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Glossary  
 

AI Artificial Intelligence 
CFR Code of Federal Regulations 
CNN Convolutional Neural Network 
ECU Electronic Control Unit 
FRA Federal Railroad Administration 
IMU Inertial Measurement Unit 
MAE Mean Absolute Error 
MEMS Microelectromechanical System 
ML Machine Learning 
MSE Mean Squared Error 
RMSE Root Mean Squared Error 
RNN Recurrent Neural Network 
RTK-GPS Real Time Kinematic Global Positioning System 
TGC Track Geometry Car 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
  



 

3  

EXECUTIVE SUMMARY 

The Federal Railway Administration track safety standards require rigorous visual inspections of tracks 
based on their operating speed (FRA track class) [1]. These inspections can be as frequent as twice per week. 
Often these inspections are carried out using hy-rail (highway/rail) vehicles, with the trained inspector using a 
set of hand tools (track level, string line, gauges, etc.) to further measure locations that appear to be out of 
compliance. In addition, railways perform specific inspections using hy-rail or rail bound equipment to measure 
track geometry, internal rail condition, track strength, tie condition, ballast condition, joint bar condition, etc. 
These vehicles are expensive to build, maintain and operate.  

 
Currently, bolt-on inspection systems for use on inspector’s hy-rail vehicles such as track geometry 

measurement systems, can be used to assist and supplement the inspector, but are also quite expensive. Such 
inspections are crucial to maintaining a safe operating environment. The objective of this research was to 
develop a prototype, low-cost, “smart” hy-rail wheel (SmartWheel) to be deployed on an inspector’s hy-rail 
vehicle (or any hy-rail vehicle the railway operates) that assists the trained inspector in identifying locations in 
track with certain classes of potential defects, in an autonomous and passive manner. It is intended that the 
SmartWheel be self-contained, autonomous, and provide alerts to the operator. Additionally, the SmartWheel 
must be inexpensive to implement and provide additional information to the inspector to assist in assessing 
particular elements of the track condition. 

 
The innovative approach described herein utilizes a low-cost inertial measurement unit (IMU) integrated 

into the hy-rail gear along with a combined mechanistic and artificial intelligence (AI) approach to analyzing 
the response data from the IMU to identify particular classes of track defects (or issues). These include, but are 
not limited to, profile/surface, cross level, alignment, dipped joints, rail surface defects, rail corrugation, mud 
spots, etc. This differs significantly from a hy-rail based track geometry system in that it does not require a 
sophisticated algorithm for transforming the IMU data to measurable geometry parameters (which requires 
additional expensive hardware).  Rather, the system evaluates the IMU response data directly using AI 
algorithms developed as part of this research. The current status of the product addresses a subset of track 
geometry parameters. 

 
A research program was initiated that consisted of the following steps: 
 
1) Identifying a suitable low-cost IMU that was accurate and reliable enough to support the measurement 

environment 
2) Perform limited data acquisition onboard a hy-rail inspection vehicle outfitted with a track geometry 

system to provide ground-truth data to prove the concept and develop a first-generation 
AI/Deterministic system 

3) Develop a prototype AI/Deterministic algorithm to address a subset of track geometry parameters 
4) Validate the approach with the data acquired 
5) Develop next steps for a field deployable prototype to undergo further testing and validation 
 
The data acquisition plan resulted in a dataset of ground-truth track geometry parameters, and corresponding 

SmartWheel sensor data (one sensor on each of the lead guide wheels of the hy-rail vehicle). This data was 
collected on two short-line railways for approximately 50 miles of track. Independent acquisition of each sensor 
(left and rail guide-wheel), as well as a lack of a speed sensor connected to the SmartWheel sensors offered 
challenges in aligning the data that had to be overcome by correlating the SmartWHeel sensor data with the 
speed from the track geometry system, i.e., acceleration went to zero for a period of time when the vehicle was 
stationary.  

 
Once the SmartWheel sensor data was collected, filtering algorithms were researched and employed to 

remove the high frequency noise associated with wheel/rail roughness, which left the portion of the signal that 
depicts the vehicle response to the track geometry. This data was the used to develop prediction models. Two 
types of models were evaluated; 1) machine learning using a windowed approach with a Convolutional Neural 
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Network (CNN, and, 2) deterministic approach using data fusion which consists of integration and a 
complimentary filter to take advantage of the IMU quasi-static and kinematic signal outputs. 

 
The dataset was split for training, testing and validation. The results of the models showed that the sensor 

data is appropriate for defining a subset of track geometry parameters and conditions. A sample visualization of 
cross-level (the height difference of one rail to another in the transverse plane of the track) is shown in the figure 
below: 

 
 
While some location showed good agreement of the data, others showed some significant error. This error 

was likely introduced due to the lack of speed data from the data acquisition activity. A comparison of error 
values from ground truth for each of the modeling approaches is shown in the table below for three specific 
track geometry parameters: 

 
Parameter Deterministic Machine Learning 
Cross Level 0.83 inches 0.32 inches 
Degree of Curvature 0.37 degrees 0.22 degrees 
Surface  0.57 inches 0.46 inches 

 
The primary benefit of this product is a safer operating environment through the low-cost implementation 

of a tool that assists inspectors in an autonomous fashion in locating potential track defects. A secondary benefit 
is identifying locations with habitual problems where revised maintenance practices can increase safety and 
reduce overall costs. Lastly, successful implementation of this research will help inspectors (particularly less 
experienced inspectors) identify locations that are sometimes quite difficult to quantify, or even recognize, 
visually. This includes finding locations requiring remediation identified by stand-alone inspection cars. Not all 
track anomalies are identifiable through this technology, but a significant number of safety related anomalies 
are identifiable. 

 
While the research to this point shows promise, there are still several tasks that need to be accomplished to 

provide a field demonstrable prototype which include: incorporation of a speed signal and RTK-GPS signal to 
the SmartWheel sensor, additional field testing with a hy-rail vehicle outfitted with a track geometry system to 
gather more comprehensive track condition data to further train the AI models, and implementation of an 
inexpensive camera-based gage referencing system. 

 
The implementation and use of the final system will be seamless for the railway inspectors. It is expected 

that this system will eventually be integrated directly into manufacturer’s hy-rail gear as a low-cost option, or 
even become “standard.” The information will eventually be relayed to the inspector via mobile phone app for 
immediate consumption.  
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IDEA PRODUCT 

 
The Federal Railway Administration track safety standards require rigorous visual inspections of tracks 

based on their operating speed (FRA track class) [1]. These inspections can be as frequent as twice per week. 
Often these inspections are carried out using hy-rail (highway/rail) vehicles, with the trained inspector using a 
set of hand tools (track level, string line, gauges, etc.) to further measure locations that appear to be out of 
compliance. In addition, railways perform specific inspections using hy-rail or rail bound equipment to measure 
track geometry, internal rail condition, track strength, tie condition, ballast condition, joint bar condition, etc. 
These vehicles are expensive to build, maintain and operate.  

 
Currently, bolt-on inspection systems for use on inspector’s hy-rail vehicles such as track geometry 

measurement systems, can be used to assist and supplement the inspector, but are also quite expensive. Such 
inspections are crucial to maintaining a safe operating environment. 

