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Foreword 

he second Strategic Highway Research Program (SHRP 2) Safety Study, completed in 2015, 
collected an unprecedented amount of objective data on driver behavior and the driving 

context. The SHRP 2 Naturalistic Driving Study (NDS captured detailed data on 3,500+ 
volunteer passenger-vehicle drivers, including continuous driving data and video of the road and 
the driver over 35 million vehicle miles and more than 4,200 crashes and near-crashes across 
sites in six states. The SHRP 2 Roadway Information Database (RID collected detailed roadway 
data on 12,500 centerline miles, compiled existing driving context data on another 200,000 
centerline miles, and made it possible to link the roadway data to the driving data. Together, the 
SHRP 2 NDS and the RID are the “SHRP 2 Safety Data.” Phase 1 of SHRP 2 Safety Data 
Implementation and Oversight is the initial post-data collection phase, begun in March 2015. The 
objectives of this phase are to make the Safety Data widely available to qualified researchers and 
to gain experience and data to support decisions about the implementation and oversight of the 
data beyond the first 5 years. Phase 1 is scheduled to end in August 2020. 

2017–2019 SECOND STUDENT PAPER COMPETITION:  
SHRP 2 SAFETY DATA BONANZA  

This e-Circular contains papers submitted to the second Student Paper Competition: SHRP 2 
Safety Data Bonanza. The SHRP 2 Safety Data Program and the Transportation Research Board 
(TRB Oversight Committee for Use and Oversight of SHRP 2 Safety Data, Phase 1 sponsored 
this competition to promote use of the SHRP 2 Safety Data, to extract new insights and 
applications of the data, and to foster the next generation of leaders in surface transportation. A 
call for abstracts was issued in October 2017 to graduate students across the country, soliciting 
innovative ideas for using the data. The Review Panel for the SHRP 2 Safety Data Student Paper 
Competition selected eight students to conduct their research proposals; they received a data 
export, conducted their analysis, and were sponsored to attend the TRB Annual Meeting in 
January 2019 to present their results at a poster session. The students went on to develop 
research papers from their analyses.  

Four exemplary papers were selected by the Review Panel to be published in this  
E-Circular. These student papers examine the topics of interchange ramps, a market basket
approach to analyzing safety data, risky secondary driving behavior, and pollutant emissions.
The variety of these topics is indicative of the broad usefulness of the SHRP 2 safety data.

2015–2016 FIRST STUDENT PAPER COMPETITION:  
SHRP 2 SAFETY DATA BONANZA  

This first student paper competition was published in the Transportation Research Circular E-
C221: SHRP 2 Safety Data Student Paper Competition, 2015–2016 (2017). It can be found on the 
TRB website at http://www.trb.org/Publications/Blurbs/176065.aspx. 

 

T 



  
 
 

v 

ACKNOWLEDGMENTS 
 
It is important to acknowledge that the SHRP 2 Safety Data Student Paper Competition and this 
E-Circular is the product of the work of the many individuals, committees, and task groups who 
volunteered their valuable time and insight. Thanks go to the authors and their faculty sponsors 
for participating in the second SHRP 2 Safety Data Student Paper Competition.  

The TRB Oversight Committee for Use and Oversight of SHRP 2 Safety Data, Phase 1 
provided overall leadership of the SHRP 2 Safety Data Student Paper Competition. The Expert 
Task Group for User Community Development for Safety Data, Phase 1 provided guidance on 
development and management of the Student Paper Competition. From these two groups was 
assembled the Review Panel for the SHRP 2 Safety Data Student Paper Competition, who 
provided valuable reviews and feedback on the abstracts and papers. Special acknowledgement 
goes to Troy Costales, Joanne Harbluk, Suzie Lee, Tim McDowell, Christopher Melson, Miguel 
Perez, Norah Ocel, Omar Smadi, Jordan Riddle, and Zongwei Tao. The teams at Virginia Tech 
Transportation Institute and the Institute for Transportation at Iowa State University also 
provided data request support. The entire process was managed by TRB staff Steve Andrle, 
Karen Febey, David Plazak, and Brie Schwartz. 

This work was sponsored by the Federal Highway Administration in cooperation with the 
American Association of State Highway and Transportation Officials. It was conducted in Phase 
1 of SHRP 2 Safety Data Implementation and Oversight, which is administered by the 
Transportation Research Board of the National Academies of Sciences, Engineering, and 
Medicine.  
 
 
 
 
 
PUBLISHER’S NOTE 
 
The views expressed in this publication are those of the committee and do not necessarily reflect 
the views of the Transportation Research Board or The National Academies of Sciences, 
Engineering, and Medicine. This publication has not been subjected to the formal TRB peer 
review process. 
 
 
 



vi 

Contents 

Beyond Safety: Utilizing SHRP 2 NDS Data to Model Vehicular Emissions from  
Passenger Cars at Work Zones Using Vehicle-Specific Power and Operating  
Mode Distribution Approach ..................................................................................................................... 1 
Georges Bou-Saab, Shauna Hallmark, and Omar Smadi 

Identifying Association Between Level of Safety of Events and  
Driver Characteristics: A Market Basket Analysis ..................................................................21 
Saleh R. Mousa and Sherif Ishak 

Modeling Determinants of Risky Driving Behaviors and Secondary Task  
Engagement Using Naturalistic Driving Data ...........................................................................41 
Shivam Sharda, Denise Capasso da Silva, Kevin J. Grimm,  
Sara Khoeini, and Ram M. Pendyala  

Interchange Deceleration Lane Design Based on Naturalistic Driving 
Speeds and Deceleration Rates ...................................................................................................57 
Dan Xu, Huaguo Zhou, and Chennan Xue 



1 

Beyond Safety 

Utilizing SHRP 2 NDS Data to Model Vehicular Emissions from  
Passenger Cars at Work Zones Using Vehicle-Specific Power and  

Operating Mode Distribution Approach 

GEORGES BOU-SAAB 
SHAUNA HALLMARK 

OMAR SMADI 
Iowa State University 

ransportation sector is a major contributor to air pollution. Therefore, it is essential to monitor 
vehicular emissions in order to control air quality. Many researchers showed interest in the 

Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study (NDS) data to 
conduct safety and driver distraction studies. One major benefit of using such a dataset is that it 
represents the overall vehicle fleet, driver population, and traffic conditions in the United States. 
There is potential to utilize this data in modal emission modeling at project level by acquiring 
second-by-second speed and acceleration to calculate vehicle-specific power, then assign data to 
different operating mode bins to estimate emissions. The primary focus of this study was to utilize 
SHRP 2 NDS data to estimate emissions of criteria pollutants for work zones in four-lane divided 
principal arterials with different configurations. The analysis also considered work zone principal 
areas and level of congestion. Overall, results showed that the work zone area type and 
configuration did not have any impact on emissions, although high congestion levels increased 
emissions, predominantly within the activity area. Further investigations that compared the 
different bivariate speed and acceleration distributions using the energy statistics showed that work 
zone configuration and principal area had a significant impact on vehicle operations.  

INTRODUCTION 

Work zones are typically employed on roadway networks for restoration, resurfacing, 
rehabilitation, and reconstruction projects. As a result of lane closure, work zones create 
bottlenecks reducing capacity and disrupting traffic flow. Congestion due to work zones on a 
roadway network is nonrecurring since they temporarily interrupt traffic movement. 
Nonrecurring events also include crashes, severe weather conditions, disabled vehicles, and 
special planned events and they account for approximately 50% of total congestion. Work zones 
are responsible for 10% of total congestion (1). Impact of work zones is not only limited to 
mobility, safety, and user cost, it also extends to the environment. Congestion occurring at these 
particular locations contributes to higher tailpipe vehicular emission including carbon dioxide 
(CO2) and criteria pollutants such as carbon monoxide (CO), gaseous hydrocarbons (HC), 
nitrogen oxides (NOx), and particulate matter (PM2.5 and PM10). Increase in emissions is caused 
by increases in stop-and-go driving and, in some cases, idling. Besides driving patterns, 
emissions at work zones are dependent on several significant factors such as facility type, travel 
demand, and detour plans along with spatial and temporal factors (2). 
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Emission Modeling at Work Zones 

Research quantifying the impacts of work zone on emissions is limited. Most related available 
examined how congestion levels in general impact emissions. A study in Ann Arbor, Michigan, 
estimated emissions under congested and free-flow conditions from light and heavy duty 
vehicles on a freeway segment (3). This was achieved by collecting instantaneous speed and 
vehicle position from a permanent traffic recorder. The selected freeway segment experienced 
congestion due to rush hour and presence of a work zone. Zhang et al. used the comprehensive 
modal emission model (CMEM) to estimate second-by-second emissions. When the traffic 
transitioned from free-flow to congested condition, CO, HC, and NOx emission rates from light-
duty vehicles were the highest. On the contrary, lowest rates were recorded for vehicles moving 
at low speed in the congested work zone. As for CO2 and fuel consumption, the work zone on the 
freeway under congested traffic flow yielded highest rates. Results for high-duty vehicles 
differed, as congested work zones contributed to the highest CO, HC, and CO2 emission rates as 
well as fuel consumption. However, NOx emissions remained unchanged for different traffic 
conditions (3). Salem et al. (4) reviewed various lean construction tools to help them understand 
how the application of this technique can improve sustainability of work zones. Lean 
construction techniques lowered vehicle operating cost as mobility and traffic flow conditions 
improved at work zones, which in return reduced emissions.  

Researchers and scientists are constantly assessing new technology and techniques that 
generate positive outcomes and improve quality of life. For instance, the application of wireless 
communication technology proved to enhance mobility and safety (5, 6). These systems have the 
ability to adapt driver behavior to various traffic operations and result in lower emissions. A 
team of researchers at Texas Southern University examined the impact of introducing a driver 
smart advisory system (DSAS) in a simulated study where a pedestrian crossing was present in a 
work zone. The implications of the system changed drivers’ behavior as they accelerated 
smoothly in the work zone and made them stop earlier when faced with a safety-related 
hazardous situation, i.e., pedestrian crossing the street. Consequently, there was a reduction in 
vehicle emissions for criteria pollutants (7). Another simulated study quantified vehicular 
emissions at network level for a major freeway corridor reconstruction project in Fort Worth, 
Texas. The work zone was modeled using a series of links. Capacity and free-flow speed on 
these links were reduced by dropping the number of lanes. The baseline model consisted of 
events prior to construction of the work zone. Other modeled scenarios assigned calibrated traffic 
on the links to compute vehicle emissions as travel behavior changed (8). Average emission rate 
of CO2, CO, HC, and NOx increased as traffic capacity in the work zone decreased. In a scenario 
where the capacity was reduced by 50% (i.e., two lanes dropped) with no diversion of traffic, the 
average inflow volume and emission rate of criteria pollutants upstream and inside the work zone 
were comparatively higher than downstream of the work zone (8). The simulated study was also 
implemented on a larger-scale regional network in North Carolina which incorporated three 
major cities: Raleigh, Durham, and Chapel Hill. Only passenger cars and passenger trucks were 
modeled under single and high-occupancy vehicle demand classes. The baseline scenario in the 
study considered normal driving conditions with no traffic disturbances. Two other scenarios 
quantified congestion and diversion patterns by simulating traffic distribution with the presence 
of work zones on a pavement rehabilitation project on I-40 and I-440 corridors in Raleigh. One 
of the scenarios considered no diversion (ND) of traffic while the other scenario diverted traffic 
to major arterials using user equilibrium (UE) traffic assignment technique. Results demonstrated 
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that average speed of vehicles and emission levels were not impacted under the baseline 
scenario. On the contrary, there was an overall increase in emissions for ND traffic simulation 
due to drop in average speed as vehicles started to queue upstream of the work zones. As noted 
previously, traffic was diverted to alternate routes under the UE scenario to reduce congestion 
upstream and downstream of the work zone. However, when compared to the baseline scenario, 
Zhou et al. (8) noted that emission levels were higher in the UE simulation with the formation of 
a bottleneck at the work zone.  

Effect of Congestion on Emission Levels of Pollutants 

Most recently, Texas A&M Transportation Institute investigated the air quality benefits of 
nighttime construction in urban areas in Texas (9). Results from three different case studies 
suggested that shifting construction activities from daytime to nighttime reduced total emissions 
at work zones. This should be expected with lower traffic volumes at night. However, 
researchers showed that for similar emission levels, concentration of pollutants during nighttime 
might be worsened as a result of changes in meteorological conditions. With limited number of 
research pertaining to emission modeling at work zones, other similar studies involved 
comprehending the effect of congestion on emission levels of pollutants. This is considered 
important while evaluating traffic management strategies. Previous studies analyzed emissions 
for different roadway types/facilities under varying traffic operation conditions using well-
established tools. For instance, freeway air quality was modeled during normal and congested 
traffic conditions. Salimol Thomas developed a framework to model excess emissions during 
recurring and nonrecurring congestion conditions in freeways (10). A stochastic model was also 
used to measure the impact of nonrecurring incidents on the local emission inventory. Barth and 
Boriboonsomsin utilized CMEM to compute carbon dioxide emissions for different level-of-
service (LOS) by categorizing velocity of vehicles as a function of congestion levels (11). In 
addition, vehicle emissions on freeways were determined by exploring traffic speeds, freeway 
capacity, and travel demand (12). Papson et al. used time-in-mode (TIM) methodology to 
estimate emissions at uncongested and congested signalized intersections under three traffic 
intersection scenarios (13). A recent study by Qi et al. obtained emission factors for both freeway 
and arterial facilities under different congestion levels (14). Findings indicated that emissions 
were negatively impacted as traffic conditions worsened.  

Application of SHRP 2 NDS Data in Emission Modeling 

Earlier efforts to assess emissions in work zones primarily used average speed and micro-
simulated studies to describe vehicle operation which resulted in less reliable results. For 
increased accuracy in emission modeling at project level, second-by-second speed and 
acceleration data are required to fully describe the different vehicle operations. These limitations 
can be addressed with the application of SHRP 2 NDS data. This was the largest naturalistic 
driving study to date conducted in the United States and included instrumented vehicles with 
over 3,000 drivers that were recruited from six states: New York, North Carolina, Pennsylvania, 
Indiana, Florida, and Washington. The study consisted of over 5.5 million trip files with almost 
40 million miles of data that can be analyzed extensively by researchers (15). A group of 
researchers intend to apply a new approach to establish optimized representative drive schedules 
from SHRP 2 NDS data (16). Drive cycles, also referred to as drive schedules, are a series of 
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vehicle-speed trajectory points which are essential in modeling since emissions vary with driving 
patterns (17). Other contributing factors include speed limits, traffic conditions, road grade, and 
curvature. Various countries developed drive cycles to represent their nation’s driving 
conditions. Administrative agencies apply them for federal certification purposes in chassis 
dynamometer tests to measure tailpipe emissions and fuel economy. In another SHRP 2 NDS, 
Liu et al. proposed a plan to generate synthesized drive cycles for pick-up trucks that capture the 
principles of naturalistic driving (18). The drive cycles can be used to optimize the design and 
control of pick-up trucks taking into account the rigorous federal fuel consumption and emission 
standards. The University of Michigan quantified and characterized fuel consumption rate of 
different drivers (19). This was accomplished with a well-designed SHRP 2 NDS in Michigan 
where they instrumented 117 identical passenger cars and collected over 210,000 mi of data. 
Furthermore, North Carolina State University conducted a small-scale SHRP 2 NDS and 
collected high-resolution data at 1-Hz frequency using a local sample of 35 drivers. They 
developed eco-driving metrics by inspecting 20 million seconds of naturalistic driving data to 
extract the different driving styles and measure their impact along with other confounding factors 
on fuel consumption (20).  

Current state-of-the-practice illustrated that capacity was reduced on roadways with 
construction sites which adversely affected vehicle emissions. Exhaust emissions are a function 
of changes in driver behavior, vehicle kinematics, roadway features, and surrounding 
environment. Monitoring emissions from every road source is practically and economically not 
feasible which advanced the development of tools and models to produce reliable emission 
estimates. Disaggregate speed and acceleration data are required to accurately estimate emissions 
for an entire state, county, network or at project level. Therefore, there is great potential to apply 
SHRP 2 NDS data in modeling emissions for different work zone configurations at project level. 
This will capture differences in driver behavior, roadway geometry, traffic conditions, and their 
impact on emissions.  

Objectives 

Emission of criteria pollutants and greenhouse gases from passenger cars can be estimated for 
work zones at the project level with the application of a modeling system. In the past, predicting 
emissions for different transportation elements or networks relied on average speed, whereas recent 
models account for vehicle operating modes, i.e., instantaneous speed and acceleration and time 
spent idling. Accurate estimation of emissions requires second-by-second data since emission rates 
are highly sensitive to changes in operating modes (21). If average speed was used to describe an 
element or group of elements, then results can be either overestimated or underestimated.  

The application of modal modeling allows for second-by-second estimation of emissions 
and fuel consumption. A robust database of instantaneous speed and acceleration will be required 
and SHRP 2 NDS is a prominent source of such data. Roadway and traffic characteristics are 
linked to the study sites using Roadway Information Database (RID) which makes it possible to 
include roadway characteristics. The SHRP 2 NDS collected vehicle kinematics at 10-Hz 
frequency including speed, acceleration, brake status, gas pedal state, etc. The study also 
recorded forward-view videos and vehicle position at 1-Hz frequency which can be joined with 
attributes from RID using GPS to determine roadway features such as presence of signs and 
barriers in work zones.  

The primary focus of this research is modeling emissions from passenger cars for 
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different work zone components and configurations while considering changes in congestion 
level on four-lane divided principal arterials. SHRP 2 NDS data will be applied in a disaggregate 
approach at project level to examine changes in vehicle operations then acquire emission rates 
from MOVES–Matrix modeling tool (22). The system is configured by a team of researchers at 
Georgia Institute of Technology and is adapted from the Motor Vehicle Emission Simulator 
(MOVES) model which is developed by the U.S. Environmental Protection Agency (EPA) to 
estimate emissions from on-road vehicles in the United States. 

PROPOSED STUDY PLAN 

The proposed study plan consists of the following tasks that were completed to investigate the 
impact of various work zone configuration and level of congestion on vehicular emissions. 

Task 1. Work Zone Identification 

Potential work zones during the implementation of the SHRP 2 NDS were identified using 511 
data (23). A minimum duration of 3 days was selected for work zones since the probability of 
finding sufficient NDS time series data was low for short-duration projects. Following the 
identification of 9,290 potential work zones, the location of work zone trips were then determined 
by linking the 511 events to RID. This also made it possible to estimate the physical extent of the 
work zones. The number of traces and unique drivers along with demographic characteristics, such 
as age and gender, of each driver were requested from Virginia Tech Transportation Institute 
(VTTI). Road construction projects with at least 15 trips were selected which refined the number of 
potential work zones to 1,680. Another request was then placed for time–series traces 1.5 mi 
upstream and downstream of the start of a work zone in addition to front- and rearview video logs 
(23). VTTI provided approximately 9,000 traces. However, traces with at least 90% of speed data 
were considered for data reduction. Ultimately, the number of traces was reduced to 5,000. For 
data points with missing speed information, linear interpolation technique was used to construct 
new data points within the range of a discrete set of known speed points. 

Task 2. Data Reduction 

The roadway functional class for each trace was determined from RID which facilitated the 
identification of events used in the data reduction process. A trace is defined as one driver trip 
through one work zone. Presence of a work zone was validated by reviewing forward videos. 
Work zone principal area type and configuration along with congestion level were also recorded 
from forward videos. Some traces did not have a work zone available or were not active. While 
other traces had traffic signals or nonwork-zone related factors that might have interrupted traffic 
flow (23). As a result, they were excluded from analysis. A total of 532 traces were coded. The 
sampled traces were represented from three states—New York, Pennsylvania, and Washington—
and the fleet consisted of passenger cars. Table 1 provides a description of work zones from 
every state in terms of unique number of work zones and rural–urban designation.  
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TABLE 1  Number of Unique Work Zones by State and Rural–Urban Designation 
State Number of Unique Work Zones Rural–Urban Designation 

New York 13 1: Rural and 12: Urban 
Pennsylvania 25 20: Rural and 5: Urban 
Washington 7 7: Urban 

Task 3. Work Zone Classification  

Work zones can be categorized according to their structure along with roadway facility, lane closure 
configuration, and LOS. For emission analysis, work zones are divided into three principal areas: 

• Upstream, also referred to as the base condition that represents speed traces of vehicles
under normal driving conditions, i.e., before entering the work zone influence area;  

• Advanced warning area, the section of the highway between the start of the work zone
and the first sign observed on the highway system that informs drivers about any upcoming roadway 
construction or incident (24); and 

• Activity area, typically defined as the section of a highway within the vicinity of any
roadway construction (24). For analysis purposes, the activity area was identified as the location 
between the start of the shoulder taper and end of a work zone. In few cases, the trace ended within 
the work zone. 

Emissions from advanced warning and activity area will be compared to the baseline 
condition. Besides area type, the configuration of a work zone that describes the layout of the activity 
portion of a work zone was classified into three categories: 

• Shoulder closure only,
• Shoulder and lane closure, and
• Complex configuration (usually starts with shoulder and lane closure, then traffic is

redirected to opposite direction of travel in a head to head configuration). 

