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EXECUTIVE SUMMARY 

Machine learning (ML) and artificial intelligence (AI) have significantly impacted numerous 

fields through their ability to tackle challenges with remarkable computational efficiency. In bridge 

engineering, ML/AI techniques have been employed to enhance the efficiency of the structural 

design phase, aid in the selection of optimal bridge types, produce cost estimates, conduct real-

time structural health monitoring, predict structural response and deterioration, reconstruct data 

for comprehensive health assessment, and prioritize maintenance efforts.  

This research project applied ML/AI techniques to automate the process of extracting data and 

features from drawings, tables, and text blocks contained in bridge plan sets using state-of-the-art 

deep learning algorithms. The research was motivated by the critical need to report bridge 

inventory information to the Federal Highway Administration (FHWA) in compliance with 

National Bridge Inspection Standards (NBIS) reporting requirements.  

The research ultimately produced a novel computational platform that automates the process 

of reviewing bridge plans to identify, extract, and report select engineering details. A holistic 

review of a variety of bridge plans was first performed to identify and categorize engineering 

details of interest. Convolutional neural network (CNN) algorithms were then used to automate 

the process of detecting physical objects of interest in bridge plans, identifying the types of the 

objects, and extracting the objects’ main dimensions and details. Because bridge plans often 

contain various tables with important information about a variety of engineering details, tables 

were also located, the boundaries of each table’s cells were identified, and necessary data points 

were extracted and reported in an editable format. The process was also extended to enable the 

extraction of textual information from text blocks in bridge plans. The automated identification 

and transfer of data and features from bridge plans to spreadsheets greatly facilitated post-

processing activities related to querying information or identifying quantities of interest.  

The project also involved testing, assessment, and quality control of the developed 

computational platform using bridge plans provided by the Iowa and California Departments of 

Transportation. The accuracy and speed of the algorithms in extracting information were 

systematically evaluated through a verification stage, which ensured that the correct outputs were 

returned from a set of bridge plans that had been used to train the algorithms, and a validation 



7 

stage, which tested the platform’s performance using a different set of bridge plans. The generated 

outputs were compared to those obtained from manual extraction to identify and address possible 

errors. The platform was able to extract information successfully for the majority of the queries it 

was given, demonstrating the feasibility of using a computational platform to automate the 

extraction of data and features from bridge plan sets. 

Although the automated extraction of details from engineering documents can be a 

complicated task for machines due to the complex nature of plan sets, a combination of several 

deep learning models and various image processing techniques provided a platform to successfully 

extract details of interest. Moreover, using the general models and functions developed in this 

research, the platform can be customized for different transportation agencies, following their 

formats and practices to provide bridge details in their plan sets.  
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1. INTRODUCTION 

1.1. OVERVIEW 

The emergence of machine learning (ML) and artificial intelligence (AI) has significantly 

impacted various fields, prompting widespread interest in the use of ML/AI techniques to improve 

processes. Meanwhile, there is growing interest within the bridge engineering community to tap 

into extensive databases for information, prompting exploration into the application of ML/AI for 

this purpose across various domains. ML/AI especially stands out for its ability to tackle challenges 

with remarkable computational efficiency. Recent endeavors in bridge engineering have centered 

on using ML/AI for preliminary design, construction, structural health monitoring, and 

maintenance. ML/AI techniques have been employed to enhance the efficiency of the structural 

design phase, aid in the selection of optimal bridge types, estimate costs, conduct real-time 

structural health monitoring, predict structural response and deterioration, reconstruct data for 

comprehensive health assessment, and aid maintenance planning efforts by evaluating structural 

health conditions and prioritizing maintenance efforts.  

1.2. RESEARCH NEED AND MOTIVATION 

The motivation for this research project lies in the critical need to report bridge inventory 

information to the Federal Highway Administration (FHWA) in compliance with National Bridge 

Inspection Standards (NBIS) reporting requirements. The data collected from each State 

department of transportation (DOT), Federal agency, and Tribal government contribute to the 

National Bridge Inventory (NBI) database. This comprehensive database not only enables State- 

and National-level analyses but also supports Federal funding programs.  

The diverse information items that should be documented during bridge inspections are 

outlined in the American Association of State Highway and Transportation Officials (AASHTO) 

Manual for Bridge Evaluation (MBE). Both the MBE and the FHWA Bridge Inspector’s 

Reference Manual (BIRM) provide guidance on inspection procedures and the creation of 

comprehensive reports pertaining to bridge components. These reports serve as the foundation for 

reporting values associated with the numerous data items specified in the MBE and BIRM. State 

DOTs, Federal agencies, and Tribal governments use their own names and codes for many of these 
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data items but follow the standard reporting specifications when reporting NBI data to FHWA. 

The objective of adhering to these standards is to establish a robust system that not only complies 

with regulatory requirements but also contributes to the overarching goal of ensuring a safe and 

efficient highway transportation system (FHWA 2022). 

1.3. RESEARCH OBJECTIVES 

This project developed a novel computational platform that automates the process of reviewing 

bridge plans to identify, extract, and report select engineering details. The project focused on 

automating the data and feature extraction process from drawings and tables contained in bridge 

plans using state-of-the-art deep learning algorithms. A holistic review of a variety of bridge plans 

was first performed to identify and categorize engineering details of interest. Convolutional neural 

network (CNN) algorithms were then used to automate the process of detecting physical objects 

of interest in bridge plans, identifying the types of the objects, and extracting the objects’ main 

dimensions and details. The details of interest ranged from geometric dimensions (e.g., height and 

width) to reinforcement properties (e.g., size and length of rebars). Because bridge plans often 

contain various tables with important information about a variety of engineering details, tables 

were also located, the boundaries of each table’s cells were identified, and necessary data points 

were extracted and reported in a desired editable format (in this case, an Excel spreadsheet). The 

process was also extended to enable the extraction of textual information from text blocks in bridge 

plans. The automated identification and transfer of data and features from bridge plan sets to 

spreadsheets greatly facilitated post-processing activities related to making queries or finding 

quantities of interest.  

The project also involved testing, assessment, and quality control of the developed 

computational platform using a variety of bridge plan sets provided by the Iowa DOT and 

California DOT (Caltrans). The accuracy and speed of the algorithms developed for data and 

feature extraction from drawings, tables, and text blocks were systematically assessed. This 

assessment started from the verification stage to ensure that the automated platform was returning 

correct outputs for the bridge plans used in the training of the algorithms and involved a variety of 

desired outputs with both single- and multi-source characteristics. The quality control effort was 

then extended to the validation stage, in which the developed platform was tested on several bridge 
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plans not used for training purposes. The generated outputs were compared to those obtained from 

manual extraction to identify and properly address possible errors and bugs.  

The final report for this project presents relevant data, methods, models, and conclusions and 

provides guidance on how to use the developed computational platform to automate the process 

required to extract the data and features of interest from bridge plan sets. 

1.4. REPORT OUTLINE 

This report is organized into chapters that correspond to the different tasks that were completed in 

order to accomplish the research objectives. The introduction (Chapter 1) explains the significance 

of automating bridge engineering tasks, highlights the specific research needs, and outlines the 

research objectives. Chapter 2 provides a comprehensive literature review covering image 

processing methods for computer vision tasks, deep learning algorithms relevant to computer 

vision, and information extraction from engineering drawings. Chapter 3 describes the 

methodology used for this project, beginning with the data collection process and outlining the 

development of the deep learning models. Specific attention is given to general functions, 

including table recognition, dimension line recognition, and text detection. Chapter 4 details the 

data extraction pipelines, explaining the features and assumptions of bridge plan sets, including 

general introductory information, bridge properties, main dimensions, and additional details, while 

describing quality assurance/quality control checks. Chapter 5 provides the conclusions of the 

research efforts and offers recommendations for next steps. 
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2. LITERATURE REVIEW 

2.1. IMAGE PROCESSING STEPS FOR COMPUTER VISION TASKS 

Computer vision is a specialized field in the ML/AI domain dedicated to extracting meaningful 

information from images. Image processing is a set of different computer vision techniques that 

manipulates and analyzes the images to improve their quality, extract valuable features, and 

facilitate automated interpretation. The significance of image processing for computer vision was 

explored through a literature review, focusing on various common techniques. Image processing 

employs several fundamental techniques that are useful while dealing with bridge plan sheets. Key 

image processing techniques include the following: 

1. Filtering and Convolution. Filtering operations, including blurring, sharpening, and reducing 

noise, are fundamental techniques applied to images through convolution. Convolution 

involves the systematic application of a filter or kernel over an image that performs 

mathematical operations on each pixel. This process facilitates improvements such as edge 

detection and texture removal. 