 
The objective of this research was to develop a prototype, low-cost, “smart” hy-rail wheel (SmartWheel) to 

be deployed on an inspector’s hy-rail vehicle (or any hy-rail vehicle the railway operates) that assists the trained 
inspector in identifying locations in track with certain classes of potential defects, in an autonomous and passive 
manner. This SmartWheel would be self-contained, autonomous, and provide alerts to the operator. 
Additionally, the SmartWheel would be inexpensive to implement and provide additional information to the 
inspector to assist in assessing particular elements of the track condition. 

 
The innovative approach described herein is to utilize a low-cost inertial measurement unit (IMU) integrated 

into the hy-rail gear along with a combined mechanistic and artificial intelligence (AI) approach to analyzing 
the response data from the IMU to identify particular classes of track defects (or issues). These include, but are 
not limited to, profile/surface, cross level, alignment, dipped joints, rail surface defects, rail corrugation, mud 
spots, etc. This differs significantly from a hy-rail based track geometry system in that it does not require a 
sophisticated algorithm for transforming the IMU data to measurable geometry parameters (which requires 
additional expensive hardware).  Rather, the system evaluates the IMU response data directly using AI 
algorithms developed as part of this research. The current status of the product addresses a subset of track 
geometry parameters, due to the time and budget constraints of the project undertaken herein. 

 
The primary benefit of this product is a safer operating environment through the low-cost implementation 

of a tool that assists inspectors in an autonomous fashion in locating potential track defects. A secondary benefit 
is identifying locations with habitual problems where revised maintenance practices can increase safety and 
reduce overall costs. Lastly, successful implementation of this research will help inspectors (particularly less 
experienced inspectors) identify locations that are sometimes quite difficult to quantify, or even recognize, 
visually. This includes finding locations requiring remediation identified by stand-alone inspection cars. Not all 
track anomalies are identifiable through this technology, but a significant number of safety related anomalies 
are identifiable. 

 
The implementation and use of this system will be seamless for the railway inspectors. It is expected that 

this system will eventually be integrated directly into manufacturer’s hy-rail gear as a low-cost option, or even 
become “standard.” The information will eventually be relayed to the inspector via mobile phone app for 
immediate consumption. 
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CONCEPT AND INNOVATION 

 
Track geometry defects are defined as deviations from design exceeding a defined limit, where the limits are 
assigned as a function of allowable operating speed, organized by FRA track class. These limits are contained 
in the FRA Track Safety Standards. [1] While these regulations cover all aspects of the track, including rails, 
ties, ballast, geometry, special trackwork and surrounding right of way, the focus of this research was on a subset 
of track geometry parameters. The parameters investigated included surface, cross-level, curvature, and super 
elevation as the sensors measure wheel response associated with these parameters. Briefly, surface is the vertical 
running surface of the rail typically measured using a 62’ chord; cross-level is the elevation difference from one 
rail to the adjacent rail, perpendicular to the running axis of the track; curvature is the radius of the curve; super 
elevation is the design elevation difference from one rail to the adjacent rail. More can be found on these 
measurements and other in reference [2-4]. 

Typically, track geometry is measured using a heavy rail vehicle that uses a system of lasers and an Inertial 
Measurement Unit (IMU) to compute the exact measurements under load for each foot of track travelled. These 
manned cars are deployed on mainline track and can travel heavily used main lines up to four times per year. 
Railways have started to incorporate autonomous systems installed on a locomotive, freight car or passenger car 
that collects data whenever the vehicle is in a train consist and moving. This can result in track geometry data 
collected as frequently as multiple times per week. However, railroads are still required to provide visual 
inspection of the entire track using trained inspectors (often termed manual inspection). Depending on the speed 
of the track, this may be required up to two times per week [1]. These inspectors will travel their territory in a 
hy-rail (highway and rail) vehicle and visually inspect the track. If they suspect a defect exists, they will go on 
track and measure/verify using handheld tools such as a track level, string line, tape measure, etc. Expensive, 
bolt-on track geometry measurement systems are available for hy-rail vehicles, but the opportunity exists for a 
low-cost and innovative solution. 

The concept investigated as part of this research was to employ a low-cost MEMS IMU incorporated into the 
hy-rail gear to measure wheel response to the track input and to develop an artificial intelligence (AI) interface 
based on machine learning (ML) principles to predict the existence of track geometry defects on the traversed 
track.  

Triaxial IMUs measure acceleration and angular rate of rotation in three dimensions and can be programmed to 
acquire data at various frequencies. This data is typically noisy and is traditionally transformed to the frequency 
domain for analysis. While this approach is used for modern track geometry systems, significant computational 
resources are required to filter and transform the data, and sophisticated algorithms for integrating the data are 
required to convert the raw acceleration data to typical linear measurements which a track engineer is familiar 
with. Using ML techniques to train an algorithm alleviates the need for this additional onboard computing 
power. 

The resulting innovation of the SmartWheel is a passive system that is autonomous and doesn’t require constant 
monitoring. 
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INVESTIGATION 

 
This investigation was conducted in two stages, with nine associated tasks, as shown in TABLE 1. 
 

TABLE 1. Project task list 

 Tasks % Completed 
 Stage 1. Hardware Implementation and Data Acquisition  
Task 1 Kickoff Meeting with Expert Panel 100% 
Task 2 Hardware Design and Implementation 100% 
Task 3 Data Acquisition 100% 
Task 4 Data Pre-Processing and Filtering 100% 
Task 5 Stage 1 Report and Project Progress Review 100% 
 Stage 2. Development of AI Interface and Validation 100% 
Task 6 Development of AI Interface 100% 
Task 7 Preliminary Validation 100% 
Task 8 Prototype Specification 100% 
Task 9 Prepare Final Report 100% 

 
TASK 1. KICKOFF MEETING WITH EXPERT PANEL 

 
An expert panel was assembled made up of leading industry experts and is presented in TABLE 2 below. 
 

TABLE 2. Expert advisory panel 

Name Affiliation Title E-Mail 
Brad Kerchof ARM/NS (retired) IDEA Technical Expert bradkerchof@gmail.com 
Stephen Love CSX Technical Director Stephen_Love@csx.com 
Rich Scheiring AMTRAK Director Clearances, 

Inspection & Testing 
wesley.scheiring@amtrak.com 

Chris Hartsough HARSCO Rail Track Engineering Team 
Lead 

chartsough@harsco.com 

Bernhard Metzger ENSCO Director Solutions 
Engineering 

Metzger.Bernhard@ensco.com 

 
The expert panel met on November 29, 2022. A presentation was made to identify the roles of the advisory 

panel, describe the project timeline, and highlight the major objectives and work tasks of the project. After the 
PI presented the project, an interactive discussion was held with the panel. After several technical clarifications, 
the panel agreed on and approved the program approach. The panel is extremely interested in the results of this 
research, as it offers some real potential for improving local track inspection for both large and small railways. 
A summary of major comments is as follows: 

1) With autonomous inspection gaining increased utilization with the large freight railroads, such a system 
would be ideal for locating spots requiring maintenance. Several channels of information would likely 
benefit all track inspectors during their routine inspections. 

2) Regional and short-line railroads typically do not have the same access to automated geometry testing 
as the Class 1s. These smaller railroads would likely benefit from the automated inspection capability 
that this hy-rail mounted system offers. 

