Development of Guidelines for Modern Streetcar Vehicles

John Smatlak Interfleet Technology Los Angeles CA

- No single comprehensive source of modern streetcar info
- U.S. has relatively small number of modern streetcars in service now, but demand is rapidly increasing
- Limited industry familiarity in North America; light rail and streetcars have much in common, but there are also significant differences in application
- If we can do an effective job of internal education and standards work, vehicles and systems will better match, and cost savings will follow
- **Project Goal:** To facilitate the successful introduction of modern streetcar vehicles into North American systems by promoting understanding of the core technical and operational issues.

PROJECT OVERVIEW

- Form working group
- Find the right place in the APTA Standards Development Program for our effort
- Seek participation of North American agencies doing streetcar projects
- Develop initial document outline
- Document previous work in the topic areas
- Create project website
- Background research- comparison of North American and EU Operating Environments
- Carbuilder Survey
- Prepare initial drafts for each topic area, select appropriate format
- Circulate drafts internally for review and revision
- Circulate drafts externally for comment
- APTA balloting process

BACKGROUND WORK (2010)

- Literature search
- Compared North American and European operating environments / standards
- Observed that differences in standards have high potential to impact costs
- Carbuilder survey (available on modernstreetcar.org website)

APTA STRE	APTA STREETCAR SUBCOMMITTEE CARBUILDER SURVEY 2012 DRAFT				WIDTHS			S	CAP	ACITY			
(VEHICLE COMPARISON CHAR SEE INDIVIDUAL VEHICLE PAGES FOR MORI	t e detail)	MIN/MAX LENGTHS		2.3 m	2.4 m	2.46 m	2.65 m	2.4 m TOTAL and (SEATED)	2.65 m TOTAL and (SEATED)	Mii Rad (IN-SE	N. IUS RVICE)	LOAD LEVEL OPTION
BOMBARDIER FLEXITY FREEDOM		00% LF	20.7-30.8 m					•	_	113 (34)	25m 18m	std opt	YES
CAF- URBOS (CINCINNATI)		100% LF	21.9–44.5 m	7		•		•		112 (24)	18	m	YES
INEKON PORTLAND/SEATTLE		50% LF	20m				•		115 (29)	_	18	m	YES
KINKISHARYO AMERITRAM		100% LF	20-40m				•	•	109 (28)	115 (28)	18	m	YES
SIEMENS S-70 STREETCAR		70% LF	24.2m					•	1	147 (60)	25m 18m	std opt	YES
BROOKVILLE LIBERTY		50% LF	20m				•	•	126 (41)	138 (47)	18	Е	YES
UNITED STREETCAR USC 100		50% LF	20m				•		115 (29)	Ι	18	в	YES
VOSSLOH TRAMLINK		100% LF	21.5-43 m			•		•		131 (50)	18	m	YES
DRAFT REV 11/07/12 JCS ACCESSIBLE LOW-FLOOR DOORWAY				BASE MODEL LENGTH SHOWN, DASHED LINE INDICATES LONGEST VERSION (WHERE AVAILABLE)									
OTHER LOW-FLOOR DOORWAY			STEP-ENTRY DOORWAY TO HI-FLOOR SECTION										

FOUR TOPIC AREAS

- * Introduction
- 1. Vehicle Configuration
- 2. Vehicle / Platform Interface
- 3. Vehicle / Track Interface
- 4. Power Supply

INTRODUCTION

- Streetcar projects take many forms (over 400 streetcar/tram/LRT systems worldwide, 8,000+ low-floor vehicles)
- What vehicle information is needed in early design phases (alternatives analysis)?
- Standard "ranges" of vehicle capabilities. Understand where imposing requirements on the vehicle is preferable to imposing requirements on the infrastructure (and vice-versa).
- Vehicle and Infrastructureit's a SYSTEM!

MARKET DIRECTION

- Worldwide 8,000+ low-floor LRVs and trams since 1984, about half are 100% LF
- North America, delivered / on order:
 - USA: LRV: 992 partial LF. Streetcar: 44 partial LF, 5 100% LF
 - Canada: LRV: 182 100% LF. Streetcar: 204 100% LF
- 18% of world production of low-floor vehicles
- Market Trend: 100% low-floor vehicles dominate recent EU orders for tramways (70% still popular for Light Rail and Tram-Train)

1. VEHICLE CONFIGURATION

THE STREETCAR OPERATING ENVIRONMENT

- An entirely in-street operation is very different than typical light rail alignment
- Forward / side visibility is key in a street-running vehicle
- Full skirting with no protruding couplers (per ASME RT-1)
- Low floor streetcars are designed to work with off-vehicle fare collection (some cities use roving conductors or TVMs on vehicle), maximizing benefits of multiple doorways and stepless entry