Congestion has a significant impact on vehicle operation and tailpipe emissions. Therefore, 
level of congestion for each trace is subjectively determined from forward videos before a vehicle 
entered the activity area and by grouping traffic density–LOS into three categories. The SHRP 2 
dictionary for video reduction is used to define LOS (25). The three different classifications for 
congestion level included 

• Noncongested, LOS A (free-flow condition) or LOS B (stable flow with some
restrictions due to presence of other vehicles in traffic stream); 

• Moderate congestion, LOS C (stable flow with restrictions in speed and maneuverability
due to the presence of leading and adjacent vehicles) or LOS D (high traffic density but stable flow 
with severe restrictions in speed and maneuverability); and 

• High congestion, LOS E (unstable flow with traffic operations already at capacity and
vehicles are traveling at low speeds with temporary stoppage and inability to maneuver) or LOS F 
(unstable flow with traffic operations below capacity and vehicles are in stop-and-go condition). 
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It should be noted that this designation of congestion level differs from traditional 
definitions of LOS. For this study, LOS can only be estimated for the conditions surrounding 
each subject vehicle. Therefore, it was more appropriately a measure of activity at one particular 
location and does not represent LOS for the roadway segment in general. Figure 1 shows an 
example of how the three different congestion levels were coded. 

Taking into consideration that work zones were initially categorized according to their 
area type, a minimum threshold for distance was set for each section: 500 m (1/3 mi) for 
upstream section and 800 m (1/2 mi) for both advanced warning and activity area. Not all traces 
were used to evaluate each section. In other words, a trace might not meet the minimum distance 
requirement for each principal area. Failure to meet the distance requirement might not 
essentially capture complete vehicle operation within a particular work zone component. 
Moreover, emissions will be factored in compliance with the distance limits established. The 
resulting number of traces for each work zone classification are summarized in Table 2.  

Figure 2 illustrates a typical layout of a work zone while Figure 1 shows still images 
from forward videos as an example of the different congestion levels. 

Task 4. Vehicle-Specific Power Computations and Operating Mode Distributions 

Average speed, driving schedule, and operating mode distribution are the three conventional 
techniques used to describe vehicle activity in MOVES (16) and it is critical to select an appropriate 
statistical assessment approach that represents the entire trip. Operating mode distribution accounts 
for the fraction of time by operating mode which includes different bins defined by vehicle-specific 
power (VSP) and vehicle activity (speed ranges, idling, braking, and acceleration). This method is 
more accurate than the other two as it effectively enables users to exploit the capabilities of MOVES 
in modeling emissions as a function of vehicle activity (i.e., captures all driving behavior). There is a 
direct correlation between vehicle emissions and instantaneous engine load demand. The engine load 
is dependent on speed, acceleration, road grade, and air conditioning use. VSP has been used as a 
proxy variable for power demand or engine load (26).  

(a) (b) (c) 
FIGURE 1  SHRP 2 NDS still images showing an example of different level of congestion: 

(a) noncongested flow; (b) moderate congestion level; and (c) high congestion level.
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TABLE 2  Number of Traces by Principal Area Type and Congestion Level 
Upstream Traces 

Noncongested Low Congestion High Congestion 
Shoulder closure  50 144 16 
Shoulder and lane closure 77 20 8 
Complex configuration 89 29 9 

Advanced Warning Area Traces 
Noncongested Low Congestion High Congestion 

Shoulder closure  23 37 6 
Shoulder and lane closure 98 23 9 
Complex configuration 94 34 8 

Activity Area Traces 
Noncongested Low Congestion High Congestion 

Shoulder closure  29 112 15 
Shoulder and lane closure 112 23 8 
Complex configuration 106 34 9 

FIGURE 2  Work zone layout defining the three principal areas (adapted from MUTCD). 

For consistency in modeling methodology as the one applied in MOVES, the 10-Hz 
activity data were converted to 1 Hz by averaging speed every 10 consecutive points to 
determine speed at one second intervals. Instantaneous acceleration was then computed by 
finding the derivative of speed (difference between the current and previous speed points). The 
second-by-second vehicle activity data are the inputs for the VSP equation (Equation 1) (27): 

( )vgav
M
Cv

M
Bv

M
AVSP θsin32 ++






+
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= (1)

where 

A = the road load coefficient for rolling resistance (kW-s/m) = 0.1564; 
B = the road load coefficient for rotating resistance (kW-s2/m2) = 0.0020; 
C = the road coefficient for drag resistance (kW-s3/m3) = 0.00049; 

M = the fixed mass factor for vehicle source type (metric tons) = 1.4788; 
g = acceleration due to gravity (m/s2); 
v = vehicle speed (m/s); 

Channelization Device 

Work Zone Sign 
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a = vehicle acceleration (m/s2); and 
sin θ = fractional road grade. 

The coefficients for A, B, C, and M are obtained either specifically for each vehicle type 
from the manufacturer or from MOVES 2014 highway vehicle population and activity data 
guide. Only passenger cars were assumed in the analysis. In addition, road gradient was assumed 
to be flat (i.e., θ = 0) although the information can be linked from RID. These assumptions will 
ensure better comparisons in emissions by eliminating differences between vehicle types and 
roadway terrain.  

Task 5. Assignment of Emission Rates to Each Second of Data 

Operating mode bins summarized in the MOVES report were generated and emission rates were 
correlated to vehicle activity using a reference table acquired from MOVES–Matrix for the 
criteria pollutants and greenhouse gases of interest (27). Total running exhaust emissions were 
calculated by summing the product of driving activities and corresponding emission rates.  

The new adapted tool performs similar emissions modeling and yields exact results as the 
original MOVES interface but at a faster pace. The database in MOVES–Matrix consists of an 
array of emission rates at multiple levels that resulted by running several iterative MOVES runs. 
Users can apply scripting techniques to model emissions for every link, in this case every work 
zone principal area, in the transportation network (21, 28). To save processing time, a matrix 
table for emission rates in grams per hour was obtained for each operating mode instead of 
running the model for each work zone principal area and classification. This approach was 
adopted from Liu et al. (30) where they created 23 links covering all operating mode bins for 
running exhaust. Each link represented 100% of vehicle operation for a specific bin, hence traffic 
volume, length, and average speed were scaled to 1 h of vehicle operation. For the purpose of 
this analysis, emission rates from Buffalo, New York, will be applied in a case study. The details 
of the scenario include: 

• Calendar year: 2017;
• Region: Buffalo, New York;
• Transportation links: 23 links to represent all operating mode bins;
• Source type distribution: only passenger cars are considered in the analysis (Source

Type ID=21); 
• Age distribution: 2017 national default age distribution from MOVES2014 to account

for fleet distribution in the United States (29); and 
• Meteorology: average values for 2017 summer months, i.e., between May and

September: 
– Average temperature (in 5°F increment): 70°F and
– Average relative humidity (in 5% increment): 75%.

The analysis in this paper focused on comparing emissions for CO, NOx, PM2.5, and CO2. 
The majority of HC emissions are highly correlated with vehicle cold starts and fuel evaporation. 
PM2.5 is linearly related to PM10, the same applies to the relationship between CO2 and fuel 
consumption (30).  
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RESULTS AND DISCUSSION 

Speed–Acceleration Plots 

The acceleration and speed kernel density plots in Figures 3 through 5 show the changes in 
vehicle activity for the three work configuration categories as drivers’ transition between the 
different work zone components. Changes in congestion level are also considered. The following 
inferences can be attained from the plots: 

• Across the three different work zone configurations, the distribution of acceleration and
deceleration are almost symmetrical, which can be attributed to the fact that there are constant 
changes in driver behavior. The variation in acceleration is low for noncongested flow at baseline 
conditions as drivers are operating at higher speeds. When vehicles transition from upstream 
section of the highway and enter the vicinity of a work zone, lower speeds are noticed with more 
variability in acceleration. This is expected since drivers have been informed about upcoming 
roadway construction activity and are advised to lower their speeds using regulatory signs. In 
addition, as traffic flow becomes more restricted and a queue forms before entering the activity 
area, drivers travel at lower speeds and higher acceleration–deceleration rate. More braking 
accompanied by acceleration is induced for congested flow conditions inside work zones. 

• The density plots illustrate that vehicles travel within the same speed range in
advanced warning area when compared to the baseline condition unless there is high traffic 
density. However, the range of speed and acceleration increases as vehicles transition to the 
activity area.  

• Lane closure and complex work zone configurations have similar acceleration and
speed plots. It can also be observed that the lowest speeds and highest acceleration–deceleration 
rates occur in the advanced warning area for highly congested traffic flows while there is more 
variation in speed in the activity area. Congestion level for each trace is determined from forward 
videos before the driver entered the activity area. In most cases, the formation of a queue started 
in the advanced warning area and it dissipated inside the activity area. 

• For shoulder closure, there is a wide variation in speed and acceleration for highly
congested traffic flow condition across all work zone components with more skewness towards 
higher speeds. This is because slower speeds are not needed in most shoulder closure situations, 
hence drivers tend to continue traveling at higher speeds. However, when traffic density 
increases, there are more changes in acceleration–deceleration rate. 

VSP Distribution 

The stacked area plot in Figure 6 shows the VSP distribution for the different work zone 
configurations and congestion level. VSP is an effective measure of engine load accounting for 
changes in vehicle activity which is correlated to emissions. It is binned in such a way that three 
main vehicle operations are represented: deceleration (VSP <0), idling (0≤ VSP <1) and 
cruising–acceleration (VSP >1). Higher emission rates and fuel consumption (per second) are 
associated with higher VSP bins. VSP distribution tends to shift to higher modes/bins when 
vehicles are traveling at higher speeds, or accelerate hard at moderate to high speeds. According  
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FIGURE 3  Acceleration and speed distribution for shoulder closure zone configuration 
comparing different congestion level and principal areas. 

FIGURE 4  Acceleration and speed distribution for shoulder and lane closure zone 
configuration comparing different congestion level and principal areas. 
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FIGURE 5  Acceleration and speed distribution for complex work zone configuration 
comparing different congestion level and principal areas. 

FIGURE 6  Stacked VSP distribution across all different work zone 
configurations and congestion level. 
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to the plot, for all work zone configurations, majority of VSP distribution for noncongested and 
moderately congested traffic flow conditions in the upstream section and advanced warning area 
of a work zone ranges between 7 and 19 kW/ton. Whereas, the activity area shifts the VSP to 
lower bins, between 1 and 10 kW/ton. The frequency of VSP in deceleration and idling vehicle 
operating modes increases as the traffic stream becomes highly congested. This is mostly evident 
in the advanced warning area. As mentioned previously, vehicles started to queue before a 
vehicle entered a construction zone for most trips but the queue dissipated within the activity 
area. As a result, the frequency of VSP is higher in the lower bins for the activity component at 
high congestion level.  

Emissions Comparison  

Buffalo is used as a case study to obtain emission factors for CO, NOx, PM2.5, and CO2 by running 
MOVES–Matrix at project-level for 2017 calendar year. The factors are assigned to every second 
of data based on operating mode distribution then the product is summed to find total emissions. 
Figure 7a through 7d represent average emission rates per mile for the various work zone 
principal areas and configurations, including congestion level. There is lack of sufficient 
evidence indicating that work zone principal area and configuration has an impact on emission 
rates. On the other hand, congestion level affected emission rates and this is mostly evident in 
activity portion of the work zone. There is more variability in emission rates for high congestion 
levels due to the high variation in speed and acceleration. More traces are needed to explore any 
major differences between area type, configuration and congestion level. 
     Emission of air pollutants from vehicles are variable due to changes in vehicle technology, 
vehicle operation on different roadway types, fuel specifications and quality, ambient 
meteorological conditions, as well as vehicle mileage accumulation (31). Estimating emissions 
using the operating mode distribution methodology basically assigns an emission factor to each 
second of data which relies on instantaneous vehicle kinematics in terms of speed and 
acceleration. Emissions analysis of various pollutants for the different work zone categories 
indicated that higher congestion level increased emissions. Even though it is impractical to assert 
that work zone configuration and principal area had a major impact on emission rate, the kernel 
density speed and acceleration plots disclose a different narrative. The shaded contours 
representing the density of the data points in Figures 3 through 5 illustrate that there are 
dissimilarities in the operation of vehicles while traveling through the different work zone 
configurations and principal components at varying traffic density. Subsequently, it is rational to 
investigate if the differences in vehicle kinematics are statistically significant. Previously, 
Hallmark and Guensler compared 3-dimensional speed and acceleration profiles from field 
measurements to output from NETSIM traffic simulation software at signalized intersections 
(32). The intent of the study was to determine if the instantaneous modal vehicle activity output 
from the simulation adequately represented the field data. However, the only metric used to 
assess these frequency plots was to compute the percent of time vehicles spent in binned speed 
and acceleration ranges. Information tends to be lost when data is aggregated or binned (33). In 
recent years, a new nonparametric binning-free goodness-of-fit test for equality of two or more 
multivariate distributions was proposed (34, 35). The statistical model, known as the energy test 
is practical and powerful when multidimensional data points are compared to check if the 
samples belong to the same parent distribution (36).  
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(a) 

(b) 
FIGURE 7  (a) CO emission rate per mile for different work zone configurations and 

congestion level and (b) NOx emission rate per mile for different work zone configurations 
and congestion level (continued on next page). 



Bou-Saab, Hallmark, and Smadi 15 

(c) 

(d) 
FIGURE 7  (continued) (c) PM2.5 emission rate per mile for different work zone 

configurations and congestion level and (d) CO2 emission rate per mile for different work 
zone configurations and congestion level. 
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Energy of Data: Application of Energy–Statistics to Compare Two-Sample  
Bivariate Vehicle Kinematics for Equality in Distributions 

The development of the energy-statistics eliminates ordering and binning of data to test for equal 
distribution in high dimensions. It is a multivariate nonparametric test, which means that it does 
compare the distributions of the samples without forcing a specific shape. The test is a function 
of the Euclidean distance between observed samples in the variate space (34, 37) and the value 
of the energy-statistics is an indication of the potential energy of the data for a given data set. 
This concept was adapted from the notion of Newton’s gravitational potential energy between 
two bodies (37). One-dimensional data comparisons based on the empirical distribution functions 
have been extensively studied in the past with the application of well-known nonparametric tests 
such as Kolmogorov-Smirnov (KS) and Cramer-von Mises (CM). However, certain issues might 
emerge when using the KS and other cumulative tests to perform goodness-of-fit comparisons of 
multidimensional data. This is because in order to obtain the cumulative distribution functions, 
these statistical methods would depend on ordering the data which results in large number of 
possible ways to order the data in a multidimensional space (35, 36). In addition, the energy test 
does not make any assumptions regarding the continuity of the underlying distributions of the 
samples. Therefore, it is considered to be more generalized in comparison to the tests that are 
based on ranks of neighbors.  

Suppose that , … ,  and , … ,  are independent random samples of random 
vectors with respective distributions  and . The two-sample energy (ε) test statistics for equal 
distribution consists of three terms corresponding to the energy of each random sample X ( ) 
and Y ( ) along with the interaction energy of the two samples ( ) (38). Therefore, the two-
sample test statistic is equivalent to (Equation 2) (35): 

, = + + ,  

and (2) 

, = + 2 || − || − 1 || − || − 1 || − ||  

Where,  is the total sample size of the pooled sample. Under the null hypothesis, : =  a 
random permutation of the pooled sample is equal in distribution to a random sample size . In other 
words, the two samples are equal in distribution. In the composite alternative, the null hypothesis is 
rejected when : ≠ . Typically, larger values of the ε-statistics are significant (35).  

When considering the bivariate speed and acceleration distributions that are generated for 
the purpose of this research project, there are three main work zone configurations. For each 
configuration, the work zone is divided into three principal components and there are three 
categories for the traffic density. Consequently, this results in 27 speed and acceleration 
distributions. If two distributions are compared at a time without repetition and the order of 
selection is not a major concern, then a total of 351 combinations are produced. The multi-
sample energy test of equal distribution, “eqdist.etest” function, from the “energy” package in R 
is used to compare all 351 combinations (39). Results from the two-sample energy test for all the 
combinations implied that the 27 bivariate vehicle kinematic distributions are significantly 
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different. The p-value for the ε-statistics for the 351 samples/combinations is less than 0.005, 
hence there is strong evidence that there are differences in the distributions. The relative scale of 
speed and acceleration are not the same which might result in one of the projections dominating 
the value of the energy while the other projection only marginally contributing to it. However, 
the Euclidean distance between observations is normalized in the ε-statistics. 

CONCLUSION  

The FHWA reported that roadway construction sites cause traffic flow disruptions in a 
transportation network. Subsequently, this can have an adverse impact on emissions from 
vehicles. With limited studies related to emissions modeling at work zones, this research paper 
examined the impact of work zones on emissions from passenger vehicles at project level using 
SHRP 2 NDS data. Work zone principal areas and configuration, as well as varying congestion 
levels were considered in the model. Findings from this study can be implemented in decision-
making policies. Transportation officials and engineers will have the ability to decide on the 
appropriate work zone configuration to implement given roadway and traffic characteristics. 
Results from a case study in Buffalo demonstrated that level of congestion was the main 
contributing factor for changes in average emissions for criteria pollutants and CO2. On the 
contrary, comparisons between the different bivariate speed and acceleration distributions using 
the energy statistics showed that work zone configuration and principal area had a significant 
impact on vehicle operations. Some conclusions are drawn from a limited number of data points. 
Further investigation is required to show any differences in emissions by rural–urban 
designation, work zone principal area and configuration. This can be accomplished by reducing 
more traces or fewer categories can be used to create larger data groups. Furthermore, future 
research initiatives will include multilane divided highways since this study only analyzed work 
zones located in four-lane divided principal arterials. Moreover, statistical models will be 
developed to predict emissions as a function of significant independent variables. 
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ccording to the National Highway Traffic Safety Administration (NHTSA), 6 million traffic 
accidents claim more than 35,000 human lives annually in the United States. These 

statistics have prompted researchers to investigate the driver characteristics associated with 
Safety Critical Events (SCEs). Researchers have applied different data-mining approaches to 
data collected from crash records. Conducting analysis only on crash data could lead to false 
abstract representation of reality and misleading results. The literature review shows that a well-
known technique—the Market Basket Analysis (MBA)—for identifying association relationships 
among variables has been overlooked. This paper uses the entire set of Second Strategic Highway 
Research Program (SHRP 2) Naturalistic Driving Study (NDS) events (crash–near-crash and 
normal–baseline) to perform MBA for identifying the association between the events’ safety 
level and the underlying driver characteristics. The results show that driver impairments (anger, 
other emotional state, and drugs or alcohol), secondary tasks (reaching for objects and writing or 
texting), intersection influence (parking lots, driveway entrances and exits, interchanges, signals, 
and uncontrolled intersections), traffic density [level of service (LOS) C, D, E, and F] and 
weather conditions (snow or sleet) are the factors most associated with SCE. Results revealed 
that passenger interactions reduce SCE risk. In addition, drivers have higher SCE risk when 
traveling on dark, lighted roads compared to when traveling on dark roads that are not lighted. 
Moreover, males are less associated with SCE compared with females when driving near 
intersections, in snowy weather, or through congested traffic. Results confirm the increase of 
association with SCE when driver suffers from Attention Deficit Hyperactivity Disorder 
(ADHD), cognitive deficit, visual impairment, high sensational seeking tendency, or has poor 
driving knowledge.  

INTRODUCTION 

According to the NHTSA, about 6 million traffic accidents claim more than 35,000 human lives 
annually in the United States (1). Despite the growing research interest in traffic safety, the 
annual motor vehicle accidents and fatalities have increased over the past 3 years (1). These 
statistics have prompted researchers and policymakers to investigate the various factors and 
driver characteristics associated with SCEs. Traditionally, two different approaches are 
commonly used to identify the relationship between the SCE likelihood and the investigated 
contributing factors.  

 

A 



22 Transportation Research Circular E-C243: SHRP 2 Safety Data Student Paper Competition 2017–2019 

The first approach is the parametric modeling, where the developed models have a 
certain basic statistical structure, specific assumptions and certain relationships between the input 
and output variables. For instance, some of these models assume normality of the variables 
assessed or homogeneity of variance. In one of the early studies implementing parametric 
approaches, Joshua and Garber (2) examined the relationship between the truck crash likelihood 
and the roadway geometric factors using Poisson and linear regression models separately. Their 
study concluded that Poisson regression models outperformed the linear regression models in 
modeling the relationship between truck accidents and the independent variables. Two years 
later, Miaou et al. used the Poisson regression model to develop an empirical relationship 
connecting different geometric features with the truck crash likelihood (3). It turned out that 
roadway curvature, longitudinal gradient, and the average annual daily traffic per lane are the 
most-significant variables that correlate with the truck crash likelihood. However, the Poison 
model assumes the mean is equal to the variance, and crash data usually violate this assumption 
when it is overdispersed. To address this drawback, researchers implemented the negative 
binomial distribution in other studies with different approaches (4, 5). However, due to the 
assumption of independent observations, both the Poisson and the Negative Binomial models 
may not be accurate in handling heterogeneous crash data since all observations in the population 
have different characteristics. Other studies implemented generalized linear models (negative 
binomial, Poisson regression, etc.) for analyzing crash data (6, 7). However useful these methods 
are, high dimensionality in crash data leads to an exponential growth in the number of 
parameters in the developed models and subsequently, invalid results (8). 

The second approach relies on nonparametric data mining models, which do not assume 
a fixed structure of the model. Typically, the model grows in size to accommodate the 
complexity of the data. Recent studies indicate a global shift by researchers towards data-mining 
techniques as an alternative approach to address traffic safety problems (9–13). Classification 
and Regression Tree (CART) is one of the powerful tools that have been widely used in different 
studies due to simplicity and ease of interpretation. For instance, Kashani et al. (10) implemented 
a CART algorithm to identify the important factors affecting the severity of crash injuries. 
Another powerful tool that is widely used in traffic safety research is the Ensemble algorithms, 
which integrate a group of weak classifiers to obtain one that outperforms any of the weak ones. 
The Ensemble methodology can be integrated with different model types such as decision trees, 
neural networks, and Bayesian networks, among others. Out of these models, the tree-based 
Ensemble algorithms have shown a better performance compared to others (14, 15).  