3) The proposed sensors are remarkable in their capabilities (acquisition rate and accuracy) for the price. 
4) All of the panel members offered time and equipment for further testing/validation using their own 

inspection platforms as available. 



 

8  

 
TASK 2, HARDWARE DESIGN AND IMPLEMENTATION 

 
Following a careful study of available sensors, a set of potential candidate sensors were identified and 

evaluated. The pre-identified sensors were chosen based on their acquisition rates, limits, and accuracy as a 
function of the cost. Using available instrumentation data previously collected by the researchers (and advisory 
panel members), the research team defined the specific sensor features needed as well as the best cost to feature 
relationship. The final selection was the Inertial Labs KERNEL-110 IMU with a range of +/-8 g’s which is 
sufficient to provide the necessary sensitivity in measurement. These sensors provide 3-axis acceleration data 
and 3-axis gyroscope data at 2,000 Hz with a high degree of accuracy. 

 
In addition, service cables and data acquisition cables were specified to provide power to the sensors and 

extract data from the sensors over an RS-422 interface. 
 
Two complete sets of sensors and cables were ordered and were delivered the week of January 16, 2023.  
 
The preliminary mounting bracket design was completed and manufactured by the University of Delaware’s 

(UD) machine shop. The sensors are 26.5mm x 19.5mm with M2-4 standoffs as shown in FIGURE 1 below. As 
the sensor housings are aluminum, a 28mm x 28mm x 6mm thick piece of steel was cut, and holes drilled and 
countersunk to accept the M2-4 bolts which will be attached to the standoffs with nuts and Loctite. The mated 
steel plate will be used to attach the sensors to the wheel bearing housing using magnets. This approach is being 
deployed as this is a temporary installation for data acquisition purposes only. Permanent mounting and 
implementation will be investigated during a future commercialization process.   

 

 
a) Bottom view  b) Side view   c) Top view 

FIGURE 1. Sensor mounting screw configuration. a) hole layout for mounting plate drilling, b) 
cable connector location, c) overall sensor dimensions 

 
TASK 3. DATA ACQUISITION 

 
Data acquisition was separated into bench testing and simple sensor response testing, followed by a 

comprehensive data acquisition test using a hy-rail track geometry inspection vehicle. 
 

Bench Testing and Simple Sensor Response 
 
Bench testing of the data acquisition system was completed in the office. This consisted of connecting the 

sensors with the supplied cable set and collecting data at various acquisition rates using the data acquisition 
software supplied by the sensor manufacturer. In this manner, it was determined that the sensors responded 
appropriately and data could be successfully acquired. 
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A preliminary data acquisition trip was conducted on Amtrak’s Wilmington Yard house track to verify the 

sensor response on a typical hy-rail vehicle. FIGURE 2 below shows a track chart and map of the overall 
location. Approximately 0.5 miles of track was traversed. 

 

 
FIGURE 2. Sensor response data acquisition location 

 
Seven runs were made over the half mile as shown in TABLE 3, with one sensor on the rear guide wheel of 

the vehicle (passenger side), tethered to the laptop, and operated from the rear of the cab. The left side of 
FIGURE 3a shows the sensor screwed to the steel plate and attached to the mounting magnet. This figure also 
shows the axis orientation of the sensor, where y is in line with the cable connector, x is perpendicular to the 
cable connector, and z is vertical. FIGURE 3b shows the location of the sensor in the proximity of the wheel. 

 
TABLE 3. Test run glossary 

Num. Direction Speed Frequency 
1 Forward 5 mph 500 Hz 
2 Reverse 5 mph 500 Hz 
3 Forward 5 mph 2,000 Hz – Aborted 
4 Forward 5 mph 1,000 Hz 
5 Reverse 5 mph 1,000 Hz 
6 Forward 5 mph 2,000 Hz 
7 Reverse 5 mph 2,000 Hz 
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a) Sensor mounting configuration 

 

b) Sensor tethering to rear of cab 

FIGURE 3. Sensor mounting configuration and tethering to laptop 

 
FIGURE 4 shows the sensor response data for the three axes of acceleration and gyroscope for Run 7. Note 

that the mounting orientation of the sensor (cable facing to the rear of the vehicle) resulted in the following1: 
 

x-axis: Lateral (positive towards the passenger side; perpendicular to track) 
y-axis: Longitudinal (positive forward; in-line with track) 
z-axis: Vertical (positive down; towards the ground) 
 

 
1 Note that the installation for this simple test was different than the data acquisition test (discussed in the next section) 
where the sensors were rotated 90 degrees to accommodate the cabling during mounting on the front wheels 
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a. Three axes of acceleration 

 
b. Three axes of gyroscope 

FIGURE 4. Sensor response data for run 7 

 
The data acquisition on Amtrak verified that suitable sensor response data could be acquired at varying 

speeds and data acquisition rates. 
 

Comprehensive Data Acquisition in Conjunction with a Hy-Rail Track Geometry Inspection Vehicle 
 
The data acquisition activity on a track geometry inspection vehicle was conducted using a Railworks 

supplied hy-rail vehicle and track on two local shortline railways; the Maryland & Delaware (MDDE) railway 
and the Black River & Western (BRW) railway. Railworks generously sent a hy-rail track geometry inspection 
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vehicle and operator to the MDDE, who donated track and time, along with a pilot for two days of testing. The 
first test was conducted on the MDDE on 7/25/23 near Selbyville, DE and the second day of testing was 
conducted on the Black River & Western (BRW) railway on 7/27/23 near Ringoes, NJ. Each location provided 
approximately ten miles of track of varying condition and layout. 

 
At the beginning of each day, the sensors were mounted on the Railworks Track Geometry truck on the 

front hy-rail gear as close to the wheel as possible, and the cables tethered to the laptop, secured with zip ties. 
Each sensor was mounted with a magnet on the steel plate supporting the rail sweep. They were secured for 
safety using zip ties. Figure 5 shows the sensor installation and cable tethering.  

 
FIGURE 5a shows the general sensor mounting and cable tethering to the passenger seat in the front of the 

cab. The contact gage system used for the track geometry measurement system can also be seen in this figure. 
 
FIGURE 5b and FIGURE 5c show the sensor mounting configuration for each side of the vehicle. Note that 

the sensors were 180 degrees out of phase to accommodate secure cabling, i.e, the cables for each sensor point 
away from the wheel towards the centerline of the track. This results in opposite signs for the lateral and 
longitudinal channels of each sensor. This was addressed and the data properly oriented (correct sign 
convention) during analysis. 

 
Note that for this mounting configuration, the positive acceleration and angular velocity values about the 

defined axis are defined as follows: 
 

x-axis: Longitudinal (inline with the track) 
- positive forward for driver’s side sensor  
- negative forward for passenger side sensor 

y-axis: Lateral (perpendicular to the track) 
- positive toward driver’s side for driver’s side sensor  
- positive toward passenger’s side for passenger side sensor 

z-axis: Vertical 
- positive down, towards the ground 
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a) Front of vehicle showing cabling and contact gage measuring system 

         
b) Passenger side sensor    c) Driver’s side sensor 

FIGURE 5. Sensor installation and cable tethering. Note the sensors are mounted in the opposite 
direction laterally/longitudinally. 

