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1. OBJECTIVES, MOTIVATION, AND INNOVATION 
At a fundamental level, the emphasis of the activity-based approach is on activity participation 
and scheduling over a specified time period (usually a weekday in the U.S.), with travel being 
viewed as a derivative of out-of-home activity participation and scheduling decisions. While the 
detailed structures of activity-based models (ABMs) vary substantially, it is typical for 
operational ABMs to model “mandatory” activity decisions such as out-of-home work-related 
decisions (employed or not, duration of work, location of work, and timing of work) and 
education-related decisions (student or not, duration of study, location of study, and timing of 
study) as precursors to the generation of out-of-home non-work activity participations and the 
overall activity-travel schedules of individuals (including the scheduling of work and non-work 
episodes). Within the context of the generation of out-of-home non-work activity participation, 
while early activity-based travel studies and operational models ignored the interactions between 
individuals within a household, more recent studies and models have emphasized the need to 
explicitly consider such interactions and model joint activity participations within a household. 
This is motivated by several considerations. First, individuals within a household usually do not 
make their activity engagement decisions in isolation. Rather, an individual’s activity 
participation decisions are likely to be dependent on other members of the household because of 
the possible sharing of household maintenance responsibilities, joint activity participation in 
discretionary activities, and pick-up/drop-off of household members with restricted mobility. For 
instance, a husband’s and wife’s activity schedules are necessarily linked because of the spatial 
and temporal overlap when they both watch a movie or an opera at a theatre. Second, there is a 
certain level of rigidity in joint activity participations (since such participations necessitate the 
synchronization of the schedules of multiple individuals in time and space), because of which the 
responsiveness to transportation control measures such as pricing schemes may be less than what 
would be predicted if each individual were considered in isolation (Vovsha and Bradley, 2006, 
Timmermans and Zhang, 2009). Third, the activity-travel attributes of joint activity 
participations are systematically different from individual activity participations, even beyond 
the issue of rigidity in schedule. For instance, descriptive studies indicate that, in general, joint 
discretionary activity episode participations entail longer travel distances and longer participation 
durations relative to individual episode participations (Srinivasan and Bhat, 2006 and Vovsha et 
al., 2003). Moreover, when a joint activity episode participation entails joint travel of some or all 
members participating jointly in the activity episode, the travel is more likely to be undertaken 
using larger and more spacious vehicles such as sports utility vehicles and vans, impacting the 
vehicle composition by type in the region, a key determinant of vehicular emissions (Konduri et 
al., 2011).  
 
The emphasis on joint intra-household activity decisions has led to (or perhaps also been 
motivated by) another key substantive issue that has been receiving attention only more recently 
in the activity-based travel modeling literature. This pertains to the explicit modeling of 
children’s activity decisions, and the inclusion of both adults’ and children’s activity-travel 
patterns within the travel demand modeling framework (this is as opposed to the focus until 
recently in the literature only on adults’ activity-travel patterns; see Kapur and Bhat, 2007 and 
Bowman and Bradley, 2008). After all, as Reisner (2003) indicates, parents spend considerable 
time and resources transporting children to and from after-school activities, while other studies 
have found that parents, especially mothers, make frequent stops on the commute to work and to, 
or from, non-work activities due to the need to escort children to activities (see Paleti et al., 2010 



 

and Kato and Matsumoto, 2009 for extended discussions on this topic). The participation of 
children in activities, therefore, necessarily constrains adults’ activity-travel patterns in important 
ways and may make an adult unresponsive to policy changes that attempt to modify travel mode, 
time of travel, or destination of travel. For instance, a parent driving a child to school during the 
morning peak is unlikely to shift away from the morning peak because of a congestion pricing 
strategy, even if the parent has a flexible work schedule. Similarly, in the case of a parent 
dropping a child off at soccer practice, it is the child’s activity episode and its location that 
determines the temporal and spatial dimensions of the trip. In this context, Stefan and Hunt 
(2006) indicate that children as young as six years of age start developing their own independent 
activity participation needs that are then fulfilled by the logistical planning of their parents. 
Finally, the presence of children in the household can also increase joint activity participation in 
such activities as shopping, going to the park, walking together, and other social-recreational 
activities. Overall, modeling children’s activity engagement (and the interactions between these 
engagements and those of adults) within activity-based travel model systems is an important pre-
requisite for accurate travel forecasting in response to shifts in population demographics and 
land-use/transportation policies.  
 