CAPACITY

- The streetcar **development / mobility** mix. How will the ratio change as the system grows? How can both be maximized?
- How will capacity be expanded to accommodate growth in demand?
 - Use of longer vehicles
 - Increasing fleet size
 - Increasing operating speed
- Labor is largest component of operating cost
- Overcrowded vehicles = longer running times = higher operating costs
- Longer vehicles (e.g. 30 versus 20m) make sense where demand is high, taking advantage of rail's high capacity features and encouraging ridership growth

CAPACITY

ALSTOM CITADIS 100% LF MELBOURNE 2008 231 2.65 m / 56 SEATS It's important to make 32.5 m "apples-to-apples" BOMBARDIER FLEXITY 100% LF VANCOUVER (BRUSSELS) 178 capacity comparisons! 2010 / 2.3 m / 50 SEATS 32 m (use seats + 4 passengers/m² BOMBARDIER FLEXITY 100% LF TORONTO 2014 186 for standees) 2.54 m (custom) / 56 SEATS 30 m CAF 100% LF CINCINNATI 2012 JACOBS 160 2.65 m / 36 SEATS 23.6 m SIEMENS S-70 STREETCAR 70% LF 2011 149 2.65 m / 60 SEATS 24 m röpelinge BREDA SAN FRANCISCO 1996 130 2.74 m (custom) / 60 SEATS 22.9 m UNITED STREETCAR 2.46 m INEKON / SKODA ASTRA 2.46 m 115 SIEMENS COMBINO MELBOURNE 2002 KINKISHARYO AMERITRAM 2.65 m 29 SEATS TYP. 20 m 100 - 12060 FT. ARTIC. TRANSIT BUS 2.59 m 18.3 m 3007 92 PCC STREETCAR-2.54m 14.1 m 40 FT. LF TRANSIT 55 - 70BUS / 2.59 m 12.2 m

INTERIOR LAYOUT

- Streetcars typically have large "multi-purpose" areas without seats. Streetcar trips tend to be shorter, standing is more acceptable.
- Any low-floor vehicle configuration requires some form of interior compromise; there
 will always be some restriction on floor space:
 - o Steps inside the vehicle (partial low floor)
 - Narrowed aisles around the running gear (100% low-floor)
- In all configurations, only specific sections of the vehicle are typically arranged to accommodate wheelchairs

VEHICLE WIDTH

- 3 well-established "standard" widths in world LRV / streetcar market;
 2.3m, 2.4m and 2.65m (7 ft 6.5 in / 7 ft 10.5 in / 8 ft 8 in)
- US "Portland" type streetcar is 2.46m (8 ft 0.9 in) (difference to 2.4m is negligible, especially with "near level" boarding)
- Both 2.4m and 2.65m are common on new streetcar / tram systems
- US Light Rail systems generally use "standard" 2.65m width, but consider "urban fit" when choosing streetcar width

Vehicle Width vs. Capacity

Standing room and seats
 Bi-directional vehicle, standing room 4 persons per m²

VEHICLE WIDTH

Why is the Vehicle Width Decision so Important?

- Initial vehicle purchase "locks in" location of platforms relative to track
- Is a future upgrade to light rail possible? If so 2.65m has important advantages
- Width impacts capacity, interior layout
- Selecting a non-standard width will impact availability of competitive bids, especially in small order quantities

PARTIAL & 100% LOW-FLOOR OPTIONS

Partial Low Floor

PLUS

 Room for conventional running gear (at least at outer ends), large body of US experience, lower maintenance costs.

MINUS

- Steps inside car
- Fewer low-floor doors

100% Low Floor

PLUS

- No steps in passenger compartment
- Low-floor doors possible along entire length of vehicle
- Can minimize dwell time when combined with full length platforms

MINUS

- Space constraints require special running gear- more technologically complex (may impact maintenance costs, suspension may be stiffer)
- No steps, but interior layout / aisle is impacted by running gear "wheel wells"

1. VEHICLE CONFIGURATION

Guidance:

- <u>Begin with the end in mind.</u> Understand duty cycle and communicate it during the procurement process
- Optimize the vehicle for the streetcar operating environment
- Consider capacity- vehicle interior arrangement, width, length
- Both partial and 100% low-floor configurations are an option

2. VEHICLE / PLATFORM INTERFACE

1. PLATFORM DISCUSSION

Legacy system with no platforms

Streetcar platforms require flexible thinking

"Dynamic Stop" alternative

Buses don't work well with 14-inch platform

"FULLY LEVEL BOARDING" Vehicle Floor = 14" Platform = 14"

- Requires active suspension (load leveling) for ADA compliance
- Bridge plates not needed (also no room to deploy- located under car floor and require clearance for operation)

ADVANTAGES

- Eliminates vertical step into vehicle- best passenger experience
- Eliminates bridge plates (simplifies vehicle, reduces maintenance)
- Best dwell time- significant in high ridership applications.