2. Contour Detection. Contour detection is a fundamental image processing technique aimed at 

identifying and highlighting the boundaries of objects within an image. This method is 

particularly useful for extracting the underlying structure and shape information. Contour 

detection algorithms focus on locating areas where pixel intensity changes abruptly, revealing 

the outlines of objects, curves, and shapes.  

3. Edge Detection. Edge detection algorithms play a crucial role in identifying image boundaries 

and significant transitions. These algorithms emphasize areas in which intensity changes 

rapidly, such as edges, curves, or contours.  

4. Image Transformation. Image transformation techniques involve manipulating the geometric 

properties of images to achieve specific objectives. Operations such as rotation, scaling, 

translation, and displacement enable tasks like image alignment, registration, and perspective 

correction. These transformations facilitate adjustments in image orientation, size, and spatial 

relationships. 

5. Morphological Transformation. Morphological transformations are essential image 

processing operations designed to manipulate the shape and structure of objects within an 
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image. These operations involve the use of structuring elements like kernels to perform 

dilation, erosion, opening, and closing operations. Dilation expands the boundaries of objects, 

while erosion shrinks them. Opening is a combination of erosion followed by dilation, often 

used to remove noise and fine details, while closing involves dilation followed by erosion, 

useful for closing small gaps and filling holes in objects. Morphological transformations are 

crucial for tasks such as noise reduction, feature extraction, and shape analysis. 

6. Image Segmentation. Image segmentation involves dividing an image into distinct regions 

based on visual characteristics, allowing separation of objects from the background or division 

into significant regions. Common segmentation methods include thresholding, region growing, 

clustering, and graph-based algorithms. This step is essential in various computer vision tasks, 

such as object detection, image annotation, and semantic understanding. 

7. Template Matching. Template matching is a powerful image processing technique employed 

for recognizing specific patterns or objects within an image. This method involves comparing 

a predefined template, which represents the target pattern, with different regions of the input 

image. The goal is to identify areas where the template closely matches the local image content. 

Common similarity measures, such as cross-correlation and normalized cross-correlation, are 

often used to quantify the resemblance between the template and image regions. While 

straightforward in concept, template matching requires careful consideration of scale, rotation, 

and lighting variations to achieve robust and accurate results. 

These techniques were employed in various sections of the pipeline developed in this project 

to enable the platform to address different aspects of feature extraction from complicated images 

of bridge plan sets.  

Contour detection is a core technique used while handling tables to extract crucial information 

such as reinforcement properties. Contour extraction, essential for precise measurements, involves 

obtaining the object outline from an image. In the context of computer vision measurement, where 

images typically feature two targets (work pieces) and a background, the gray threshold method 

for image segmentation was shown to be a useful method by Cui and Zhang (2013). Mathematical 

morphology’s nonlinear filtering properties were utilized to eliminate defects and noise in binary 

images. The contour was extracted from binary images using the hollowed interior points method, 

and the contour information was saved using chain code tracking. The working process involved 
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initial noise filtering through image preprocessing, followed by threshold-based image 

segmentation to obtain a binary image. The outline points were derived through flaw repairing 

treatment, resulting in image contour extraction (target outline), and the final step involved storing 

the outline in chain code format using the contour tracking algorithm (Figure 2.1). This approach 

enhanced the reliability and convenience of outline processing and measurement. 

 

Cui and Zhang 2013 

Figure 2.1. Contour extraction based on gray threshold 

Hashemi et al. (2016) provided an overview of template matching techniques, emphasizing 

their role in various applications such as image processing, computer vision, and medical image 

analysis. The techniques were used to match templates (patterns) within larger images, allowing 

for tasks like object recognition and feature extraction. The key template matching techniques were 

as follows: 

1. Naive Template Matching. Naive template matching involves scanning a target image with a 

template, calculating similarity measures, and identifying potential pattern positions. This 

straightforward algorithm is efficient when dealing with sub-images from the target image 

without scaling or manipulation. Error metrics like sum of squared differences (SSD) are 

commonly used to calculate differences between target and template images. 

2. Image Correlation Matching. This classic template matching method involves measuring the 

similarity metric between the target and template images. Cross-correlation and normalized 

cross-correlation are commonly used metrics. Normalized cross-correlation is invariant to 

global brightness changes and provides normalized correlation values in the [-1, +1] interval, 

making it widely used for template matching. 
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3. Sequential Similarity Detection Algorithms (SSDAs). SSDAs offer an efficient alternative 

to correlation-based methods for translational registration. They calculate the match indirectly 

based on pixel-wise errors in images under comparison during the registration process. 

The referenced study also addressed the challenges in template matching, such as image 

intensity and scale invariance. Methods like mean intensity level invariance and scale invariance 

were discussed to address these challenges, providing solutions for certain types of template 

matching problems. 

Edge detection plays a crucial role in image analysis, serving as a fundamental operation for 

identifying object boundaries. Shah et al. (2020) explored various algorithms aimed at enhancing 

and detecting edges in images, considering the importance of accurate edge detection that lies in 

its ability to pinpoint sharp discontinuities in pixel intensity that signifies object boundaries within 

an image. The study evaluated different edge detection techniques, considering challenges such as 

false edge detection, missing true edges, and the production of thick or thin lines due to noise. The 

study compared the following edge detection techniques:  

1. Sobel Operator. A traditional method in image processing, Sobel edge detection employs 

separable, small, and integer-valued filters for both x and y directions. The operator calculates 

the gradient magnitude and direction for each pixel using 3×3 kernels. 

2. Prewitt Edge Detection. Similar to Sobel, Prewitt is effective in detecting horizontal and 

vertical edges, providing the strength of edges based on maximum gradient points. 

3. Canny Edge Detector. A multi-step algorithm that effectively detects a wide range of edges 

while suppressing noise. It utilizes Gaussian filtering to smooth images and addresses the 

challenge of setting appropriate thresholds. 

4. Robert Edge Detection. A method that executes gradient detection using the difference 

between adjacent pixels in the diagonal direction. It computes horizontal and vertical edges 

individually and combines them for the final edge detection. 

5. Laplacian of Gaussian (LOG). A method that combines the Laplacian and Gaussian filtering 

techniques to detect edges effectively. It smoothens images and employs zero-crossing to 

locate edges, with a drawback of not determining edge orientation. 
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The techniques were categorized into three modules: gradient (first derivative estimate), 

Laplacian (zero-crossing detectors), and image approximation algorithms. A comparative study 

was conducted, including a quantitative evaluation using mean squared error (MSE) and peak 

signal-to-noise ratio (PSNR). The experimental results revealed that the Canny operator exhibited 

efficiency in detecting edges, outperforming other methods under various conditions. However, 

the choice of technique depends on the specific characteristics of the image and the desired 

outcomes. 

2.2. DEEP LEARNING ALGORITHMS FOR COMPUTER VISION TASKS 

Advances in deep learning and their applications in computer vision were reviewed in Sinha et al. 

(2017). The significance of deep learning in handling high-level hierarchical data, particularly in 

improving chip programming on low-cost computing hardware was highlighted. The referenced 

study categorized deep learning techniques into CNNs, recurrent neural networks (RNN), 

restricted Boltzmann machines (RBM), autoencoders, and extreme learning. The key points of the 

mentioned techniques are as follows: 

1. Convolutional Neural Networks. CNNs are considered significant for training multiple 

layers in various applications. The architecture includes convolutional layers, pooling layers, 

and fully connected layers. Convolutional layers reduce parameters through weight sharing, 

enabling local connectivity. Pooling layers minimize feature map measurements using 

approaches like stochastic pooling, spatial pyramid pooling, and def pooling. Fully connected 

layers, forming the final layer, involve a high computational burden during training (Figures 

2.2 and 2.3). 