The track was tested, and data was captured independently by the Railworks’ track geometry system and 
the two SmartWheel sensors. The track geometry data, captured in the distance domain, was collected every 
foot of vehicle travel. This data was stored in the track geometry system processor and downloaded for later use 
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in the next stage of this research. The sensor data was captured for each sensor on a separate processor in the 
time domain at a frequency of 1,000 Hz (1,000 sensor samples per second). On day one, the track was tested in 
the increasing milepost direction. On day two, the track was initially tested in increasing milepost direction, 
then the truck was turned around and the track was retested in decreasing milepost direction. This resulted in 
approximately 30 miles of sensor and corresponding track geometry data collected, in two different datasets, 
from two different measurement systems. A typical output from the Railworks hy-rail track geometry 
measurement system is shown as a plot in FIGURE 6. Note this data can be exported to an ASCII file format for 
further analysis, to be achieved in Stage 2. 

 

 
FIGURE 6. Typical track geometry plot output2. 

 
It should be noted that periodically, the driver’s side SmartWheel sensor lost connection and froze up, 

requiring restarting of the sensor data acquisition system. Discussion of data preprocessing and filtering follows. 
 

TASK 4. DATA PRE-PROCESSING AND FILTERING 
 
The data from the track geometry measurement system (as shown in FIGURE 6) was exported in ASCII 

format and was represented spatially for each foot of track. The data components for each foot included milepost, 
GPS coordinates, testing speed, and more than 50 channels of track geometry output. Separately, the data from 

 
2 The track geometry and gauge output shown in Figure 6 is from an existing (and considerably more expensive) track 
geometry measurement system.  
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the SmartWheel sensors was captured in the time domain at frequencies of up to 1,000Hz. This data included 
(for each time step) three axes of acceleration, three axes of rotational velocity, and several derived channels (as 
shown in FIGURE 4). 

 
This resulted in two separate datasets (captured by two different systems) to be used for analysis that 

required pre-processing, including alignment and filtering. 
 
 

Data Pre-Processing 
 
In order to properly analyze the data, several pre-processing steps were required to align the data for model 

development. Data acquisition for the sensor data was performed using the software provided by the sensor 
manufacturer. This software was limited in that it could only capture one sensor at a time. Thus, two instances 
of the software were launched on the laptop, one for each sensor. Due to the time required for a human to start 
both sensor’s data collection, a short time lag (< 3 seconds) could be seen in the written data sets. The data from 
each sensor was evaluated and the time lag shift corrected to align the sensor data in the time domain. 

 
Since the data from the track geometry inspection vehicle was captured spatially and the sensor data was 

captured in the time domain, the data from the different systems had to be aligned to ensure the time windows 
were representative of the spatial output. This was done using the testing speed variable in the track geometry 
output data. In this manner, the number of time samples in a window of defined length could be determined. 
FIGURE 7 shows a representation of the data overlaid in the spatial domain for the hy-rail track geometry output, 
and the converted time domain sensor data, for comparative purposes. 

 
FIGURE 7 is intended to show that as speed increases, the number of sensor points available for analysis 

decreases. FIGURE 7a shows the starting point of an inspection where approximately 1,000 points of sensor 
data are collected per foot (horizontal axis foot 2, speed 0.7 mph) and as the speed increases, the number of 
points per foot reduces to approximately 333 per foot (foot 5, speed 2 mph). This is demonstrated in FIGURE 
7b, where the number of points acquired by the sensor decreases with increases in speed. At upper speeds of 25 
mph, the number of sensor points per foot would be 273. This will be accounted for in model development. 
Further, vibration increases with increased speed as expected, and the large deviations are due to changes in 
input geometry. 

FIGURE 7c shows the acceleration data captured by the sensor. Each color represents a window of 
acceleration points associated with one foot of measured track geometry data. The density of points decreases 
with increases in speed. 

 

 
a) Hy-rail speed 

 

 
3 Note that 27 points is sufficient for this type of analysis. For the purposes of this study, 25mph is considered the maximum 
speed. Should a second generation be developed for higher speeds, the sensors can be programmed to acquire data at 2,000 
Hz. 
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b) Number of sensor points per foot of travel 

 
c) Vertical acceleration from sensor at 1,000 Hz 

 
FIGURE 7. Sensor data as a function of speed travelled 

 Aligning the data for purposes of this research was quite challenging. Without a distance input to the 
sensors, a post alignment was achieved. The track geometry data (ground truth) was provided in the distance 
domain and had an accompanying speed channel for each foot of data collected (top plot in FIGURE 8). The 
sensor data was collected in the time domain, thus the number of sensor readings vary as a function of speed. 
When the vehicle stops (zero speed), the acceleration becomes static (bottom plot of FIGURE 8). Aligning these 
locations, and using interpolation, the specific time based sensor points were synchronized with the distance 
based geometry points for each foot of track measured. It is recognized that this introduces some linear offset 
error, which can be corrected with a distance input device to the sensor data acquisition. 
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FIGURE 8. Alignment of data using speed and zero acceleration markers 

 
Data Filtering 

 
The sensors are subject to high frequency vibration due to their location, and as such, the response data 

requires suitable filtering to isolate those portions of the signal that reflect the track geometry response. Several 
filtering techniques were evaluated in this task to isolate signature data to be used in model development. 

  
The first filter utilized was the Fast Fourier Transform (FFT), which converts the time domain sensor data 

into the frequency domain. FIGURE 9 shows an example of the resulting frequency spectrum for 4.1 seconds of 
collected data.  
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FIGURE 9. FFT results for the lateral and vertical accelerations of the passenger side sensor 

This figure clearly shows dominant frequencies in the lateral and vertical planes. Note the spike at 27 Hz. 
This frequency is associated with engine vibration, as it could be seen when the vehicle was stationary. Except 
for engine vibration, the higher frequencies are associated with vibration at the wheel due to wheel/rail 
roughness (short wavelength anomalies on the rail and/or wheel) and other input sources, while the lower 
frequencies are generally associated with displacement. This will be further evaluated as part of Stage 2. 

 
The frequency data can be used to generate a filtered acceleration response by applying a band-pass 

frequency filter (excluding frequency components not of interest, such as higher frequency vibrations) and using 
only the frequencies of interest. Using the Inverse Fast Fourier Transform (IFFT), and the frequencies of interest, 
as well as their corresponding magnitudes and phase shifts, the signal of interest can be reconstructed. 

 
The second filter investigated was the Hilbert Huang Transform (HHT). This filter decomposes the signature 

into a number of Intrinsic Mode Functions (IMF) and is especially powerful for nonstationary/nonlinear real-
world data. Each IMF represents a portion of the signal such that the number of extreme values and zero-
crossings are equal. FIGURE 10a shows an example of an initial application of the HHT to the vertical 
acceleration signal. The trace in red is the original signal. The subsequent traces are components of the 
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decomposed signal (IMFs and the residue). Note that the vertical scale (in g’s) is the same for each IMF, thus 
activity appears shallow for each additional IMF. Considering the first three IMFs as high frequency noise, the 
reconstructed signal in red (removing IMFs 1-3 from the original signal) overlaid with the original signal in 
black, is shown in FIGURE 10b. This results in an acceleration input signal that has high frequency vibration 
and impact spikes removed. These results are promising but still very preliminary.  A more extensive analysis, 
to include identifying the number of IMFs corresponding to noise, will be further performed in the Stage 2 work. 

 
a. Raw acceleration signal and IMFs (decomposed signal) 

 
b. Raw acceleration signal and denoised signal (removing IMFs 1-3) 

 
FIGURE 10. HHT application. 
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The above filtering approaches were evaluated, along with several others, for multiple window lengths in 
time and distance. The preferred window length, as well as additional filtering parameters, are defined as part 
of Stage 2. 

