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EXECUTIVE SUMMARY 
 

Collecting roadway infrastructure data, including traffic signs, such as stop signs, speed limit signs, and other 

information signs, along with designated locations (mileposts and longitude/latitude coordinates), is essential for state 

departments of transportation (DOT) to submit Highway Performance Monitoring System (HPMS) data annually and 

for state and local transportation agencies to plan, design, construct, operate, and manage their transportation systems. 

Traffic signs are vital for roadway safety, and inventorying them is necessary for compliance with the Manual on 

Uniform Traffic Control Devices (MUTCD) (1). However, the data collection process is time-consuming and costly. 

Current software reviews one image at a time, so extracting sign information from the millions of images is still 

time-consuming and hinders the effective data collection. To remedy the problem of reviewing images frame by 

frame, there is a need to develop algorithms that can batch-process video log images and support an intelligent sign 

inventory and management system. Although some algorithms reported in literature have been developed for 

automatically detecting and recognizing some particular signs (e.g. stop signs and speed limit signs), they are not 

suitable for a comprehensive sign inventory because the algorithms are not generalized, and they are unable to 

recognize more than 670 types of traffic signs on U.S roadways, a technically challenging job. Figure 1 shows an 

example in which a speed limit sign (25 mph) in a video log image (the first picture) was detected and recognized by 

color segmentation (the second picture) and pattern recognition (the third picture). 

In this research project, two innovative, modularized algorithms, sign detection and sign recognition, are 

developed. They form a solid foundation for developing an intelligent sign inventory and management system. A 

two-step sign inventory data collection process is proposed to seamlessly incorporate these two algorithms for batch 

processing millions of video log images, which can save great amounts of time and significant costs. The generalized 

sign detection algorithm, the first step in the intelligent sign inventory and management system, is developed using 

the shape, color, location, and other features of a traffic sign defined in the MUTCD standard. Sign shapes are 

detected using the polygon approximation approach; sign colors are processed with the Statistical Color Model (SCM) 

by using an Artificial Neural Network (ANN); the Probabilistic Distribution Function (PDF) of sign locations is 

obtained from the training video log images in which the sign locations are manually tagged. The generalized sign 

recognition algorithm, the second step in the intelligent sign inventory and management system, is developed based 

on the multi-feature fusion. The features include Haar features, sign color, sign shape, and sign PDF. Haar features 

encode the sign texture information using an Adaboost algorithm to generate strong classifiers with a boosting 

training approach.  

Preliminary tests show promising results. The traffic sign detection algorithm is tested on two sets of video log 

images provided by the Louisiana Department of Transportation and Development (LADOTD) and the City of 

Nashville.  The tests on LADOTD video log images (37,640 video log images, covering 75.17 miles (120.27 km)) 

show that 86% of manual, frame-by-frame review efforts could potentially be saved by using the generalized sign 

detection algorithm. And, the tests on Nashville video log images (1,105 video log images, covering 4 miles (6.4km)) 

show that 60.3% of manual, frame-by-frame review efforts could be saved. The developed sign recognition algorithm 

can be used to automatically extract the detailed sign attributes. Due to the limitation of the training data set, the 

proposed algorithm is only tested on recognizing speed limit signs using the video log images collected in Georgia on 

Interstate I-75 from Macon to Atlanta (5,387 video log images covering 80 miles (128km)). The preliminary results 

show that the algorithms could successfully recognize 28 out of 31 speed limit signs, a 90% recognition rate. With 

the sign attributes automatically extracted, the effort of manually typing the data into database can be further reduced. 

Results demonstrate that the developed automatic sign detection and recognition algorithms are promising and have 

the potential to save time and cost for transportation agencies by enhancing their traffic sign inventory process. 
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It is highly possible to fully automate the sign inventory process by incorporating the proposed algorithms for 

developing an intelligent sign inventory and management system. The algorithms will be further tested and 

implemented by transportation agencies, including the Georgia Department of Transportation (GDOT), the Ohio 

Department of Transportation (ODOT), the Connecticut Department of Transportation (ConnDOT), the Oklahoma 

Department of Transportation (ODOT), the City of Nashville, etc. The research results have been migrated to the 

next level with the incoming support of the US DOT Research and Innovative Technology Administration (RITA) 

program, which will test the proposed algorithms on a larger number of video log images and under the real-world 

environmental conditions in which sign dimension, color, text fonts, etc. may not follow the exact MUTCD standard, 

and the varying lighting and illumination conditions may change the sign appearances. 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 Traffic sign data inventory using image processing algorithms.