 

Sinha et al. 2017 

Figure 2.2. Architecture of CNN 
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Voulodimos et al. 2018 

Figure 2.3. Architecture of CNN for a computer vision problem 

2. Recurrent Neural Networks. RNNs are employed for handling sequential data and time 

dependencies. They are suitable for applications such as translating natural languages, music, 

time-series data, and video processing. RNNs address long-time dependencies and offer good 

results in image captioning and analysis. 

3. Restricted Boltzmann Machines. RBMs, a generative random neural network technique, 

involves hidden and visible layers forming a bipartite graph. RBM architecture is discussed in 

the context of deep Boltzmann machines (DBMs), deep belief networks (DBNs), and deep 

energy models (DEMs). 

4. Autoencoders. Autoencoders are artificial neural networks used for training logical encodings. 

Various variants of autoencoders, including sparse autoencoder, denoising autoencoder 

(DAE), and contractive autoencoder (CAE), were discussed in Sinha et al. (2017). 

Autoencoders learn to reconstruct their own inputs, emphasizing features like sparsity, 

denoising, and contractive penalty. 

5. Extreme Learning. Extreme learning is a recent topic in machine learning, focusing on feed-

forward neural networks for regression and classification tasks. It involves a solitary layer of 

masked nodes with random weights for efficient learning. 

Object detection, a crucial facet of computer vision, involves the identification of semantic 

objects within digital images and videos (Figure 2.4).  
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Voulodimos et al. 2018 

Figure 2.4. Example of an object detector 

A prevalent methodology in object detection frameworks entails the generation of a 

comprehensive set of candidate windows, subsequently classified utilizing CNN features. The 

features are then input into a classifier to ascertain whether the windows detect the target object or 

not. Notably, methods following the regions with CNN often achieve good detection accuracies. 

However, ongoing efforts aim to refine the performance of these approaches, with some attempting 

to determine approximate object positions without precise localization. 

A noteworthy subset of methods combines object detection with semantic segmentation, a 

strategy demonstrated to yield favorable outcomes. The prevalent use of CNNs in object detection 

is evident in numerous works, where innovative layers and learning strategies are proposed, 

employing weakly supervised cascaded CNNs, and introducing subcategory-aware CNNs. Despite 

the prevalence of CNN-based approaches, a limited number of studies explore object detection 

using alternative deep models. Diao et al. (2016) introduces a coarse object locating method based 

on a saliency mechanism combined with a DBN for object detection in remote sensing images. A 

DBN was presented for three-dimensional (3D) object recognition, utilizing a hybrid algorithm 
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that integrates generative and discriminative gradients. Additionally, a fused deep learning 

approach, deep model representation capabilities in semi-supervised tasks, and autoencoders for 

multiple organ detection in medical images were explored.  

2.3. INFORMATION EXTRACTION FROM ENGINEERING DRAWINGS 

Extracting data and features from engineering drawings has gained popularity across engineering 

fields. This task helps engineers to extract the required information automatically, hence it 

increases the efficiency and accuracy of dealing with plan sets.  

In an early attempt to automate the feature extraction from drawings, Dori and Velkovitch 

(1998) studied the crucial role of recognizing dimensioning text in engineering drawings, which 

provided information about the dimensions and tolerances of depicted objects. The focus was on 

drawings following International Organization for Standardization (ISO) or American National 

Standards Institute (ANSI) drafting standards. The process involved orthogonal zig-zag 

vectorization, arc segmentation, arrowhead pair recognition, and initial textbox extraction through 

a region growing process on text-wire candidates. The drafting standard was determined based on 

the context of textboxes, and raw textboxes were logically divided and decomposed. A neural 

network-based optical character recognition (OCR) algorithm was applied to each basic textbox, 

and results were verified using contextual information and direct drawing measurements. The 

study presented an algorithm for the recognition of dimensioning text in engineering drawings. It 

also referenced recent successful work on vector-based segmentation but emphasized the need for 

combined efforts in segmentation and recognition improvement. Additionally, an automated 

updating mechanism for neural network weights after each verification process was proposed for 

self-teaching capabilities. 

Xu and Wu (2003) also provided a comprehensive review of the automatic recognition of 

dimension sets, detailing related computerization processes and outlining the syntax and semantics 

involved in the elements and classification of dimension sets. Classification of dimension sets are 

usually based on their semantics including longitude, angle, diameter, chamfer, etc. Arrowheads 

are an important dimensioning graphic that were classified into four types in the study: regular 

symmetric (RS), regular asymmetric (RA), irregular symmetric (IS), or irregular asymmetric (IA). 

The study discussed the application of web representation to illustrate dimension sets. This 
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included dimensioning grammar and text sub-grammar, hierarchically describing dimensioning 

components and their logical relationships. By recognizing text and arrowheads as inherent 

features of dimension sets, a specific vocabulary was defined to characterize components and their 

patterns. This vocabulary, along with dimensioning and text grammar, enabled the establishment 

of clear parsing rules. The study also provided the background on dimension set recognition 

techniques starting with text extraction. Pixel-level connected component (CC) on raster images 

to extract eight-connected components as text in addition to vector-based, morphological, and 

multi-stage relaxation methods were detailed.  

Ondrejcek et al. (2009) conducted a study to identify and maintain connections between 

engineering drawings and their modern equivalents, such as 3D computer-aided design (CAD) 

models. The study introduced a comprehensive prototype system named File2Learn, designed to 

(1) extract file system information, (2) conduct content-based analyses of two-dimensional (2D) 

engineering drawings and 3D CAD models, and (3) establish relationships among files through a 

semi-automated framework. The study assessed challenges related to the automation of 

information extraction, the organization and representation of extracted information, and 

information quality control. The automation challenge was addressed by scripting OCR operations 

using AutoHotKey scripts with the ABBYY OCR package. The organization and representation 

of information involved the adoption and extension of existing ontologies and the use of resource 

description framework. Information quality control was approached through an exploratory 

framework enabling editing of image areas and corresponding OCR strings. The prototype system 

was tested on 784 images of engineering drawings and over 22 CAD models. The results 

highlighted the manual and automated extraction of block and field coordinates, creation of master 

text files, and OCR processes. A prototype for information extraction was presented, emphasizing 

the need for manual preprocessing of real datasets due to the existence of non-standard blocks or 

block fields. The prototype, tested with engineering drawings and CAD models, helped detecting 

file relationships in a broader system. 

De et al. (2011) introduced an algorithm designed for the recognition of electrical symbols in 

digitized documents. The algorithm utilized morphological operations and geometric analysis to 

identify various classes of symbols. A distinctive feature of the algorithm involved the creation 

and utilization of three spaces: H-space, V-space, and C-space. These spaces contained horizontal 
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line segments, vertical line segments, and circuit symbols, respectively. Morphological operations 

built these spaces, and during geometric analysis, they were systematically searched and scanned 

to recognize symbols by validating the structural combination of their basic parts. The algorithm’s 

robustness, efficiency, and versatility were verified as well. Testing was conducted on digitized 

documents sourced from various books and periodicals. The morphological operations and 

geometric analyses in H-space, V-space, and C-space were successfully executed on these 

document sets. The study provided details on the segmentation algorithm’s application to a 

document page, resulting in the extraction of an engineering drawing and the associated H-, V-, 

and C-spaces. The detection of certain electrical symbols, such as earthing and multiple series-

connected batteries, was not covered in their implementation but could be addressed with 

appropriate geometric analysis. 