Despite the numerous studies published in traffic safety research, the literature review 
indicates that most of these studies investigated factors using data collected from either driving 
simulators or crash reports. In recent years, researchers have tapped into naturalistic driving data 
to examine the driving behaviors, driver characteristics, and factors associated with SCE 
occurrence. Some studies evaluate the driver behavior and injury severity in adverse weather 
conditions (15, 16), another study investigates the association between visual and cognitive 
abilities and rates of future SCE involvement among older drivers (17). Another study predicts 
crash involvement from a personality measure and a driving knowledge test (18). A recent study 
investigates the relationship between the driver behavior questionnaire, sensation seeking scale, 
and observed SCE using the SHRP 2 NDS dataset.  

Despite the numerous studies that investigate the factors associated with SCE events, most 
of these studies were limited to investigating SCE (crash or near-crash data only) in the analysis. 
Excluding the normal–baseline events (BLEs) can sometimes lead to the false abstract 
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representation of reality and misleading results. Moreover, the analysis of most of these studies 
remains limited to using parametric methods (logistic regression, contingency tables, etc.). When 
the data dimensionality (number of variables) increases, some imperative assumptions 
(independence of the input variables) for parametric methods are violated and results from these 
methods become unreliable. Also, datasets with high dimensionality usually experience 
multicollinearity (high correlation among the variables), which compromises the accuracy of most 
statistical and machine learning regression models used. MBA, an advanced data-mining technique 
for identifying association relationships among variables, appears to have been overlooked. The 
MBA is a more-generalized tool that is capable of extracting association rules efficiently from 
datasets with high dimensionality and is considered a more sophisticated and efficient substitute 
for parametric methods (19). In addition, the metrics reported by the MBA (lift and confidence) are 
robust to multicollinearity. The MBA has been applied in marketing research and can potentially 
be used as a tool to analyze the naturalistic driving data and to identify the driver characteristics 
associated with SCE occurrence. To the author’s knowledge, the traffic safety literature includes 
only two studies implementing this technique (19, 20). However, the scope of the analysis in both 
studies was limited and did not account for any driver characteristics nor naturalistic driving 
(secondary tasks, driver impairment, etc.) variables. Moreover, data from crash reports were used, 
and subsequently, the extracted rules were limited only to those including crash among the item set 
and might be misleading.  

The NDS data provided by SHRP 2 provide ample opportunities to identify the 
association between level of safety of the events and the driver characteristics (21). However, the 
large size of the data and the high dimensionality of the collected data impose additional 
challenges. To account for all the drawbacks mentioned in the literature, this study uses the 
SHRP 2 NDS data [crash/near-crash and normal–BLEs) to perform a comprehensive MBA for 
identifying the association between level of safety of the events and the driver characteristics. 
The next section summarizes the commonly used Parametric Methods for Detecting Associations 
and outlines their drawbacks. Next, the Data Description section describes the SHRP 2 NDS data 
along with a detailed description of the variables used in the analysis. Then, MBA Analysis 
section, followed by the Discussion of Extracted Rules. Finally, the paper closes with the 
conclusions. 

PARAMETRIC METHODS FOR ASSOCIATION 

This section summarizes the commonly used parametric methods for measuring associations 
among variables and outlines their limitations, compared to MBA, when applied to datasets with 
high dimensionality as the SHRP 2 NDS dataset. 

Binary Logistic Regression 

Binary logistic regression is one of the most common parametric methods used for identifying 
associations between each variable in a set of input variables and a specific dependent binary 
variable. Association relations are identified through the reported odds ratio and P-values. 
However, applying this technique to datasets with high dimensionality exaggerates the common 
pitfalls of logistic regression and makes results unreliable for interpretation (22). For instance, 
logistic regression assumes that the input variables are independent. This assumption is most 
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likely violated when the dataset suffers from multicollinearity, which is very common in datasets 
with is high dimensionality. This makes the P-values reported by logistic regression highly 
unreliable. It is a common practice to consider variables with variance inflation factor (VIF) > 5-10 
suffering from multicollinearity. To emphasize, in this study, when all variables were coded into 
dummy variables of (n – 1) categories, where n is the number of categories of the categorical 
variable, 37% of the variables had VIF > 10 indicating severe multicollinearity problems and no 
reliable results from logistic regression except for the quality of the fit. As mentioned earlier, the 
metrics reported by the MBA (discussed later) are robust to multicollinearity. Finally, logistic 
regression measures association only between the input variables and a selected binary 
dependent variable, unlike MBA which is capable of extracting association rules within between 
a set of input variable.  

Contingency Table  

Another common tool for identifying association among variables within a dataset is the 
contingency table. A contingency table shows the distribution of one variable in rows and 
another in columns. As the dimensionality of the data increases, tracking the association using 
these tables becomes more tedious. MBA is capable of measuring associations between more 
than two variables by introducing rules of length greater than two, unlike the contingency tables 
that can measure associations only between two variables jointly. Consequently, the MBA is a 
more generalized tool for looking through all possible multiway contingency tables and 
extracting the most informative rules and can be considered a more sophisticated and efficient 
substitute for contingency tables (19). Moreover, a key assumption for applying the chi-square 
test in a contingency table is the independence. In traffic safety studies, the same driver can 
appear as two separate records in both SCE and normal–BLEs. The same driver can even have 
two separate normal–BLEs which make the data highly correlated and violates a key assumption 
for chi-square tests.  

DATA DESCRIPTION 

This study uses the crash, near-crash, and normal–BLEs data collected by the SHRP 2 NDS 
project. The SHRP 2 NDS contains 3 years data collected from 3,147 drivers from six different 
sites: New York, Pennsylvania, Florida, Washington, North Carolina, and Indiana. The SHRP 2 
NDS data include seven separate records that were used in this study: Visual and Cognitive 
Tests, Driver Demographic Questionnaire, Barkley’s ADHD Screening Test, Driving Knowledge 
Survey, Sensation Seeking Scale Survey, Driving History Questionnaire, and Event Detail Table. 
The Visual and Cognitive Tests dataset contains the results of a series of vision tests conducted 
on drivers. Contrast sensitivity, color perception, visual acuity, and peripheral vision were tested 
using a multi-purpose vision-testing apparatus. Specialized software programs were also used to 
assess the useful field of view and ability to Visualize Missing Information (VMI). The Driver 
Demographic Questionnaire collects socioeconomic characteristics of the 3,147 participants such 
as family life, gender, income, years driving, and education. Barkley's ADHD Screening Test is a 
short, clinical, ADHD screening assessment, for identifying ADHD symptoms in terms of 
specific behaviors. The Driving Knowledge Survey is a test of knowledge of driving laws and 
appropriate driving behaviors. The Sensation Seeking Scale Survey instruments the participant's 
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sensory stimulation preferences and the degree to which the participant engages in sensation 
seeking behavior. The Driving History Questionnaire intends to gather information from 
participants regarding their driving record. The questions evaluate the driving experience, past 
violations, past crashes, and training received. Finally, the Event Detail Table lists all crashes, 
near crashes, and baseline events that have been identified and analyzed in SHRP 2 NDS. The 
Event Detail Table includes information related to the weather, lighting, road conditions, and 
driving behavior during the event. A more detailed description of the SHRP 2 NDS dataset can 
be found on the study’s data website (21). To extract the relevant driver-related and event-related 
variables, the seven records were merged using the unique Participant ID resulting in a single 
comprehensive dataset containing all relevant information about the driver characteristics, event 
characteristics, and level of safety of the event (26 variables per event).  

Due to the limited number of crash and near-crash events compared to the normal 
baseline events, this study combines the crashes and near-crashes into a single level of safety of 
event named SCE. This practice is common and has been documented in many NDSs (23, 24). 
To allow MBA extracting useful and reliable association rules that provide insight into driver 
characteristics associated with SCE, the dataset was reduced and only SCE due to driver’s fault 
were included. The normal–BLEs were kept in the analysis to make the dataset a better 
representative of the driving population. The final dataset comprised 26,218 events, out of which 
7,310 are SCE. Finally, the categories of each of the 26 variables in the dataset were carefully 
investigated, and the similar categories were collapsed into one homogeneous category. Table 1 
summarizes the 26 variables included in the final dataset along with their description and number 
of levels, after performing the mentioned steps. 

The original SHRP 2 NDS dataset includes two secondary task variables, secondary task 
1 and secondary task 2. The secondary task 2 variable lists the secondary tasks additional to 
secondary task 1. Accordingly, in this study, all events with drivers performing more than one 
secondary task were decoupled as two different events with different secondary tasks. The SHRP 
2 NDS original dataset also includes the “Driver Behavior” variable, a very important variable 
that describes driver behaviors occurring within seconds prior to the event or those resulting 
from the context of the driving environment, which include what driver did to cause or contribute 
to the SCE. However, one of the categories of this variable is the “distracted” category, which is 
only coded for SCE in the original dataset. This limits the usage of this variable whenever BLE 
are considered. However, this variable is expected to correlate with the secondary tasks and 
driver impairment variable (used in this study), accordingly, the “Driver Behavior” variable was 
not used in this study. In order to extract reliable rules, different categories of the secondary task 
variable were regrouped to create more homogenous categories. For instance, the 
“Cellphone/Tablet Use” category includes all categories identified by SHRP 2 NDS Insight 
website that involve using cellphones and tablet except the ones for reaching the devices and 
texting. Similarly, the “Writing and Texting” category includes the “Cell Phone, Texting,” 
“Tablet device, Operating,” and “Writing.” Likewise, the “Reaching for Objects” category 
included the reaching for food, drinks, personal items, tablets, and cellphones categories 
identified by the SHRP 2 NDS Insight website. In the same way, the “Object in Vehicle” 
category amalgamates the “Object in the Vehicle, Other,” “Moving Object in Vehicle,” and 
“Object Dropped by Driver” categories. 
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TABLE 1  Summary of the SHRP 2 NDS Variables for MBA 

No. Variable Description No. of 
Levels 

1 VMI Visual Impairment Level based on the results of the VMI test: none, 
mild, serious 3 

2 Visual Impairment 
(Visual Search) 

Visual Impairment Level based on the results of the visual search 
tests: none, mild, serious 3 

3 Age Group The age group corresponding to the driver’s birthdate: 16–19, 20–24, 
25–29, 30–39, 40–49, 50–59, … , 80+ 9 

4 Cognitive Abilities 

The score group of the Clock Drawing test which is scored based on a 
six-point scoring system. Higher scores reflect a greater number of 
errors and more impairment. A score of ≥3 represents a cognitive 
deficit, while a score of 1 or 2 is considered normal: 1–2, 3–6 

2 

5 ADHD Score 
Berkley ADHD. When the ADHD total score is greater than or equal 
to 7, then this is an initial, high-level indication to researchers of 
possible ADHD in that individual : 0–6, 7–16 

2 

6 Driving 
Knowledge 

The score group of the driver for a test of knowledge of driving laws 
and appropriate driving behaviors. The test is scored based on a 19-
point scoring system. A score of 19 means answering all 19 questions 
correct: 0–8, 9–14, 15–16, 17–19  

4 

7 Sensation Seeking 

The score group of the drivers for a survey compiled of questions to 
gauge the degree to which the driver engages in sensation seeking 
behavior. The test measures the participant's sensory stimulation 
preferences. Higher values indicate a greater tendency: 0–9, 10–18, 19–35 

3 

8 Years Driving Number of years driving: 0–1, 1–2, 2–3, 3–4, 4–5, +5 6 

9 No. Crashes 3 
Years 

Total number of crashes committed by the driver over the past 3 years: 
0, 1, 2+ 3 

10 No. Violations 3 
years 

Total number of traffic violations committed by the driver over the 
past 3 years: 0, 1, 2+ 3 

11 Marital Status  Single, divorced, married, unmarried partners, widow(er) 5 
12 Gender Male, female 2 
13 Work Status Full-time, part-time, not working outside home 3 
14 Income  Under $29,000, $30,000–39,000, $40,000–49,000, … , $150,000+ 7 
15 Education High school diploma, college degree, graduate degree 3 

16 Business Use of 
Vehicle 

Yes, no 2 

17 Insurance Whether the participant has had auto insurance for the past 6 months: 
yes, no 2 

18 Driver Impairment 
Possible reasons for the observed driver behavior(s), judgment, or 
driving ability: angry, other emotional state; drowsy, sleepy, or 
fatigued; drugs or alcohol; other; none) 

6 

Continued on next page. 
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TABLE 1 (continued)  Summary of the SHRP 2 NDS Variables for MBA 

No. Variable Description No. of 
Levels 

19 Secondary Task 
Observable driver engagement in any of the listed secondary tasks 
during the event: cellphone–tablet use, writing–texting, reaching for 
objects, passenger interaction, object in vehicle, etc.  

17 

20 Construction Zone An indication of whether the precipitating event occurs in or in 
relation to a construction zone: yes, no 2 

21 Intersection 
Influence 

A judgment call as to whether the subject vehicle’s safe movement, 
travel path, and travel speed are under the influence of an intersection 
at the time of the event: no, yes/traffic signal, yes/stop sign, 
yes/uncontrolled, yes/interchange, etc. 

7 

22 Traffic Density The level of traffic density at the time of the start of the precipitating 
event: LOSs A, B, C, D, E, F 5 

23 Weather Weather condition at the time of the start of the precipitating event: no 
adverse conditions, raining, fog, snowing, sleet 5 

24 Surface Condition 
The type of roadway surface condition that would affect the vehicle’s 
coefficient of friction at the start of the precipitating event: dry, wet, 
snowy, icy, gravel/dirt road, other  

6 

25 Lighting Lighting condition at the time of the start of the precipitating event: 
darkness-lighted, darkness-not lighted, daylight, dusk, dawn 5 

26 LOS Level of safety of the event, either a SCE or normal–BLE 2

MARKET BASKET ANALYSIS 

The MBA is a data mining technique that has been successfully applied to extract association 
rules from data in marketing research in order to identify the item set of goods a customer prefers 
to buy together and to investigate the market transactions. In this context, MBA can extract a 
different set of rules that identify the association between a set of variables within the data. There 
are many algorithms available for implementing the MBA, among which the a priori is the most 
commonly used due to its simplicity. The a priori algorithm builds on the following main 
concept: If an item set is frequent, then all of its subsets must also be frequent, and if an item set 
is infrequent then all its supersets must also be infrequent (25). The a priori algorithm 
implements this concept in a form of pruning technique for trimming the exponential search 
space of the candidate rules. Commonly, three main metrics are used to evaluate the extracted 
rules in the MBA, namely, support, confidence and lift. For a dataset with N observations, an 
association rule is defined as ‘X→Y or X1, X2→Y, where X’s are the antecedents on the left-
hand side (LHS) and Y is the consequent on the right-hand side (RHS). In this study, the RHS is 
either SCE or BLE. The length of the rule is simply the number of elements in an association 
rule. The formal definitions of the support, confidence, and lift are as follows: 

Support ( → ) =  ∩  (1) 

Confidence ( → ) =  ∩  (2)
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 ( → ) =  ( → ) ( ) (3)

For a better understanding of these metrics, consider a hypothetical set of 10,000 events 
shown in Figure 1, wherein 6,000 of these events the driver was male. The hypothetical set of 
events consists of 2,000 SCE and 8,000 BLE. Out of the total set of events, 1000 only were SCE 
events involving male drivers. The support of the rule ‘X→Y, according to Equation 1, is the 
frequency measurement of the antecedent and consequent jointly (LHS = X and RHS = Y) in the 
dataset. Thus, the support of the rule Male→Crash is 1,000/10,000. The higher the support value, 
the more frequently the item set of the antecedent and consequent occurs. The confidence of the 
rule, according to Equation 2, is the conditional probability of the consequent (RHS = Y) in an 
association rule, given the occurrence of the antecedents (LHS = X), and it acts as a reliability 
measure of a specific association rule ‘X→Y. According to Figure 1, the confidence of the rule is 
1,000/6,000. Finally, the lift of the rule, according to equation 3, is the ratio between the rules’ 
confidence and the support of the consequent (RHS = Y). According to the figure, the lift of the 
rule is equal to (1,000*10,000)/ (6,000*2,000). The lift is a measure of the statistical dependence of 
an association rule. For instance, a lift of value greater than 1 suggests that the presence of the 
antecedents (LHS = X) increases the probability that the consequent (RHS = Y) also occurs in the 
transaction. Overall, lift summarizes the strength of association between the products on the left- 
and right-hand side of the rule, i.e., the larger the lift, the greater the link between the two products 
(factors). Commonly, in marketing research only rules with lift value greater than one are 
considered as they imply a positive association between the items bought together. In traffic safety 

FIGURE 1  Venn diagram presenting the MBA metrics.
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research, however, rules with lift value smaller than one imply a negative association between 
LHS and RHS and can contain useful information. Accordingly, the scope of this study extends 
to include rules implying negative association.  

To perform a comprehensive MBA, all available events in the dataset are treated as 
shopping baskets in supermarket transactions and an a priori algorithm is applied to the events to 
extract the association rules between the different variables in the data listed in Table 1. 
Including a combination of SCE and BLE, provides a better presentation of the real word and 
offers opportunities for extracting more accurate, reliable, and representative rules. In this 
context, it is clear that for a specific level of safety of event occurring in the RHS and regardless 
of the support value of this rule, the confidence is evaluated over the entire data (SCE and BLE). 
This provides more accurate and more representative results compared to previous studies using 
only crash reports. However, this makes the data highly unbalanced and whenever a rare event is 
of interest such as specific driver characteristic associated with SCE instances, the thresholds 
used for minimum support need to be lowered to allow the analyst to discover associations with 
such rare events. It is worth mentioning that in marketing research higher support values are 
favored to extract only rules that are occurring more frequently. However, in traffic safety, any 
rule that deems to be reliable is of great interest regardless of its support value. Accordingly, 
there are no specific criteria for setting the support threshold and any small value is acceptable 
(0.5% used in this study). That said, any rule with a relative frequency of less than 0.5% is not 
expected to show in the analysis regardless of its confidence and lift values.  

Recalling the lift is a measure of the statistical dependence of an association rule, a rule 
having a lift of 1 would imply that the probability of occurrence of the LHS and that of the RHS 
is independent of each other. When the RHS and LHS are independent of each other, and 
irrespective of the high confidence value, no useful rule can be drawn involving the two sides. In 
this study, to ensure extracting rules with high reliability and usefulness, and to account for the 
ease of interpretability of the extracted rules, rules were extracted based on these boundary 
conditions: rule support ≥0.5%; confidence ≥55%; and rule length ≤3. 

An a priori algorithm was applied to the data at the mentioned boundary conditions and 
a total of 3,492 rules were extracted. Considering the high dimensionality within the dataset and 
the lengths of extracted rules (Length = 2 or 3), these rules are expected to include a large 
number of redundant association rules that must be removed. An association rule is considered 
redundant if a more general rule with equal or higher confidence value exists (25, 26). In other 
words, a more specific rule is considered redundant if it is equally or less predictive than a more 
general rule. An association rule is considered more general if it has the same RHS but one or 
more items removed from the LHS. An association rule X→Y is redundant if there is another 
rule X*→Y where the X* is a subset of X (X* more general) and the confidence of the 
redundant rule is less than or equal to the nonredundant value. In the view of the high 
dimensionality of the data and the length of the extracted rules, 2,259 rules out of the extracted 
ones were deemed redundant. The redundant rules are then removed and the nonredundant rules 
were further investigated to identify the useful ones. Figure 2 depicts a scatterplot for the 
support, confidence, and lift values for the complete set of the extracted non-redundant rules 
(1,233 rules). As shown in the plot, the majority of the rules are clustered within support and lift 
values in the range of 0.5% to 10% and less than 3%, respectively. The plot also indicates that all 
the rules with lift value >2 were rare events and had a support value of less than 5%. 
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FIGURE 2  Metrics for nonredundant rules. 

DISCUSSION OF EXTRACTED RULES 

The final set of extracted rules was manually and carefully investigated to extract association 
relations between the driver characteristics and the LOS of the occurring event. To be more 
conservative when interpreting the rules, the ones with lift values falling between 0.98 and 1.02 
are considered having a lift value equal to 1. Accordingly, these rules are removed from the 
analysis; recalling this study evaluates rules with lift value greater than or less than 1. 
Traditionally, the direction and strength of the association between the inspected variables and 
the LOS of the event are identified by tracking the change in lift values of two or more rules 
simultaneously. There are two approaches to achieving so. For instance, the lift values can be 
compared for rules of the same length after one component on either side is changed. Another 
approach is to compare one rule of length 2 with a rule of length 3 in which the latter introduces 
a new parameter on the LHS. By tracking the change in lift values accompanying the change in 
the LHS/RHS elements, inferences can be made about the driver characteristics associated with 
LOS of the event. 