 
TASK 6. DEVELOPMENT OF AI INTERFACE 

 
This research focused on track geometry issues in the vertical and horizontal planes, which could be 

addressed by an IMU at the hy-rail wheel. No linear measurements are supported in this version, and as such, 
gage and lateral alignment are not addressed. Specifically, running surface (or profile), cross-level, and degree 
of curvature were evaluated. Derived channels that can be computed are super elevation, twist, and warp. Two 
approaches were evaluated including machine learning and deterministic. 

 
Machine Learning Approach 

 
Upon aligning the IMU data with the ground truth data, this task involves selecting a suitable machine 

learning model. Given the inherently nonlinear relationship between IMU data and ground truth, the initial 
choice was Convolutional Neural Networks (CNNs), well-known for their efficacy in learning nonlinear 
relationships. The following is a summary of the steps for the initial AI interface training, validation, and 
observations made. 

 
This portion of the research was conducted utilizing the following precursory steps: 
 

Data Collection and Preprocessing: Sensor data related to track geometry parameters was 
as collected during the initial stages. This data underwent preprocessing steps such as filtration 
and alignment with ground truth parameters to ensure its quality and relevance, as discussed in 
the previous section. The final filtering of the sensor data was a frequency-based band pass 
filter. 

 
Choice of Model: After careful consideration, a Convolutional Neural Network (CNN) for 

the prediction task was implemented. CNNs are well-suited for processing sequential data and 
have shown promising results in similar tasks. [5] 

 
Feature Engineering: In this phase, feature engineering was performed to extract relevant 

information from the sensor data. Instead of using the original IMU data, computed statistics 
(minimum, maximum, and mean) for each data sample were utilized, resulting in an 18-
dimensional feature vector representing acceleration and rotation along different axes. This 
would also reduce the complexity of the problem. Initially, only the data from the driver-side 
sensor was used to predict the left surface, degree of the curve, and cross-level.  

 
Windowing Strategy: A windowing strategy was employed to capture temporal 

dependencies and context in the data. Rather than using a one-foot window, the window size 
was expanded to the five feet surrounding the ground truth sample. Thus, sensor input from 
plus/minus two feet served as the input to the CNN, with the TG data serving as the ground 
truth. This allowed us to combine multiple data samples and choose the corresponding middle-
ground truth label for training. 

 
Model Architecture: A simple CNN architecture comprising two convolutional layers for 

the initial training was designed. The first layer had 64 kernels, followed by a pooling layer 
with a kernel size of 2. The second convolutional layer had 128 kernels, followed by a pooling 
layer with the same kernel size. 

 
Training and validation for the model was performed recursively. The following steps were conducted 

during this task of the research: 
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Data Splitting: To train and evaluate the model, the dataset was partitioned into three 

subsets: training, validation, and testing. 80% of the total data was allocated for training 
purposes. The remaining 20% was divided equally, with 10% used for validation and the 
remaining 10% for testing. 

 
Loss Function and Optimizer: The Mean Squared Error (MSE) loss function was initially 

selected to train the model. The MSE loss is defined as the average of the squared differences 
between the predicted (machine learning result) and actual values (measured track geometry 
data). This loss function is commonly used for regression tasks. In the formula below, 𝑦௜ 
denotes actual output and 𝑦෤௜ denotes predicted output, and n is the total number of points under 
consideration. 

 

𝑀𝑆𝐸 ൌ
1
𝑛
෍ሺ𝑦௜ െ 𝑦෤௜ሻଶ
௡

௜ୀଵ

 

 
Optimizer Selection: The Adam optimizer was chosen with a learning rate of 0.001. Adam 

optimizer is an adaptive learning rate optimization algorithm that is well-suited for training 
deep neural networks. The chosen learning rate helps in controlling the step size during 
optimization to ensure convergence. 

 
Training Details: The training process involved iterating over the dataset for multiple 

epochs, or iterations of the complete dataset. The model was trained for a total of 200 epochs, 
with each epoch consisting of forward and backward passes through the network. The dataset 
comprised approximately 3000 data samples. 

 
Initial Results: The first iteration of the model showed promising results. The total loss 

obtained after training was 11%, indicating that the model was able to capture the underlying 
patterns in the data effectively. FIGURE 11 shows the prediction from the ML model with the 
ground truth on the validation data set (approximately 300 feet) for surface, degree of curvature 
and crosslevel. Observationally, this figure shows the model capturing the underlying trends in 
the data, however the variation is not quite captured. 
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FIGURE 11. First iteration model comparative results for Surface, Degree of Curvature and 
Crosslevel using MSE loss function 

Loss Function Modification: Initially, the Mean Squared Error (MSE) loss function was 
employed, which calculates the average of the squared differences between the predicted and 
actual values. However, since the variation of the data showed spikes in the output, which is 
the actual area of concern, the loss function was modified. MSE loss function penalizes all the 
data points equally, which may not be suitable for this task. The loss function was changed to 
the Mean Absolute Error (MAE) loss function, which penalizes the outliers (or spikes) more.  
MAE calculates the average of the absolute differences between the predicted and actual 
values. The expression of MAE is given below.  

 

𝑀𝐴𝐸 ൌ
1
𝑛
෍|𝑦௜ െ 𝑦෤௜|
௡

௜ୀଵ

 

 
Unlike MSE, MAE penalizes outliers more severely, making it suitable for datasets with 

significant variations. FIGURE 12 shows a comparison of the second iteration model 
predictions with the ground truth results. 



 

23  

 

FIGURE 12. Second iteration model comparative results for Surface, Degree of Curvature and 
Crosslevel using MAE loss function 

 
While the MAE loss function predicted some spikes in the output, it also led to overfitting. 

The net loss increased from 11% to 23.8%, indicating that the model struggled to generalize to 
unseen data and was potentially fitting too closely to the training data.  

 
In order to avoid overfitting, L2 regularization and dropout regularization techniques were 

applied. L2 regularization adds a penalty term to the loss function, which discourages large 
weights in the model. Dropout regularization randomly drops a fraction of the neurons during 
training, which helps prevent co-adaptation of neurons and improves generalization. L2 
regularization can be achieved by adding weight decay to the optimizer for a convolutional 
neural network. This adds a penalty term proportional to the squared magnitude of the weights 
to the loss function. Dropout regularization can be implemented by adding dropout layers after 
convolutional layers or fully connected layers in the model architecture.  

 
After implementing the regularization, the net error was reduced to 22.6%, and the 

comparative results are shown in FIGURE 13.  
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FIGURE 13. Third iteration model comparative results for Surface, Degree of Curvature and 

Crosslevel after implementing regularization 

 
It must be noted that in the above comparison figures, the 300 feet of data is not contiguous. The ML 

approach captures points at random for training, validation and testing. Thus, the testing data is approximately 
300 feet of random data points within the 7000 feet of data and displayed in a linear format for observational 
purposes. 