(c) Extracted speed 

limit digits  

(b) Processed binary image 

after color segmentation  

(a) Raw image containing 

speed limit sign  
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1. IDEA PRODUCT 
 

The product of this IDEA concept exploration research project includes the generalized algorithms developed to 

automatically detect and recognize more than 670 different types of traffic signs specified in the Manual on Uniform 

Traffic Control Devices (MUTCD) (1) by using video log images that are widely available. Instead of manually 

reviewing millions of images frame by frame, the developed algorithms provide new capabilities for automating the 

traffic sign inventory by means of batch processing. The potential impact of the developed algorithms on 

transportation practices lies in its capability to significantly reduce the time and cost spent by state departments of 

transportation (DOT) for acquiring traffic sign inventory data using video log images. Preliminary tests show that 

86% of manual frame-by-frame image review efforts could be potentially saved by using the developed sign 

detection algorithm. Based on the preliminary tests on speed limit sign recognition, the algorithm successfully 

recognized 28 out of a total of 31 speed limit signs, a 90% recognition rate. Tests show that the developed detection 

and recognition algorithms are promising for developing an intelligent sign inventory and management system. The 

large-scale tests using the video log images provided by state DOTs and local transportation agencies for interstate, 

state, county, and city roads are needed for further refining and implementing these algorithms. It will also allow the 

developed algorithms to be tested under real-world environmental conditions in which sign dimension, color, text 

fonts, etc. might not follow the exact MUTCD standard and lighting conditions might change the sign appearance.  

The developed algorithms provide an automatic way to enhance the traffic sign data collection process by saving 

time and cost, improving the safety during data collection, enhancing data quality control and quality assurance 

(QC/QA), and making it feasible for frequent updates of traffic sign inventory data. The algorithms maximize the 

utilization of video log images that are already available. Most importantly, the proposed algorithms have established 

a solid foundation for developing an intelligent transportation infrastructure inventory and management system. 
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2. CONCEPT AND INNOVATION 
 

Traffic signs are important for roadway safety, and their inventory is necessary for compliance with the MUTCD 

standard. However, sign inventory data collection is time-consuming and costly. Current software reviews one image 

at a time, so extracting sign information from the millions of images is still time-consuming and hinders effective 

data collection. The concept of this IDEA exploration research project is to maximize the utilization of video log 

images that are widely available in transportation agencies and to develop an automatic batch process to extract 

traffic signs from these video log images. 

Although many image-processing-based sign detection and recognition algorithms have been developed in 

literature, they cannot be used for comprehensive sign inventory. Developing such algorithms for sign inventory is 

technically challenging because the algorithms need to be able to detect and recognize all types of signs specified in 

the MUTCD standard instead of just focusing on particular signs (e.g. stop sign or regulatory signs) usually used for 

vehicle navigation. Automatically detecting and recognizing more than 670 different types of signs specified in the 

MUTCD standard is a major technical challenge. First, individual sign features, including sign shapes, colors, and 

textures that can be used to distinctly differentiate signs from their backgrounds need to be studied. Second, methods 

that can integrate different features for effective sign detection and recognition need to be developed. Third, false 

negative (FN) and false positive (FP) rates need to be minimized while improving correct detection and recognition 

rates. Finally, the proposed algorithms need to be seamlessly incorporated into the new automatic sign inventory 

operation processes. Two innovative modularized algorithms, sign detection and sign recognition, are developed to 

support the development of an intelligent sign inventory and management system with a two-step process. The 

generalized sign detection algorithm, the first step in the intelligent sign inventory and management system, is 

developed using the sign shape, color, location, and other sign features of more than 670 types of traffic signs defined 

in the MUTCD standard. Among them, sign shapes are detected using the polygon approximation approach. Sign 

colors are processed with the Statistical Color Model (SCM) by using an Artificial Neural Network (ANN). The 

generalized sign recognition algorithm, the second step in the intelligent sign inventory and management system, is 

developed based on the multi-feature fusion. These features include Haar features, sign color, sign shape, and sign 

location Probabilistic Distribution Function (PDF). Haar features encode the sign texture information using the 

Adaboost algorithm to generate strong classifiers and a boosting training approach.  
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3. INVESTIGATION 
 

This section is organized into four sub-sections.  The first sub-section reviews the state-of-the-practice of roadway 

infrastructure data inventory process; the second sub-section reviews the state-of-the-art of traffic sign detection and 

recognition algorithms; the third sub-section presents the developed generalized sign detection algorithm; and the last 

sub-section presents the developed generalized sign recognition algorithm. 

