Spatial Transferability of Travel Forecasting Models: A Review and Synthesis

Sujan Sikder (University of South Florida) Abdul Rawoof Pinjari (University of South Florida) Siva Srinivasan (University of Florida) Roosbeh Nowrouzian (University of Florida)

4th TRB Conference on Innovations in Travel Modeling

• • Overview

- Background & Motivation
- Review and Synthesis
- Transferability of Activity-Based Model systems
- Future Research

Background

- Travel Forecasting Models
 - Used to forecast future travel characteristics
- Transferability of Travel Forecasting Models The ability to transfer models over <u>time</u> or across <u>space</u>

Temporal Transferability

Transferability of models developed for one point in time to another point

Spatial Transferability
 Transferability of models developed in one area to another area

• • Why Spatial Transferability?

- Can help in significant cost and time savings
- Recent shifts to the activity-based models
- Development of activity-based models requires significant data inputs, skilled staff, and long production times
- Not discussed with special attention in the recent past

Objectives

Review

- Theoretical and practical aspects of model transferability
- Transfer methods
- Assessment metrics
- Empirical evidence on model transferability

Discuss Transferability of Activity-Based Model Systems

• • • Transferability-Theoretical Aspect

- Hierarchy of transferability levels by Ben-Akiva (1981) and Hensen (1981)
 - Underlying theory of travel behavior (e.g., utility maximizing decisions)
 - Mathematical Model (e.g., logit vs. probit)
 - Empirical Model Specification (e.g., specification of explanatory variables)
 - Parameter Values (e.g., coefficients of explanatory variables)
- Potential for transferability decreases from theoretical level to the parameter estimates
- Failure of transferability at any level reduces the potential for transferability at the lower level

Transferability-Practical Aspect

- Models are only abstractions of reality
- Unrealistic to expect models to be perfectly transferable
- More constructive to understand if models can be transferred up to <u>certain acceptable practical criteria</u>

"The **usefulness** of the transferred model, information or theory in the new context" (Koppelman and Wilmot, 1982)

Transfer Methods

- Naïve Transfer
- Updating Constants
- Transfer Scaling
- Bayesian Updating
- Combined Transfer Estimator
- Joint Context Estimation

Methods Used to Enhance Model Transferability

Transfer Methods (Contd.)

Base Context

The context from which a model is transferred

Application Context

The context to which a model is transferred

Transfer Bias

Differences in true parameters between base and application contexts

Constants

$$U_{in} = \beta_0 + \beta_{in} X_{in} + \mathcal{E}_{in} \longrightarrow \text{Error Term}$$
Systematic Utility
Constants

Transfer Methods (Contd.)

Transfer Methods	Procedures	Limitations
Naïve Transfer	Parameters are transferred directly	Too general
Updating Constants	Parameters other than the <i>constants</i> are transferred directly	May not adequately represent behavior in the application context
Transfer Scaling	Parameters other than the constants are transferred up to <u>a certain scale</u>	Sampling errors are not considered
Bayesian Updating	Base context parameters are <u>combined</u> with the application context parameters	Assumes transfer bias is zero
Combined Transfer Estimator	Uses mean square error (MSE) criterion, and takes into <i>account the transfer bias</i>	Updated parameters can be equal (or inferior) to the estimates in the application context
Joint Context Estimation	Both <u>common and context-specific</u> parameters are estimated	Need data from the base context

Transfer Methods (Contd.)

