a hologram using the grouped feature points and 
projects it based on the feature points coordinates over the fatigue crack in the correct location and orientation 
using the coordinates of the last video frame. As explained previous, the software uses a novel projection method 
called AAS, described in a previous section. 

From the use perspective, the inspector just needs to push the video upload button in the HL2’s virtual 
media and look at the fatigue-prone area under active traffic loading for video recording. The software would 
take care of the rest and projects a hologram over the fatigue crack to show the detection result for the inspector. 
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Figure 47 Digital indicator’s accuracy test (a) test setup (b) HL2’s view 

Table 2 summarizes the results of the digital indicator’s accuracy tests, demonstrating high measuring 
accuracy with less than 1 cm error for a 1-meter distance. 

Table 2 Test results for the digital indicator’s accuracy  

Test No. Tape Measure (m) HL2 (m) ||Tolerance|| (m) 
1 0.4 0.4 0 
2 0.45 0.45 0 
3 0.6 0.61 0.01 
4 0.76 0.75 0.01 
5 0.77 0.78 0.01 
6 1.04 1.03 0.01 
 

 
Video Length Controller: This slider lets the user control the video length (1~10 seconds) recorded by HL2. 
The length of the video can be adjusted to ensure enough fatigue load cycles are captured in the recorded video.  
 
Flying Menu: The flying Menu function shown in Figure 45 switches the virtual menu between flying and 
hovering modes. The virtual flying menu refers to how the menu follows the inspector's movement during the 
inspection. The flying mode eliminates the inspector's need to manually move the menu during the inspection 
and leaves the inspector's hands free for other tasks. On the other hand, the hovering mode is appropriate when 
the user is trying to inspect a specific part of the structure. By switching to the hovering mode, the inspector can 
manually move the virtual menu to the appropriate position.  
 
Thresholds: The ‘Thresholds’ function brings up several virtual buttons based on the number of thresholds for 
crack detection defined by the inspector. It automatically updates the menu according to the specific range of 
thresholds defined for each analysis. Figure 48 shows the virtual threshold buttons revealed by pushing the 
‘Thresholds’ button. Each button corresponds to a single threshold result generated by the crack detection 
algorithm. This button enables the inspector to interact with the crack detection result by easily checking results 
associated with different thresholds, hence selecting the best result for documentation, tracking, and decision 
making.  
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Figure 48 Virtual threshold functions automatically generated based on the crack detection results 

Preliminary Field Experiment of the AR software 

Preliminary indoor tests were designed and carried out to support software debugging and updating. A 2D 
benchmark test using a “paper crack” was created. Figure 49 shows the benchmark test, which includes a flaw 
within a paper that could be opened and closed through cyclic loading, mimicking fatigue crack behavior. 
 

 
Figure 49 (a) In-plane flaw benchmark (schematic) (b) actual benchmark (photo) 

The developed AR software was utilized to detect the flaw in the benchmark under cyclic loading. Figure 
50 represents the crack detection result using AR projected on the benchmark. In this figure, the hologram 
generated by the HoloLens was laid over the crack to indicate the location of the fatigue crack to the inspector. 
 

 
Figure 50 Hologram of the crack detection result using in-plane crack benchmark 

The applicability of the developed AR fatigue inspection software was also evaluated for out-of-plane 
cracks. To this end, a 3D benchmark based on paper flaw was also utilized to simulate out-of-plane fatigue crack 
behavior. Figure 51 represents the benchmark and the flaw. 
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Figure 51 (a) Out-of-plane flaw benchmark (schematic) (b) actual benchmark (photo) 

Figure 52 shows the generated hologram result using the AR-developed software on the 3D out-of-plane 
crack benchmark. The hologram was generated based on the feature points resulting from the MATLAB 
analysis. The hologram was laid over the crack to localize the flaw to the inspector. 