  
 

Deterministic Approach 
 
The deterministic approach addresses the kinematic outputs of the sensors, specifically, the three axes of 

acceleration and three axes of rotational velocity. Similar to navigation, Euler angles can be determined for the 
sensor frame of reference relative to Earth. There are limitations to this approach, requiring a relative reference 
frame.  

 
To demonstrate this approach, consider cross level, which is defined as the inclination of one rail relative to 

another, perpendicular to the running axis of the track. FIGURE 14 shows the reference frame associated with 
the track, the IMU and Earth. Thus, the gravity vector projection in the transverse plane can be used to define 
the static angle of inclination (θS) of one rail to another according to: 

 

𝜃ௌ ൌ 𝐴𝑇𝐴𝑁 ቆ
𝑎௬

ඥ𝑎௫ଶ ൅ 𝑎௭ଶ
ቇ 

 
 Knowing this angle, cross level (XL) can be calculated as follows: 
 

𝑋𝐿 ൌ 59 ∗ 𝜃 
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 However, since the vehicle (and IMU) is in motion, the IMU records other forces such as vibration 
(acceleration “noise”) and centrifugal acceleration. Thus, the static angle determined above can be corrected 
using the dynamic roll angle, which can be determined from the angular velocity around the x-axis through 
integration. The longitudinal velocity of the vehicle was recorded by the geometry system and associated with 
the sensor data. when the sensor time-based data was converted to the distance domain, velocity was used to 
calculate the time traveled between feet of data collected (Δt). The dynamic roll angle (θD) is determined from 
the measured roll angle (wx) as follows: 
 

𝜃஽௜ ൌ 𝜃஽௜ିଵ ൅ 𝑤௫௜ ∗ ∆𝑡௜ 
 
  

 
 

FIGURE 14. Reference frame schematic 

 
Accelerometers pick up vibration which is classified as high frequency noise associated with short term 

changes. Thus, the accelerometer data is low pass filtered to retain the long-term variations and filter out the 
short-term variations. IMU’s are effective at measuring long term variations, thus the IMU angular velocity data 
is high pass filtered to attenuate the low frequency aspects of the data and allow the high frequency aspects to 
pass through. Combining the to portions of the signal results in the filtered roll angle. However, integration of 
the IMU data results in a cascading error know as drift. To handle this, a complimentary filter can be employed. 
This is know as data fusion, and several techniques can be employed. [6] 

 
The equation for the low pass filtered static roll angle (𝜃෠ௌ) is calculated as follows: 
 

𝜃෠ௌ௜ ൌ 𝛼𝜃ௌ௜ ൅ ሺ1െ 𝛼ሻ𝜃෠ௌ௜ିଵ 
 
The equation for the high pass filtered dynamic roll angle (𝜃෠஽) is calculated as follows: 
 

𝜃෠஽௜ ൌ ሺ1െ 𝛼ሻ𝜃஽௜ ൅ 𝛼𝜃෠஽௜ିଵ 
 
The combined roll angle (𝜃෠௜) becomes: 
 

𝜃෠௜⬚ ൌ ሺ1െ 𝛼ሻ𝜃෠ௌ௜ ൅ 𝛼𝜃෠஽௜ 
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The cross level at each foot then becomes: 
 

𝑋𝐿௜ ൌ 59 ∗ 𝜃෠௜ 
 
Application of this process to a subset of data is shown in FIGURE 15. 
 
The top plot show the raw and low pass filtered roll angle derived from the acceleration signal and the 

middle plot shows the high pass filtered roll angle derived from the angular velocity signal (note the drift 
associated with integration). The bottom plot shows a comparison of the cross level from the deterministic 
approach and the ground truth from the track geometry system. Note that this data is contiguous unlike the 
randomly selected data used to test the ML model. 

 
The deterministic approach clearly shows the general trend of cross level though there are some locations 

showing some significant variation. It is expected that this may be due to the data acquisition phase of the 
project, whereby alignment of disparate data sources resulted in some offset and potentially inaccurate 
calculations of time between samples of data, which significantly influences the integration step.  

 
A similar approach can be used for surface as shown in FIGURE 16, using the appropriate accelerations and 

pitch angular velocity. In addition, the space curve (SC) data is converted to a mid-chord offset (MCO) for 
comparison by digitally imposing a 62’ chord on the space curve data according to: 

 

𝑀𝐶𝑂௜ ൌ
ሺ𝑆𝐶௜ିଷଵ ൅ 𝑆𝐶௜ାଷଵሻ

2
െ 𝑆𝐶௜ 

 
General tendencies and variations are picked up in the determination of surface, with some locations of 

discrepancy as shown in FIGURE 16. 
 
Curvature cannot use the same exact approach since the gravity vector cannot be used to determine yaw. 

Thus, only the angular velocity about the z-axis can be used to determine a relative yaw angle, using integration 
and mean removing the associated drift. The results are shown in FIGURE 17. Good agreement can be seen 
between the deterministic approach and the ground truth. 
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FIGURE 15. Deterministic approach to cross level 
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FIGURE 16. Deterministic approach to surface 
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FIGURE 17. Deterministic approach to curvature 

 
 
 
 

TASK 7. PRELIMINARY VALIDATION 
 
From the previous task, observationally, there is agreement between the ground truth and the two approaches 

used to determine geometry parameters; Machine Learning and Deterministic. However, there are some 
significant discrepancies in both approaches.  

 
To further validate the data, histograms were created and are presented in FIGURE 18. These figures show 

the distribution of actual points from the track geometry car (TGC) data versus the distribution of predicted 
points, for both the deterministic (Derived from Sensor) and ML approaches (ML Prediction). 
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FIGURE 18. Histograms of actual versus predicted values 
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The top plot of FIGURE 18 shows the comparison for cross level. The deterministic approach shows a shift 
to the right, indicating over predicting. This was also evident in FIGURE 15. The histogram for the ML 
prediction was based on the limited test dataset (approximately 100 points), which were collected at random 
during the testing process. Due to the limited population size and randomness of the data, the distribution 
analysis is inappropriate. The plots for surface and curvature show excellent agreement for the actual data and 
the deterministic approaches. This indicates that overall the method is picking up the general trends of the data. 
Given the ML randomness restriction, histograms were created for ground truth and ML prediction for the 300 
point dataset and are provided in FIGURE 19. The distributions show that, for the small subset of test data, good 
agreement is evident, and as supported previously in the comparison graphs. 

 
The distribution analysis allows for an understanding of the general ability to predict the underlying trends 

in the data. However, observationally, there were obvious discrepancies. To understand this, the root mean 
squared error was calculated (RMSE), which is defined as the square root of MSE. The RMSE has the same 
units as the measurement under consideration. The results are shown in TABLE 4. 
 

TABLE 4. Error analysis 

Parameter Deterministic Machine Learning 
Cross Level 0.83 inches 0.32 inches 
Degree of Curvature  0.37 degrees 0.22 degrees 
Surface 0.57 inches 0.46 inches 

 
 TABLE 4 shows that the machine learning approach is slightly more accurate than the deterministic 
approach, however, the limited amount of test data limits this conclusion. In addition, overall, the error values 
are higher than desirable. This again is likely due to the deficiencies in the data acquisition phase. 
 