Datta et al. (2015) continued the previous study, focusing on the applications of decomposing 

and representing digital logic circuit drawings into a suitable vector format, critical for tasks such 

as data compression, storage, analysis, and editing. The study introduced an efficient method 

centered on segmenting and recognizing logic gate symbols from circuit drawing images. This 

segmentation process relied on morphological operations, followed by symbol identification using 

a decision tree classifier. The proposed method aimed to facilitate vectorization of circuit drawings 

by detecting information from segmented symbols and their connectivity matrices. The method’s 

effectiveness was evaluated on a dataset comprising 53 scanned images of various digital logic 

circuit drawings, demonstrating successful symbol detection and identification. Notably, the 

algorithm offered advantages such as independence from symbol orientations and a 

straightforward detection process based on three distinct features (Euler number, spike, and 

circularity). However, a limitation of the method was its inability to detect broken symbols. 

Ravagli et al. (2019) introduced a methodology for recognizing text in floor plan images, 

emphasizing the localization, reading, and categorization of text within these images to extract 

relevant building information. The primary focus was on comparing conventional text detection 

techniques, based on image processing, with contemporary methods such as CNNs. The paper 

aimed to enhance results by combining multiple methods to surpass the performance of individual 

ones. Text detection and text classification were two main modules of the system. Three different 

approaches were used to extract a list of rectangles around detected text regions, and then, a 
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combined method was used to discard false positives. Additionally, text regions were classified 

into four semantic classes based on their intended purpose. The experiments involved two datasets 

with distinct characteristics, including variations in quality and size. The study comprehensively 

addressed text extraction, classification, and recognition in floor plan images, showcasing the 

improvement of original methods through tailored pre and post-processing steps designed for this 

specific task. 

Jamieson et al. (2020) discussed the digitization of engineering drawings, particularly focusing 

on piping and instrumentation diagrams (P&IDs). These diagrams, crucial for identifying shapes, 

pipeline activities, and tags, often existed in an undigitized format. The paper reviewed recent 

advancements in deep learning, employing models for text detection and recognition to digitize 

text from complex engineering diagrams. A total of 172 complex P&IDs containing symbols, text, 

and connector lines were used as the dataset. For text detection in P&IDs, the Efficient and 

Accurate Scene Text (EAST) detector, which is a deep learning method, was employed. The EAST 

detector, chosen for its reported superior performance on various text detection tasks, outperforms 

other state-of-the-art methods in terms of F-score. In contrast to existing methods with multiple 

stages, EAST follows the process by directly producing text predictions from a single neural 

network, eliminating the need for intermediate steps like candidate proposals. The detector utilizes 

a fully convolutional network (FCN) based on the design of DenseBox, comprising a feature 

extractor stem, feature merging branch, and an output layer. The loss function used in training 

incorporates a balanced cross-entropy loss for the score map and a scale-invariant loss for 

geometry predictions. The EAST network is trained end-to-end using the Adam optimizer. For 

text recognition, long short-term memory (LSTM) networks were employed for recognizing text 

strings. The smallest available LSTM network in Tesseract was chosen for its processing speed. 

The combination of the EAST detector for text detection and LSTM-based text recognition was 

applied to digitize text from complex engineering diagrams, particularly P&IDs. The results 

indicated a 90% success rate in detecting text strings, including vertical instances, but challenges 

persisted, especially in scenarios with complex representations of text in close proximity to other 

drawing elements. The EAST detection model and LSTM-based text recognition showed 

promising results, as demonstrated by the experiments on a real-world P&ID dataset (Figure 2.5). 
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Jamieson et al. 2020 

Figure 2.5. Example of correct text detection and recognition 

The analysis of selected P&IDs revealed an average of 415 text instances per diagram, with 

90% successfully detected by the EAST model. However, challenges included false positive 

detections, where non-text elements were misidentified as text, occurring in approximately 4% of 

output detections. Additionally, 11% of text instances were not detected on average. The study 

highlighted challenges related to text detection, such as difficulties in distinguishing text from non-

text elements and issues with bounding box accuracy. Technical annotations, including line 

numbers, pose challenges when located close to other components. The study also addressed issues 

with text recognition, including instances of incorrect recognition, especially in vertical text 

instances. 

As part of the research on technology for the automatic conversion of image-format P&ID into 

digital P&ID, the study by Moon et al. (2021) proposed a method to recognize various types of 

lines and flow arrows within images. The proposed approach involved three main steps: 

preprocessing, detection, and post-processing. In the preprocessing step, the outer border and title 

box were removed. The detection step involved identifying continuous lines, line signs, and flow 

arrows indicating flow direction. An object-detection based technique was exploited for the second 

step that outperformed pixel processing-based methods. The RetinaNet algorithm was used to 

detect line signs and flow arrows. Post-processing adjusted line types based on detected line signs 

and merged recognized lines with flow arrows. The verification of the proposed method through a 

prototype system yielded high recognition performance, with an average precision of 96.14% and 

an average recall of 89.59% for nine test P&IDs. The uniqueness of this research was its capability 

to recognize various types of lines and flow arrows, extending beyond continuous lines. The 
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method incorporated techniques such as line thinning, pixel processing, and Hough transform for 

detection. Figure 2.6 shows the results of line recognition techniques for a test image.  

 

Moon et al. 2021 

Figure 2.6. Test example of the line recognition model  

Automatic floor plan analysis has gained attention, with many studies focusing on experiments 

utilizing simplified floor plan datasets characterized by low resolution and a small housing scale. 

However, for practical applications, especially in the context of large-scale complex buildings, 

there is a need to shift the emphasis toward utilizing indoor structures, such as reconstructing multi-

use buildings for indoor navigation. A study by Kim et al. (2021) addressed this gap by introducing 

a framework employing CNN models to analyze floor plans across various scales of complex 

buildings. The framework divided floor plans into normalized patches, allowing the CNN model 

to process inputs of varied scale or high resolution, a challenge faced by existing methods. The 

model detected building objects per patch, assembled them into a unified result using 

corresponding translation matrices, and vectorized the detected building objects, considering 

compatibility in 3D modeling. The model was trained on 200 Seoul National University building 

floor plan images and tested on 30 extra images. The framework included normalized patch 

extraction, floor recognition based on patches, and indoor model generators. Despite the 

complexity of the data used, the framework exhibited similar performance to existing studies with 

a detection rate of above 87% and recognition accuracy of above 85%. The practical implications 

of the study included (1) enabling the automatic extraction of indoor elements from complex and 

varied floor plan images, (2) extracting elements for both interior space geometry and connectivity 

with other floors, and (3) facilitating the reconstruction of indoor space in a standardized format 

for various purposes.  
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Scheibel et al. (2021) introduced DigiEDraw, presenting both a conceptual approach and a 

prototype aimed at extracting dimensioning information from drawings and integrating this data 

into the production process for enhanced and optimized quality control. The extraction process 

was founded on 2D clustering, utilizing density-based spatial clustering of applications with noise 

(DBSCAN) as a method to distinguish clusters representing different dimensioning information 

and achieving a recall value exceeding 88%. The goal of the proposed algorithm was to detect and 

extract text elements from drawings into dimension sets. The model consisted of preprocessing, 

clustering, and postprocessing steps. For the preprocessing step, the portable document format 

(PDF) version of the drawing was fed into the model, and then it was converted to HyperText 

Markup Language (HTML) to extract the text elements and bounding boxes. Several methods were 

evaluated for the clustering task, resulting in choosing DBSCAN as the desired method to combine 

extracted elements from a previous step into connected groups. The clusters were then post-

processed in terms of data cleaning and element sorting.  

Van Daele et al. (2021) introduced a tool designed to automate the interpretation of various 

components within technical drawings, enabling automatic reasoning and machine learning on a 

large technical drawing database. The tool aimed to facilitate tasks such as identifying designs and 

recognizing patterns in successful designs. The proposed method incorporated both neural and 

symbolic approaches. Neural methods were employed for visual image interpretation and 

recognition of parts within 2D drawings, while symbolic methods handled the relational structure 

and comprehension of data within complex tables present in technical drawings. The output from 

this method could be used to build a similarity-based search algorithm. A CNN model was trained 

on 318 images and tested on 53 examples. The study introduced five key contributions: (1) the use 

of inductive logic programming (ILP) to learn parsers for data extraction from tables, (2) a 

bootstrapping learning strategy for ILP, (3) a deep learning architecture for meaningful 

summarization of CAD drawings, (4) a similarity measure for identifying related technical 

drawings in a database, and (5) the demonstration of the method’s efficacy through experiments 

on a real-world dataset. 