 

 
Figure 52 Hologram of the crack detection result using out-of-plane crack benchmark 

After completing the software development phase through extensive debugging and testing, the research 
team conducted a preliminary field experiment. The goal is to test the software in outdoor enviroment. A 
benchmark surface including a simulated crack on a piece of paper was attached to a steel railway bridge 
structure. The simulated crack on the benchmark could open and close under external load. Figure 53 shows the 
outdoor benchmark, the experiment, and its result, which indicate the developed software could perform well 
under outdoor environment.  

 

 
Figure 53. The preliminary field experiment (a) inspector visually inspects the simulated crack using the 

AR software (b) simulated fatigue crack (c) hologram anchored on the simulated crack  
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User Manual 

This section provides hardware and software information for inspectors to use the developed AR software. Table 
3 shows all hardware and software required to utilize and run the AR sofwtare. Also, Figure 54 illustrates the  
hardware and software schematically.  

Hardware Connection 

A local wireless connection between the HL2 and the laptop needs to be established through a hotspot. This 
local connection provides fast communication and doesn’t depend on internet access. For this purpose, a typical 
Wi-Fi router could be used as shown in Figure 55. 

Table 3 Required software and hardware 

 Name Version Link 

Software 

Unity 2019.4.23f1 or 
later https://unity3d.com/get-unity/download 

Visual Studio 2019 or later https://visualstudio.microsoft.com/downloads/ 

Mixed Reality 
Toolkits 
(MRTK) 

5 https://github.com/Microsoft/MixedRealityToolkit-Unity 

MATLAB All versions https://www.mathworks.com/?s_tid=mlh_gn_logo 
XAMPP V3.3.0 or later https://www.apachefriends.org/download.html 

AR Software - The software developed for this project 

 
Hardware 

Laptop - - 
HL2 - - 

Hotspot - - 
 

 
Figure 54 Hardware and software needed to use the developed AR software  

 

 
Figure 55 (a) Wi-Fi router (b) Hotspot device 

The developed AR-based inspection tool contains three critical parts: 
1. MATLAB-based computer vision algorithm for fatigue crack detection 
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2. AR-based software for HL2 
3. SQL database to connect 1 and 2.  

 
Software Instruction  
Before starting the crack detection process, it is important to make sure all components are ready by checking 
the following:  

1. HL2 and laptop both are connected to the same Wi-Fi Hotspot.  
2. The Database is connected and standing by. 
3. The MATLAB algorithm is running and waiting for the video (Figure 56 (b)). 
4. The AR software in HL2 is open and ready. 

Figure 56 shows the MATLAB software running at the laptop. Once the MATLAB code is executed at the 
laptop, it enters the standby mode waiting for the new video uploaded to the server by the HL2, as shown in 
Figure 56b. 
 

 
Figure 56 MATLAB software (a) before running (b) waiting to receive new uploaded video from HL2  

The user can also choose the adjust the video recording length using the slide bar. Once everything is 
ready, the user simply needs to hit the virtual “Video Upload” button, as shown in Figure 57, and then look at 
the target surface for the selected amount of seconds to record the video under live load. The software takes care 
of the rest of the process and finally anchors the feature points from the MATLAB algorithm. Finally, the user 
can check different results corresponding to different threshold values defined in the MATLAB algorithm in an 
interactive manner.  

 

 
Figure 57 Virtually pushing the “Video Upload” button 
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LABORATORY AND FIELD IMPLEMENTATIONS 
This section presents the laboratory and field implementations of the developed AR-based tool for human-
centered fatigue crack inspection. The following sections provide detailed descriptions of both implementations.  

Laboratory Implementation 

Once the AR software is developed, the two teams met at KU to integrate the new distance-based crack detection 
algorithm implemented in MATLAB into the AR software to ensure seamless workflow. A SQL database is 
required to connect the crack detection program and HL2 and is downloaded and setup at KU. The entire process 
of bridge inspection was carried out at KU based on a large-scale bridge girder to cross-frame connection.  Each 
step is explained and illustrated below. 

Step 1: Turn on the Wi-Fi hotspot, then connect the server hosting the MATLAB program and HoloLens 
2 to the local Wi-Fi network. Figure 58 shows a portable Wi-Fi hotspot, HL2 and a server hosting the MATLAB 
program connected to the local network of through the Wi-Fi hotspot. Then, run the MATLAB program in the 
server to bring it to the standby mode.  