 The system has room for improvement, but the research has shown that the product is technically viable. 
Improvement concepts will be discussed in the conclusions. 
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FIGURE 19. Histograms of actual versus ML predictions 
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TASK 8. PROTOTYPE SPECIFICATION 

 
One of the primary challenges experienced as part of this activity was the data alignment. Due to the nature 

of the research focusing on the AI interface, a simplified data acquisition approach was required to fit within 
the scope and budget of this activity. Thus, temporary installation resulted in the sensor data not being 
consistently aligned with the ground truth data. This can be overcome by linking the sensors directly to the 
geometry system, which requires an extensive cooperative effort with the geometry system supplier, or 
connection to a distance measuring device, such as a separate encoder or the electronic control unit (ECU) of 
the vehicle. Note that this is an envisioned next step in the development process to refine the algorithms. The 
intent of the SmartWheel is to be independent of a geometry system. 

 
Discussions were held with the sensor supplier to understand the implications of developing a self-contained 

sensor system that can be deployed practically on a hy-rail vehicle. The following features are required for such 
a prototype system: 

 
 Secure housing and robust cable connection for the sensor at the hy-rail wheel bearing 

o Adaptable bracketing for securing unit to hy-rail gear 
 Tap into speed and distance signal from vehicles ECU 
 Incorporate RTK-GPS receiver 
 Develop edge computing module 

o Data acquisition 
o Data filtering 
o Data analysis 
o Wi-Fi/Bluetooth data to smart phone for viewing and capture 
o Power from vehicle battery 

 Develop application for collecting, displaying and reporting data 
o Phone based 
o Tablet based 

 
 FIGURE 20 shows a simplistic block diagram of the potential first-generation prototype. As listed above, 
the final design for the sensor housing and design of the edge computing module, to include power, processing 
and communication needs to be accomplished. 
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FIGURE 20. Prototype block diagram 
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PLANS FOR IMPLEMENTATION 

 
As evidenced in the previous section, which will be expanded on in the conclusions, work still needs to be 

done to develop the first production level prototype. Specifically, the following tasks are defined to extend this 
research: 

 
1) Develop research level real time software for use on a laptop: One of the major shortcomings of this 

research was the data acquisition. The first step in formalizing a prototype is to develop in-house data 
acquisition and analysis software that connects to the vehicle ECM (to get speed and distance signal), 
connects to a GOS receiver, and connects to and powers the sensors. 

2) Design permanent/adjustable bracketry and housing for the sensors. 
3) Gather more data on board a hy-rail track geometry car: In order to refine the algorithms developed, 

additional data is required. Collecting more reliable data will allow for the refinement of the algorithms, 
including additional filtering as necessary. 

4) Design and build edge computing module: Once this is completed, the entire first-generation production 
prototype will be completed. This can then be tested on the hy-rail track geometry truck, as well as 
compared to a heavier track geometry car. 

5) Consider adding gage and later alignment calculations. (see conclusions for discussion) 
 
Railworks provided the hy-rail track geometry car and is interested in the product and expressed interest in 

continuing cooperation on this research. In addition, Diversified Metal Fabricators (a hy-rail gear manufacturing 
company) has also expressed interest in cooperating and have offered to help design permanent bracketry. 

 
The current plan is to solicit additional funding to continue this research and develop arrangement with the 

identified suppliers. 
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CONCLUSIONS 

 
The results of the research clearly showed the potential for incorporating low cost electronics in standard 

equipment used on railroads every day that have the potential to significantly enhance the safety of operations. 
This research also helped to identify challenges that need to be overcome before a final product can be taken to 
market. 

 
The combined deterministic and AI approach for algorithm development shows great promise based on the 

results of this research. Clearly the AI model accuracy needs to be increased; however, the data collected as part 
of this research has limitations. The research team has identified additional tasks for improving the data 
collection to finalize the algorithms to be incorporated into a first-generation prototype of the SmartWheel.  

 
One primary take-away from the research is that the increasing technology associated with low-cost MEMs 

devices offers opportunities for more frequent and autonomous data collection. Incorporating these devices at 
the hy-rail wheel/rail interface offers the ability to collect data anytime a hy-rail or piece of work equipment is 
on track. Implemented with the proper communications protocol, anyone with a phone and the app can connect 
and receive alerts on track condition. The output can also be automatically uploaded to the cloud and continuous 
monitoring implemented to close the feedback loop and identify changes in condition and/or changing 
conditions. The key is that this can be accomplished with little investments per vehicle and zero investment for 
“crowd-sourcing” the data. Realizing this entire system would result in a much safer infrastructure, and 
potentially minimize other higher cost inspections. 

 
The fundamental results of the research are that the idea shows significant promise with some weaknesses 

that need to be overcome. Specifically, the research team did not get to a final algorithm due to the nature of the 
data collected. Additional data collected under a more controlled data acquisition phase that connects both 
sensors, vehicle speed and GPS would expedite algorithm development to a final conclusion. Also, the research 
project was focused on the vertical plane of the track and the lateral plane must still be addressed.  

 
One key question from the advisory board is how to economically measure gage, a linear measurement that 

can not be achieved with an IMU. Currently, gage is measured with laser/optic systems that are very expensive 
(>25K for just the hardware itself). In addition, contact gage systems are mechanically unreliable. The research 
team witnessed the contact gage system of the test vehicle derailing quite frequently, requiring the operator to 
stop the vehicle, disembark, and reseat the system. 

 
The research team was recently involved in using camera arrays and photogrammetric techniques to make 

linear measurements, specifically for rail wheels, to be published in the near future as an SBOR Phase 1 report. 
The research team believes an inexpensive gage measuring system can be developed that completes this system 
to include gage and lateral alignment.  

 
Developing an inexpensive, photogrammetry-based method for measuring track gage can be achieved by 

placing a set of cameras over each rail. Those cameras will be firmly fixed with respect to each other, i.e. distance 
between the camera arrays is constant and known. Each camera set will determine the path of the current gage 
point in separate camera spaces. Fixing the camera sets relative to each other will allow the paths of the gage 
points for each camera set to be placed in the same coordinate system, which will allow for the calculation of 
gage. FIGURE 21 illustrates the idea. 

 
The fundamental technology to be used will either be simple consumer cameras like those used in cell 

phones or those used in a computer optical mouse.  In either case, the cost of the cameras will be on the order 
of $10 each. The minimal number of cameras required per set is one. That is possible because a proper spread 
of images can be created by taking them rapidly enough that proper optimal overlap of the images is achieved. 
Thus, the cost of the foundational measurement technology could be as low as $20. Additional redundant 
cameras will likely be used due to the low cost. 
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FIGURE 21. Photogrammetric approach to measuring gage 

To determine the gauge point, features that are referred to as keypoints, will be found in each image. Each 
keypoint has an associated descriptor. Descriptors are used to determine the likelihood that a keypoint in one 
image is associated with the same actual physical location as the keypoint in another image. These matches are 
used by photogrammetry algorithms to determine the distance from the camera to each keypoint. The other two 
dimensions are already contained in the image. Thus, the 3D position of each feature can be determined. From 
these 3D positions, the profile of the rail can be determined and the gauge points extracted.  