The extracted rules are discussed in two stages. First, all the rules of length two are 
discussed to identify the direction and strength of the association between the variables in Table 
1 and the LOS of the event. Based on these results, specific rules of length three and RHS = SCE 
are discussed to get better insight into the associations identified in stage 1. It should be noted 
that some variables did not appear in the final set of the useful rules due to having lift value 
equal to one or support value less than 0.5%. Therefore, they were omitted from the discussion. 
Only useful rules that imply an association for meaningful relations are discussed in detail in the 
following subsections.  
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MBA Rules of Length 2 

This section discusses the rules of length 2 within the final set of extracted rules. These rules and 
their corresponding lift values are recapitulated in Table 2. Rules 1 to 7 present the association 
between different age groups and the likelihood of occurrence of BLE. Rules 1 and 2 indicate 
that age groups (16–19) and (20–24) experience negative association (lift <1) with the BLE 
which means that these two age groups are more involved in SCE compared to the other age 
groups. Similarly, rules 8 and 9 show a negative association between BLE and drivers with 
cognitive deficit (cognitive abilities = 3-6) or ADHD (ADHD score = 7 to 16), respectively. This 
demonstrates that drivers with cognitive deficit or ADHD are more likely to be involved in SCE. 
Likewise, rule 10 indicates that drivers with poor driving knowledge (scored 0 to 8 out of 19) are 
negatively associated with BLE and more vulnerable to SCE compared to other score groups. 
The increasing lift value for rules 11, 12, and 13 shows that sensational seeking behavior 
decreases the driver’s association with BLE and increases the odds of SCE occurrence. 
Concerning driving experience, rules 14 and 15 proof that driving experience less than 1 year is 
negatively associated with BLE, while the +5 years driving experience is associated with BLE 
and safe driving. Likewise, rules 16 and 18 show that drivers with a driving history of one 
violation or crash are negatively associated with BLE and more likely to be involved in SCE. 
The likelihood of being involved in SCE for drivers, with violations–crash history, increases 
with the increase of the historical number of violations–crashes, as justified by the drop in lift 
values of rules 17 and 19. Rules 20 and 21 provide an evidence that drivers with single status 
have a higher possibility of being involved in SCE, unlike drivers with married status who have a 
higher probability of being involved in BLE.  

TABLE 2  MBA Rules of Length 2 
No. LHS RHS Lift 

1 Age group = (16–19) LOS = BLE 0.867 
2 Age group = (20–24) LOS = BLE 0.934 
3 Age group = (30–39) LOS = BLE 1.040 
4 Age group = (40–49) LOS = BLE 1.088 
5 Age group = (50–59) LOS = BLE 1.086 
6 Age group = (60–69) LOS = BLE 1.074 
7 Age group = (70–79) LOS = BLE 1.143 
8 Cognitive abilities = (3–6) LOS = BLE 0.972 
9 ADHD score = (7–16) LOS = BLE 0.911 
10 Driving knowledge = (0, 8) LOS = BLE 0.945 
11 Sensation seeking = (19, 35) LOS = BLE 0.928 
12 Sensation seeking = (10, 18) LOS = BLE 1.023 
13 Sensation seeking = (0, 9) LOS = BLE 1.084 
14 Years driving = (0, 1) LOS = BLE 0.840 
15 Years driving = 5+ LOS = BLE 1.046 
16 No. of crashes 3 year = 1 LOS = BLE 0.957 
17 No. of crashes 3 year = 2+ LOS = BLE 0.883 
18 No. of violations 3 years = 1 LOS = BLE 0.970 
19 No. of violations 3 years = 2+ LOS = BLE 0.842 
20 Marital status = married LOS = BLE 1.092 

Continued on next page. 
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TABLE 2 (continued)  MBA Rules of Length 2 
No. LHS RHS Lift 

21 Marital status = single LOS = BLE 0.934 
22 Work Status = part-time LOS = BLE 0.961 
23 Income = under $29,000 LOS = BLE 0.939 
24 Education = college degree LOS = BLE 1.035 
25 Education = graduate LOS = BLE 1.034 
26 Education = high school LOS = BLE 0.957 
27 Business use of vehicle = yes LOS = BLE 0.968 
28 Insurance = no LOS = BLE 0.884 
29 Construction zone = yes LOS = BLE 0.788 
30 Driver impairment = angry LOS = SCE 3.130 
31 Driver impairment = other emotional state LOS = SCE 2.677 
32 Driver impairment = drugs and alcohol LOS = SCE 2.975 
33 Driver impairment = drowsy, sleepy, or fatigued LOS = BLE 0.950 
34 Secondary task = no secondary tasks LOS = BLE 1.115 
35 Secondary task = cellphone/tablet use LOS = BLE 0.793 
36 Secondary task = personal hygiene LOS = BLE 0.882 
37 Secondary task = out-of-vehicle distractions LOS = BLE 0.986 
38 Secondary task = vehicle integral devices  LOS = BLE 0.969 
39 Secondary task = passenger interaction LOS = BLE 1.113 
40 Secondary task = reaching for objects LOS = SCE 2.106 
41 Secondary task = writing and texting LOS = SCE 1.614 
42 Intersection influence = yes, parking lot, driveway 

entrance–exit 
LOS = SCE 2.442 

43 Intersection influence = yes, uncontrolled LOS = SCE 2.134 
44 Intersection influence= yes, interchange LOS = SCE 1.830 
45 Intersection influence = yes, traffic signal LOS = SCE 1.771 
46 Traffic density = LOS C LOS = SCE 2.123 
47 Traffic density = LOS D LOS = SCE 2.449 
48 Traffic density = LOS E,F LOS = SCE 2.221 
49 Weather = fog LOS = BLE 0.941 
50 Weather = sleet LOS = SCE 1.973 
51 Weather = snowing LOS = SCE 1.880 
52 Surface condition = icy LOS = SCE 2.582 
53 Surface condition = snowy LOS = SCE 1.989 
54 Lighting = darkness, lighted LOS = BLE 0.969 
55 Lighting = darkness, not lighted LOS = BLE 1.153 
56 Lighting = dawn LOS = BLE 0.927 
57 Lighting = dusk LOS = BLE 0.916 

Following the same logic for interpreting the rest of the rules, relations and associations 
can be identified. For instance, part-time workers are more vulnerable to SCE compared to the 
other working status (rule 22). Also, drivers with income under $29,000 are more associated with 
SCE compared to the higher income categories that did not appear in the set of extracted rules (rule 
23). In addition, drivers with high school education are more affiliated with SCE compared to 
drivers with college or graduate education who are affiliated with BLE (rules 24 through 26). 
Moreover, drivers using their vehicles in business activities (rule 27) and drivers with uninsured 
vehicles (rule 28) are linked with SCE. Rule 29 indicated the lowest lift value in the table, which 
means that the construction zone is on the top of the factors leading to a strong negative association 
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with BLE and consequently strong association with SCE. Unlike previous rules, rules 30 to 32, 40 
to 48, and 50 to 53 have SCE in the RHS and their lift values are very high (>1.5), this indicates 
that the variables’ categories comprised in these rules are the most associated with SCE among all 
categories listed in Table 1. Consequently, in this study, the most contributing factors to SCE are 

1. Driver impairments due to anger or other emotional state or drugs and alcohol;
2. Driver distractions due to reaching for objects, writing, and texting;
3. Influences of parking lots, driveway entrance–exit, interchanges, signals, and

uncontrolled intersections; 
4. Traffic density of LOS C, D, E, and F; and
5. Snow–sleet weather conditions.

The driver impairment due to being drowsy, sleepy, or fatigued was also associated with 
SCE (rule 33) but to a lesser extent compared to anger or other emotional state or drugs and 
alcohol. As expected, performing no secondary tasks increases the association with BLE (rule 
34), while cellphone–tablet use, personal hygiene activities, out-of-vehicle distractions, and 
setting the vehicle’s integral devices are associated with SCE, but to a lesser extent compared 
with reaching for objects, writing, and texting (rules 35 to 38).  

The passenger interaction is associated with BLE and decreases the likelihood of SCE 
(rule 39). This can be attributed to the fact that drivers feel more responsible and cautious when 
they are not alone in the vehicle. In addition, passenger interaction can to some extent prevent 
fatigued drivers from falling asleep or get impaired especially for long trips. Regarding weather 
and lighting conditions, fog, darkness lighted, dawn, and dusk deemed associated with SCE 
(rules 49, 54, 56, and 57). Surprisingly, rule 55, in opposition to rule 54, implies that dark–not 
lighted roads are safer compared to the dark–lighted road. A reason for this could be that 
headlights and taillights of surrounding vehicles are more apparent to the driver in the vehicle’s 
mirrors when traveling on dark–not lighted roads compared to when traveling on lighted roads. 

MBA Rules of Length 3 

It is worth mentioning that all variable categories showing in rules of length 2 (Table 2) that are 
having SCE in the RHS (anger, other emotional state, drugs...etc.) are considered the most 
contributing factors to SCE. Accordingly, these categories are expected to show in many rules of 
length 3. Similarly, all variable-categories having a negative association with BLE (such as rule 
57: lighting = dusk) are by definition associated with SCE, since the LOS is bivariate. 
Consequently, these variable categories are expected also to appear in numerous rules of length 3 
and with SCE in the RHS. However, these variable categories do not require further investigation 
and are of no interest when investigating the rules of length 3. For making the paper easy to 
follow, most of these variable categories are omitted from the discussion of the rules of length 3. 
As shown in Table 2, some variable categories did not appear at all in the table (such as visual 
impairment, gender, etc.). These variables might still have a significant impact on the driver 
safety and become associated with SCE when interacting with other variables, i.e., when they 
occur jointly with another one. For this purpose, the rules of length 3 are included in the analysis 
and investigated carefully to extract these underlying associations. Table 3 summarizes these 
rules and their pertinent lift values. 

The main concept for investigating rules of length 3 accurate and extracting useful 
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information is tracking the lift value for their pertinent rules (subset rule with SCE in RHS) of 
length 2 to identify the increase or decrease of association. To illustrate, there are no pertinent 
age group rules in Table 2 for rules 57 and 58; accordingly, the lift value for association of age 
group = 16–19 or age group = 25–29 with SCE is considered 1. Therefore, the rise in lift values 
of rules 57 and 58 justify that serious visual impairment–VMI increases association with SCE. 
Another approach is inspecting the change in lift value for rules 59 to 61 for the different levels 
of VMI. In essence, rule 59 has the highest lift value which is evidence that serious visual 
impairment–VMI increases the association with SCE. Similarly, rules 62 to 64 indicate the 
increase in association with SCE as the level of visual impairment (visual search) increases. This 
can be further justified by comparing the lift values of rules 62 and 63 with rule 42. Likewise, 
rules 65 through 71 confirm that the increase in visual impairment (VMI–visual search) increases 
the association with SCE. 

TABLE 3  MBA Rules of Length 3 
No. LHS RHS Lift 
57 Age Group = 16–19; VMI = serious LOS = SCE 1.83 
58 Age Group = 25–29; VMI = serious LOS = SCE 1.74 
59 Driver Impairment = angry; VMI = serious LOS = SCE 3.59 
60 Driver Impairment = angry; VMI = mild LOS = SCE 3.16 
61 Driver Impairment = angry; VMI = none LOS = SCE 3.13 
62 Intersection Influence = yes, parking lot, driveway entrance–exit;  

VMI–Visual Search = serious 
LOS = SCE 2.64 

63 Intersection Influence = yes, parking lot, driveway entrance–exit;  
VMI–Visual Search = mild 

LOS = SCE 2.48 

64 Intersection Influence = yes, parking lot, driveway entrance–exit;  
VMI–Visual Search = none 

LOS = SCE 2.37 

65 Intersection Influence = yes, uncontrolled; VMI = serious LOS = SCE 2.39 
66 Intersection Influence = yes, uncontrolled; VMI = mild LOS = SCE 2.27 
67 Intersection Influence = yes, uncontrolled; VMI = none LOS = SCE 2.12 
68 Secondary Task = reaching for objects; VMI–Visual Search = serious LOS = SCE 2.33 
69 Secondary Task = reaching for objects; VMI = serious LOS = SCE 2.43 
70 Secondary Task = writing and texting; VMI–Visual Search = serious LOS = SCE 2.15 
71 Secondary Task = writing and texting; VMI = serious LOS = SCE 2.39 
72 Lighting = darkness, lighted; Age Group = 80+ LOS = SCE 1.72 
73 Lighting = dusk; Age Group = 80+ LOS = SCE 1.93 
74 Secondary Task = pet interaction; Age Group = 80+ LOS = SCE 2.69 
75 Driver Impairment = angry; Cognitive Abilities = 3, 6 LOS = SCE 3.36 
76 Driver Impairment = angry; Cognitive Abilities = 1, 2 LOS = SCE 3.07 
77 Driver Impairment = drugs and alcohol; Cognitive Abilities = 3, 6 LOS = SCE 3.59 
78 Driver Impairment = drugs and alcohol; Cognitive Abilities = 1, 2 LOS = SCE 2.61 
79 Intersection Influence = yes, uncontrolled; Cognitive Abilities = 3, 6 LOS = SCE 2.43 
80 Intersection Influence = yes, uncontrolled; Cognitive Abilities = 1, 2 LOS = SCE 2.08 
81 Secondary Task = reaching for objects; Cognitive Abilities = 3, 6 LOS = SCE 2.33 
82 Secondary Task = reaching for objects; Cognitive Abilities = 1, 2 LOS = SCE 2.07 
83 Intersection Influence = yes, parking lot, driveway entrance–exit; ADHD Score = 7–16 LOS = SCE 2.60 
84 Intersection Influence = yes, parking lot, driveway entrance–exit; ADHD Score = 0–6 LOS = SCE 2.43 

Continued on next page. 
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TABLE 3 (continued)  MBA Rules of Length 3 
No. LHS RHS Lift 
85 Intersection Influence = yes, uncontrolled; ADHD score = 7–16 LOS = SCE 2.84 
86 Intersection Influence = yes, uncontrolled; ADHD score = 0–6 LOS = SCE 2.07 
87 Secondary Task = reaching for objects; ADHD score = 7–16 LOS = SCE 2.31 
88 Secondary Task = writing and texting; ADHD score = 0–6 LOS = SCE 1.72 
89 Surface Condition = snowy; ADHD score = 7–16 LOS = SCE 2.64 
90 Surface Condition = snowy; ADHD score = 0–6 LOS = SCE 1.89 
91 Weather = snowing; ADHD score = 7–16 LOS = SCE 2.84 
92 Weather = snowing; ADHD score = 0–6 LOS = SCE 1.74 
93 Intersection Influence = yes, interchange; Driving Knowledge = 17–19 LOS = SCE 1.85 
94 Intersection Influence = yes, interchange; Driving Knowledge = 15–16 LOS = SCE 1.86 
95 Intersection Influence = yes, interchange; Driving Knowledge = 9–14 LOS = SCE 1.69 
96 Intersection Influence = yes, interchange; Driving Knowledge = 0, 8 LOS = SCE 3.35 
97 Intersection Influence = yes, uncontrolled; Driving Knowledge = 17–19 LOS = SCE 2.11 
98 Intersection Influence = yes, uncontrolled; Driving Knowledge = 0, 8 LOS = SCE 2.87 
99 Secondary Task = reaching for objects; Driving Knowledge = 0, 8 LOS = SCE 2.99 
100 Secondary Task = cellphone–tablet use; Driving Knowledge = 0, 8 LOS = SCE 1.99 
101 Surface Condition = snowy; Driving Knowledge = 17–19 LOS = SCE 1.92 
102 Surface Condition = snowy; Driving Knowledge = 15–16 LOS = SCE 1.92 
103 Surface Condition = snowy; Driving Knowledge = 9–14 LOS = SCE 2.03 
104 Surface Condition = snowy; Driving Knowledge = 0, 8 LOS = SCE 3.59 
105 Construction Zone = yes; Sensation Seeking = 19–35 LOS = SCE 1.75 
106 Driver Impairment = angry; Sensation Seeking = 19–35 LOS = SCE 3.38 
107 Driver Impairment = angry; Sensation Seeking = 10–18 LOS = SCE 3.13 
108 Driver Impairment = angry; Sensation Seeking = 0–9 LOS = SCE 2.56 
109 Intersection Influence = yes, interchange; Sensation Seeking = 19–35 LOS = SCE 2.02 
110 Intersection Influence = yes, parking lot, driveway entrance–exit;  

Sensation Seeking = 19–35 
LOS = SCE 2.60 

111 Intersection Influence = yes, traffic signal; Sensation Seeking = 19–35 LOS = SCE 1.99 
112 Intersection Influence = yes, uncontrolled; Sensation Seeking = 19–35 LOS = SCE 2.37 
113 Intersection Influence = yes, uncontrolled; Sensation Seeking = 10–18 LOS = SCE 2.04 
114 Intersection Influence = yes, uncontrolled; Sensation Seeking = 0–9 LOS = SCE 1.88 
115 Secondary Task = cellphone–tablet use; Sensation Seeking = 19–35 LOS = SCE 1.65 
116 Surface Condition = icy; Sensation Seeking = 19–35 LOS = SCE 3.03 
117 Weather = snowing; Sensation Seeking = 19–35 LOS = SCE 2.08 
118 Driver Impairment = angry; Gender = F LOS = SCE 3.03 
119 Driver Impairment = angry; Gender = M LOS = SCE 3.30 
120 Intersection Influence = yes, parking lot, driveway entrance–exit; Gender = F LOS = SCE 2.51 
121 Intersection Influence = yes, parking lot, driveway entrance–exit; Gender = M LOS = SCE 2.38 
122 Intersection Influence = yes, traffic signal; Gender = F LOS = SCE 1.84 
123 Intersection Influence = yes, traffic signal; Gender = M LOS = SCE 1.70 
124 Surface Condition = snowy; Gender = F LOS = SCE 2.20 
125 Surface Condition = snowy; Gender = M LOS = SCE 1.75 
126 Traffic Density = LOS D; Gender = F LOS = SCE 2.55 
127 Traffic Density = LOS D; Gender = M LOS = SCE 2.34 
128 Traffic Density = LOS E, F; Gender = F LOS = SCE 2.35 
129 Traffic Density = LOS E, F; Gender = M LOS = SCE 2.09 
130 Driver Impairment = drowsy, sleepy, or fatigued; Construction Zone = Yes LOS = SCE 2.19 
131 Driver Impairment = drowsy, sleepy, or fatigued;  

Intersection Influence = yes, interchange 
LOS = SCE 2.23 

Continued on next page. 
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TABLE 3 (continued)  MBA Rules of Length 3 

No. LHS RHS Lift 
132 Driver Impairment = drowsy, sleepy, or fatigued; Intersection Influence = Yes, 

Traffic Signal 
LOS = SCE 2.57 

133 Driver Impairment = drowsy, sleepy, or fatigued; Intersection Influence = Yes, 
Uncontrolled 

LOS = SCE 1.96 

134 Driver Impairment = drowsy, sleepy, or fatigued; Lighting = dawn LOS = SCE 2.15 
135 Driver Impairment = drowsy, sleepy, or fatigued; Traffic Density = LOS C LOS = SCE 2.24 
136 Driver Impairment = drowsy, sleepy, or fatigued; Traffic Density = LOS D LOS = SCE 2.56 
137 Driver Impairment = drowsy, sleepy, or fatigued; Traffic Density = LOS E, F LOS = SCE 3.33 
138 Driver Impairment = drowsy, sleepy, or fatigued; Weather = fog LOS = SCE 1.79 
139 Secondary Task = cellphone–tablet use; Intersection Influence = yes, interchange LOS = SCE 2.42 
140 Secondary Task = cellphone–tablet use; Intersection Influence = yes, parking lot, 

driveway entrance/exit 
LOS = SCE 2.75 

141 Secondary Task = cellphone–tablet use; Intersection Influence = yes, stop sign LOS = SCE 1.89 
142 Secondary Task = cellphone–tablet use; Intersection Influence = yes, traffic signal LOS = SCE 2.38 
143 Secondary Task = cellphone–tablet use; Intersection Influence = yes, uncontrolled LOS = SCE 2.84 
144 Secondary Task = cellphone–tablet use; Traffic Density = LOS B LOS = SCE 1.83 
145 Secondary Task = cellphone–tablet use; Traffic Density = LOS C LOS = SCE 2.37 
146 Secondary Task = cellphone–tablet use; Traffic Density = LOS D LOS = SCE 2.95 
147 Secondary Task = cellphone–tablet use; Traffic Density = LOS E, F LOS = SCE 3.00 
148 Secondary Task = cellphone–tablet use; Weather = raining LOS = SCE 1.93 
149 Secondary Task = out-of-vehicle distractions; Construction Zone = yes LOS = SCE 1.86 
150 Secondary Task = out-of-vehicle distractions; Intersection Influence = yes, 

interchange 
LOS = SCE 1.84 

151 Secondary Task = out-of-vehicle distractions; Intersection Influence = yes, parking 
lot, driveway entrance–exit 

LOS = SCE 2.70 

152 Secondary Task = out-of-vehicle distractions; Intersection Influence = yes, traffic 
signal 

LOS = SCE 1.70 

153 Secondary Task = out-of-vehicle distractions; Intersection Influence = yes, 
uncontrolled 

LOS = SCE 2.50 

154 Secondary Task = out-of-vehicle distractions; Traffic Density = LOS C LOS = SCE 2.17 
155 Secondary Task = out-of-vehicle distractions; Traffic Density = LOS D LOS = SCE 2.53 
156 Secondary Task = out-of-vehicle distractions; Traffic Density = LOS E, F LOS = SCE 2.39 
157 Secondary Task = vehicle integral devices; Intersection Influence = yes, interchange LOS = SCE 1.69 
158 Secondary Task = vehicle integral devices; Intersection Influence = yes, parking lot, 

driveway entrance/exit 
LOS = SCE 2.19 

159 Secondary Task = vehicle integral devices; Intersection Influence = yes, traffic signal LOS = SCE 2.19 
160 Secondary Task = vehicle integral devices; Intersection Influence = yes, uncontrolled LOS = SCE 2.52 
161 Secondary Task = vehicle integral devices; Traffic Density = LOS C LOS = SCE 2.17 
162 Secondary Task = vehicle integral devices; Traffic Density = LOS D LOS = SCE 2.34 

Following the same concepts, more useful and relations can be inferred. For instance, 
drivers in age group 80+ are strongly associated with SCE during darkness and dusk lighting 
conditions (rules 72 and 73). They are also vulnerable to SCE when interacting with pets (rule 
74). Similarly, drivers with cognitive deficit (score = 3–6), have a higher tendency of being 
involved in SCE when angry, under drugs/alcohol, near uncontrolled intersections, or reaching 
for objects (rules 75 through 82). Likewise, drivers suffering from ADHD are having higher SCE 
risk when they are near intersection, reaching for objects, or writing and texting (rules 83 
through 88). Drivers suffering from ADHD have higher SCE risk when driving in snow 
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conditions (rules 89 through 92). Another outcome of this study is the substantial increase in the 
driver’s SCE risk with the decrease in driving knowledge survey score (rules 93 through 104) 
and increase in sensation seeking survey score (rules 105 through 117). Another major finding of 
this study is the inconsistent variation in association with SCE due to gender. To clarify, taking 
into consideration the lift value of rule 30, females have less SCE risk compared to males when 
driving while angry (rules 118 through 119). However, males are less associated with SCE, 
compared to females, when driving near parking lots, near traffic signals, in snowy weather, or 
through congested traffic (rules 120 through 129). Finally, rules 130 through 138 confirm the 
findings of Tables 2 that the driver impairment due to being drowsy, sleepy, or fatigued is 
associated with SCE. In like manner, rules 139 through 162 confirm the results of Table 2 that 
cellphone–tablet use, out-of-vehicle distractions, and setting the vehicle’s integral devices are 
associated with SCE. 