 

 
Figure 58 Hardware used in AR-based fatigue crack inspection 

 
Figure 59 Inspector opening the windows menu of the HL2 at the inspection site 

 

Server

Wi-Fi Router

HoloLens 2

Bridge Girder
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Figure 60 Inspector opening the AR software 

Step 2: Go to the inspection site and open the HL2’s main Windows menu. Figure 59 shows the inspector’s 
view when he was opening the HL2’s Windows menu near the bridge girder specimen at KU Structural Testing 
laboratory. Recorder view shown on the right half of the figure shows the recording camera view videotaping 
the entire bridge inspection process. Note that the two views are synchronized in the figure such that the 
inspector view on the left side of the figure is what inspector is looking through the HL2.    

Step 3: Open the AR software in the HL2. Figure 60 shows both the HoloLens view and the inspector 
when the AR software interface was opened.  

Step 4: Select the video recording length using the slide bar. Figure 60 shows both the HoloLens view and 
the inspector selecting the video recording length.  

Step 5: Move the software menu at a convenient location. Once the AR software is open, application menu 
will appear in-front of the inspector’s eyesight. Depending on the inspector’s preference, move the software 
menu near the target inspection region by gripping the pin button as shown in Figure 62. 

  

 
Figure 61 Inspector selecting video recording length using the slide bar 

 
Figure 62 Inspector moving the AR software menu at a convenient location for inspection 
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Step 6: Collect the video by hitting the ‘Video Upload’ button. The inspector can start collecting the video 
after getting in the right position for the crack inspection. A video of selected length is automatically collected 
by hitting the ‘Video Upload’ button. This step is demonstrated by Figure 63.  

Step 7: Once the video is recorded, it will be sent to the laptop/server for crack detection using MATLAB. 
This step is demonstrated by Figure 64.  

Step 8: Once the video is processed in near-real time (around 30 seconds), the results of detected crack 
corresponding to a range of threshold values are sent to the HL2 as holograms. The inspector can then select a 
specific threshold value to see the crack detection result. For example, as shown Figure 65, the inspector first 
selects the zero-threshold value to inspect the initial feature points from the region analyzed. Then as 
demonstrated in Figure 66 to Figure 70, the inspector selects higher threshold values and inspects the detected 
fatigue crack results. In this process the inspector changed his position multiple time and could still see the 
fatigue crack feature points anchored on top of the crack, demonstrating the effectiveness of the developed AAS 
for hologram anchoring. As shown in Figure 70, the crack was successfully identified based using the developed 
AR-based tool.  

 

 
Figure 63 Inspector collecting a video for crack detection 

 
Figure 64 MATLAB crack detection algorithm running on the laptop/server  
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Figure 65 Inspector selecting the zero-threshold value to see the whole region analyzed for crack 

detection 

 
Figure 66 Inspecting the initial feature point cloud detected from the inspected region 

 
Figure 67 Inspector selecting a higher threshold value 

 
Figure 68 Inspecting the detected crack with a higher threshold value 
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Figure 69 Inspector selecting the final threhosld value 

 
Figure 70 Inspecting the detected crack with the final threhosld value  

Field Implementation 

A field test was conducted to validate the developed fatigue crack detection algorithm integrated with AR 
application in near real-time. Figure 71 shows a group photo of the joint KU-UNM team in the field. Kansas 
DOT (KDOT) provided the bucket truck pictured in the background to bring the team members to reach target 
regions of the bridge girders for inspection. 

 

 
Figure 71 The joint KU-UNM team under the test bridge in the field 

The team visited a steel highway bridge designated the 70-105-41732-128 (eastbound) bridge on the I-70 
highway (Figure 72) near Kansas City, Kansas. The bridge has various types of out-of-plane fatigue cracks, with 
one example illustrated in Figure 73.  