Transfer Methods	Procedures	Limitations
Naïve Transfer	Parameters are transferred directly	Too general
Updating Constants	Parameters other than the <i>constants</i> are transferred directly	May not adequately represent behavior in the application context
Transfer Scaling	Parameters other than the constants are transferred up to <u>a certain scale</u>	Sampling errors are not considered
Bayesian Updating	Base context parameters are <i>combined</i> with the application context parameters	Assumes transfer bias is zero
Combined Transfer Estimator	Uses mean square error (MSE) criterion, and takes into <i>account the transfer bias</i>	Updated parameters can be equal (or inferior) to the estimates in the application context
Joint Context Estimation	Both <u>common and context-specific</u> parameters are estimated	Need data from the base context

Transferability Assessment Metrics

Statistical tests:

- Model equality test statistic (METS)
- Transferability test statistic (TTS)
- t-tests of individual parameter equivalence

Predictive ability measures:

Policy sensitivity comparisons

Transferability Assessment Metrics

Statistical tests:

- Model equality test statistic (METS)
- Transferability test statistic (TTS)
- t-tests of individual parameters

Predictive ability measures:

- Transfer rho-square
- Transfer index (TI)
- Relative error measure (REM)
- Root mean square error (RMSE)
- Relative aggregate transfer error (RATE)
- Aggregate prediction statistic (APS)

Policy sensitivity comparisons

- similarity in disaggregate level measures IMPCY equality of parameters
- similarity in aggregate predictions INTELY similarity in policy sensitivities
- only a handful of studies used these tests

Empirical Evidence

- Updating constants helps in achieving aggregate shares but
 not clear whether it helps in achieving policy sensitivity
- Joint context estimation approach appears to perform
 better than other updating techniques
- Statistical tests are likely to reject model transferability
- Transferability results vary based on the <u>metrics</u> used to assess transferability

Gaps in the Literature

Only a handful of studies on travel choices (e.g., destination choice) other than the mode-choice

- Simple model structures (e.g. multinomial logit) used
- Not clear how much of the difference between base and application context models (i.e. if a model is not transferable) is due to the
 - impreciseness of parameter estimates
 - other factors (such as differences in surveys and assessment metrics)
 - the actual differences in travel behavior between the contexts
- Neither specific guidelines for transferring models nor any framework for assessing the transferability of activity-based models

Transferability of Activity-Based Model Systems - A hierarchy

Transferability of the Design Features of the Model System

- The traveler markets to be modeled
- Structure of the overall model system
- Spatial and temporal resolution

Transferability of Individual Model Components

- Hierarchy of model components
 - Long-term choice components
 - Activity and travel generation
 - Tour scheduling models
 - Trip-level models
- Model specification
- Model parameter estimates
- Linkages to other model components

Transferability of Activity-Based Model Systems - A hierarchy (Contd.)

Issues with Transferring Design Features of the Model System

- Attention to additional traveler markets (e.g., seasonal residents) may vary across regions
- Planning priorities and needs vary considerably across regions
 - Some regions may need sophisticated framework
 - Some regions may need simpler framework
- Spatial and temporal resolution requirements may vary across regions

"An ABM framework may have to be *tweaked* to transfer to a region

Transferability of Activity-Based Model Systems - A hierarchy (Contd.)

Issues with Transferring Individual Model Components

- Transferring model components <u>lower in the hierarchy</u> may be difficult
- Transferring some components (e.g., activity and travel generation) may be <u>easier</u> compared to other components (e.g., destination choice)
- Several factors can influence parameter estimates and variable specification
 - Differences in travel behavior
 - Differences in the activity-travel environment
 - Sampling errors
 - Measurement errors
 - Differences in the survey methods

• • • Future Research

- Relative <u>influences of different factors</u> (e.g., differences in travel behavior, sampling error) on model transferability
- Effect of <u>differences in surveys</u> on model transferability
- Assess <u>updating methods</u> using policy sensitivity measures Updating constants helps in achieving aggregate shares, but does it help in achieving appropriate policy sensitivity?
- Relationship between <u>different assessment metrics</u> of transferability
- Set <u>acceptable error threshold</u> to measure the transfer effectiveness

• • • Future Research

- Relative Transferability of <u>different model components</u>: tour/activity generation, time-of-day, mode choice and destination choice
- Enhance model transferability by <u>pooling data</u> from different areas

•••