In the current paper, we use an intra-household interactions framework developed by Bhat et al. 
(2012) and embedded within the larger activity-based modeling structure for the Southern 
California region (labeled as Simulator of Activities, Greenhouse emissions, Energy, Networks, 
and Travel or SimAGENT) to examine two related questions: (1) How much improvement (if 
any) is obtained in terms of travel forecasting through the introduction of intra-household 
interactions?, and (2) How much difference is there in terms of policy sensitivity results between 
applying a model with and without household interactions? Conceptually, based on the 
interaction considerations discussed earlier, we would expect to see differences both in 
forecasting ability as well as in policy sensitivity. But are these differences substantial or small? 
The intent here is to quantify the differences to be able to make initial conclusions regarding the 
importance of accommodating household interactions.  
 
2. METHODOLOGY 
 
2.1. How SimAGENT considers intra-household interactions 
There are several possible ways to model intra-household interactions in activity engagement 
decisions, including rule-based approaches (see Arentze and Timmermans, 2004 and Miller and 
Roorda, 2003) and econometric approaches. Most of the earlier studies have used the latter 
econometric approach to model intra-household interactions. These studies may themselves be 
grouped into three categories. The first category of studies uses structural equations modeling 
(SEM) to estimate models of individual and joint activity participation durations for household 
members over a daily period or a weekly period (see, for example, Chung et al., 2004, and Mosa 
et al., 2009)). Although SEM is a powerful technique often used in the social sciences to uncover 
complex relationships among several variables, it gets computationally intensive and intractable 
as the dimensionality of the problem increases. Moreover, model identification also becomes a 
critical issue as the number of dependent variables increases (Werner and Engel, 2009). 
 
The second category of studies uses a discrete choice framework or a discrete-continuous 
framework to model individual and joint activity participations. For instance, Bradley and 



 

Vovsha (2005) use a three-way aggregate activity purpose type classification to represent the 
daily activity pattern (DAP) for each individual in the household (participation in work/school 
activity with possible participation in one or more non-work activities during the day, 
participation only in non-work/school activities during the day, and stay-at-home over the entire 
course of the day) and then develop a traditional discrete choice model by developing composite 
alternatives each of which represent a specific combination of the DAPs across individuals. The 
problem with this approach, of course, is that there is an explosion in the number of composite 
alternatives as soon as one attempts to use a more disaggregate activity purpose type 
classification to represent the DAP, as acknowledged by Vovsha and Bradley.  
 
The third category of studies models intra-household interactions using a time allocation 
framework (Zhang and Fujiwara, 2006, Kato and Matsumoto, 2009). In the class of such time 
allocation models, the Multiple Discrete Continuous Extreme Value (MDCEV) model developed 
by Bhat, 2008 is a simple and parsimonious way to accommodate intra-household interactions. It 
also is based on the notion that individuals determine the activity purposes to participate in, make 
decisions regarding with whom to participate in activities, and allocate time to different “activity 
purpose-with whom” combinations based on satiation and variety seeking behavior. Given these 
appealing behavioral characteristics of the MDCEV model, several recent studies have used the 
structure and its variants in the context of activity time use modeling (Habib and Miller, 2008, 
Xia et al., 2009, Paleti et al., 2010). However, these earlier applications of the MDCEV model 
have been individual-level models of time-use among multiple activity purposes, sometimes with 
aggregate representations of the “with whom” context of activity participations. They are 
fundamentally not household-level models of activity pattern generation. At the same time, the 
use of the MDCEV framework for household-level activity generation lends itself nicely to 
incorporation within a larger activity-based model system, and does not have the explosion 
problem that characterizes traditional discrete choice methods.  
 