 



51  

 
Figure 72 Span layout of the I-70 highway bridge with Span 3 selected for testing 

 
Figure 73 (a) Distortion-induced out-of-plane fatigue crack at the web-gap region, and (b) in-plane 

fatigue crack on the web 

The inspection process requires the HL2, a laptop as server, and a Wi-Fi router that connect the HL2 with 
the server. Figure 74 shows the bridge inspector (PhD student) wearing the HL2, a laptop and a Wi-Fi router 
placed in a basket attached to the bucket indicating all required items can be easily carried with the inspector 
for actual bridge inspection. The first step in the inspection process is to connect the HL2 and laptop to a common 
Wi-Fi router to establish communication between them. Once the HL2 and laptop were connected to Wi-Fi, the 
inspector reaches to the fatigue prone web-gap region in span 3 of the bridge using the bucket truck. All steps 
of the inspection process are shown in Figure 75 to Figure 88, in which two views are presented: 1) recorder 
view on the left-hand side and 2) HoloLens view on the right-hand side. The recorder view is from the video 
recorded using a mobile phone videotaping the inspector, and the HoloLens view records the mix-reality view 
the inspector saw from the HL2. Both videos were synchronized and stitched together side-by-side for better 
visualization and illustration of the entire bridge inspection process using the developed AR software.  

 

 
Figure 74 Bridge inspector preparing for the inspection process 

First, as shown in Figure 5, inspector opens the HL2 menu. Then, the inspector opens the AR software 
named ‘SCFKU’ (Figure 76). After opening the AR software, the inspector moves the software menu at a 
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convenient location (Figure 77). Figure 78 demonstrates the inspector selecting a proper length for video 
recording using the slide bar in the menu. For this particular test, the video recording length was selected to be 
9 seconds. After that, the inspector hit the video upload button (Figure 79) to start video recording, and Figure 
80 shows that inspector was looking at the web-gap region to record a video using the developed AR software. 
After the video was recorded, it was uploaded to the server where it was processed by MATLAB with the 
computer vision algorithm as shown in Figure 81. Upon completion of video processing, the results were 
transferred back to the HL2 and converted into holograms.  

 

 
Figure 75 Opening the HL2 menu 

 
Figure 76 Opening the AR software 

 
Figure 77 Moving the AR software menu to a convenient location 
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Figure 78 Selecting video recording length using the slide bar 

 
Figure 79 Hitting the video upload button to start recording 

 
Figure 80 Recording a video for fatigue crack detection using the HL2 

 
Figure 81 MATLAB crack detection algorithm running on the laptop/server simultaneously 

The inspector first selected 0 threshold value (Figures 82 and 83) to inspect the initial point cloud from 
the region (Figure 84). To separate feature points associated with fatigue cracks from those associated with non-
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crack regions, the inspector selected a higher threshold value of 0.2 (Figure 85) to see the reduced feature points 
(Figure 86). The projected feature points with a threshold of 0.2 are grouped in multiple clusters, but they still 
cover the entire region. Hence, the inspector selected a higher threshold value of 0.38 (Figure 87) and inspected 
the crack detection result projected on the bridge girder (Figure 88). With a threshold value of 0.38, the feature 
points were clustered along the edge of the connection plate, including the top horizontal edge and the angled 
edge, indicating there are differential movements between the connection plate and the bridge girder under 
traffic loading.  

 

 
Figure 82 Enabling the threshold button after the MATLAB processing is done 

 
Figure 83 Hitting the button with zero threshold value to see the whole region analyzed for crack 

detection 

 

 
Figure 84 Inspecting the initial feature points cloud detected from the inspected region 
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Figure 85 Selecting the threshold value of 0.2 

 
Figure 86 Inspecting the crack detection result for threshold value of 0.2 

 
Figure 87 Selecting the threshold value of 0.38 

.  