 
 
3.1 REVIEW OF CURRENT ROADWAY INFRASTRUCTURE DATA INVENTORY PROCESS 

 

Collecting roadway infrastructure data, including roadway geometric properties (number of lanes, travel lane, and 

shoulder width), traffic signs (stop signs, speed limit signs, etc.) with their designated locations (mileposts and 

longitude/latitude coordinates) is essential for supporting state DOTs to plan, design, construct, operate, and manage 

their transportation systems; it is also required for the annual Highway Performance Monitoring System (HPMS) 

submission to the Federal Highway Administration (FHWA). Category 1, 2, and 3 roadway data collection methods 

presented below represent the current roadway data collection practice. The fourth category is the prospective data 

collection practice to be developed through this research.  

- Category 1: Pencil and paper field data collection. 

- Category 2: Electronic field data collection using a laptop computer or Personal Digital Assistant (PDA). 

- Category 3: Taking video log images in the field and then manually extracting roadway infrastructure data by 

visually identifying and measuring each roadway feature from the video log images on the computer screen.  

- Category 4: Automatically extracting roadway infrastructure data from video log images using pattern 

recognition and image processing algorithms.  

Many DOTs still use pencil and paper, the Category 1 data collection practice, to collect roadway data. This 

collection process is very time consuming, and the collected data is error-prone because of the data re-typing and 

transfer processes. The Category 1 data collection practice can be streamlined using the Category 2 data collection 

practice. Electronic devices, such as laptop computers and PDAs, are used in field for the roadway data collection. In 

addition, some agencies have applied advanced Information Technology (IT) to enhance data collection productivity. 

For example, some agencies have developed field data collection processes using Global Positioning System (GPS) 

and Geographic Information System (GIS) (2), and speech recognition (3) to further enhance the electronic field data 

collection process. The errors associated with the manual data transfer process are significantly reduced in Category 

2. Data quality and the overall inventory productivity are also improved over Category 1. However, both Categories 

1 and 2 require data collectors work in hazardous roadway conditions for long periods of time during field data 

collection.  

With the advances in information and sensor technologies, collecting video log images of roadways has become 

a common practice. For example, 25-ft. interval video log images can be collected easily using a vehicle driving at a 

speed of 70 miles per hour. Also, the image resolutions continuously increase while the costs of collecting video log 

images continuously decrease. Consequently, many state DOTs have video log images taken of their roadways for 

roadway data inventory and, often, for the main purpose of using the images for visualization to enable engineers to 

view and explore roadway conditions in the office. The challenges are how to effectively manage the huge amounts 

of image data and how to effectively extract quantitative information from these images. Category 3 describes the 

most recent development and practices performed by state DOTs in response to these challenges. The technician 

plays video log images on a computer screen to manually identify each roadway feature from each video log image 

and measure the features one image at a time. The longitude/latitude coordinates of each roadway feature are 
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computed by using geometric optics along with the GPS data. Data collectors’ exposure to the hazardous roadway 

conditions is dramatically reduced because the data collection is performed in office. Data accuracy is improved 

using this operation. However, this method is still very time-consuming and costly.  

For the Category 3 data collection process, the video log images are displayed on a computer screen frame by 

frame, and the various roadway features, such as the number of lanes, travel lane width, and shoulder width, and the 

type and location of signs, are manually extracted and measured. It takes approximately 30 seconds to measure one 

feature on one image using up-to-date software. The total efforts and costs required for taking the video log images 

and extracting the roadway infrastructure data from the images could render this roadway data collection process less 

attractive than the traditional manual field data collection process. Instead, as categorized in Category 4, developing a 

system to automatically extract roadway infrastructure data from video log images could save millions of dollars and, 

more importantly, could expedite the data-acquisition process. This would, also, make the use of video-logging more 

appealing. 

This research is motivated by the need to effectively extract useful, quantitative roadway infrastructure 

information from video log images. This proposed research study is intended to develop and refine algorithms and 

applications that can automatically extract traffic sign data from video log images. Before the proposed algorithms 

are presented, the following section first reviews image processing and pattern recognition algorithms for traffic sign 

detection and recognition reported in literature.  