DISADVANTAGES

- More demanding on infrastructure- no room to play with on platform location
- 14 in. platform not compatible with buses (unless special measures applied)
- 14 in. platform more challenging to blend with sidewalks / roadway
- Locating a level platform on a curve is difficult (easier to do with the "nearlevel" platform combined with bridge plates).
- Depending on carbuilder, active suspension may be higher cost or a custom feature. Active suspension also has its own maintenance issues.

• Requires bridge plates for ADA compliance

ADVANTAGES

- Less demanding on infrastructure tolerances
- More compatible with buses sharing streetcar stops
- Lower platform height easier to blend into sidewalks
- With bridge plates, the near-level platform can be located on a curve

DISADVANTAGES

- Use of bridge plates may increase dwell time, which may be a significant factor in high ridership applications or alignment where stopped streetcar blocks traffic.
- Bridge plates add further complexity to already complicated door systems
- Bridge plates are subject to maintenance issues, particularly in snow / ice conditions. (Load leveling is not without maintenance issues also).

2. VEHICLE / PLATFORM INTERFACE

Guidance:

- Understand the trade-offs between "Near Level" and "Fully Level" boarding
- Bridgeplate issues
- Streetcar / bus sharing platform

3. VEHICLE / TRACK INTERFACE

UNIQUE ASPECTS OF STREETCAR TRACK

- The urban nature of Streetcar systems often require sharper curve radii and steeper gradients than Light Rail systems
- Streetcar alignments must typically follow existing roadways through constrained urban areas. Track twist and wheel unloading are major factors for modern articulated vehicles.
- New or Legacy System?

Legacy systems require even sharper curves and steeper gradients than would otherwise be specified for a new system

E.g.: horizontal curve radius: Philadelphia 35 feet (10.7m). Lisbon (old network) and Toronto, both at 36 feet (11 m)

TURNING RADIUS

			10 FT. PARKING LANE							
H	lorizonta	al Curvature and Standard Vehicle Designs*						hlli		
Minimum radius			INFLUENCE OF LANE LOCATION AND MINIMUM			I I		 	 	
eters 25	(feet) 82	LRT standard- unlimited vehicle selection, but may	CURVE RADIUS ON "CORNER CLIPS"							
		not always be practical for typical streetcar alignment				Ì		i I		
20	66	20 m is a commonly used minimum for streetcars, wide range of vehicle choices	20m CURVE	10 뒤.	12 FT.	12 FT.	12 FT.	12 FT.	10 FT.	
18	59	18 m has a smaller range of vehicle choices, but is not uncommon. Below 18m, custom vehicle is required.	25m CURVE	PARKING LANE	. TRAVEL LANE	. TRAVEL LANE	TRAVEL LANE	TRAVEL LANE	PARKING LANE	
Mainlin	e curvat	ure, yard curvature (operated only with empty			\downarrow	\checkmark	\uparrow	\uparrow		

/enicies

UNIQUE ASPECTS OF STREETCAR VEHICLES

- Low-floor vehicles use special running gear due to lack of room for conventional drive and suspension elements
- Fixed versus rotating trucks, designs with and without conventional axles.
- How do new designs impact track design and maintenance criteria?
- Designs continue to evolve, what's ahead?

RUNNING GEAR MAINTENANCE

- How will you re-profile wheels?
 - o Use a drive-over wheel truing machine
 - Take the wheel tires off and have them machined
 - Take whole trucks to another location where there is a wheel truing machine
 - o Use a portable wheel-truing machine
- Wheel removal can be much more complicated on 100% LF vehicles (drive train is in front of wheels in some cases)
- In general, vehicles are designed to minimize need to remove running gear (assuming you have drive-over wheel truing)

VEHICLE / TRACK INTERFACE

Guidance: "Because of the inherent flexibility of light rail / streetcar mode, it is possible to operate over extremely demanding alignments in terms of curvature and gradient. However, <u>avoiding such extremes brings numerous benefits</u> in terms of passenger comfort, higher operating speeds, lower operating costs and the ability to purchase "standard" vehicles from multiple suppliers"

- <u>Don't design only to minimums and maximums!</u> Apply minimums and maximums thoughtfully, and in the context of a SYSTEM approach that considers the vehicles to be used and balances operational benefits with the related tradeoffs.
- Whether an existing system introducing new vehicles, or a new start, a SYSTEM approach is required- <u>ensure that</u> <u>those parties responsible for vehicles and track design are</u> <u>working in concert</u> to produce optimum compatibility.
- <u>TCRP Report 155;</u> a significant new resource.

