An Outcome-based Scenario Approach for Analyzing Risk in Infrastructure Asset Management

Amir Hessami
Roger E. Smith

What is Scenario Planning?

- “A scenario is an internally consistent view of what the future might turn out to be—not a forecast, but one possible future.”
 – Michael Porter

- “Scenario planning is that part of strategic planning which relates to the tools and technologies for managing the uncertainties of the future.”
 – Gill Ringland

Scenario Planning is the process of considering:
(1) What future conditions or events are probable?
(2) What will be the consequences or effects of these events?
(3) How can we respond to or benefit from them?

* Definition from http://www.businessdictionary.com/
Overview of Scenario Planning

- A tool for long-range and medium-range planning
- Visualize a set of possible futures
- Consider a limited number of scenarios
- Event-based vs. outcome-based scenarios
History of Scenario Planning

- 1940s – RAND “Future-Now” method
- Mid-1970s – scenario planning adopted by DHL, Shell, and GE
- Late-1970s – Majority of Fortune 1000 corporations adopted a form of scenario planning
- In 2004, a survey demonstrated that 45% of MPOs use a form of scenario planning
Using Scenarios in Transportation Planning

<table>
<thead>
<tr>
<th>Topic</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
<th>Scenario D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Land Consumed: 1998 - 2020</td>
<td>174 sq mi</td>
<td>143 sq mi</td>
<td>65 sq mi</td>
<td>43 sq mi</td>
</tr>
<tr>
<td>Infrastructure Cost 1998-2020 (Transportation, water, sewer, utilities)</td>
<td>$3.8 billion</td>
<td>$3.0 billion</td>
<td>$2.2 billion</td>
<td>$2.3 billion</td>
</tr>
<tr>
<td>Single Family Homes vs. Condos, Apts. & Townhomes</td>
<td>77% SF, 23% Condos, etc.</td>
<td>75% SF, 25% Condos, etc.</td>
<td>68% SF, 32% Condos, etc.</td>
<td>62% SF, 38% Condos, etc.</td>
</tr>
<tr>
<td>Transportation Choices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkable Communities (Walk to work, stores, school, transit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Nashville Area MPO Website
Using Scenarios in Transportation Planning

Transportation Indicators
The following charts show each scenario’s performance relating to getting around the region.

Land Use and Housing Indicators
The following charts show each scenario’s performance relating to land consumption, housing choices and walkable neighborhoods.

New Housing Units in Walkable Areas
Walkable Areas = mixed use and pedestrian oriented design

Acres of Farm and Forest Land Consumed

New Homes and Multifamily Units

Source: “Oregon Scenario Planning Guidelines”, Oregon Department of Transportation
Asset Management
Decision-making Levels

- Strategic Level
- Network Level
- Program Level
- Project Selection Level
- Project Level (a.k.a., Field Level)

Asset Management
Decision-making Levels

- Organization Management Level
- Portfolio Management Level
- Systems Management Level
- Individual Assets

Institute of Asset Management. “Asset Management—An Anatomy.”
Asset Management Decision-making Levels

- Strategic Management Level
- Planning/Programming Level
- Project (Selection) Level
- Field Level
Dimensions of Uncertainty

- **Location:**
 - Context, Model, Inputs, or Outcome

- **Level:**
 - Four Levels of Uncertainty

- **Nature:**
 - Lack of Knowledge vs. Inherent Variability

Levels of Uncertainty in Decision Analysis

- Level 1: A clear, single vision of the future
- Level 2: A limited set of possible future outcomes, one of which will occur
- Level 3: A specific range of possible future outcomes
- Level 4: A limitless range of possible future outcomes

Levels of Uncertainty in Asset Management

- Which level of uncertainty is most suitable for asset management?
Applying Scenario Planning in Asset Management

- Define the expected range of the budget required to maintain asset performance above a certain level (and/or)
- Define the expected range of asset performance given a certain amount of budget

![Pavement Performance Curves](image.png)
Applying Scenario Planning in Asset Management

- The performance of assets over time is subject to uncertainty

- Managers can benefit from an outcome-based scenario approach

- Quantiles are used to summarize the outcome distribution
 - The “worst case” or lower-limit scenario is defined as the 5th percentile
 - The “best case” or upper-limit scenario is defined as the 95th percentile
 - The “most likely” scenario is defined as the 50th percentile
Scenario Planning in Asset Management

- **Three Scenarios:**
 - “Best Case,” “Worst Case,” and “Most Likely Case”

![Pavement Performance Curves](image)
Quantile Regression

- Introduced in the late 1970s by Koenker
- Defines the Quantiles of the Response Variable
- Provides a More Complete Picture of the Relationships Between Variables
- Primarily Developed for Ecological Applications

Example 1 – Education and Income*

Quantile Regression

- Introduced in the late 1970s by Koenker
- Defines the Quantiles of the Response Variable
- Provides a More Complete Picture of the Relationships Between Variables
- Primarily Developed for Ecological Applications

Example 2 – Changes in Trout Density*

Scenario Planning in Asset Management

- Three Scenarios:
 "Best Case," "Worst Case," and "Most Likely Case"
Quantile Curves

Pavement Performance Curve (Deshmukh, 2009):

\[y_i = PCI_i = 100 - \frac{\rho}{\left[\ln \left(\frac{\alpha}{Age_i} \right) \right]^{\frac{1}{\beta}}} \]

where:

- \(Age \) is the age of the current pavement surface
- \(ln \) is the natural logarithm
- \(\alpha, \beta, \) and \(\rho \) are regression constants.
Quantile Curves

Based on this equation, the loss function $L(\alpha, \beta, \rho)$ can be written as follows:

$$e_i(\alpha, \beta, \rho) = y_i(\alpha, \beta, \rho) - \hat{y}_i(\alpha, \beta, \rho)$$

$$L(\alpha, \beta, \rho) = (\tau - 1) \sum_{i=1}^{n} e_i(\alpha, \beta, \rho) \, 1(e_i < 0) + \tau \sum_{i=1}^{n} e_i(\alpha, \beta, \rho) \, 1(e_i \geq 0)$$

where:

$1(e_i < 0)$ is the indicator function and is defined as:

$$1(e_i < 0) = \begin{cases} 1 & \text{if } e_i < 0 \\ 0 & \text{if } e_i \geq 0 \end{cases}$$
Case Study

- City of Bryan
- Pavement Condition Index (PCI)
- Historical Performance Data
Historical Performance Data
Performance Curves for Historical Data

Pavement Performance Curves - Past Performance Data

- Worst Case Scenario
- Most Likely Scenario
- Best Case Scenario

Pavement Condition Index (PCI) vs. Age (years)
Results

Area Under Performance Curve

- Past Performance Data - Worst Case Scenario
- Past Performance Data - Most Likely Scenario
- Past Performance Data - Best Case Scenario
An Outcome-based Scenario Approach for Analyzing Risk in Infrastructure Asset Management

Amir Hessami
Amir.Hessami@tamuk.edu

Roger E. Smith