CONCLUSION 

The literature review shows that parametric methods such as logistic regression and contingency 
tables are the common tools for extracting traffic-safety association relations among variables. 
However, when these methods are applied to datasets with a large number of variables (high 
dimensionality), such as the SHRP 2 NDS dataset, the key assumptions related to independence 
are likely to be violated and the reported results (p-values) may become unreliable. In addition, 
data sets with high dimensionality usually experience multicollinearity (high correlation among 
the variables), which compromises the accuracy of applied parametric models. Contingency 
tables also become difficult to track when applied over a dataset with high dimensionality. 
Accordingly, this study implements the MBA, a more generalized tool for identifying the driver 
characteristics associated with the involvement in a SCE. MBA is considered one of the best 
data-mining tool for association analysis, especially for comprehensive datasets with high 
dimensionality. In addition, the metrics reported by the MBA (lift and confidence) are highly 
robust to multicollinearity.  

Unlike previous studies on extracting associations using crash records only, this study 
includes normal–BLEs in addition to the SCE to extract more accurate, reliable, and 
representative rules. The findings of this study render it a long-term reference for traffic safety 
researchers and SHRP 2 NDS data analysts. For instance, this study identified the following 
factors as most contributing to SCE: 1) driver impairments due to anger, other emotional state, 
drugs, and alcohol; 2) driver distractions due to reaching for objects, writing, and texting; 3) 
influences of parking lots, driveway entrance–exit, interchanges, signals, and uncontrolled 
intersections; 4) traffic density of LOS C, D, E, and F; and 5) snow–sleet weather conditions. A 
striking finding of this study is that drivers feel more responsible and cautious when they are not 
alone in the vehicle. In addition, passenger interaction can to some extent prevent fatigued 
drivers from falling asleep or get impaired especially for long trips. Another observation is that 
drivers have lower SCE risk when traveling on dark–not lighted roads compared to when 
traveling on dark–lighted road. This might be due to the headlights and taillights of surrounding 
vehicles are more apparent to the driver in the vehicle’s mirrors when traveling on dark–not 
lighted roads compared to the case on lighted roads. Another notable result is the changeable 
variation in association with SCE due to gender. Specifically, females have lower SCE risk 
compared to males when driving while angry. However, males are less associated with SCE, 
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compared to females, when driving near parking lots, near traffic signals, in snowy weather, or 
through congested traffic. Finally, this paper provides a quantitative evidence for the increase of 
driver association with SCE when he or she suffers from ADHD, experience cognitive deficit, 
experience visual impairment, has a higher sensational seeking tendency, or has poor driving 
knowledge.  

Overall, this study reveals the effectiveness of the MBA application in safety research as 
a reliable and accurate tool for analyzing a comprehensive database with high dimensionality 
such as the SHRP 2 NDS. The results of this paper provide legislators with useful information 
for developing policies to reduce the likelihood of SCE. The government officials would be 
interested in the findings of this paper as well. The results will assist in allocating available 
resources and funds to reduce roadway crashes and improve traffic safety. Furthermore, knowing 
the driver characteristics (income, gender, age, driving knowledge, etc.) and abilities (visual and 
cognitive) associated with SCE is of great interest for the auto insurance industry and can assist 
in the process of determining insurance premiums and policies. Finally, this paper presents a 
state-of-art methodology for applying the MBA through setting the metrics thresholds, removing 
redundant rules, and the procedure followed for exploring rules of length 3. Accordingly, the 
methodology presented in this study can be applied to a wide range of transportation research 
and this paper serves as a reference for the transportation research community.  
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isky driving behaviors (e.g., speeding and reckless driving) and secondary task engagement 
(e.g., cell phone use and eating–drinking) are associated with an increased probability of 

crash or near-crash occurrence. With errors in human driver behavior said to be contributing to 
94% of traffic crashes on the nation’s highways, there is a need to identify and better understand 
the determinants of risky driving behaviors and secondary task engagement so that appropriate 
countermeasures and interventions can be implemented. Traditional crash databases provided 
very little objective information about specific driver behaviors leading up to a crash. As a result, 
there is little understanding of the determinants of risky driver behavior and secondary task 
engagement, particularly in the context of events (crashes or near-crashes). The SHRP 2 
Naturalistic Driving Study (SHRP 2 NDS) provides a unique database with full information 
about driver behaviors and secondary task engagement. Using this database, this study aimed to 
model the determinants of risky driving behaviors and secondary task engagement within a 
structural equations modeling framework that accounts for endogeneity (interactions among 
multiple endogenous variables). Results of this study show that risky driving behaviors and 
secondary task engagement are significantly influenced by demographics, driver knowledge and 
disposition, and roadway conditions. Therefore, targeted interventions and awareness campaigns 
could help mitigate unsafe driving behaviors. 

INTRODUCTION 

Enhancing safety of transportation systems continues to be an issue of much interest and 
importance to the profession. A major impetus for the development of autonomous vehicles and 
automated driving assistance systems is that they have the potential to enhance safety by 
eliminating (or at least greatly reducing) driver error that contributes to 94% of crashes in the 
United States. Efforts to improve safety also involve regulations to make vehicles safer (e.g., 
airbags, seatbelts, vehicle designs) and engineering of roadway elements that would improve 
safety and reduce severity of crash outcomes. However, since driver error contributes to a vast 
majority of crashes, it is reasonable to expect that the greatest safety benefits can be realized by 
targeting driver behaviors and minimizing any unsafe driver actions that may contribute to 
adverse outcomes on the nation’s roadways.  

Previous research studies have mainly focused on modeling frequencies of crashes by 
type, probability of crash occurrence by type, and probability of crash severity based on a 
number of explanatory factors that include vehicle attributes, driver’s demographic 
characteristics, environmental conditions and roadway aspects. However, these studies do not 
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include any detailed information about driver behaviors because such variables are rarely, if 
ever, available in crash reports.  

Naturalistic driving studies (SHRP 2 NDS) provide data on human behaviors and actions 
in the course of driving a vehicle, and provide the detailed driving behavior information needed 
to address the limitations of traditional crash databases. Indeed, a spate of recent studies using 
SHRP 2 NDS data has documented the influence of different driving behaviors on crash 
occurrence and severity. For example, Dingus et al. (2016) studied driver performance and 
behaviors that contribute to crash events. They found that overall impairment, driver 
performance error, driver judgement error, and distraction increased crash risk by 5.2, 18.2, 11.1, 
and 2.0 times respectively (when compared to ideal driving behavior).  

Previous studies have essentially shown that unsafe driving behaviors and distracted 
driving contribute significantly to increasing the probability of an event, which may be defined 
as a crash or a near-crash where an evasive action averted what would have been a crash (Young 
et al., 2008). However, literature examining the factors that contribute to risky and unsafe–
distracted driving behaviors in the first place is quite limited. In order to improve safety, it is 
necessary to understand the determinants of drivers’ risky behaviors; such an understanding will 
help in the identification of appropriate countermeasures and interventions. Rather than modeling 
the probability of a crash or near-crash occurring (as a function of driver behaviors), this paper 
presents an integrated model of risky driving behaviors and secondary task engagement. By 
doing so, the paper offers a basis to identify potential strategies that could help reduce risky 
driving behaviors at the outset.  

The remainder of this paper is organized as follows. In the next section, a brief review of 
the literature is provided. The third section presents an overview of the data and the fourth 
section presents the modeling framework and methodology. The fifth section presents model 
estimation results and concluding remarks are offered in the sixth and final section.  

DRIVING BEHAVIOR AND CRASH OUTCOMES 

There is a large body of literature devoted to examining the association between driving behaviors 
and crash risk but limited literature examining factors that contribute to risky driving behaviors and 
secondary task engagement in the first place. Moreover, there is a plethora of safety studies that 
directly relate traffic, roadway, and environmental factors to crash frequency and severity 
(Mannering, 2018; Ramos et al., 2016; Ye et al., 2009). However, these studies are not able to 
account for the effects of driver behaviors because such variables are largely unobserved and 
cannot be objectively and accurately measured after an event has occurred.  

There is ample evidence that risky driving behaviors and risk-taking attitudes contribute to 
a higher probability of crash occurrence (Elander et al., 1993). Sensation-seeking, aggression, and 
social deviance are significantly related to traffic crash involvement (Jonah, 1997). Studies 
examining the implications of cell phone use have generally concluded that phone usage 
contributes to increased crash risk. Owens et al. (2018) found that visual–manual interactions with 
the phone increased odds of crashing by two times, but handheld phone conversations did not 
significantly increase odds of a crash. In a driving simulator study, Young et al. (2008) found that 
increased driver workload due to eating or drinking increased crash risk significantly.  

Overall, the literature has shown that risky driving behaviors and secondary task 
engagement increase crash risk. However, the literature does not comprehensively explore the 
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determinants of such unsafe driver behaviors, and only a few studies have attempted to address this 
research gap. Parker et al. (1998) measured the attitudes of drivers towards four driving violations 
(driving under the influence, speeding, following closely, and dangerous passing or overtaking). 
They found that younger drivers and males are less aware of or concerned with the negative 
outcomes of such behaviors (for themselves or others). Gershon et al. (2018) examined SHRP 2 
NDS data to identify predictors of kinematic risky driving (KRD) and found that teenagers who 
had their own car were more likely to engage in KRD. Driving during the day and driving alone 
was also associated with KRD. Ahmed and Ghasemzadeh (2018) found that environmental 
conditions significantly affect driver behavior and performance; for example, the probability of 
reducing speed by more than 5 km/h was between 23% and 29% depending on the severity of rain. 
Additionally, middle-aged and older drivers exhibited more conservative and safe driving 
behaviors compared to younger drivers. 

Overall, the literature has established that risky and distracted driving behaviors contribute 
to adverse safety outcomes. It is therefore desirable to determine the factors that contribute to such 
unsafe behaviors so that risky driving behaviors and secondary task engagement can be reduced 
through effective countermeasures. By clearly identifying those contributing factors, it will be 
possible to deploy interventions, awareness campaigns, and strategies that would reduce or 
eliminate such behaviors in the first place, thereby leading to reduced crash occurrence and 
severity in the longer term.  

DATA DESCRIPTION 

NDSs constitute an innovative and intensive method for observing driver behavior and traffic 
safety phenomena in the real world. SHRP 2 NDS databases include detailed information about the 
trips undertaken by drivers in their vehicles, driver behaviors, secondary task engagement, driver 
condition (e.g., drowsy), and driver attributes. The SHRP 2 NDS involved collecting such data for 
3 years from 3,500 volunteer subjects aged 16–98 years across six states. Continuous recording of 
high-resolution data for crashes, near crashes, and normal driving conditions allows a rich 
interpretation and investigation of the relationships among factors that contribute to adverse safety 
events and outcomes. Complete details about the SHRP 2 NDS and the resulting database may be 
found in SHRP 2 (2015). 

Table 1 presents a detailed description of risky driving behaviors and secondary task 
engagement, with each of the behaviors or secondary task engagement depicted as one possible 
nominal outcome.  

Table 2 presents a detailed descriptive analysis of the data. Because risky driving behaviors 
and secondary task engagement are strongly associated with event (crash or near-crash) 
occurrences, the baseline no-crash events were not included in the final analysis dataset. After 
extensive cleaning of the dataset, the final analysis dataset includes 7,824 events (crashes or near-
crashes) involving 2,074 unique drivers. Among the 7,824 events, 1,643 are actual crashes while 
6,181 are near-crashes. In the case of risky driving behaviors, 90.4% of baseline no-crash events 
(27,484 events) are associated with no risky driving behaviors, whereas for near-crash events, only 
52.1% involved no risky driving behaviors; for crash events, the percentage drops to 26.8. In the 
two adverse event columns (crash and near-crash), just over 21% involved distracted driving. 
Where a crash occurred, 37.6% involved improper driving while 7.73% involved speeding. These 
percentages are higher compared to corresponding percentages in the other columns. 
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TABLE 1  Definition of Risky Driver Behaviors and Secondary Task Engagement 
Risky Driver Behavior Definition of the Category 

None No risky behavior shown. 
Distraction Subject driver not maintaining acceptable attention to the driving task. 

Signal violation 
Stop sign violation (rolling, ran stop sign, and did not see sign); signal 
violation (disregarded, tried to beat signal change, did not see signal); 
non-signed crossing violation; and other signs (e.g., yield). 

Following too close Following the front vehicle at an unsafe distance. 

Improper or reckless 
driving 

Improper turn (cut corner on right/left, wide left/right turn); improper 
signal; improper backing; improper turn; other improper/unsafe passing; 
driving slowly—below speed limit; passing on right; illegal passing; 
wrong side of road; making turn from wrong lane; sudden or improper 
braking; failed to signal; sudden or improper braking; right-of-way error 
in relation to other vehicle—apparent recognition/decision failure; 
drowsy, asleep, or fatigued; and disregarded officer or watchman.  

Aggressive driving Aggressive driving: directed menacing action or other action. 

Speeding Exceeded speed limit; speeding or unsafe action in work zone; and 
driving slowly in relation to other traffic but not below speed limit. 

Other Other; avoiding vehicle/animal/pedestrian; apparent unfamiliarity with 
roadway/vehicle; and inexperience in driving. 

Secondary Task 
Engagement Definition of the Category 

None No secondary task. 

Cellphone–tablet use Texting, holding, listening, location, browsing, operating, dialing, hand-
held, viewing. 

Interacting with someone Interacting with the passenger and child. 
Distraction external to 
vehicle 

Looking at an object, pedestrian, previous crash or incident, 
construction, animal, or other external distraction. 

Eating or drinking Eating or drinking with or without utensil, lid, or straw. 

Distraction internal to 
vehicle 

Moving object in vehicle; inserting or retrieving CD (or similar); insect 
in vehicle; adjusting or monitoring radio or climate control; pet in 
vehicle; and other nonspecific internal eye glances. 

Other activities pursued 
Writing, shaving, applying make-up, reading, dancing, combing–
brushing–fixing hairs, smoking cigar/cigarette or lighting cigar/cigarette, 
or biting nails/cuticles. 

Reaching for something Reaching for object, food, personal body item, cigar. 
Unknown Unknown. 

When it comes to secondary task engagement, it appears that driver’s exhibit a fairly high 
level of driving skill. The percent of events that involved no secondary task engagement does not 
differ dramatically across the three event-type columns. For the no-crash events, 47.8% involved 
no secondary task engagement. The corresponding percentages are 38.2 and 40.2 for near-crash 
and crash events respectively, suggesting that there is fairly high level of secondary task 
engagement even during baseline events when nothing adverse is taking place. One-in-five near-
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crash events involves cell phone or tablet use; 14.1% of near-crash events involve distraction 
internal to vehicle. Overall, crash occurrence (relative to a near-crash occurrence) does not seem 
to be associated with a greater level of secondary task engagement; rather it is associated with a 
greater level of risky driving behaviors.  

Table 2 also shows the influence of exogenous attributes on crash events. Care should be 
exercised when trying to interpret patterns of association between exogenous variables and event 
types. Because driving may occur more in certain conditions than others (in other words, there is 
different levels of exposure to different exogenous conditions), the statistical patterns may depict 
the effects of exposure as opposed to a correlation or association per se. In addition, there may be 
other confounding factors that mediate the nature of the association. For example, drivers may be 
more risk-taking under certain favorable environmental and traffic conditions (e.g., dry surface 
conditions, low traffic volumes) than under adverse conditions. These types of self-correcting 
behaviors play a role in shaping the influence of the exogenous attributes on crash occurrence.  

In general, the patterns depicted are quite consistent with expectations. Crashes (in 
comparison to no-crash or near-crash events) are more likely to occur during adverse lighting 
and weather conditions and when surface conditions are slippery and wet. In comparison to no-
crash or near-crash events, crashes are more likely to occur on undivided highways, when there 
are no lanes clearly demarcated, and under free-flow conditions [presumably because drivers 
take more risks under Level-of-Service (LOS) A1]. Moreover, crashes are more likely to occur in 
the presence of traffic control signal (dynamic or static), relative to no-crash or near-crash 
events. Driver impairment is a more prevalent factor in crash events. However, it can be seen 
that impairment, in general, is present for under 5% of events, regardless of event type. It appears 
that near-crashes are more likely to occur (relative to no-crash and crash events) in business or 
industrial areas, possibly due to the visual distractions in such areas.  

An analysis of the socioeconomic and demographic characteristics of the drivers 
(exogenous factor in the study) shows that there is an equal split between males and females. For 
the sake of brevity, a detailed table of socioeconomic characteristics is not furnished. About one-
quarter of drivers are 20–24 years of age and about one-fifth of drivers in the study are 65 years 
or over. Nearly one-half of the drivers are single and 34% are married. Nearly three-quarters of 
the drivers reside in homes that they own and 31% indicated that they do not work outside the 
home. Nearly one-in-four drivers reported a household income greater than or equal to $100,000 
per year.  

About 18% reported household income less than $30,000 per year. Nearly 90% of the 
drivers obtained their driver’s license between the ages of 15 and 18 years; only 9.5% obtained 
their driver’s license after attaining 18 years of age.  

Overall, the SHRP 2 NDS data provides a rich set of information for analyzing the factors 
contributing to risky driving behaviors and secondary task engagement in a crash or near-crash 
context. 



TABLE 2  Risky Driver Behavior, Secondary Task Engagement, and Transportation—Location Attributes by Event Type 

Endogenous Variable:  
Risky Driver Behaviors 

No Crash (N 
= 27,484) 

(%) 

Near Crash 
(N = 6,181) 

(%) 

Crash  
(N = 1,643) 

(%) 
Exogenous Variable:  

Transportation Attributes 
No Crash 

(N = 27,484) 
(%) 

Near Crash 
(N = 6,181) 

(%) 

Crash 
(N = 1,643) 

(%) 
None 90.4 52.1 26.8 Divided (median strip or barrier) 41.8 50.7 20.6 
Distracted 0.00 21.7 21.1 Not divided, simple 2-way traffic way 43.5 34.7 50.0 
Signal violation 1.10 2.56 3.04 No lanes 2.80 3.30 19.2 
Following too close 0.10 2.12 0.11 Not divided, center 2-way left-turn lane 8.40 6.40 4.60 
Improper driving 3.50 12.1 37.6 One-way traffic 3.40 4.90 5.50 
Aggressive driving 1.20 1.40 0.21 LOS A1 38.2 14.5 52.8 
Speeding 3.30 6.81 7.73 LOS A2  30.6 15.5 17.2 
Other 0.40 1.23 3.41 LOS B 25.3 43.1 21.2 
Secondary Task Engagement LOS C 4.10 17.0 5.90 
No secondary tasks 47.8 38.2 40.2 LOS D/E/F  1.90 9.90 2.90 
Cell phone/tablet use 14.8 20.9 17.1 No traffic control 83.2 71.3 68.3 
Interacting with Someone 14.5 8.77 12.6 Dynamic traffic control sign  6.50 12.1 12.7 
Distraction external to vehicle 8.20 8.09 8.58 Static traffic control sign 10.3 16.6 19.0 
Eating/drinking 2.40 1.86 2.07 Exogenous Variable: Driver Impairment 
Distraction internal to vehicle 6.20 14.1 9.19 Impaired 1.90 3.60 4.40 
Other activities pursued 5.30 6.05 6.82 Not impaired 98.1 96.4 95.6 
Reaching for something 0.70 1.83 2.86 Exogenous Variable: Location Attributes 
Unknown 0.10 0.20 0.61 Business–industrial 32.9 48.8 35.4 

Exogenous Variable: Transportation Attributes Interstate, bypass, divided highway with no 
traffic signals 

25.8 6.80 35.0 

Lighting (darkness/dusk/dawn) 22.4 20.7 26.8 Moderate–open residential 25.3 25.9 14.3 
Lighting (daylight) 77.6 79.3 73.2 Urban location 2.10 5.10 4.40 
Weather (no adverse condition) 90.8 90.4 85.9 Bypass–divided highway with traffic signals 

or open country 5.40 2.40 2.50 Weather (adverse condition) 9.20 9.60 14.1 
Surface condition (wet/snow/icy) 15.7 16.1 24.1 Church, playground, school 8.40 11.0 8.30 
Surface condition (dry) 84.3 83.9 75.9 Other 0.20 0.10 0.10 
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MODELING FRAMEWORK  

This study aimed to use SHRP 2 NDS data to identify contextual factors that influence risky driving 
behaviors and secondary task engagement that may lead to adverse safety outcomes. In trying to 
model such a complex phenomenon, a number of considerations need to be taken into account. Risky 
driving behaviors and secondary task engagement represent endogenous variables with nominal 
outcomes as depicted in Table 1. Given the presence of multiple endogenous variables, it would be 
advisable to adopt a simultaneous equations modeling framework that can incorporate a multitude of 
relationships among various explanatory and dependent variables. The structural equations modeling 
(SEM) methodology is very suited to analyzing such complex behavioral phenomena (characterized 
by the presence of multiple endogenous variables with nominal outcomes). In addition, the data set 
contains information at distinct levels. As mentioned earlier, there are 2,074 unique drivers with 
7,824 events (crashes or near-crashes). In other words, there are multiple records per driver; in the 
presence of such repeated observations for the same behavioral unit (driver), it is advisable to adopt a 
methodology that is able to account for the fact that observations belonging to the same driver are 
correlated and have identical values for driver attributes that do not change across events (for the 
same driver). To account for repeated observations, this study adopts a multilevel modeling 
framework to account for two distinct levels of analysis: person level and event level. Multilevel 
models provide more accurate results than traditional models by introducing random effect terms, 
which account for the unobserved heterogeneity among different drivers (Chin and Quddus, 2003). 
Another advantage of the multilevel modeling framework is its ability to incorporate variables at the 
level where their impacts occur. Many studies have employed multilevel models to analyze crashes 
(Xie et al., 2014). 