Xie at al. (2022) proposed a computational framework aimed at automatically identifying 

appropriate manufacturing methods for queried engineering drawings, such as lathing, sheet metal 

bending, and milling. The framework involved a series of preprocessing steps and a graph neural 
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network to accurately determine manufacturing methods. These steps included a line tracing 

algorithm for transforming complex geometries into vectorized line segments with minimal 

information loss. An efficient image segmentation network isolated shape contours, followed by a 

graph neural network to detect and remove dimension lines. CascadeTabNet, which is a neural 

network, was used to segment drawing shapes from boxed text. Line thinning and vectorization 

processes were employed to convert shapes into vectorized line segments, enhancing storage 

efficiency and eliminating blank spaces while retaining geometric details. Dimension lines were 

then removed using graph-based methods to avoid interference in subsequent manufacturing 

process identification. A graph neural network classified the part’s manufacturing process based 

on identified centerlines, employing differentiable pooling to extract global features. This 

hierarchical graph neural network provided accurate classification results. The proposed solution 

aimed to automate the quoting process for rapid manufacturing platforms, addressing the challenge 

of efficiently sorting engineering drawings by their required manufacturing methods. The 

framework was validated using a dataset compiled to demonstrate its accuracy in sorting 

engineering drawings by manufacturing methods.  
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3. METHODOLOGY 

3.1. DATA COLLECTION 

Datasets play a pivotal role in the success and efficacy of deep learning projects, serving as the 

foundation upon which neural networks learn and generalize patterns. The quality, size, and 

diversity of a dataset directly impact the model’s ability to understand complex relationships 

within the input data. A well-curated dataset ensures that the model encounters a representative 

sample of the real-world scenarios it is designed to handle, allowing it to generalize effectively to 

new, unseen data. Additionally, a diverse dataset helps the model adapt to various conditions, 

enhancing its robustness and applicability. The process of training a deep learning model involves 

adjusting its parameters based on the information present in the dataset, making it imperative to 

have a comprehensive and accurately labeled dataset. 

The data collection process for this project involved sourcing information from the bridge plan 

sets from Iowa DOT and Caltrans. The initial phase of data acquisition involved extracting 

information from PDF files. To facilitate the deep learning model training, the PDFs were 

converted into image formats, providing a standardized and computationally efficient input for the 

neural network models. This conversion allowed for the preservation of the visual information 

embedded in the plans, ensuring that the models could learn and recognize structural features 

effectively. Converting all plan sets to individual images provided the data points required to 

perform various deep learning trainings.  

To create a well-organized and informative dataset, different classes were defined based on the 

distinctive features and attributes present in the bridge plan sets. These classes could include 

various structural elements or design specifications relevant to the analysis goals of the project. 

The careful definition of classes ensures that the models can categorize the diverse components 

within the dataset accurately. Subsequently, multiple deep learning models were developed, each 

tailored to address specific classification tasks within the defined classes. The diversity of the 

dataset enables the models to learn and generalize effectively, contributing to their overall 

robustness in handling various scenarios and structural configurations. The iterative development 

process involved continuous refinement of the models. Figure 3.1 illustrates examples of images, 

i.e., bridge plan sheets, from two different States: Iowa and California. 
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Figure 3.1. Data point examples from Iowa (top) and California (bottom) 
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3.2. DEEP LEARNING MODELS 

Data labeling is a crucial step in the training process of computer vision models. It involves 

annotating raw data to provide supervised learning algorithms with labeled examples that facilitate 

pattern recognition. Data labeling typically involves outlining and identifying objects of interest 

within images, defining their boundaries and categories. Accurate and comprehensive data labeling 

is essential for the model to learn and generalize effectively. The quality of labeled data directly 

influences the model’s ability to detect and classify objects accurately during inference. Manual 

labeling by human annotators or automated labeling tools is common, and the choice depends on 

factors such as dataset size, complexity, and the required precision.  

The methodology employed in this study utilizes a comprehensive platform designed for image 

dataset management, annotation, and preprocessing. The integration of this platform into the image 

labeling process is fundamental to enhancing the efficiency of dataset preparation for subsequent 

deep learning model training. Image labeling functionality relies on a user-friendly annotation 

interface. Annotators utilize this interface to mark objects of interest within images, defining 

bounding boxes or segmentation masks as necessary. The platform supports multiple annotation 

formats, ensuring flexibility and compatibility with various deep learning frameworks. The dataset 

versioning and management capabilities are also critical for maintaining version control and 

ensuring the reproducibility of experiments. The platform enables users to track changes, revert to 

previous dataset versions, and maintain a comprehensive history of modifications, contributing to 

overall project organization and reproducibility.  

Dataset augmentation is a critical component of the data preprocessing pipeline, enhancing the 

robustness and diversity of training datasets for computer vision models. The augmentation 

capabilities involve the application of various transformations to input images, such as rotation, 

scaling, flipping, and changes in brightness and contrast. These augmentations create additional 

variations in the dataset, effectively expanding its size and ensuring that the trained model becomes 

more resilient to different environmental conditions and scenarios. The exported dataset is 

organized and formatted based on different computer vision models. Typically, the dataset 

includes the original images along with corresponding annotations, where objects of interest are 

precisely labeled with bounding boxes and associated class labels. 
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The first step in extracting structural features is to detect and identify the objects. For this 

purpose, a plan sheet should be divided into individual parts, each indicating one structural 

component and its details. The first deep learning model aims to detect objects of interest within a 

plan sheet to enhance the pipeline’s capability for more refined feature extraction. For this purpose, 

the first model was created to detect and localize different objects such as a plan view of the bridge 

to measure the general dimensions or a tabular structure to extract reinforcement properties. The 

annotated dataset included distinct classes, such as “elevation,” “layout,” “nameplate,” “plan,” 

“section,” “symbol,” “table,” and “textblock.”  

The images were augmented to increase the size of dataset with different filters including crop, 

cutout, and mosaic. Cutout is a technique where random sections of the input images are “cut out” 

or masked during training. Also, mosaic is a technique where multiple images are combined into 

a single training example. This can help the model learn to recognize objects in different contexts 

and configurations. The dataset was then classified into training, validation, and testing sets. This 

process helped automatically detect various bridge details and components in a plan sheet. The 

model was trained on the training set, hyperparameters were fine-tuned on the validation set, and 

the final model was tested on the test set. Figure 3.2 shows the metrics and losses during the 

training of the model. The figure shows three different bounding box regressions (MSE), object 

presence confidence, and classification (cross entropy) losses.  
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Figure 3.2. Metrics and losses of the first model 

Bounding box regression measures how well the predicted bounding box coordinates match 

the ground truth bounding box coordinates. The bounding box regression loss penalizes the model 

for the discrepancy between predicted and actual bounding box positions. A decrease in the 

bounding box regression loss indicates that the model is getting better at accurately predicting the 

location and size of objects. As training progresses, the model learns to refine its bounding box 

predictions, leading to a reduction in the MSE. The object presence confidence loss penalizes the 

model for incorrectly predicting the presence or absence of an object in a cell. A decrease in the 

object presence confidence loss indicates that the model is becoming more accurate in determining 

whether an object is present in a specific grid cell. As training advances, the model learns to assign 

higher confidence scores to correct object predictions and lower scores to incorrect predictions. 

The classification loss measures the difference between the predicted class probabilities and the 

ground truth class labels using cross-entropy. A decrease in the classification loss suggests that the 

model is improving its ability to correctly classify objects. As training continues, the model refines 

its understanding of object categories, leading to a reduction in the cross-entropy loss. 