Figure 88 Inspecting the detected crack area with threshold value of 0.38 
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As shown in Figure 88, there are two distortion-induced fatigue cracks marked by previous KDOT 
inspections, including a vertical crack along the weld toe between the web and connection plate and a horizontal 
crack between the top flange and the web. However, the fatigue cracks were not picked up by the feature points 
due to their very small openings under the traffic loading, while the movement of the connection plate against 
the bridge girder, although very small as well, has been detected, as evidenced by the feature points clustered 
along the edges of the connection plate. The small opening of the fatigue crack could be attributed to the lack 
of adequate loading from the traffic during the field test and the high level of redundancy for the steel bridge. 
Overall, this field inspection offers practical insights for the proposed idea in the following three aspects:  

 
1) The result proves the effectiveness of the proposed crack detection concept by detecting differential 

surface motions.  
2) The result also highlights the challenge for field implementation especially for fatigue cracks that 

experience extremely small openings under operational loadings.  
3) This field test also demonstrates the seamless flow of the developed AR-based software integrated with 

computer vision algorithms and many features to support human-centered bridge inspections.  
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PLANS FOR IMPLEMENTATION 
The laboratory and field validations demonstrated the potential and revealed areas for improvement of the 
developed AR-based tool in facilitating human-machine collaboration for efficient fatigue crack inspections of 
steel bridges. First, both the laboratory and field implementations show that the AR software seamlessly 
integrated the computer vision algorithm into an interactive AR environment utilizing cloud database and 
holograms and achieved near real-time delivery of results for field inspections.  Second, the laboratory tests 
using both 2D and 3D fatigue crack setups validated the effectiveness of the developed video-based computer 
vision algorithms to detect active fatigue cracks through surface motion tracking and analysis. Third, the field 
tests also revealed some practical challenges in detecting fatigue cracks with low opening and closing 
movements, possibly due to the lack of adequate loading from the traffic and high level of redundancy in the 
bridge structure. In addition, the AR software needs further development to fully support human-centered bridge 
crack detection, documentation, and decision making. The team has both short-term and long-term plans to 
continue to improve the developed AR-based fatigue crack inspection tool. 

In the short term (12~18 months), the team will explore several ways to continue to improve the accuracy 
of the video-based fatigue crack detection algorithm. The field tests showed that the video-based algorithm 
needs more accurate surface motion tracking to detect very small fatigue crack movements. Feature tracking 
can be improved by 1) introducing additional surface texture possibly through sprayable patterns, 2) introducing 
more robust quality indicators for feature point detection and tracking, and 3) improving the video pixel 
resolution using a sperate high-resolution camera which can also be placed closer to the structure surface. In 
addition, the team plans to further develop the AR software, in particular the auto anchoring system (AAS) for 
its spatial accuracy in 3D positioning and dimension.   

In the long term, the team would like to include other types of crack detection algorithms in the software 
to expand its damage detection capability. For example, in addition to the current video-based algorithms for 
fatigue crack detection, image-based algorithms for detecting deteriorations and damages for both steel and 
concrete structures can be included. Moreover, the team also plans to continue to reduce the computational cost 
of these algorithms such that they can be directly implemented within the mixed reality device using the limited 
processing power. Having the on-board processing capability will avoid the need for a separate server and the 
hotspot, greatly increasing the flexibility and efficiency of field inspection using the AR-based tool.  

Finally, Kansas DOT has been very supportive for our field testing of the developed inspection tool. The 
team will continue to engage Kansas DOT and our other industry and government partners to seek further 
development and testing opportunities. In addition, the research team will continue to disseminate the results to 
other state DOTs through various venues such as the AASHTO (American Association of State Highway and 
Transportation Officials) committees and the TRB (Transportation Research Board) annual meetings.  
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CONCLUSIONS 
Advances in computer vision have provided cost-effective, rapid, and non-contact solutions for structural health 
monitoring. The objective of this research project is to integrate computer-vision-based motion tracking and 
augmented reality techniques to empower bridge inspectors to perform fatigue crack detection, tracking, and 
characterization. To this end, fatigue crack detection algorithms have been developed based on feature point-
based motion tracking of structural surface and AR-based human-centered platform has been created to project 
the detection result as holograms on top of the physical view. In this project, we proposed two strategies to 
enable fatigue crack detection using video-based computer vision. The first strategy is based on surface 
displacement tracking and utilizes global motion compensation approaches to remove camera motion from 2D 
and 3D videos. The second strategy is based on surface distance tracking which avoids the need for global 
motion compensation, hence demonstrating higher computational efficiency for near real-time crack detection. 
AR software integrating vision-based crack detection algorithm has been developed to enable bridge inspector 
perform fatigue crack inspection using mixed-reality device such as Microsoft HoloLens2. The conclusions of 
the research are summarized as follows: 
 