Figure 1 shows the overall modeling framework. At the person (driver) level, the SHRP 2 
NDS data offers a number of attributes that describe driver capabilities and attitudes (proclivity 
to engage in different types of behaviors and actions). The dataset includes many indicators that 
describe driving history and knowledge or awareness. These descriptors are likely to be affected 
by socioeconomic and demographic variables. The SEM framework provides a mechanism to 
define latent variables or constructs that represent the underlying aspect of interest. Thus, in 
Figure 1, a latent variable called Driver Cognition is defined; this latent variable is unobserved 
and not measured explicitly in the dataset. However, a number of indicators measuring driving 
history and driver knowledge or awareness are combined in a factor analysis to represent the 
latent Driver Cognition factor. Similarly, the dataset includes many variables representing the 
tendency of an individual to engage in various types of driving behaviors, take risks while 
driving, and engage in sensation-seeking behaviors. All of these indicators are likewise 
combined through a factor analysis approach to define a latent variable or construct representing 
Driver Disposition. The Driver Cognition and Driver Disposition (latent) factors are now 
endogenous variables that are themselves affected and influenced by socioeconomic and 
demographic characteristics, but are also affecting the endogenous variables of interest for this 
study, namely, risky driver behavior and secondary task engagement.  

At the observation level, driver impairment, trip duration, and transportation system and 
location attributes are assumed to influence the driver behavior outcomes of interest including 
risky driving behaviors and secondary task engagement. The model system therefore has a 
multitude of components and offers a comprehensive depiction of the phenomenon under study. 
In addition to the latent factor models, there are four components for the multilevel SEM defined 
by the two nominal outcome variables (risky driving behaviors and secondary task engagement)  
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FIGURE 1  Multilevel structural equation modeling framework. 

and two levels (person level and event level). Within the scope of this paper, it is difficult to 
present the estimation results for all components of the model system. Hence the paper depicts 
selected results in tabular form with additional results described in text.  

The results of the factor analysis are shown in Table 3. Driver Cognition is described by 
driving history (number of years of driving and number of traffic violations in the past year) and 
driving knowledge or awareness. The driving knowledge–awareness is measured by the ability 
of the individual to correctly identify road signs, traffic control devices, and signs of being 
drowsy.  

Table 3 also shows the descriptive statistics for each of the indicators that loaded onto a 
latent variable (Driver Cognition and Driver Disposition) in the factor analysis. The factor loadings 
and corresponding standard errors are shown in the last column of the table. 
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TABLE 3  Driver Latent Factors and Factor Loadings 
Driver Cognition 

(Factor) 
Indicators for 

Driver Cognition Min. Max. Std. Dev. Factor Loadings 
(Std. Error) 

Driving history 
(indicators) 

Year of Driving 0 74 19.9 1.00 (base) 
Categories  Zero One Two or more 
Number of Violation 59.1 24.6 16.3 –0.228 (0.093)

Incorrect Response Correct Response 

Driver Knowledge 
Questionnaire 
(indicators) 

Merge Sign 1.06 98.9 2.550 (1.251) 
Right of Way 1.24 98.8 0.975 (0.260) 
Traffic Control 3.35 96.7 0.465 (0.161) 
Yellow Lane 21.3 78.7 0.625 (0.116) 
Drowsy 9.05 91.0 0.407 (0.193) 

Driver Disposition 
(Factor) 

Indicators for 
Driver Disposition 

Never 
(%) 

Occasionally 
(%) 

Often  
(%) 

Factor Loadings 
(Std. Error) 

Driver Behavior 
Questionnaires 
(Indicators)  

Passing on right 50.5 44.2 5.36 1.00 (base) 
Tailgating 76.2 21.8 1.93 1.485 (0.048) 
Passing turn vehicle 91.4 8.00 0.61 1.435 (0.061) 
Forgot where car is parked 70.6 27.0 2.43 0.478 (0.030) 
No Recollection 84.0 15.3 0.69 0.993 (0.042) 
Running red light 92.7 6.90 0.43 1.489 (0.066) 
Miss Pedestrian 95.4 4.61 0.00 0.869 (0.062) 
Often road rage 95.0 4.41 0.55 1.232 (0.067) 
Wrong way 98.4 1.56 0.08 0.755 (0.091) 
Disregard speed limit 74.6 23.0 2.39 1.483 (0.047) 
Driving above alcohol limit 97.9 1.90 0.17 1.227 (0.095) 
Roadway aversion 97.9 1.87 0.19 1.205 (0.092) 
Underestimate speed of 
oncoming traffic 

96.3 3.64 0.08 1.166 (0.073) 

Wrong destination 87.0 12.6 0.36 0.686 (0.040) 
Wrong lane at intersection 83.9 16.1 0.06 0.629 (0.037) 
Involved in racing 97.9 1.96 0.19 1.724 (0.108) 
Aggressive braking 94.8 5.22 0.00 0.976 (0.061) 

Driver Risk Taking 
Questionnaires 
(Indicators) 

Drive Sleepy 40.4 58.7 0.84 1.039 (0.035) 
Changes lane suddenly 34.1 62.5 3.40 1.628 (0.047) 
Run stop signs 70.4 27.3 2.28 0.946 (0.035) 
Speed for thrill often 72.5 26.2 1.32 1.212 (0.041) 
Fail to yield often 73.0 26.5 0.51 0.858 (0.035) 
Make illegal turns 56.8 42.5 0.75 1.068 (0.036) 
Follow emergency vehicle  95.1 4.70 0.22 1.010 (0.065) 
Failure to adjust  33.1 61.7 5.14 0.969 (0.032) 
Accelerate at yellow light 15.0 78.8 6.16 1.706 (0.051) 
Adjust CD player 14.1 77.5 8.40 1.544 (0.046) 
Eyes off road to passenger 25.9 72.5 1.55 1.000 (0.036)  
Not use belt 87.3 11.6 1.12 0.560 (0.039) 
Not use signal  50.0 48.3 1.67 0.507 (0.027) 

Min. Max. Std. Dev. Factor Loadings 
(Std. Error) 

Sensation Seeking 
Score (Indicator) 

Driver Sensation Seeking 
Behavior 

0 35 6.83 2.861 (0.079) 
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MODEL ESTIMATION RESULTS 

The multilevel structural equations modeling framework applied in this study is well documented 
in the literature (Muthen, 1994; Ratanavaraha et al., 2016). The complete methodology is not 
provided here in the interest of brevity; also, only an illustrative tabulation of the driver profile 
model is provided, while driver behavior and secondary task engagement model results are 
described in text form.  

Models of Driver Cognition and Driver Disposition (Latent Factors)  

Table 4 shows the models of Driver Cognition and Driver Disposition. In Figure 1, these factors 
are essentially influenced by socioeconomic and demographic attributes. Although this table is 
depicted in stand-alone format, it should be noted that the results in this table are part of a larger 
comprehensive multilevel structural equations model system in which all coefficients are 
estimated simultaneously. The other model components depicting the influence of explanatory 
variables and factors on risky driving behaviors and secondary task engagement will be 
explained in subsequent subsections. 

Results shown in Table 4 are intuitive and consistent with the findings reported 
previously in the literature. In the Driver Cognition model, a positive coefficient implies that the 
individual is more knowledgeable and has a better driving history and track record. In the Driver 
Disposition model, a positive coefficient depicts a more risky driving proclivity and attitude. In 
the Driver Cognition model, it is found that females have a better driving record, knowledge, and 
history than males, as evidenced by the positive coefficient. This finding is consistent with that 
reported in the literature (Al-Balbissi, 2003).  

TABLE 4  Model Results for Driver Profile  
(N = 7,824 events; number of drivers = 2,074 

Explanatory Variable Driver Cognition  
Coefficient (t-stat) 

Driver Disposition 
Coefficient (t-stat) 

Intercept –0.071 (–1.91) –0.418 (–5.65)
Gender: Female 0.030 (1.76) — 
Age ≥20, ≤24 years — 0.329 (6.24) 
Age ≥25, ≤34 years — 0.220 (3.85) 
Age ≥35, ≤54 years 0.039 (1.80) — 
Age ≥55, ≤64 years — –0.433 (–6.35)
Age ≥65 years — –0.566 (–10.54)
Married 0.041 (2.13) — 
Income <50k –0.044 (–2.27) — 
Income ≥70k, <100k — 0.076 (1.53) 
Income ≥100k 0.034(1.70) 0.131 (2.85) 
College degree 0.037 (1.79) — 
Professional degree 0.055 (2.44) — 
Work status, part-time –0.046 (–2.25) 0.087 (2.12) 
Rent home — 0.131 (2.76) 
Licensed at age 15–18 years old 0.062 (1.91) 0.238 (3.99) 
Own vehicle 1–6 years old — 0.061 (1.42) 
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Younger adults are more likely to exhibit a proclivity towards risky driving habits, as 
evidenced by the positive coefficients in the Driver Disposition model (Castec et al., 2011). 
Higher income individuals have a higher level of risky driving disposition when compared with 
lower income individuals. It is possible that this reflects their greater amount of driving, higher 
levels of car ownership, larger travel distances, and possible self-compensating behavior that 
comes with owning higher performance newer cars. Shinar et al. (2001) reported that speeding 
behavior increases with income thus suggesting that affluent individuals judge the merits of risk 
taking habits themselves. Married individuals have a better driving history and knowledge; the 
same can be said for individuals in the highest income category as evidenced by positive 
coefficients in the Driver Cognition model. It is likely that these individuals have a greater level 
of knowledge and awareness, and have life-cycle stage circumstances (dependents in household) 
that motivate them to be more cautious in their driving. Similarly, those with a higher level of 
education show better Driver Cognition than those with lower levels of education (Vaez and 
Laflamme, 2005).  

Other variables in the model show that those who work part time and rent their home are 
more likely to engage in risky driving habits. It is possible that these individuals, by virtue of 
their more temporary living and working arrangements, do not feel a strong sense of community 
and engage in more sensation-seeking driving behaviors (Leeman et al., 2013). Those who 
obtained a driver’s license at a young age are more knowledgeable, but also more risk taking. 
Those with newer vehicles (between 1 and 6 years old) are also more prone to engage in risky 
and sensation-seeking driving behavior, a finding consistent with the notion that people are likely 
to try and enjoy their newer vehicle while also subconsciously engaging in self-compensatory 
behavior confident in the safety features available in newer vehicles (i.e., they engage in more 
risky behaviors based on the notion that the vehicle has advanced safety features that will protect 
them in the event of a crash).  

Models of Risky Driving Behaviors 

There are two model components for risky driving behaviors. One corresponds to the person 
level and the other corresponds to the event level. This multilevel modeling framework provides 
key insight on the influence of person attributes and the influence of contextual attributes on the 
propensity to engage in various risky driving behaviors. In the interest of brevity, detailed model 
estimation result tabulations are not presented.  

The model results show that, at the person level, Driver Cognition is associated with a 
lower level of distracted driving, signal violation, following too close, improper–reckless 
driving, and speeding. On the other hand, Driver Disposition (risk-taking tendency) is associated 
with a higher level of distraction, signal violation, following too close, and speeding (consistent 
with Delhomme et al., 2009). These findings suggest that interventions and campaigns that aim 
to change driver habits, awareness, knowledge, and proclivities may be successful in reducing 
risky driving behaviors. Females appear more prone to distraction and following too close, 
possibly because of the secondary task engagement associated with chauffeuring passengers and 
children, but they are less prone to improper and reckless driving, aggressive driving, and 
speeding (as reported previously by Ozkhan et al., 2005).  

Older drivers (65 years and above) are more prone to signal violation and improper–
reckless driving, suggesting the onset of diminished driving skills. They are, however, less likely 
to speed when compared to younger drivers. Those with a higher level of education (college 
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degree or professional degree) are less likely to engage in distractions, following too closely, 
speeding, improper/reckless driving, or aggressive driving. It appears that a higher level of 
education brings about awareness of the risks of undesirable driving behaviors (as noted by 
Noland and Laham, 2018). Those who are single are more likely to engage in risky driving 
behaviors, consistent with the notion that these individuals are likely to be young adults and have 
no dependents (Jonah, 1986). Of note, those who obtained their driver’s license early, i.e., 
between the ages of 15 and 18 years, are less likely to engage in improper–reckless driving or 
aggressive driving but are more likely to speed. It is possible that these individuals feel confident 
in their driving abilities and feel comfortable speeding without engaging in reckless driving.  

At the event level, it is found that favorable conditions are generally associated with less-
risky driving behaviors. Driving during the day in daylight or on divided highways with a 
median is associated with less distractions, signal violations, improper and reckless driving, and 
aggressive driving. However driving in the daylight is associated with speeding, while driving on 
a divided highway with median is associated with following too closely. It is possible that drivers 
are comfortable navigating at high speeds in daylight conditions when visibility is good; 
similarly, there may be a greater acceptance of smaller headways on divided highways where 
traffic in the opposite direction is separated physically by a barrier and where there are likely to 
be multiple lanes allowing lane shifts in the event of unexpected braking. On undivided 
highways, drivers tend to be distracted, but less prone to engaging in any other risky driving 
behavior. The presence of a static traffic control sign is associated with more risky driving 
behaviors such as signal violation, improper–reckless driving, and speeding – suggesting that 
drivers are more likely to ignore such signs and may find them an unnecessary annoyance. 
Driving through business–industrial areas is associated with distraction, signal violation, and 
improper/reckless driving, reflecting the busy nature of the streets in such areas. However, these 
areas are associated with reduced behaviors involving following too closely, aggressive driving, 
and speeding—all findings that are consistent with expectations as drivers may try to be cautious 
in busy streets filled with distractions.  

Drivers tend to speed on longer trips (greater than 20 min in length) and in free-flow 
travel conditions. At LOS C (stable, but dense flow) drivers tend to follow front vehicle too 
closely but do not engage in reckless driving, speeding, or signal violations. Driving impairment 
caused by anger, sadness, drug use, or alcohol use is associated with higher levels of all risky 
driving behaviors, suggesting that countermeasures addressing impairment are likely to see 
considerable benefit in reducing risky driving behaviors.  

Models of Secondary Task Engagement 

As with the models for risky driving behavior, there are two models of secondary task engagement 
—one at the person level and one at the event level. It should again be recognized that all model 
components comprise a single framework and are all estimated in a single step using the multilevel 
structural equations methodology. As in the case of risky driving behaviors, Driver Cognition and 
Driver Disposition (latent) factors are important determinants of secondary task engagement that 
could essentially lead to distractions. Those with higher levels of driver awareness and knowledge 
and better driving history are less likely to use cell phone or tablet, get distracted, or pursue other 
activities in the vehicle. On the other hand, those with a proclivity for engaging in risky driving 
habits and be sensation-seeking are more likely to use a cell phone or tablet, eat or drink, and 
pursue other activities inside the vehicle. Clearly, personality traits are important determinants of 
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unsafe driving behaviors and secondary task engagement that could lead to adverse safety 
outcomes.  

Females are more likely to engage in secondary tasks, perhaps because they engage in more 
of the child–passenger chauffeuring activities in a household (Ozkhan et al., 2005). They are more 
likely to use cell phone, be distracted with something inside the vehicle, pursue other activities 
while driving the vehicle, and reach for something inside the vehicle. Those who are single are 
more prone to using a cell phone and pursuing other activities while driving, consistent with the 
notion that they are likely to be more risk taking. Younger drivers are more likely than older 
drivers to use cell phone and interact with someone in the vehicle; likewise, older drivers are less 
likely to be distracted by something internal to the vehicle, pursue other activities, or reach for 
something inside the vehicle. Older drivers are, however, distracted (more so than younger drivers) 
by external stimuli. The ability to stay focused on the driving task in the midst of myriad external 
stimuli may diminish with age and hence older drivers may refrain from engaging in activities that 
could take their focus away from the driving task. Older drivers may choose nonfreeway routes 
and are more likely to be distracted by more activity on city streets. Lower-income individuals 
generally depict greater levels of secondary activity engagement, especially with cell phone use, 
eating or drinking, and distraction internal to vehicle. A greater awareness of the dangers of 
secondary task engagement is likely to exist among higher income and more educated individuals. 
One finding is that those who obtained their driver’s license between the ages of 15 and 18 years 
(early in life) are more likely to engage in a range of secondary tasks including cell phone use, 
interacting with someone, eating or drinking, distraction internal to vehicle, and pursuing other 
activities. It appears that these individuals, by virtue of the accumulated experience in driving from 
an early age, feel confident in their ability to drive while multitasking.  

At the event level, it is found that drivers are more prone to using the cell phone or tablet 
and less prone to being distracted by something external to the vehicle when traveling on divided 
highways. It is possible that drivers feel more comfortable using the cell phone when on a divided 
highway without the danger of any oncoming vehicles in their path. Similarly, on a divided 
highway, there are likely to be fewer external distractions that could affect driver task engagement. 
On an undivided highway, on the other hand, there is a greater likelihood of distractions external to 
vehicle as such streets likely pass through business–industrial areas. Indeed, it is found that 
business–industrial areas engender higher levels of distraction and cell phone use. Driving in 
residential areas is associated with higher levels of cell phone uses, distractions internal to vehicle, 
reaching for something, and pursuing other activities. It is possible that drivers feel more 
comfortable multitasking in a slower speed residential environment; they may also be distracted 
with household related communications and activities in the vicinity of their home. On longer trips 
greater than or equal to 30 min in duration, drivers show a greater proclivity to use cell phone or 
tablet, interact with someone, and reach for something inside the vehicle. They are, on the other 
hand, less likely to eat/drink on a longer trip, possibly because longer trips involve greater levels of 
high speed freeway travel. Finally, lower levels of visibility (i.e., during snow or rain) are 
associated with a lower likelihood of engaging in secondary task engagement or risky driving 
behaviors, suggesting that individuals are more cautious in such environmental conditions. 

The model provided excellent goodness-of-fit, given the nature of the phenomenon under 
study. The log likelihood at convergence is –27,029.50 with 322 parameters while the log 
likelihood for the constants only model is –69,933.09. The adjusted ρ2 is 0.613, which is quite 
reasonable for a model of this nature. 
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DISCUSSION AND CONCLUSIONS 

This study uses the SHRP 2 NDS data to examine the influence of various factors in contributing 
to risky driving behaviors and secondary task engagement, i.e., driver actions that could increase 
probability of a crash or near-crash events. The multilevel structural equations modeling 
framework accounts for correlation across repeated observations for the same individual, thereby 
providing more accurate statistical inferences regarding the effects of different factors on risky 
driving behavior and secondary task engagement.  

Overall, it is found that young adults, males, lower income individuals, those without a 
college degree, and those who are less embedded within the community (such as renters and 
part-time workers) are more likely to engage in risky driving behaviors and secondary task 
engagement. In addition, those who obtained their driver’s licenses early in their life, between 
the ages of 15 and 18 years, were more likely to engage in secondary task engagement. These 
findings provide valuable insights on the demographic groups that could be targeted for 
educational campaigns and special interventions. Perhaps those who received their driver’s 
license at a very young age can be asked to complete one or more refresher training modules on 
safe driving. It was also found that individuals who had a poorer knowledge and awareness of 
various signs or had a history of traffic violations were more likely to engage in risky driving 
behaviors and secondary task engagement. Whenever individuals get cited for traffic violations, 
it may help to provide educational materials that explain good driving practice and the 
consequences of exercising poor driving behaviors. Such awareness campaign materials could be 
sent to the homes of those who received a violation or who are more likely to be error-prone in 
their interpretation of traffic signs and controls. By targeting these demographic groups, it may 
be possible to bring about real changes in the risky driving behaviors and secondary task 
engagement of high-risk groups. In addition, understanding the factors causing risky driver 
behavior can help inform in-vehicle technology decisions and enhance safety feature (e.g., 
antilock brake system, forward collision warning systems, pre-crash systems, lane departure 
warnings).  