Also, three metrics of precision, recall, and mean average precision (mAP) results are shown 

in Figure 3.2. Precision shows the number of true positives to the number of positives, indicating 

the amount of bounding box correct predictions. Recall also measures the number of correct 
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predictions of the true bounding boxes by calculating the number of true positives over the sum of 

true positives and false negatives. The extent of overlap of two boxes is measured by the 

intersection over union (IoU) metric. The mAP at the IoU of 0.5 is indicated by mAP_0.5, and the 

average of mAP over an IoU range of 0.5 to 0.95 is shown by mAP_0.5:0.95 in the figure. All 

three metrics show increasing trends over the epochs, representing a good convergence of the base 

algorithm on the custom data.  

A confusion matrix is often employed to evaluate the performance of the object detection 

model. The confusion matrix is constructed based on the comparison between predicted bounding 

boxes and the ground truth bounding boxes. Each entry in the matrix represents a count of how 

many instances fall into specific categories. Given the nature of object detection tasks, the diagonal 

of the confusion matrix typically captures the instances where predictions align with the ground 

truth. The elements in a confusion matrix are as follows: 

1. True Positive (TP): 

Definition: The number of correctly predicted bounding boxes. 

Interpretation: The model correctly identified and localized objects, and these instances are 

counted along the diagonal. 

2. True Negative (TN): 

Definition: Not applicable for object detection tasks, as the model’s objective is to identify and 

localize objects, not to predict the absence of objects in specific regions. 

3. False Positive (FP) - Type I Error: 

Definition: The number of predicted bounding boxes where there is no corresponding ground 

truth bounding box. 

Interpretation: The model predicted the presence of an object where none exists in reality. 

4. False Negative (FN) - Type II Error: 

Definition: The number of ground truth bounding boxes with no corresponding predicted 

bounding box. 

Interpretation: The model failed to detect and predict the presence of an object that actually 

exists in reality. 

The confusion matrix for the first model is shown in Figure 3.3.  
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Figure 3.3. Confusion matrix of the first model 

As seen, high values on the diagonal indicates that the base model is performing well in terms 

of correct detections. The diagonal represents instances where the predicted bounding boxes match 

the ground truth, signifying successful localization and classification of objects. The rightmost 

column could be used for detecting instances of false positives, where there are predicted bounding 

boxes with no matching ground truth. As seen, there is considerable chance for false positives in 

the textblock class and symbols might be prone to false positives in some cases. All in all, the 

model shows very high chances for correct predictions for the majority of the classes. 

The performance diagrams of the base model are illustrated in Figure 3.4.  
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Figure 3.4. Performance diagram of the first model 

The graphs include precision, recall, and F1 score confidence trends as well as precision-recall 

curves. The confidence curves show the precision, recall, and F1 score for different confidence 

values.  

1. Precision-Confidence Curve. The precision-confidence curve shows how precision varies 

with changing confidence thresholds. Precision measures the accuracy of positive predictions 

made by the model. An increasing curve indicates that, as the confidence threshold rises, the 

model becomes more conservative in making positive predictions, resulting in higher 

precision. This can be beneficial when aiming to reduce false positives at the cost of potentially 

missing some detections. 

2. Recall-Confidence Curve. The recall-confidence curve depicts how recall changes as the 

confidence threshold for positive predictions varies. As the model increases the confidence 

threshold for positive predictions, the model is becoming more conservative in its predictions. 

It is still able to maintain a relatively high recall, indicating that it is capturing most of the 

relevant instances with reasonable confidence. 
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3. Precision-Recall Curve. The precision-recall curve illustrates the trade-off between precision 

and recall across different confidence thresholds. As such, the precision should remain high as 

the recall increases, maximizing the area under the curve. The curve shows a high area under 

the curve for most of the classes, indicating the good performance of the first mode. 

4. F1 Score-Confidence Curve. The F1 score-confidence curve illustrates the relationship 

between the F1 score and the confidence threshold for object detection across different classes. 

An F1 score balances precision and recall, providing a single metric that considers both false 

positives and false negatives. The figure shows high F1 scores at the specified confidence 

thresholds, indicating a good trade-off between precision and recall for the given classes. 

Figure 3.5 shows some photos from the training batches containing different classes and some 

examples of the validation set. As seen, the model can detect most of the classes of the validation 

set with high accuracy.  
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a. Training set 

 

b. Validation set – Labels 
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c. Validation set – Predictions 

Figure 3.5. Examples of the developed base model’s performance on training and 

validation sets 

Based on the desired properties requested to be extracted from the bridge plan sets, the base 

model was expanded with more refined classes. For this purpose, different objects such as 

substructure units, columns in a bent, and girders were identified and located. The images were 

augmented to increase the size of the dataset with different filters, including horizontal and vertical 

flip, rotation, and noise. The dataset was then classified into training, validation, and testing sets. 

The expanded model was trained on the training set, hyperparameters were fine-tuned on the 

validation set, and the final model was tested on the test set. Figure 3.6 shows the metrics and 

losses during the training of the expanded model. The figure shows three different bounding box 

regressions (MSE), object presence confidence, and classification (cross entropy) losses.  
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Figure 3.6. Metrics and losses of the expanded model 

The decrease in the bounding box regression loss indicates that the model is getting better at 

accurately predicting the location and size of objects. As training progresses, the model learns to 

refine its bounding box predictions, leading to a reduction in the MSE. The decrease in the object 

presence confidence loss also indicates that the model is becoming more accurate in determining 

whether an object is present in a specific grid cell. As training advances, the model learns to assign 

higher confidence scores to correct object predictions and lower scores to incorrect predictions. In 

addition, the decrease in the classification loss suggests that the model is improving its ability to 

correctly classify objects. As training continues, the model refines its understanding of object 

categories, leading to a reduction in the cross-entropy loss. 

Also, three metrics of precision, recall, and mAP results are evaluated. All the three metrics 

show increasing trends over the epochs, representing a good convergence of the developed 

algorithm on custom data.  

The confusion matrix for the expanded model is shown in Figure 3.7.  
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Figure 3.7. Confusion matrix of the expanded model 

As seen, high values on the diagonal indicates that the expanded model is performing well in 

terms of correct detections. The diagonal represents instances where the predicted bounding boxes 

match the ground truth, signifying successful localization and classification of objects. The 

rightmost column could be used for detecting instances of false positives, where there are predicted 

bounding boxes with no matching ground truth. As seen, there are some instances of false positives 

in the Girder class. Also, the model might miss some cases of Curved class, as there are few 

instances of this class in the dataset. All in all, the model shows very high chances for correct 

predictions for the majority of the classes. 

The performance diagrams of the expanded model are illustrated in Figure 3.8.  
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Figure 3.8. Performance diagram of the expanded model 

The graphs include precision, recall, and F1 score confidence trends as well as precision-recall 

curves. The confidence curves show the precision, recall, and F1 score for different confidence 

values. Figure 3.9 shows some photos from the training batches containing different classes and 

some examples of the validation set. As seen, the model can detect most of the classes of the 

validation set with high accuracy.  
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a. Training set 

 

b. Validation set – Labels 
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c. Validation set – Predictions 

Figure 3.9. Examples of the expanded model’s performance on training and validation sets 

3.3. ADDITIONAL FUNCTIONS 

As the expanded model can iterate through all the images to detect and localize tabular structures, 

a subsequent step is required to extract the information from the detected tables and convert the 

table’s image to an editable version such as an Excel spreadsheet.  

Recognition of the tabular structure of a table begins by reading the input image to create a 

binary representation. Additional operations are subsequently applied to detect and enhance 

vertical and horizontal lines in the image. Figure 3.10 shows a table reporting top of slab 

elevations, along with its binary version and horizontal and vertical lines.  
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a. Selected table 

 

b. Binary version of the table image 

 

c. Detected horizontal lines 

 

d. Detected vertical lines  

 

e. Combined vertical and horizontal lines 

Figure 3.10. Example of a table transferred to a readable format 

The resulting lines are combined, and additional operations refine the image further for contour 

detection. The contours are extracted and sorted top to bottom. The code then iterates through the 

contours, creating bounding boxes around potential cells within the table. These boxes are 

organized into rows and columns based on their spatial relationships, using mean height analysis. 
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With a final sorting of values, the resulting text is structured and organized, forming the content 

of the table. 