1. Videos recorded from non-stationary platforms such as mixed-reality headsets have camera induced 
global motion. Laboratory testing based on C(T) and bridge girder specimens demonstrated that GMC 
is necessary to detect the fatigue crack successfully using feature point displacement-based method with 
unstable videos. The proposed GMC methods were effective at removing camera motion from 2D and 
3D videos. The developed displacement-based crack detection algorithm successfully detects in-plane 
and out-of-plane fatigue cracks. However, the computation time for crack detection using GMC and 
displacement-based method is as high as 1.75 seconds per frame using a machine with intel i9 processor 
and 64 GB of RAM, making it challenging for near real-time fatigue crack inspection.  

2. To facilitate near real-time crack detection, a novel feature point distance-based approach was 
developed. The differential motion due to crack movement is detected by analyzing distance between 
feature pairs on the surface, thus avoiding the need for GMC. The proposed method was validated in 
laboratory testing for near real-time fatigue crack detection in 2D and 3D videos. The computation time 
for the distance-based approach is 0.2 seconds per video frame, making it suitable for near real-time 
fatigue crack inspection. This approach was integrated with the AR software for fatigue crack detection. 

3. A method was developed to quantify the detected crack using discrete feature points over continuous 
fatigue crack. The proposed crack detection approach had an IOU score as high as 0.77 implying the 
robustness of the crack detection algorithm in laboratory setting.  

4. AR software integrating computer vision-based crack detection algorithm was developed for human-
machine collaboration. A novel AAS system was developed through an invisible rectangle to overcome 
challenges in HL2’s 3D mapping and to anchor the hologram in the right location and orientation. The 
AAS system is practical for inclined surfaces as well as surfaces perpendicular to user’s line of sight. 
The AAS system was validated in both laboratory and field tests.  

5. The developed AR software was successfully tested in the laboratory on a half-scale bridge girder 
specimen. This proof-of-concept testing shows that the developed AR-based fatigue crack inspection 
tool integrated with computer vision techniques is functioning seamlessly and smoothly, achieving the 
originally proposed goals. 

6. The field test demonstrated the seamless flow of the developed AR-based software integrated with 
computer vision algorithms and the many features to support human-centered bridge inspections. The 
result proved the effectiveness of the proposed crack detection concept by detecting differential surface 
motions. The result also highlighted the challenge for field implementation especially for fatigue cracks 
that experience extremely small openings under operational loadings. Further research is needed to 
continue to improve the AR-based software and the crack detection algorithm.  
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APPENDIX A:  RESEARCH RESULTS 
 

Sidebar Info 
Program Steering Committee: NCHRP IDEA Program Committee 
Month and Year: December, 2022 
Title: Fatigue Crack Inspection Using Computer Vision and Augmented Reality 
Project Number: NCHRP IDEA 20-30/IDEA 223 
Start Date: January, 1, 2020 
Completion Date: December, 31, 2021 
Product Category: New tool 
Principal Investigator: Jian Li, Associate Professor 
Institution: University of Kansas 
E-Mail: jianli@ku.edu 
Phone: +1 (785) 864 6850 
 
TITLE: Fatigue Crack Inspection Using Computer Vision and Augmented Reality 
SUBHEAD: This project proposed human-machine collaboration by integrating computer vision and 
augmented reality for robust fatigue crack inspection of steel bridges.  
 