 
The processing time for finding keypoints (along with their descriptors) and turning them into 3D 

information, increases with the resolution of the images. The accuracy of the measurements also increases with 
the resolution of the images. There are two main methods that should be investigated. One is to see how quickly 
the high resolution images from a normal cell phone camera can be processed, the other is to determine what 
sort of accuracy can be gathered by using the cameras used in optical computer mice. The first one promises the 
highest accuracy (with possibly an undesirable delay), the second one promises real-time processing with 
possibly inadequate accuracy. 

 
Incorporating a camera array into the hy-rail gear could provide gage and lateral alignment at a low final 

product cost. 
 
The path to developing and implementing a product in the industry includes the steps outlined in PLANS 

FOR IMPLEMETATION as well as incorporating the gage and lateral alignment. Once this prototype is 
complete, rigorous testing must be undertaken to ensure reliability, as well as accuracy. The research team is 
quite familiar with products taken to market too quickly, with poor demonstration and significant loss of 
credibility. Thus, the research team intends to solicit funding to generate the next level prototype. Based on the 
finding therein, the team looks to partner with the previously identified manufacturers and suppliers to develop 
an arrangement for taking the product to market. The research team has numerous industry contacts and 
credibility in inspection system development that can open doors for appropriate presentations to potential 
customers. Customers include all railways, from the Class 1’s that need to supplement inspection and locate 
areas requiring maintenance to the short lines that cannot afford expensive inspection technology, and every 
railway in between. The ability to increase safety with a low-cost investment is always appealing. 

 
  



 

38  

INVESTIGATORS’ PROFILES 

 
Dr. Joseph W. Palese is currently Research Assistant Professor at the University of Delaware (UD). He 

joined UD in 2017 as a Senior Scientist after a 28-year career in the railway industry. Throughout his career Dr. 
Palese has focused his research and application efforts on obtaining inspection data to aid in enhanced safety 
and railway track maintenance planning. He has three patents in this area and has developed gage restraint 
systems, tie inspection systems, track geometry inspection systems, as well as several other inspection 
components. Using this data he has developed a multitude of degradation analysis and life forecasting software 
packages, to include rail wear, rail fatigue, tie failure, surfacing/undercutting, rail grinding planning, tie 
replacement strategies, etc. In the past decade Dr. Palese has been at the forefront of utilizing artificial 
intelligence for fusing and correlating disparate data sources to determine effects of track component condition 
on accelerated failure and increased maintenance 
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APPENDIX:  RESEARCH RESULTS 

 
Sidebar Info 
 
Program Steering Committee: Rail Safety IDEA Program 
Month and Year: August, 2024 
Title: Development of a Prototype Smart Hy-Rail Wheel 
Project Number: SAFETY-49 
Start Date: October. 2022 
End Date: August, 2024 
Product Category: 
Principle Investigator: 

Joseph W. Palese, PhD, PE 
Research Assistant Professor 
University of Delaware 
palesezt@udel.edu 

 
Title/Subhead 
 
Development of a Prototype Smart Hy-Rail Wheel 
Low-cost inertial measurement unit provide track inspectors with up to data track condition assessments. 

 
WHAT WAS THE NEED? 

The Federal Railway Administration track safety standards require rigorous visual inspections of tracks 
based on their operating speed (FRA track class), as frequently as twice per week. Often these inspections are 
carried out using hy-rail (highway/rail) vehicles, with the trained inspector using a set of hand tools (track level, 
string line, gauges, etc.) to further measure locations that appear to be out of compliance. In addition, railways 
perform specific inspections using hy-rail or rail bound equipment to measure track geometry, internal rail 
condition, track strength, tie condition, ballast condition, joint bar condition, etc. These vehicles are expensive 
to build, maintain and operate. A need exists for a low-cost alternative to assist inspectors in their daily 
requirements that is accurate and easy to use. 
 
WHAT WAS OUR GOAL? 

The objective of this research was to develop a prototype, low-cost, “smart” hy-rail wheel (SmartWheel) to 
be deployed on an inspector’s hy-rail vehicle (or any hy-rail vehicle the railway operates) that assists the trained 
inspector in identifying locations in track with certain classes of potential defects, in an autonomous and passive 
manner. It is intended that the SmartWheel be self-contained, autonomous, and provide alerts to the operator. 
Additionally, the SmartWheel must be inexpensive to implement and provide additional information to the 
inspector to assist in assessing particular elements of the track condition. 

 
WHAT DID WE DO? 

To achieve the research goal, data was collected from identified low-cost IMU sensors temporarily installed 
on the left and right guide wheels of a hy-rail vehicle that was also outfitted with a comprehensive track geometry 
measurement system. In this way vehicle response data in the form of triaxial acceleration and angular velocity 
was collected from each sensor in the time domain, and the actual track condition data was collected by the 
geometry system in the spatial domain. The IMU sensor data was filtered and used to develop AI and 
deterministic prediction models for a subset of track geometry parameters including surface, cross-level and 
curvature. 

The AI model consisted of a multi-layer convolutional neural network, trained using a 5 foot input window 
of sensor data, corresponding to a 1 foot measure of track geometry data. The data was portioned randomly with 
80% for training, 10% for testing and 10% reserved for validation. The deterministic model was developed using 
data fusion of the acceleration and angular velocity signals of the IMU. This approach isolates the low frequency 
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response of the acceleration signal and high frequency response of the angular velocity using integration and a 
complimentary filter to extract the pertinent geometric parameters used to define track geometry. 

These models were then evaluated using a portion of the data not used during training of the machine 
learning models.  
   
 
WHAT WAS THE OUTCOME? 

The outcome of the research was a viable prediction algorithm for a subset of track geometry parameters 
using a low-cost IMU. The error of the developed system was approximately 22%, which related to +/- 0.16” to 
+/- 0.25” of accuracy. This error is larger than desired, however with additional data and further training of the 
models, it is fully expected that the error can be reduced significantly. This could be achieved with a field 
deployable prototype. 

Only a subset of track geometry parameters were targeted. Specifically, parameters associated with the 
vertical plane of the track, as well as curvature were investigated. Lateral parameters such as alignment and gage 
require additional sensors that could easily be integrated with the current SmartWheel design. 
 
WHAT IS THE BENEFIT? 

The primary benefit of this product is a safer operating environment through the low-cost implementation 
of a tool that assists inspectors in an autonomous fashion in locating potential track defects. A secondary benefit 
is identifying locations with habitual problems where revised maintenance practices can increase safety and 
reduce overall costs. Lastly, successful implementation of this research will help inspectors (particularly less 
experienced inspectors) identify locations that are sometimes quite difficult to quantify, or even recognize, 
visually. This includes finding locations requiring remediation identified by stand-alone inspection cars. Not all 
track anomalies are identifiable through this technology, but a significant number of safety related anomalies 
are identifiable. 
 
LEARN MORE 

ADD LINK TO FINAL REPORT 
 
POTENTIAL FIGURES 

 

 
Subset of track showing predicted versus actual cross-level 
 

Parameter Deterministic Machine Learning 
Cross Level 0.83 inches 0.32 inches 
Degree of Curvature 0.37 degrees 0.22 degrees 
Surface  0.57 inches 0.46 inches 

Accuracy comparison of modeling approaches 
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SmartWheel sensor installed on left and right guide wheels of hy-rail vehicle 