The final step involves converting the extracted data into an Excel file using appropriate 

libraries. The resulting Excel file is saved to a specified output path, providing a tangible and 

accessible representation of the tabular information present in the original plan sheet. Table 3.1 

shows the result of performing the outlined steps on the table image.  

Table 3.1. Regenerated table in an Excel file. 

 

As reflected in the reported values, the model was able to detect, localize, and report the cell 

values with maximum accuracy. This methodology offers a systematic and automated approach to 

transform image-based tables into an editable format. 

A crucial aspect of feature extraction from bridge plan sets is thorough and accurate text detection 

as almost all of the desired features and information lies within the textual patterns of the plan 

sheets. Therefore, a text detector with high performance is required to manipulate data within a 

bridge plan sheet.  

As the plan sets are available in different formats including scanned images and PDF versions, 

various state-of-the-art algorithms were employed to extract textual information. Figure 3.11 

shows an example of the reported text of a nameplate object. 
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a. Original image 

 

DESIGN FOR O° SKEW 

226’-4 X 40’-O PRETENSIONED 

PRESTRESSED CONCRETE BEAM BRG. 

 

72’-5 END SPANS 81’-6 INTERIOR SPAN 

BRIDGE DECK CROSS SECTION 

STA. 641+38.36 (1A-25) OCTOBER , 2017 

ADAIR COUNTY 

IOWA DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION 

DESIGN SHEET NO. || OF _25 FILE NO. __ 31358 DESIGN NO. 217 

b. Converted text using Tesseract-OCR 

Figure 3.11. Example of text detection 
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4. DATA EXTRACTION PIPELINES 

The Engineering Details Extraction Pipeline is a comprehensive solution designed in this project 

to extract crucial engineering information from bridge plan sets. Using deep learning models and 

advanced image processing techniques, along with additional functions introduced in the previous 

chapter, this pipeline automates the extraction process, enhancing efficiency and accuracy in 

handling engineering documents. The pipeline combines information extracted from different 

components, creating a holistic understanding of the engineering details present in the plan sets. 

The pipeline pulls data from diverse sources, including bridge plan sets, NBIS guidelines, and 

relevant websites. By integrating information from multiple channels, the system enriches the 

extracted data, providing a comprehensive pipeline for various bridge-related details.  

4.1. BRIDGE DETAILS OF INTEREST 

In this project, a “bridge plan set” is considered to be a set of bridge plan sheets in either an image 

or PDF format that contains extensive information about the sizing and materials used in a bridge 

in the form of text, tables, or dimension lines. The plan set offers a full view of the “plan” and 

“elevation” of the bridge. Each plan sheet has a bounded area that contains at least the names of 

the included bridge components for the purpose of navigating through the plan sheets to find the 

pages that have information about the objects of interest. After setting up all the necessary libraries, 

models, and functions, the pipeline starts using these components to extract the desired data from 

the bridge plan sets.  

The pipeline was developed to extract primarily a set of selected bridge details (with the 

possibility of expansion). Extra details of interest can be easily added to the pipeline based on the 

specific features of the detail and the characteristics of the plan sets. The current pipeline can 

successfully capture a wide range of details using multiple sources of information. Following the 

NBIS, some of the main details are as follows:  
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1. B.ID.01: Bridge Number 

 

2. B.L.01: State Code 
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3. B.L.02: County Code 

 

4. B.L.05: Latitude 

 

5. B.L.06: Longitude 

 

6. B.L.11: Bridge Location 

 

7. B.SP.02: Number of Spans 

 

8. B.SP.03: Number of Beamlines 
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9. B.SP.04: Span Material (Steel Girder, PPCB, and CCS only) 

 



49 

10. B.SP.06: Span Type (Box Girder/ Beam, Girder/Beam, and Slab only) 
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11. B.SB.02: Number of Substructure Units 

 

12. B.SB.03: Substructure Material (Steel and Concrete only) 
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13. B.SB.04: Substructure Type 
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14. B.SB.06: Foundation Type 

 

15. B.G.02: Total Bridge Length 
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16. B.G.03: Maximum Span Length 

 

17. B.G.04: Minimum Span Length 

 

18. B.G.05: Bridge Width Out-to-Out 
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19. B.G.06: Bridge Width Curb-to-Curb 

 

20. B.G.07: Left Curb or Sidewalk Width 

 

21. B.G.08: Right Curb or Sidewalk Width 
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22. B.G.11: Skew  

 

23. B.G.13: Maximum Bridge Height 

 

24. Reinforcement Properties: Number, Length, and Diameter of the Bars 

4.2. ADDITIONAL DETAILS OF INTEREST 

A set of additional details are also provided through the platform to show the capabilities of 

the pipeline to handle data and feature extraction from different plan sets. The additional details 

are as follows: 

1. Bridge Name 

2. Number of Piles 

3. Column Section Sizes 

4. Deck Thickness 

5. Column Height 

6. Number of Columns in the Bent 

7. Column Reinforcement 

8. Pile Data Table 

The previous details are extracted based on the specific details and drawing methods of specific 

plan sets and could be adjusted to fit the requirements of various transportation agencies. As the 

main functions and models of the pipelines have been developed, some extra properties could be 

potentially extracted from the bridge plan sets if adequate data are available. The potential 

properties are as follows: 
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1. The main dimensions of individual bridge components 

2. Whether the bridge is a curved structure or not 

3. Bridge median 

4. Approach roadway width 

5. Bridge railing properties 

6. Bridge material quantities  

4.3. QUALITY ASSURANCE/QUALITY CONTROL CHECKS 

The pipeline was tested on several bridge plan sets to ensure the accuracy of the feature extraction 

process, providing a robust platform. As such, the results of extracting some details and features 

from Iowa DOT bridge plan sets are reported in Table 4.1. The table shows the extracted features 

for different bridges with various structural properties including different deck slabs, abutments, 

skew angles, and dimensions. Accordingly, the pipeline has been successful in detecting and 

extracting most of the desired details accurately.  

Bridge number 44721 includes a slab with varying girder distances along the bridge length. 

Hence, the pipeline was not able to extract the bridge deck properties across the bridge width. As 

for bridge number 701060, the text recognition process occasionally fails to extract vertical 

characters such as number “1,” reporting variations of “I” or “!” instead. Some errors could arise 

due to the few false recognitions of “1,” which also resulted in reporting 46 instead of 146 as the 

minimum span length of the mentioned bridge. This can be easily detected and fixed by having a 

second check point to match the summation of the span lengths with the total bridge length. The 

table also indicates that the maximum bridge height was prone to no output. This is because the 

bridge height is currently extracted as the difference between the top of the deck and any bed 

elevations that the pipeline identifies. If the bed elevation indicators, i.e., “streambed elevation” or 

“top of rail elevation,” are not mentioned in the plan sheet, the pipeline cannot find the bed 

elevation. This can be resolved by opting for other bed elevation indicators.
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Table 4.1. Data extraction examples for 10 bridges in Iowa 

 

Note: The highlighted rows show the few instances that do not match those in the plan sets. The rest of the values are completely 

consistent with those presented in the source plan sets.