 
 
3.2 REVIEW OF SIGN DETECTION AND RECOGNITION ALGORITHMS 

 

This section presents a literature review of image processing and pattern recognition algorithms for image-based sign 

data extraction. The challenges for developing the generalized sign detection and recognition algorithms are also 

discussed, as is the innovation of the developed algorithm. 

Detection and recognition of traffic signs from video log images is the core of a successful intelligent sign 

inventory and management system. The effectiveness of these algorithms determines the workload that can be saved 

in comparison with the manual field data collection and semi-automatic data collection processes. 

For the past two decades, image processing techniques have been widely used for transportation infrastructure 

data analysis, especially in the area of automatic traffic sign data collection, pavement cracking, etc. Most of the 

algorithms developed for traffic sign detection and recognition used distinct image features, such as color, shape, 

edge, texture, etc. Some algorithms use only color features (4) or shape features (5-7), while other algorithms 

combine these two features (8-11). Other features, such as geometrical, physical and text/symbol features, are also 

used for traffic sign detection (12). To extract the features of traffic signs, methods like the Support Vector Machine 

(SVM) and the Neural Network (NN) are used (6, 11). Some algorithms are designed to handle traffic signs with 

specific shapes, such as rectangles and triangles (11, 13). Other algorithms have been developed to detect and 

recognize specific sign types, such as stop and speed limit signs (14-16). Because roadway conditions are 

complicated and dynamic, many algorithms have been developed to detect and recognize traffic signs under 

unfavorable conditions (17, 18). Besides sign detection and recognition, images and videos are also being used for 

cycle failure detection (19), pavement crack analysis (20, 21), and traffic surveillance (22).  

Through the review of the algorithms that have been developed for sign detection and recognition, it can be 

found that most of the algorithms were designed to detect and recognize some specific signs. For example, some 

algorithms only deal with traffic signs with the rectangle or triangle shapes (11, 13), while other algorithms only 

detect or recognize speed limit or stop signs (14-16). The sign-specific algorithms are not suitable for an intelligent 

sign inventory and management system because they are unable to detect and recognize more than 670 types of signs.  

It is also not practical to develop a separate algorithm for each of these signs.  Thus, our research focuses on the 
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development of an intelligent sign inventory and management system using image processing and pattern recognition, 

a much bigger challenge than a driver navigation assistance system for the following reasons: 

1. The algorithms need to process more than 670 types of signs. Both sign detection and recognition 

algorithms need to be generalized to process all traffic signs; 

2. Generalized sign features are more difficult to extract, since we need to extract the common features of 

more than 670 types of signs; 

3. The algorithms must be thoroughly tested with a huge number of real-world images that are collected by 

different transportation agencies with different image resolutions and camera configurations; 

4. Additional algorithms need to be developed to detect/recognize the locations, conditions, dimensions, and 

pole materials of signs for sign maintenance. 

 

3.3 PROPOSED SIGN DETECTION ALGORITHMS 

 

This section presents the sign detection algorithms and the experimental results. Sign detection aims at eliminating 

those images containing no sign while keeping the images containing signs. A low FN rate and a low FP rate are 

desirable to assure the reliability and productivity of the detection algorithms. Since there are more than 670 types of 

traffic signs, a generalized sign detection algorithm is required.  

 
 
3.3.1 A Generalized MUTCD Sign Detection Algorithm 

 

A sign detection algorithm is developed for identifying images containing signs. As specified in the MUTCD 

standard, there are more than 670 types of standard traffic signs on US roadways. To detect all these signs, a 

generalized sign detection algorithm is needed. Unlike the past work on detecting a specific sign, the common 

features of all traffic signs need to be identified. Based on a study of the MUTCD standard, sign shape, color, 

location PDF, and other sign features are selected.   

FN and FP rates are two critical performance indicators of the sign detection algorithm. The intelligent sign 

inventory and management system requires a low FN rate so that no or very few signs are missed by the algorithm; it 

also requires a low FP rate so that the images containing no sign are filtered out to minimize the manual review 

efforts. 