3. VEHICLE / TRACK INTERFACE

Guidance:

- Unique aspects of streetcar track
- Unique aspects of streetcar vehicles
- Vehicle and track are a SYSTEM
- Don't design only to minimums and maximums!

4. POWER SUPPLY

SPEAKING THE SAME LANGUAGE

WHY ELIMINATE OVERHEAD WIRES?

- Aesthetic concerns- e.g. historic district
- Route optimization-
 - Solution to a specific problem- e.g. impaired clearance, narrow right-of-way, utility conflict
 - Simplifying a complicated crossing, junction or other unusual wire arrangement
- Cost? (not a simple equation)

OCS AESTHETICS

High Impact (visually prominent)

"The visual impact of OCS can only be reduced if such reduction is made a specific goal throughout the design process" *-TCRP Report 7*

Low Impact (hardly noticeable)

OFF-WIRE CAPABILITY

- Vehicle can use external power supply <u>or</u> on-board energy storage
- Recharge by capturing regenerative braking energy and while operating on powered alignment sections
- Off-wire "range" dependent on alignment and operating conditions
- Batteries and Super Caps most common for energy storage (flywheels and other technologies also in development)
- Small number of vehicles in revenue service; Nice, France; Seville and Zaragoza, Spain. Other lines under construction; one entire direction (downhill) of new Seattle line to be off-wire, Dallas to use off-wire on bridge
- Consider life-cycle cost when comparing technologies

EXTENDED OFF-WIRE OPERATION

What would it take to build an entire line without overhead wire (or GLPS)?

- Vehicle range dependent on alignment and operating conditions
- External power source still needed for recharging
- How long does recharging take? How will this impact the number of vehicles required?
- What happens when the line is blocked or a charging station goes out?
- What happens if initial line later becomes part of a larger system?
- "Hybrid" vehicle is another option
- The trade-off: infrastructure becomes less complicated, but vehicle becomes more complex

GROUND-LEVEL POWER SUPPLY

- External to the vehicle- puts the power supply on the ground instead of in the air
- Segmented power supply between rails- segments energized only when vehicle is over them
 - o "Contact" type system- embedded third rail
 - o "Contactless" type system- induction coils
- Significantly higher technical complexity / highly proprietary
- Complicates track design and installation
- To date, most installations cover only a portion of an otherwise conventionally-powered system

"CONTACT" TYPE SYSTEM

- Embedded third rail
- In service in Bordeaux (13 km 2003), Angers (1.5 km 2011), Reims (2 km 2011) and Orleans 2 km (2012)
- Under construction in Tours and Dubai
- Test installation in Naples
- Vehicles have battery backup in case a segment fails
- No installations to date in snowy climates; snow and ice issues are an unknown

"CONTACTLESS" TYPE SYSTEM

- Inductive transfer of power- no physical contact
- Batteries provide vehicle energy storage, guideway power installed only on portions of alignment (at stops and where vehicle is accelerating)
- DC converted to AC for guideway power, converted back to DC inside vehicle
- Contactless power transfer expected to help with snow / ice issues
- Test installation in Augsburg, 2011. Also being tested on buses.

4. POWER SUPPLY

- Energy storage has many roles
- OCS Aesthetics matter! (think context-sensitive)
- Apply new technology in ways that minimize impacts of proprietary designs
- Examine life-cycle cost when comparing technologies

STANDARDS

Many issues here- standards discussion became a separate project

Crashworthiness-

- ASME RT-1 and EN 15227
- APTA working with California PUC. CPUC is revising GO-143 and is considering substituting RT-1 Standard for the current fixed 2g buff strength approach.

Fire Safety-

- Does NFPA 130 take low-floor vehicles into account (almost all equipment on the roof instead of under the floor)?
- Differences between NFPA 130 and EN 45545- "one size fits all" versus operating environment categories.
- Pending new EU standard, current UK standard allows L-O-S operated tramways to meet same fire standards as buses.
- High potential to impact vehicle cost

MODERN STREETCAR VEHICLE GUIDELINES

For more information, contact project manager John Smatlak: <u>info@modernstreetcar.org</u>, and check out the project website <u>www.modernstretcar.org</u>

The main website for the APTA Streetcar Subcommittee is: <u>www.heritagetrolley.org</u>