From a transportation system standpoint, special attention should be paid to busy 
business–industrial areas where drivers are prone to getting distracted and engage in a number of 
secondary tasks. A number of countermeasures may be implemented to mitigate the adverse 
effects of such locations. The amount of visual clutter and distracting elements may be reduced 
in an effort to reduce the number of distractions. The speed of travel can be reduced, pedestrian-
only areas can be defined to separate pedestrians from traffic, and dynamic message signs 
imploring drivers to pay attention may be strategies worth considering. Interventions may also be 
worthwhile in the context of free flow travel. Artificially lowering speed limits may be 
undesirable in many jurisdictions; but including dynamic message signs with safety messages 
and key reminders of good driving behaviors may help advance safety. In addition, dividing 
highways using a median strip or barrier appears to have beneficial impacts; driving on divided 
highways is found to be associated with lower levels of risky driving behaviors and secondary 
task engagement (except for cell phone use). A key finding within the secondary task 
engagement model is that females are more likely to be distracted in the vehicle, reach for 
something, interact with a passenger, or use the cell phone. Given that they are more likely to 
chauffeur children and passengers, this finding is not surprising.  

In summary, vehicle designs that are more forgiving and able to accommodate such 
distractions should be advanced. Awareness campaigns to improve driver knowledge about safe 
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following distances and best practices to avoid road rage may help drivers practice safer driving 
behaviors. By implementing customized strategies and interventions that reduce engagement in risky 
driving behaviors and secondary task engagement for different market segments, it will be possible 
to bring about more favorable safety outcomes and reduce the risk of crash or near-crash events.  
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he objective of this study is to determine the minimum lengths of freeway deceleration lanes 
based on naturalistic driving speeds and deceleration rates from the Naturalistic Driving 

Study (SHRP 2 NDS) database. SHRP 2 NDS has the distinct advantage of providing insight into 
driver behavior based on a wide-ranging collection of data regarding the driver, the vehicle, and 
the environment, whereas previous studies of this subject relied primarily on crash data, radar 
data, computer simulations, and driving simulators. Ten study locations that are located on I-75 
in Florida with varying deceleration lane lengths and off-ramp lengths were used. The analysis 
included (1) speed distribution on different lengths of freeway deceleration lanes and off-ramps 
based on polynomial regression models; (2) drivers’ behavior, including brake pedal usage, 
critical speed change point detection, and the distribution of deceleration rates compared with the 
American Association of State Highway and Transportation Officials (AASHTO) Green Book 
assumptions; and (3) a new method to determine the minimum deceleration lane lengths based 
on naturalistic driving speeds and deceleration rates. The results revealed that (1) typically, 
vehicle speeds reduced by 10% to 25% on deceleration lanes while 75% to 90% on off-ramps; 
(2) deceleration rates on deceleration lanes and off-ramps before critical speed change points are
lower than assumptions from the Green Book; and (3) deceleration lanes can be shorter when
off-ramps are long at diamond interchanges (e.g., greater than 1,550 ft).

INTRODUCTION 

The freeway diverge area including deceleration lanes and off-ramps provides exits for vehicles 
from freeway mainline via off-ramps to adjacent crossroads. It aims at offering vehicles an 
effective, safe, and smooth transition from high speed to low speed. However, crashes occur 
more frequently in the diverge area than other freeway segments. In 2012, a National 
Cooperative Highway Research Program (NCHRP) study reported that the average crash rate on 
freeway deceleration lanes in the state of Washington was 0.68 crashes per million vehicle-miles 
traveled (MVMT) (1). It was three times higher than the average crash rate of acceleration lanes 
(0.16 MVMT) and 15.3% higher than that of the mainline segment before the next off-ramp 
(0.59 MVMT). Moreover, it is important to note that 42.4% of freeway deceleration lane crashes 
were rear-end crashes due to the speed differential (1). In Alabama, similarly, 201 crashes 
occurred on freeway deceleration lanes were rear-end crashes, accounting for 71.28% of total 
freeway deceleration lane crashes from 2012 to 2016 (2). Therefore, there is an urgent need to 
reduce crash rates on freeway deceleration lanes. 

Previous studies revealed that crash rates can be related to the deceleration lane length 
(3–7). In other words, crash rates would be reduced with an optimal length of the deceleration 
lane. Referring to the deceleration lane design, three aspects that determine the deceleration lane 

 

T 



58 Transportation Research Circular E-C243: SHRP 2 Safety Data Student Paper Competition 2017–2019 

length are recommended by the AASHTO Green Book (8). The first is drivers’ speeds while they 
initially diverge onto the auxiliary lane. Second is drivers’ speeds at the end of the deceleration 
lane. Third is their manners of deceleration. Additionally, it requires the consideration of the 
speed differential between vehicles on the mainline and the ramp. However, the Green Book only 
provides the minimum lengths of deceleration lanes according to the design speed differential 
from the freeway mainline and off-ramp. Moreover, similarities of recommended design lengths 
were found in the 2011 Green Book and 1965 edition. Data that was used in both editions were 
collected in the 1930s. Thus, recent data and research are required to update the design guide. 

Considering the safety issues on the deceleration lane and outdated design guides, this 
study is to determine minimum lengths of freeway deceleration lanes and help update design 
guides based on the current drivers’ diverging behavior and vehicle braking mechanisms. 
Conventional studies heavily rely on field data collection (e.g., radar gun). They have been either 
time-consuming or labor-intensive tasks, which may also result in erroneous conclusions due to 
intrinsic biases. To fill this gap, using the SHRP 2 NDS data is a new approach to investigate the 
driver behavior during daily trips through unobtrusive data gathering equipment and without 
experimental control (9). Data including speed, acceleration–deceleration rate, brake status, 
traffic condition, pavement markings, etc., can provide insight into the interrelationship among 
drivers, vehicles, and deceleration lane designs. 

The detailed objectives of this work are (1) to explore speed distributions on different 
lengths of deceleration lanes and off-ramps; (2) to investigate drivers’ braking behaviors on 
deceleration lanes and off-ramps; and (3) to determine minimum lengths of parallel and tapered 
deceleration lane designs. The rest of the paper summarizes the data collected, the methodology, 
analytical details, and results, followed by conclusions that place the results in the context of 
engineering practice. 

LITERATURE REVIEW 

Previous studies on deceleration lane design mainly focused on design policy, operational and 
safety effects, and driver behavior. 

AASHTO Design Policy 

According to the Green Book definition, a deceleration lane is a speed-change lane that intends 
to minimize conflicts between vehicles on the mainline and diverging area (8). There are two 
general forms of declaration lane (as shown in Figure 1): the parallel-design which has an added 
lane for changing speed and the tapered design which provides a direct exit at a flat angle (8). 
The length of a deceleration lane is measured from the point of a 12-ft right-tapered wedge or a 
12-ft added parallel lane to the point of the exit ramp curvature beginning (8). In practice, it is 
hard to control and measure the beginning of the exit ramp alignment. Thus, this study measured 
the deceleration lane length from the same starting point defined by AASHTO to the point of the 
physical gore (after the painted nose).
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(a) 

(b) 
FIGURE 1  Definition of deceleration lane length: (a) parallel-design  

deceleration lane and (b) tapered-design deceleration lane. 

Equations 1 and 2 present the procedure of calculating the minimum deceleration lane 
length in the 1965 Blue Book (10). The length is primarily determined by the speed differential 
between the average speed on the mainline and the off-ramp. = 1.47 − 0.5 ( ) + ( . ) ( . ) (1) 

= . .   (2) 

where 

LDecel = deceleration lane length, ft; 
Vh = highway speed, mph; 
Va = speed after tn s of deceleration without brakes, mph; 
Vr = entering speed for controlling exit ramp curve, mph; 
tn = deceleration time without brakes (assumed to be 3 s); 
dn = deceleration rate without brakes, ft/s2; 

dwb = deceleration rate with brakes, ft/s2. 

Two assumptions were made during calculation (11) that 
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1. Most vehicles travel at the average speed instead of the design speed when traffic
volumes are low (e.g., on a freeway with a 70-mph design speed; the assumption is that a driver 
will enter the auxiliary lane at 58 mph); and  

2. A 3-s deceleration before braking is applied on the taper section, which results in two
deceleration rates (dn and dwb). 

The only difference between the 2004 Green Book and the 1965 Blue Book, regarding 
minimum lengths of freeway deceleration lanes, is that the taper length is included in the 
deceleration lane length in the 1965 Blue Book while being listed separately in the 2004 Green 
Book. Comparing two recent versions of the Green Book, parameters in Equations 1 and 2 turn 
out to be the same in both the 2011 and 2004 editions. 

Operational and Safety Impact of Freeway Deceleration Lane 

A number of studies utilized regression models to optimize the deceleration lane length and the 
configuration of off-ramps (3–7). However, the results were inconsistent due to the quality of the 
data. Some studies suggested that increasing the deceleration lane length would reduce crash 
rates while some others implied it would increase. Twomey et al. identified that deceleration lane 
of 900 ft or more can reduce traffic friction on through lanes, therefore, reducing crash rates (12). 
Wang et al. also addressed that a longer deceleration lane is more likely to reduce injury severity 
(13). On the contrary, crash predictive models developed by Chen et al. revealed that the crash 
frequency increases with the lengthening of the deceleration lane (14). A recent study indicated 
the optimal deceleration lane length between 500 and 700 ft significantly reduces the crash 
severity (15). Considering different types of off-ramps, parallel-designed sites with a one-lane 
exit had the lowest crash frequency and crash rate (16). 

Diverge Speed and Maneuver 

Generally, conventional studies employed field observation to monitor driving behaviors of 
diverging drivers on deceleration lanes and off-ramps. Garcia and Romero concluded that the 
drivers start to decelerate before exiting the mainline with a speed reduction of 10.5 mph even on 
a long deceleration lane (17). Based on an NCHRP project, vehicles that diverge early on the 
deceleration lane are likely to diverge at speeds that are close to freeway speeds while late-
diverging vehicles have lower diverging speeds (3). Calvi et al. did two studies on diverging 
performance on deceleration lanes with a driving simulator (18–19). This study revealed that 
lower traffic volumes result in higher existing speeds, higher average and maximum deceleration 
rates, and earlier braking on the mainline. Findings from the follow-up study indicated that the 
taper type of deceleration lane contributes to the significantly higher speed difference. 
Furthermore, lower traffic volumes lead to higher deceleration rates. 

The literature review illustrated that none of the previous studies used SHRP 2 NDS data 
to study speed and deceleration rates on freeway deceleration lane and off-ramp. As SHRP 2 
NDS data consists of various information such as the driver’s interaction with the vehicle, the 
traffic environment, and roadway characteristics, it provides an opportunity to conduct a first-
ever study on determining deceleration lane lengths based on distributions of naturalistic driving 
speeds and deceleration rates on freeway diverge areas. 
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METHODOLOGY 

Data Description 

SHRP 2 conducted a naturalistic driving study to address the role of driver performance and 
behavior in traffic safety (20). It involves understanding how the driver interacts with and adapts 
to the vehicle, environmental condition, roadway geometric characteristics, and traffic control 
devices (20). In this study, all data used was acquired from the SHRP 2 NDS dataset, which aims 
at improving safety and reliability for motorists and providing answers to key traffic- and safety-
related questions (21).  

This subset of the SHRP 2 NDS dataset includes a video clip of the forward-view and 
rear-view videos of traffic conditions on the roadway. The time-series report for each video 
contains speeds (km/h), acceleration–deceleration rates (g), the brake pedal status (0 or 1), etc. 
The report also involves driver assessment (driving crash history, physical assessment, and risk 
perception scale) and vehicle information (model year, brand, and classification). The time-series 
report of each traversal provides the speed data at 0.1-s intervals when the vehicle is traveling 
through the freeway diverge area. By reviewing the forward-view videos, which were taken from 
cameras mounted inside the vehicles to provide drivers’ views, the traffic condition (free flow or 
non-free flow), environmental condition (lighting and weather), roadway geometric features 
(freeway diverge area layout), and the presence of traffic control devices (traffic sign and 
pavement marking) can be identified to assist with understanding driver behavior negotiating the 
freeway deceleration lane and off-ramp. The video of each trip was reviewed to ensure that it is a 
complete traversal beginning before the deceleration lane and ending after the off-ramp terminal. 
At the bottom left corner of the forward-view video, the continuous timestamp is offered to refer 
to the corresponding time-series report, where details of the vehicle maneuver were provided at 
0.1-s intervals. These details include the vehicle speed from the speedometer, the longitudinal 
acceleration rate, and the brake pedal status.  

The original dataset contained 971 trips from 10 locations, but some reports were 
incomplete. Further, some trips began after the off-ramp or ended before the terminal were 
filtered. Finally, 709 complete trips driven by 272 unique drivers were used for analysis in this 
study as presented in Table 1.  

Site Description 

Ten study locations, five one-lane exit with parallel-design deceleration lane locations (Locations 
1P through 5P), and five one-lane exit with tapered-design deceleration lane locations (Locations 
1T through 5T), are located on I-75 in Florida as shown in Figure 2. The 2011 Green Book 
design criterion for minimum deceleration lane lengths was compared with study locations to 
determine if they met the minimum requirement. Table 1 lists site information, the type of 
interchange design, the type of deceleration lane design, the divergence angle, the length of 
every section (taper, deceleration lane, and off-ramp) in the diverge area, the minimum length 
determined in the Green Book, the number of trips, and the number of unique drivers.  

Eight of 10 locations are diamond interchanges with relatively straight off-ramps. Two 
others are partial cloverleaf interchanges (Locations 3P and 5P) where the straight off-ramps 
were selected for reducing the impact on the speed by horizontal curvature (as presented in 
Figure 2e and 2i). The divergence angle ranges from 2 degrees to 7 degrees for all locations. For 
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parallel-design locations, taper lengths are from 165 to 270 ft. Taper lengths of tapered-design 
locations were found to be shorter (130 to 205 ft). Deceleration lane lengths are in the range of 
645 to 990 ft for parallel-design locations, which are longer than lengths in tapered-design 
locations (320 to 445 ft). For both types, off-ramp lengths vary from 940 to 1,725 ft. Most of the 
locations’ off-ramp terminals are signalized intersections while three of them are under yield 
control (Locations 1T, 3P, and 5T). The speed limit on the freeway mainline is 70 mph for all 
locations. Off-ramp advisory speeds of 35 mph were posted at four locations (Locations 1P, 2P, 
3P, and 4T). It should be noted that limited information is available on establishing advisory 
speeds for off-ramps that do not have horizontal curvatures (22). After comparing the actual 
deceleration lane length of each location with Green Book requirements, lengths of deceleration 
lane from parallel-design locations are longer than the minimum length, while tapered-design 
locations are shorter.  

TABLE 1  Site Description, Minimum Deceleration Lane Length,  
and Number of Trips and Drivers 

Site Locations Interchange 
Design

Divergence 
Angle

Taper 
Length (ft)

Deceleration 
Lane Length 

(ft)

Off-Ramp 
Length (ft)

Green Book 
Minimum 

Deceleration 
Length (ft)

Design Status 
Compared to 
Green Book

Number 
of Trips

Number 
of 

Drivers

Location 1P:
I-75/SW Archer Rd Diamond 4° 190 645 1475 490 GREATER 92 45

Location 1T:
I-75/Clark Rd Diamond 4° 200 425 1595 615 LESS 102 30

Location 2P: 
I-75/SW County 

Highway 484
Diamond 5° 195 735 990 490 GREATER 23 23

Location 2T:
I-75/US 98 Diamond 7° 150 320 940 615 LESS 59 48

Location 3P: 
I-75/FL 326 Parclo 5° 165 775 1030 490 GREATER 46 32

Location 3T:
I-75/US 98 Diamond 4° 205 420 1170 615 LESS 202 56

Location 4P: 
I-75/CR 768 Diamond 3° 200 700 1180 615 GREATER 28 6

Location 4T:
I-75/SW College Rd Diamond 4° 150 445 1340 490 LESS 16 13

Location 5P: 
I-75/CR 765 Parclo 2° 270 990 1690 615 GREATER 120 9

Location 5T:
I-75/CR 769 Diamond 4° 130 365 1725 615 LESS 21 10
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
FIGURE 2  Aerial photos of study locations: (a) Location 1P; (b) Location 1T; (c) Location 

2P; (d) Location 2T; (e) Location 3P; (f) Location 3T; (g) Location 4P; (h) Location 4T;  
(i) Location 5P; and (j) Location 5T.



64 Transportation Research Circular E-C243: SHRP 2 Safety Data Student Paper Competition 2017–2019 

Data Analysis 

Data analysis was performed from three aspects: (1) speed distributions on deceleration lanes 
and off-ramps of 10 locations; (2) driver behaviors in terms of the brake pedal usage and the 
deceleration rate compared with the Green Book assumption, and (3) determinations of minimum 
deceleration lane length based on naturalistic speeds and deceleration rates. 

Reviewing videos was the first step in the data analysis necessitated. Observers recorded 
the video frame number (the timestamp) at critical points in the video. Taper start point, 
deceleration lane start point, deceleration lane endpoint (physical gore), and off-ramp endpoint 
(stop bar at the terminal) on each location were considered critical points for this analysis. The 
frame number allowed for correlation to the data in the time-series report (speed, acceleration–
deceleration rate, brake pedal status, etc.). Thus, the timestamp of each critical point in the time-
series table was tagged to help determine the speed distribution (i.e., maximum, 85th percentile, 
mean, and minimum speed; and their standard deviations) of every section on the deceleration 
lane and off-ramp. In Table 1, the lengths of different sections (taper, deceleration lane, and off-
ramp) at each study location are presented.  

Polynomial Regression 

The speed distributions on the taper, the deceleration lane, and the off-ramp were calculated by 
applying polynomial regression models, which were estimated using the SHRP 2 NDS trips and 
speed data at 0.1-s intervals. The polynomial regression method minimizes the sum-of-squared 
residuals between measured and simulated quantities. The least squares method is used to 
estimate unknown parameters (23): = + + + + ⋯ + +   (3) 

where 

L = the distance from the starting point of the taper along the deceleration lane and off-ramp 
(ft), 

v = vehicle speed (mph), 
βn = estimated parameters, 
ε = the error of the specification. 

Four best-fitted models using SHRP 2 NDS speed data, maximum speed, 85th percentile 
speed, mean speed, and minimum speed distributions, were developed for each study location by 
using the statistical computing software R. R software provides a variety of statistical (linear and 
nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering, etc.) 
and graphical techniques (24). The residual standard error was used as a measure of goodness-of-
fit to evaluate and determine the quality of the fitted model.  

Critical Speed Changepoint Detection 

The changepoint detection estimates the point at which the statistical properties of a sequence of 
observations change (25). It has been widely used in various application areas, including 
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climatology, bioinformatic applications, finance, oceanography, and medical imaging (26-30). 
By applying this method, speed time series data is defined as: V1:n = (V1, V2, …Vn). A 
changepoint may occur within this set when there exists a time, τ ∈ 1, … , − 1 , where the 
statistical properties of {V1, …, Vτ} and { Vτ=1, …, Vn} are different in some way (24). The aim 
of the analysis is to estimate the location of the changepoint efficiently and accurately by 
minimizing the following equation: ∑ _ : + ( ) (4) 

Where C is a cost function for a segment, e.g., negative log likelihood;  is the number 
of changepoints; and βf(m)is a penalty to guard against over fitting (25). This method is used to 
identify the driver speed change position on the deceleration lane and off-ramp, so that the 
location where drivers take action to decelerate can be determined. 

Driver behavior was identified by brake pedal usage and deceleration rate. Brake pedal 
status was coded as 0 or 1 in the time-series reports. The value of 0 indicates that the driver did 
not apply the brake at the certain 0.1 s, while 1 means he or she did. To find where drivers 
applied brakes most often, brake pedal usage was evaluated by the percentage of the drivers 
applying brakes in certain sections.  

The time-series reports provided deceleration rates which can be used to calculate the 
mean and 85th percentile deceleration rates on the taper, deceleration lane, and off-ramp 
sections. The rates can also be determined by converting the distance-based speed model to the 
time-based one. The deceleration rate distribution was executed to find out the section where 
drivers mostly reduce their speeds so that the effective decelerating section could be found. 
When calculating deceleration rates, the Green Book recommended two methods (8): one is 
based on a two-step process of deceleration, coasting (assumed 3 s) and braking; the other is 
based on a constant decelerating behavior on the deceleration lane which was validated by El-
Basha et al. (31). In this study, the deceleration rate was compared with the Green Book rates 
based on a constant decelerating behavior over the entire deceleration process. The minimum 
deceleration lane length can then be estimated based on the deceleration rate from SHRP 2 NDS 
data and polynomial regression models by using Equation 5. 

= (5) 

where 

D = deceleration distance (ft), 
vi = initial speed (ft/s), 
vf = final speed (ft/s), 
d = deceleration rate (ft/s2). 

RESULTS 

The results were categorized into three parts: (1) polynomial regression of speed distribution on 
the deceleration lanes and off-ramps; (2) driver behavior in terms of brake pedal usage, 
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deceleration rates, and a comparison with the Green Book assumptions; and (3) minimum lengths 
of deceleration lanes based on naturalistic driving speed and deceleration rates. 

Speed Distribution 

Examples of fitted four speed distribution profiles by polynomial regression are presented in Figure 3, 
which shows speed distribution on the deceleration lane and the off-ramp in Locations 1P and 1T. 
The x-axis is the length (ft) and the y-axis is the speed (mph). The light blue lines are the speed data 
from SHRP 2 NDS time-series reports, one trace coming from one traversal. The other four lines in 
the figure are fitted polynomial regression models, including the maximum speed distribution 
(Maroon), the 85th percentile speed distribution (Red), the mean speed distribution (Orange), and the 
minimum speed distribution (Pink). The critical points are also marked with estimated speeds.  