Bridge Number 14251 46071 12971 28431 018891 44721 701105 700535 701060 51411

State Code 19 19 19 19 19 19 19 19 19 19

County Code 11 157 1 87 33 155 71 113 113 181

Latitude 41.963669 41.695614 41.429913 40.975053 42,984,666 41,242,322 40.682081 41.9072136 42.058964 41.432421

Longitude -92.149071 -92.720993 -94.452471 -91.677947 -93.20184 -95.904281 -95.82029 -91.3760785 -91.699906 -93.780783

Number of Substructure Units 2 2 2 3 2 1 5 1 1 1

Number of Spans 3 3 3 4 3 2 6 2 2 2

Number of Beamlines 6 8 1 5 1 1 4 8 4

Span Material PPCB PPCB CCS PPCB CCS Steel Girder CCS Steel Girder PPCB PPCB

Span Type Girder/Beam Girder/Beam Slab Girder/Beam Slab Girder/Beam Slab Girder/Beam Girder/Beam Girder/Beam

Pier Material Concrete Concrete Steel Concrete Steel Concrete Concrete Concrete Concrete Concrete

Abutment Material Steel Steel Steel Steel Steel Steel Steel Steel Steel Steel

Pier Type Tee Pier Frame Pier Pile Bent Pier Tee Pier Pile Bent Pier Diaphragm Pier Encased Pile Bent Pier Frame Pier Wall Pier Frame Pier

Abutment Type Integral Abutment Integral Abutment Integral Abutment Stub Abutment Integral Abutment Semi-Integral Abutment Integral Abutment Integral Abutment Integral Abutment Integral Abutment

Pier Foundation Type HP10x57 HP10x57 HP14x73 Spread Footing HP 14x73 HP14x89 HP10x57 HP10x57 HP 12x84 HP 14x73

Skew 30 5 15 20 0 5 0 15 3°43'59.40" 0

Total Bridge Length 246-5 222-0 150-10 561-4 150-10 311-08 327-10 283-6 295-01 295-0

Maximum Span Length 81.5 117 59 142 59 174 59 160 146 146

Minimum  Span Length 80.75 41 45.5 131 45.5 134 45.5 120 46 146

Bridge Width Curb-to-Curb 40 66 40 40 44 VARIES 40 30 49-9 30

Curb width 1-7 1-7 1-4 , 1-7 1-7 1-4 , 1-7 1-7 1-7 1-2 1-7

Bridge Width Out-to-Out 43.17 69.17 42.92 43.17 46.92 VARIES 43.17 33.17 51.33 33.17

Maximum Bridge Height 21.93 29.97 24.2 51.22 22.46 16.86 38.43 36.28
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5. CONCLUSIONS  

The significant impacts of applying ML/AI algorithms to optimize various aspects of bridge 

engineering highlights the critical need to automate data and feature extraction from bridge plan 

sets. This research project addressed the required steps to automate the extraction and reporting of 

engineering details of interest from bridge plans, particularly to comply with NBIS reporting 

requirements. While the automated extraction of details from engineering drawings can be a 

complicated task for machines due to the complex nature of plan sets, a combination of several 

deep learning models and image processing techniques provided a novel platform to successfully 

extract target details. Thus, the project’s outcome directly contributes to improving both the 

accuracy and efficiency of data and feature extraction from bridge plan sets commonly used by 

transportation agencies.  

Deep learning models were employed as powerful object detectors to construct a visual 

understanding of the plan set for the machine, providing an approach that was able to navigate 

through different plan sheets. The deep learning models covered objects of various scales, ranging 

from objects as large as the general plan of the bridge to objects as small as stirrups. The models 

were trained on large datasets and enhanced through rigorous testing and validation. Specifically, 

the base model was trained using nine distinct classes of bridge parameters with the purpose of 

main object localization. During the pipeline compilation stage, the need for an expanded model 

emerged to find additional details efficiently. Using a similar approach to that used to develop the 

base model, the expanded model was developed on refined classes defined for various queries, 

such as the number of spans or the number of beamlines. All of the developed models provided 

satisfactory performance metrics over the training period, demonstrating the promise of the 

pipeline to be used for new plan sets not used for training purposes.  

Various processing techniques were developed and used in several parts of the pipeline, 

especially for table and text recognition. Using a hybrid of detection processes, text recognition 

methods, and data frame packages, the plan set details were successfully converted to spreadsheets 

for further analysis. Combining all of the outlined models and techniques, a pipeline was 

developed to extract the desired engineering details from bridge plan sets. With general models 
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and functions developed, the pipeline is customizable to match the approaches that different State 

transportation agencies use to provide details in their bridge plan sets.  

The project provided example results of customization of the developed pipeline to deliver the 

characteristics of bridge plan sets from the Iowa DOT and Caltrans. The desired details ranged 

from general introductory information to bridge properties and main dimensions. Details were 

compared side by side for several bridge plan sets with distinct properties such as span type, 

abutment type, and foundation type. The pipeline was able to successfully extract the majority of 

the queries, proving the feasibility of preparing a software prototype to automate data and feature 

extraction from bridge plan sets. This software prototype is expected to offer a powerful tool that 

can be implemented by various transportation agencies to improve the accuracy and speed of the 

process to obtain bridge details of interest. 
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APPENDIX 

TITLE 

Data and Feature Extraction from Bridge Plans  

SUBHEAD 

Development of a novel computational platform that automates the process of extracting and 

reporting information from bridge plan sets. 

WHAT WAS THE NEED? 

Governmental agencies with bridges in their jurisdictions are required to report bridge inventory 

information to the Federal Highway Administration (FHWA) in compliance with National 

Bridge Inspection Standards (NBIS) reporting requirements. The reported information 

contributes to the National Bridge Inventory (NBI) database, which enables State- and National-

level analyses and supports Federal funding programs. However, the sheer magnitude of bridge 

details and the fact that many agencies use their own labels and codes for many data items make 

inventory analysis and subsequent reporting difficult.  

The emergence of machine learning (ML) and artificial intelligence (AI) has led to widespread 

interest within the bridge engineering community to use automated techniques to tap into 

extensive databases, such as the NBI, for improved bridge maintenance and management. 

WHAT WAS OUR GOAL? 

The goal of this project was to develop a computational platform that automates the process of 

reviewing bridge plans to identify, extract, and report select engineering details while increasing 

the accuracy and efficiency of feature extraction from bridge plan sets. 

WHAT DID WE DO? 

Deep learning models were employed as powerful object detectors to construct a visual 

understanding of the plan set for the machine, providing an approach that was able to navigate 

through different plan sheets. The deep learning models covered objects of various scales, 

ranging from objects as large as the general plan of the bridge to objects as small as stirrups. The 

models were trained on large datasets and enhanced through rigorous testing and validation. 

Specifically, the base model was trained using nine distinct classes of bridge parameters with the 

purpose of main object localization. During the pipeline compilation stage, the need for an 

expanded model emerged to find additional details efficiently. Using a similar approach to that 

used to develop the base model, the expanded model was developed on refined classes defined 

for various queries, such as the number of spans or the number of beamlines. All of the 

developed models provided satisfactory performance metrics over the training period, 

demonstrating the promise of the pipeline to be used for new plan sets not used for training 

purposes. The contribution and involvement of Iowa, Minnesota, and California Departments of 

Transportation are gratefully acknowledged.   
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WHAT WAS THE OUTCOME? 

The significant impacts of applying ML/AI algorithms to optimize various aspects of bridge 

engineering highlights the critical need to automate data and feature extraction from bridge plan 

sets. This research project addressed the required steps to automate the extraction and reporting 

of engineering details of interest from bridge plans, particularly to comply with NBIS reporting 

requirements. While the automated extraction of details from engineering drawings can be a 

complicated task for machines due to the complex nature of plan sets, a combination of several 

deep learning models and image processing techniques provided a novel platform to successfully 

extract target details. Thus, the project’s outcome directly contributes to improving both 

accuracy and efficiency of data and feature extraction from bridge plan sets commonly used by 

transportation agencies. 

WHAT IS THE BENEFIT? 

The benefit will be a drastic reduction in the time and effort that State highway agencies spend 

on reviewing, finding, extracting, and reporting bridge details. Through the developed platform, 

the entire process for data and feature extraction will be shortened significantly. Given that 

knowledge of bridge details is essential for planning purposes, the time gained at the beginning 

will expedite and improve various bridge management activities. Further to the identified 

benefits, the developed automated platform will free up the time of engineers and staff members 

of State highway agencies, giving them the opportunity to further focus on the tasks that require 

their expertise. In addition, the information generated through this automated process is expected 

to be of higher quality than information obtained manually, as many common human errors are 

eliminated. 

LEARN MORE 

A link to the final report for this project may be found on the TRB's NCHRP IDEA website. The 
principal investigator, Behrouz Shafei (shafei@iastate.edu) may also be contacted  for additional 

information.  

mailto:shafei@iastate.edu
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