In the SimAGENT model system, we use the MDCEV model to analyze the joint and individual 
activity participation decisions of all household members in out-of-home (OH) activities on 
weekdays (see Bhat, 2012 for details of the MDCEV model structure). SimAGENT includes 
many components that act together to generate activity-travel patterns, network flows by vehicle 
type, and travel-related greenhouse gas (GHG) emissions. Specifically, SimAGENT includes a 
population synthesizer, an accessibility generator, a land-use/demographic micro-simulator, an 
activity-travel pattern generator and scheduler, a traffic assignment modeler, and an emissions 
and fuel consumption predictor. A complete overview of the SimAGENT system is provided in 
Goulias et al. (2012). The household level activity pattern generator module of this paper is 
embedded within the activity-travel pattern generator and scheduler component of SimAGENT. 
This component of SimAGENT simulates activity-travel patterns of all individuals in the region 
for a 24 hour period along the continuous time axis. The component includes an (a) activity 
generation step in which work and school activity participation and timing decisions of all 
individuals in the household are created, children’s travel needs to school are predicted, an 
allocation of school escort responsibilities to parents takes place, and household-level activity 
patterns in non-work activity participation decisions are modeled; and an (b) activity scheduling 
step that produces the sequence of activities, with the departure and arrival times, the 
participating individuals, activity durations, mode(s) used and accompanying individuals during 
the travel to each activity, the vehicle type used in the travel, and the location of each activity.  



 

 
2.2. Assessing Forecasting Ability and Comparing Policy Sensitivity 
 
The assessment of forecasting ability will not simply be based on comparing the predicted results 
from the SimAGENT model without household-level interactions (SimAGENT-1) and the 
SimAGENT model with household-level interactions (SimAGENT-2) to observed network link 
flows. Rather, the emphasis will be on examining forecasting performance along multiple 
activity-travel dimensions, such as total travel (total number of trips, total vehicle miles of travel, 
and vehicle hours of travel), travel by purpose (number of trips and vehicle miles of travel by 
purpose), mode shares by purpose, trip distance distribution by purpose and mode, activity 
chaining behavior, and time-of-day distribution by purpose. The “ground truth” for assessing 
forecasting ability will include (a) observed trip making attributes obtained from the Southern 
California Association of Governments (SCAG) 2003 Household travel survey data and the 2000 
Census data, and (b) observed travel and travel distribution attributes from the 2003 Household 
travel survey data, the HPMS (Highway Performance Monitoring System) data, and link and 
cordonline counts by vehicle class and time of day. The fit measures employed for comparison of 
model attributes with the observed data will be the Absolute Percentage Error (APE) measure 
and the Root Squared Error (RSE) measure, defined as follows: 
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For the policy sensitivity tests, a wide range of land-use and transportation policy scenarios will 
be considered, and the predicted activity-travel changes from the two models (SimAGENT-1 and 
SimAGENT-2) will be examined with respect to the relative order of magnitude of changes 
(elasticity effects), the direction of shifts, and overall reasonableness.  The policies will include 
scenarios such as increased auto operating costs and gasoline costs, cordon pricing and similar 
area pricing schemes, increase in parking charge in downtown areas, and improved transit 
service and transit accessibility 

 
3. EXPECTED MAJOR RESULTS 
State agencies across the U.S. are currently considering and implementing land-use and 
transportation control strategies to reduce traffic congestion, curb greenhouse gas (GHG) 
emissions, and decrease fossil-fuel dependence. In this regard, it is important to be able to assess 
the potential effectiveness of different policies, so that informed decisions can be made. Within 
this context, conceptual arguments would clearly favor the consideration of household-level 
interactions in activity-based travel models to capture the potential complex responses of 
households and individuals. However, there has been no research in the literature examining the 
performance of model systems with and without household-level interactions, a gap that this 
research attempts to fill.  
 



 

A caveat is in order here. The results obtained from this study should not be generalized, since 
they are based on a specific modeling structure for household-level interactions and the activity-
based modeling system as a whole. But the current paper should provide a first glimpse on the 
practical importance of considering intra-household interactions within activity-based modeling 
systems.  
 

4. IMPLICATIONS FOR THE SCIENCE AND PRACTICE OF TRAVEL MODELING 
The study contributes to the science of travel modeling by quantitatively examining the 
importance of considering household-level interactions. The analysis is undertaken in the context 
of the SimAGENT modeling framework that has formulated and estimated a household-level 
activity pattern generation model that at once predicts, for a typical weekday, the independent 
and joint activity participation decisions of all individuals (adults and children) in a household, 
for all types of households, for all combinations of individuals participating in joint activity 
participations, and for all disaggregate-level activity purposes. The model uses a host of 
household, individual, and residential neighborhood accessibility measures as inputs, and has 
been embedded within the larger activity-based modeling structure for the Southern California 
region.  
 
The results from this study is not intended to provide any conclusive evidence in terms of 
whether or not household interactions should be considered in the practice of travel modeling. 
But we believe studies such as the one proposed here are needed to better understand the 
practical value of behaviorally and conceptually rich model specifications. 
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