WHAT WAS THE NEED?  
Fatigue cracks developed under repetitive traffic loads are a major threat to maintaining the structural integrity 
of steel bridges. In fact, it is believed that 50~90% of all mechanical failures in metallic structures are fatigue-
related. The collapse of the Silver Bridge and the Mianus River Bridge are among the most well-known bridge 
failures directly caused by fatigue. Human visual inspection is currently the de facto approach for fatigue crack 
detection because as of today, administrations strongly rely on the experience of the experts to maintain their 
bridges. Federal mandate requires typical visual inspection of fatigue cracks. However, due to human limitations 
and the complex nature of bridge structures, fatigue crack inspections are time consuming, labor intensive, and 
lack reliability. Although non-destructive testing (NDT) techniques such as ultrasonic testing and acoustic 
emission have been used as supplemental methods to human visual inspection, they require complex testing 
equipment, and thus are not broadly used. As a result, inspecting the large steel bridge inventory in the United 
States remains a great challenge due to the lack of a human-centered, efficient, and cost-effective methodology 
for detecting, tracking, and documenting fatigue cracks. On the other hand, if crack inspections could inform 
the inspector in the field, more reliable, efficient, and accurate assessment of the inventory could be achieved 
and documented. 
 
WHAT WAS OUR GOAL? 
The objective of the research was to develop augmented reality software integrating vision-based crack detection 
algorithm to enable human-machine collaboration for bridge inspectors to perform robust fatigue crack 
detection, characterization, tracking, and documentation in the field.  
   
WHAT DID WE DO? 
Global motion compensation methods were first proposed to remove camera motion from 2D and 3D videos 
recorded using non-stationary platforms such as mixed reality headsets. Global motion compensation is 
necessary to accurately analyze surface motion for fatigue crack detection using feature point displacements.  
The displacement-based approach of crack detection was validated in the laboratory setup for fatigue crack 
detection in 2D and 3D videos. However, the computational cost was very high making it unsuitable for near 
real-time crack detection. To perform near real-time crack detection, a novel approach based on tracking 
distance between feature point pairs was developed to avoid the need for GMC. As a result, the computation 
time was significantly reduced, making it suitable for near-real time crack detection. Augmented reality software 
was developed to project the crack detection result as holograms on top of the real-world structure. An 
innovative automatic anchoring system (AAS) was developed to anchor the hologram in the right location and 
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orientation. The software also enables human-machine interaction for selecting the optimal crack detection 
result.  

 
Figure 1: The developed AR software interface   

 
WHAT WAS THE OUTCOME? 
The validation of proposed integrated tool was performed both on individual components and as a whole system. 
The vision-based fatigue crack detection approach was validated in the laboratory for in-plane and out-of-plane 
fatigue crack detection. The feature point displacement-based approach successfully detected fatigue crack after 
applying the global motion compensation. The novel distance-based crack detection method achieved higher 
accuracy of crack detection in significantly less time compared to the displacement-based algorithm. The 
accuracy of the detected crack was as high as 0.77 indicating effectiveness of the proposed algorithm. The 
automatic anchoring system was first validated through field testing on a simulated crack. The system 
successfully anchored the hologram of the detected crack on the created 2D and 3D crack benchmarks. The 
software as a whole was tested in the laboratory bridge girder setup. This proof-of-concept testing shows that 
the developed AR-based fatigue crack inspection tool integrated with computer vision techniques is functioning 
seamlessly and smoothly, achieving the originally proposed goals. The field test further demonstrated the 
seamless flow of the developed AR-based software integrated with computer vision algorithms and many 
features to support human-centered bridge inspections. The result proves the effectiveness of the proposed crack 
detection concept by detecting differential surface motions. The field testing also highlights the challenge for 
field implementation especially for fatigue cracks that experience extremely small openings under operational 
loadings. 
 

 
Figure 2: Fatigue crack inspection using developed AR-based tool  

 
WHAT IS THE BENEFIT? 
This project developed and validated a human-machine collaboration to empower bridge inspectors to perform 
robust fatigue crack detection, characterization, and tracking. It can help bridge inspectors improve the 
efficiency and accuracy of fatigue crack inspection in the field.  
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