For example, the 85th percentile speed distribution in Location 1P (Figure 3a), the speed at 
the beginning of the taper was 74.02 mph. It was reduced to 72.67 mph when the vehicle entered the 
deceleration lane. The speed was further reduced to 63.39 mph after driving through the 645-ft 
deceleration lane, resulting in a 9.28-mph speed reduction on the deceleration lane. However, it was 
found that a great speed reduction occurred on the off-ramp, especially close to the off-ramp terminal 
where a signalized intersection exists. Finally, the 85th percentile speed was reduced to 23.88 mph. 
As for Location 1T as shown in Figure 3b, the speed distribution was slightly different from Location 
1P. Before the taper in Location 1T, an extra 210-ft segment before the taper section was counted to 
make the length equal to the total length of taper and deceleration lane in Location 1P. It was found 
that, in Location 1T, drivers decelerated on the mainline before entering the taper section. The 85th 
percentile speed at the taper start point was 69.64 mph, which is nearly 5 mph lower than that in 
Location 1P. When entering the deceleration lane, the speed was 68 mph. The 425-ft deceleration 
lane only helps reduce 3 mph considering the speed at the off-ramp start point being 64.49 mph. 
Similar to Location 1P, a significant speed reduction of 33.58 mph was observed on the off-ramp.  

Polynomial regression models of 85th percentile speed and mean speed distributions for 
Locations 1P and 1T are summarized as follows:  

For Location 1P: = −9.767 × 10 + 3.38 × 10 − 3.462 × 10 − 1.703 ×10 + 74.02   (6) = −6.646 × 10 + 2.697 × 10 − 3.978 × 10 + 2.997 ×10 − 2.594 × 10 + 69.80   (7) 

For Location 1T: = −3.32 × 10 + 5.64 × 10 − 1.071 × 10 + 71.67   (8) = −3.968 × 10 + 6.61 × 10 − 1.165 × 10 + 66.59   (9) 

All study locations performed four regressions. It should be noted that all estimated 
parameters are statistically significant at the 99% confidence level. L is defined as the distance 
from the starting point of the taper to any points on the taper, deceleration lane or off-ramp; v is the 
speed downstream from the taper start point. 
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(a) 

(b) 
FIGURE 3  Speed distribution examples: (a) parallel-design, Location 1P  

and (b) tapered design, Location 1T. 
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From the models developed, only 85th percentile speeds and mean speeds at the taper 
start point, deceleration lane start point, deceleration lane endpoint, and off-ramp endpoint were 
summarized in Table 2. The speeds at parallel-design locations were 1 to 2 mph higher than that 
at tapered-design locations in taper and deceleration lane sections. However, the speeds upon 
vehicles entering the off-ramp for Locations 1T to 5T were typically 3 mph higher than parallel-
design locations. When an advisory speed was posted on the off-ramp, the operating speeds were 
not significantly affected by the advisory speed which is 35 mph for Locations 1P, 2P, 3P, and 
4T. The mean speed for a 35-mph advisory speed location was approximately 55 mph, and the 
approximate speed was 58 mph without the advisory speed sign. 

TABLE 2  A Comparison of Speed Distribution and Speed Reduction  
Percentage on the Deceleration Lane and Off-Ramp: (a Parallel-Design  

Locations and (b Tapered-Design Locations 

(a) 

(b) 

Taper Start
Deceleration 
Lane Start

Deceleration 
Lane End

Off-Ramp 
End Taper

Deceleration 
Lane

Off-
Ramp

85th 74.02 72.67 63.39 23.88 2.69% 18.51% 78.80%
Mean 69.80 65.71 56.29 10.26 6.87% 15.82% 77.31%
85th 72.53 70.14 60.04 31.48 5.82% 24.60% 69.57%
Mean 64.59 65.70 53.14 17.71 -2.37% 26.79% 75.58%
85th 68.09 65.12 55.92 19.31 6.09% 18.86% 75.05%
Mean 61.97 58.84 47.13 11.50 6.20% 23.20% 70.60%
85th 69.47 70.76 63.29 19.14 -2.56% 14.84% 87.72%
Mean 63.03 64.57 55.95 13.95 -3.14% 17.56% 85.57%
85th 75.07 73.87 69.81 29.00 2.60% 8.81% 88.58%
Mean 69.26 68.36 62.18 22.50 1.92% 13.22% 84.86%

Speed Reduction Percentage*

*Note: Speed reduction percentage=speed reduction/total speed reduction from deceleration lane start
point to the off-ramp end point

Site

Speed (mph)

Location 1P
645 ft

Location 2P
735 ft

Location 3P
775 ft

Location 4P
700 ft

Location 5P
990 ft

Taper Start Deceleration 
Lane Start

Deceleration 
Lane End

Off-Ramp 
End

Taper Deceleration 
Lane

Off-
Ramp

85th 69.64 68.00 64.89 31.31 4.28% 8.11% 87.61%
Mean 64.40 62.65 59.34 20.38 3.98% 7.52% 88.51%
85th 72.55 70.62 65.46 20.81 3.73% 9.97% 86.30%
Mean 64.37 62.52 57.06 15.82 3.81% 11.25% 84.94%
85th 67.14 65.47 61.58 28.29 4.30% 10.01% 85.69%
Mean 61.30 59.45 54.59 19.62 4.44% 11.66% 83.90%
85th 68.19 68.37 64.85 7.47 -0.30% 5.80% 94.50%
Mean 64.37 63.63 58.75 0.00 1.15% 7.58% 91.27%
85th 73.20 71.98 68.26 37.05 3.37% 10.29% 86.33%
Mean 66.65 65.82 62.61 28.18 2.16% 8.34% 89.50%

Speed Reduction Percentage*

*Note: Speed reduction percentage=speed reduction/total speed reduction from deceleration lane start
point to the off-ramp end point

Location 5T
365 ft

Location 4T
445 ft

Location 3T
420 ft

Location 2T
320 ft

Location 1T
425 ft

Site
Speed (mph)
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The speed reduction percentage is the percentage of speed reduced at the taper, 
deceleration lane, and off-ramp section. As shown in Table 2, the high percentage of the speed 
reduction occurred on off-ramps, which revealed that speed reduction was more significant on 
off-ramps than deceleration lanes. However, the NCHRP Report 730 made a different indication 
(1). It should be mentioned that the NCHRP Report 730 did not include the speed and 
deceleration along the entire deceleration lane and off-ramp but only several points (1). The 
authors indicated that drivers were completing much of the required deceleration in the freeway 
lane upstream of the beginning of the taper when they found field-measured deceleration rates 
were less than the Green Book assumptions (1). This indication is very different from our results. 
For example, our results showed that Location 1P only had a 16% speed reduction in mean speed 
distribution on deceleration lanes and approximately 77% on off-ramps. When comparing 
parallel-design locations with tapered-design locations, it was found that tapered-design 
locations have higher speed reduction percentages on off-ramps in the range of 84% to 95%, 
while parallel-design locations have 70% to 88% speed reduction. The speed- reduction 
percentage on the deceleration lane and off-ramp indicated that drivers decelerated more on an 
off-ramp than on the deceleration lane. Also, some negative speed reduction percentages were 
observed, which implied that drivers may have accelerated on the taper section at three out of 
five parallel-design locations.  

Moreover, longer deceleration lanes may not lead to higher speed reduction percentages. 
For both types of locations, the study sites with the longest deceleration lanes have the lowest 
speed reduction percentages. Location 5P with a 990-ft deceleration lane only had 8.81% speed 
reduction on it. Location 4T with a 445-ft deceleration lane only had 5.80% speed reduction on 
it. However, shorter deceleration lanes do not result in higher speed reduction percentages either. 
The locations with highest speed reduction percentages are median lengths – Location 2P (735-ft 
deceleration lane) and Location 3T (420-ft deceleration lane). 

Driver Braking Behavior 

Driver braking behavior was interpreted by the brake pedal usage and deceleration rate distribution 
on the deceleration lane and off-ramp.  

Brake Pedal Usage 

The brake status (0 or 1) indicates whether the driver was applying the brake at the certain 0.1 
seconds. The brake status distribution was performed based on the percentage of drivers who 
applied brakes at certain sections on the deceleration lane and off-ramp. Figure 4 shows two 
examples of brake status distribution. At Location 1P, only 30% of drivers applied brakes when 
entering the taper section. An increase to 60% of drivers applied brakes when entering the 
deceleration lane while a decrease back to 30% happened after traversing the first half of the 
deceleration lane. More braking behavior was observed after the vehicle approached the off-
ramp terminals. Similar results from Location 1T were presented in Figure 4b. From 10 study 
locations, the average brake percentages for taper, deceleration lane, and off-ramp sections are 
21.42%, 30.30%, and 63.67% in parallel-design locations, respectively, and 25.23%, 32.51%, 
and 57.69% in tapered-design locations, respectively. 
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(a) 

(b) 
FIGURE 4  Brake status distribution examples: (a) parallel-design, Location 1P  

and (b) tapered-design, Location 1T. 
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Deceleration Rate Distribution 

To calculate the deceleration rates, the speed-distance-based model, for example, Equations 6 to 
9, was first converted to the speed-time-based model as time can be calculated from the distance 
and speed. Then, the first derivative of this speed-time-based model was determined. This first 
derivative is the deceleration rate from speed regression. The mean and 85th percentile 
deceleration rates were summarized in Table 3. An extra step was taken to identify the critical 
speed changepoint on the off-ramp. As greater speed reductions and higher brake percentages 
were observed upstream from the off-ramp terminal, change point models were used to identify 
driver reaction point where most drivers decelerate very hard when approaching the ramp 
terminal. Two examples of critical speed change point analysis are presented in Figure 5. In 
Location 1P, drivers adjusted their speed 469-ft upstream of the off-ramp terminal (1,841 ft after 
the taper start point) from the 85th percentile speed distribution. For Location 1T as shown in 
Figure 5b, this number was increased to 764 ft (1,666 ft after the taper start point). The average 
reaction points for parallel-design locations are 540.4 ft in 85th percentile speed and 541.6 ft in 
mean speed. For tapered-design locations, the critical speed change points are 646.8 ft in 85th 
percentile speed and 652.2 ft in mean speed upstream from the ramp terminal. 

TABLE 3  Deceleration Rates at Study Locations 

Before 
Changepoint

After 
Changepoint

85th -1.63 -2.34 -2.12 -5.72
Mean -3.61 -2.24 -1.88 -5.19
85th -2.47 -2.41 -2.32 -6.46
Mean -0.35 -2.57 -2.55 -4.52
85th -2.87 -1.79 -2.76 -3.53
Mean -2.67 -1.91 -2.20 -2.47
85th 0.18 -1.93 -2.89 -5.09
Mean 0.17 -1.95 -2.20 -4.20
85th -0.98 -0.92 -2.15 -5.45
Mean -0.52 -1.01 -1.77 -4.55
85th -1.28 -1.12 -2.06 -2.94
Mean -1.26 -1.10 -2.12 -2.69
85th -2.08 -2.53 -3.77 -5.22
Mean -1.78 -2.46 -3.35 -3.61
85th -1.23 -1.27 -2.28 -4.48
Mean -1.37 -1.48 -1.90 -4.12
85th 0.08 -1.90 -2.60 -7.03
Mean -0.88 -1.63 -3.08 -5.40
85th -1.50 -1.55 -1.50 -3.24
Mean -0.96 -1.36 -1.62 -2.87
85th -1.55 -1.88 -2.45 -5.25
Mean -1.40 -1.94 -2.12 -4.19
85th -1.20 -1.67 -2.44 -4.58
Mean -1.25 -1.61 -2.41 -3.74

Location 4T
445 ft

-5.41

Location 5T
365 ft

-5.88

Parallel-
Design

Note: *GB Decel Rate is 
the deceleration rate 
recommended in the 

Green Book.
Tapered-
Design

-5.88

Location 2T
320 ft

-5.88

Location 3T
420 ft

-5.88

Deceleration Rate 
(ft/s^2) Taper

Off Ramp d_R

GB Decel Rate* (ft/s^2)

-5.41

-5.41

Location 3P
775 ft

-5.41

Location 4P
700 ft

-5.88

Location 5P
990 ft

-5.88

Location 1T
425 ft

Location 1P
645 ft

Location 2P
735 ft

Deceleration
Lane d_D
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(a) 

(b) 
FIGURE 5  Critical speed changepoint examples: (a) parallel-design, Location 1P  

and (b) tapered-design, Location 1T. 

The R statistical package of change point was utilized for critical speed change point 
detection based on binary segmentation algorithms. After the changepoints are detected, the 
deceleration rate before and after the changepoint on the off-ramps can also be obtained. The 
mean and 85th percentile deceleration rates were compared with the Green Book criterion which 
assumes a constant deceleration (8). The Green Book deceleration rates were derived from 
recommended minimum deceleration lane lengths as summarized in NCHRP Report 730 (1). As 
shown in Table 3, most of the naturalistic driving deceleration rates were lower than the design 
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deceleration rates in the Green Book. However, the deceleration rates after the change point on 
the off-ramp were relatively higher than other sections, and some of them were even greater than 
the design rates. For parallel-design deceleration lanes, the deceleration rates on the deceleration 
lane were slightly higher than that on the tapered-design locations. In NCHRP Report 730, 
however, the authors observed that parallel deceleration lanes had a substantially higher 
deceleration rate of more than twice than tapered-design ones especially on straight ramps (1). 
All deceleration rates on the deceleration lane were much smaller than the Green Book criterion. 
The mean deceleration rates on certain sections of parallel-design and tapered-design locations 
were summarized in the last four rows in Table 3. It can be found that the Green Book assumes 
that drivers are exiting the freeway with a constant deceleration rate, while the results of this 
study indicate that drivers’ braking behavior on the taper section, deceleration lane section, and 
off-ramp section are different with different deceleration rates.  

Determination of the Minimum Length of Deceleration Lane 

Equations 10 to 12 were developed to estimate the minimum deceleration lane length. The 
general idea of determining the minimum length for deceleration lane is to calculate the 
deceleration distance needed to decelerate from mainline speeds to ramp terminal speeds and 
subtract the certain off-ramp length. In other words, the minimum deceleration lane length is 
equal to the deceleration distance deducted by the off-ramp length. The minimum deceleration 
length can be determined by plugging in the deceleration rates from the deceleration lanes ( ) 
and off-ramps (  and ) sections in Table 3, entering speed for the deceleration lane ( ), 
and estimating entering speed for the exit ramp ( ), the change point on the off-ramp ( ), and 
the first controlling feature on off-ramp ( ) from regression models. The controlling feature 
represents whether ramp curvature or the crossroad terminal is the design element that controls 
vehicle deceleration (1). On the relatively straight ramps at locations described in this study, the 
first controlling feature usually is the crossroad terminal (signalized intersection). 

= ,  ≤= ( . ) ( . ) + , >  (10) 

 = ( . ).  (11)  = ( . ). (12)
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where 

LDecel = Deceleration lane length, ft; 
LQ = Queue length at the off-ramp terminal, ft; 
LR = Length from deceleration lane endpoint to the critical speed change point upstream 

from the first controlling feature on the off-ramp, ft; 
LRP = Length from the critical speed change point to the off-ramp terminal, ft; 
VC = Speed at the first controlling feature on the off-ramp, mph; 
VD = Entering speed for deceleration lane, mph; 

 = Estimated entering speed for the off-ramp, assuming drivers decelerate on with a 
constant deceleration rate on exit ramps ( ), mph; 

VRP = Speed at the change point on the off-ramp, mph; 
dD = Deceleration rate on deceleration lane, ft/s2; 
dR = Deceleration rate on exit ramp, ft/s2; and  

dRP = Deceleration rate after the critical speed change point on the off-ramp, mi/h. 

To determine the deceleration lane length, the key parameters are summarized in Table 4. 
For example, at parallel-design locations, the speed at stop bar of the off-ramp terminal (VC) 
should be 0 mph and the deceleration rate (dRP) is estimated to be –5.25 ft/s2 on the off-ramp 
after the changepoint. The distance between the stop bar and the changepoint (LRP) is 540 ft as 
mentioned previously. By applying Equation 12, the speed at the changepoint (VRP) is 51.22 
mph. When the total length of the off-ramp is 1,550 ft (  = 1550 − 540 = 1010 ft), drivers 
would be able to comfortably reduce all the required speed on the off-ramp (  = 70mph = ). 
For tapered-design locations, the final speed should also be 0 mph (  = 0  mph) and the 
deceleration rate is –4.58 ft/s2 after the change point (  = −4.58 ft/s ). Following the same 
steps, it can be determined that no deceleration lane will be required for decelerating purpose 
with a 1,540 ft off-ramp. The proposed minimum deceleration lane lengths of study locations are 
presented in Table 5. As a result, Locations 1T, 5P, and 5T do not require a deceleration lane 
serving decelerating functions. 

TABLE 4  Summary of Key Parameters to Determine the Deceleration Lane Length 

Minimum (85th) Mean Minimum (85th) Mean
-1.88 -1.94 -1.67 -1.61

Before Changepoint (ft/s2) dR -2.45 -2.12 -2.44 -2.41
After Changepoint (ft/s2) dRP -5.25 -4.19 -4.58 -3.74

70.00 65.00 69.00 63.00

51.22 45.74 52.49 47.43

0.00 0.00 0.00 0.00

Speed Entering Dec.Lane (mph) VD

Speed at the Changepoint on Off-Ramp 
(mph) VRP

Key Parameters

Speed at the 1st Controlling Feature 
(mph) VC

Length from Changepoint to Off-Ramp 
terminal (ft) LRP

540 650

Deceleration Lane (ft/s2) dD

Off Ramp 

Parallel-Design Tapered-Design
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TABLE 5  Comparison of Proposed Deceleration Lane Length and Design Length 

CONCLUSIONS 

This study applied SHRP 2 NDS data to explore freeway deceleration lane and off-ramp designs 
based on naturalistic driving speeds and deceleration rates. Some key findings that were 
concluded are as follows:  

(1) The operating speeds were much higher than the Green Book assumptions. The Green
Book indicates that on a freeway with a 70-mph design speed, drivers will enter the deceleration 
lane at 58 mph. In the five parallel-design locations, the speed distribution, however, showed that 
the speed was 65 mph on average when vehicles entered the deceleration lane. The Green Book 
also assumed that the speed reached the end of deceleration lane with a ramp of 35 mph design 
speed should be 30 mph, which instead was 55 mph on average based on this study.  

(2) Drivers were not effectively using the deceleration lane regarding the speed
reduction. From speed distribution results, for parallel-design locations, the speed reduction on 
the deceleration lane is approximately 15% to 25%. The percentage of the speed reduced on the 
off-ramp is 75% to 85% which indicates that the speed reduced much more after vehicles 
approached the off-ramp terminal. For tapered-design locations, the speeds reduced on the 

Site Locations
Proposed 

Minimum Length 
(ft) (85th) LDecel

Actual Deceleration 
Lane Length (ft)

Green Book Minimum 
Deceleration Length (ft)

Off-Ramp 
Length (ft) 

LR+LRP

Location 1P:
I-75/SW Archer

Rd
75 645 490 1475

Location 1T:
I-75/Clark Rd NA1 425 615 1595

Location 2P: 
I-75/SW County 

Highway 484
560 735 490 990

Location 2T:
I-75/US 98 600 320 615 940

Location 3P: 
I-75/FL 326 520 775 490 1030

Location 3T:
I-75/US 98 370 420 615 1170

Location 4P: 
I-75/CR 768 370 700 615 1180

Location 4T:
I-75/SW College

Rd
200 445 490 1340

Location 5P: 
I-75/CR 765 NA1 990 615 1690

Location 5T:
I-75/CR 769 NA1 365 615 1725

Note: 1NA indicates that the deceleration lane is not required for decelerating purpose.
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deceleration lane were even lower, 10% speed reduction on deceleration lanes and 85% to 90% 
on off-ramps. 

(3) The brake status distribution further emphasized that the effective deceleration
segment is on the off-ramp rather than the deceleration lane. The average brake pedal usage on 
off-ramps is higher than that on deceleration lanes on average (26.01% for taper section, 36.83% 
for the deceleration lane section, and 53.72% for the off-ramp section).  

(4) The results from critical speed change point models also implied that drivers’ reaction
points of sharp deceleration were on the off-ramp upstream the ramp terminal. The average 
distances of reaction points from the terminal are 540 ft for parallel-design locations and 650 ft 
for tapered-design locations. 

(5) The calculated mean and 85th percentile deceleration rates were dynamic while the
Green Book criterion assumes constant values for the entire decelerating maneuver. It was found 
that the deceleration rates on the deceleration lane were much lower than those on the off-ramp 
after the critical speed change point. Most of the deceleration rates on the deceleration lane and 
off-ramp at study locations were lower than constants provided by the Green Book, however, 
some were higher after the critical speed change point. 

(6) Based on the speed and deceleration rate distribution, a new method was developed to
determine the minimum length of the deceleration lane. The results indicated that a deceleration 
lane may not be required for serving decelerating purpose on both parallel- and tapered-design 
deceleration lane locations when the ramp length is more than 1,550 ft. This number is specific 
to the diamond interchange (or interchanges with relatively straight off-ramps) with 70 mph 
speed limit on the mainline with the assumption of a stop is required at the off-ramp terminal. 

In addition to the original objectives of this work, this study enabled the following 
observations. The advisory speeds posted on off-ramps were not able to significantly impact on 
drivers’ operating speeds. For locations with a 35-mph advisory speed, the average 85th 
percentile speed and mean speed are 63 mph and 55 mph, respectively. For those without 
advisory speeds, the 85th percentile speed is 65 mph and the mean speed is 58 mph. 
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