 
 
3.3.2 Sign Feature Extraction 

 

Feature extraction is important for sign detection. Traffic signs have a dominant color, shape, texture, or other 

attribute, that makes them distinct from the background. According to the MUTCD standard, traffic signs have ten 

MUTCD colors (black, blue, brown, green, orange, red, white, yellow, fluorescent yellow-green (FYG) and 

fluorescent pink) and six shapes (triangle, rectangle, pentagon, octagon, circle, and cross). For video log images, 

which are collected by state DOTs using a survey vehicle, the traffic signs demonstrate obvious non-uniform location 

distribution on the image plane. For example, a traffic sign doesn’t appear on the left bottom and right bottom parts 

of an image. Also, there are other sign features, such as size, width-to-height (W/H) ratio, distortion angle, etc. that 

can be used. This section will show how these features are extracted. 
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3.3.2.1 Sign Color Feature Extraction 

 

Color is a very important feature of a traffic sign because it usually receives more attention from the drivers. 

However, the actual sign color may vary because of different lighting, camera settings, and other imaging conditions. 

For example, the red color for the same stop sign has different Red, Blue and Green (RGB) values under different 

lighting conditions. As a result, sign colors in video log images have much broader color distribution than the 

MUTCD color specifications. Therefore, it is difficult to use any deterministic segmentation method to recognize the 

original MUTCD color class. A sophisticated model should be developed to describe the actual sign color 

distributions so that it can be segmented in a more reliable and accurate way. 

In the algorithm, SCM, developed in our lab, is used for sign color processing (23). SCM is based on the 

specifications of the MUTCD. It can successfully process the colors of sign background and legend, thereby 

providing reliable results for image segmentation and sign color feature analysis. SCM has good ability for general 

MUTCD sign color processing because it is based on the statistical colors that were collected from the real-world 

video log images and trained by ANN with Function Link Network (FLN) structure. The proposed SCM is briefly 

introduced below. 

The SCM color model uses a given input pixel value that has the probability of A to be a MUTCD color X and a 

probability of B to be a MUTCD color Y. The MUTCD SCM was first built statistically using labeled traffic sign 

color samples. The dataset for the experiment is excerpted from the LADOTD video log images. From 45,151 video 

log images captured under various outdoor lighting conditions in Louisiana, 3,023 images were identified as having a 

total of 5,052 traffic signs of 62 different types. All of the traffic signs were manually color labeled according to one 

of the 10 MUTCD colors. Finally, a total of 413,724 distinct samples and each reference count were used to build the 

ground-truth probability. 

H
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FIGURE 2 Hybrid functional link network for MUTCD SCM training (23). 
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An ANN is used to train the MUTCD SCM approximation function. An FLN architecture is used, as shown in 

Figure 2, in which inputs are expanded with high-order polynomials and trigonometric series. Details of non-linear 

input construction are found in Pao’s work (24). One advantage for using the FLN structure is that one single layer 

can analogously replace multilayer networks by using expanded inputs to model the nonlinearity of an unknown 

system. Instead of using RGB color space, HSV (Hue, Saturation and Value) color space is used in the algorithm to 

represent a color.  The output of FLN is a set of probabilities that the input HSV value will be one of the MUTCD 

colors. For instance, if an input sample RGB (196, 6, 15) is manually labeled as the MUTCD color red, then the 

actual inputs to the FLN are the transformed HSV values (253, 240, 101) with the expanded inputs, and they are 

trained to produce 10 real output values filled with the group-truth probabilities of the tagged MUTCD color samples. 

The testing results with the proposed SCM color model are presented in the experimental section, where two image 

data sets are used to validate the color model. 

With the trained SCM from the practical color samples, every sign image is then decomposed into the ten 

MUTCD colors and the colors of the sign background and legend will be analyzed for traffic sign detection. A traffic 

sign on a US roadway complies with the MUTCD color standard for both background and legend color. Usually, the 

background and legend of a traffic sign has some defined area ratio according to the MUTCD standard, which can be 

represented by the color segmentation with the background and legend colors. Table 1 illustrates the color 

distribution rules for detecting a traffic sign, which mean only the candidates that pass these color distribution rules 

are accepted as traffic signs. These rules are trained with the proposed algorithm, and all the color thresholds (or 

ratios) have been adjusted for accurate and reliable detection. 

TABLE 1 Color Distribution Rules for Traffic Sign Detection 

Background % (>) Legend % (>) Other color (<) 

50% Black 7% 20% 

50% Green 7% 50% 

50% Blue 7% 20% 

50% Red 7% 50% 

White 

50% Yellow 10% 50% 

40% White 7% 20% 

40% Blue 7% 20% Green 

50% Red 7% 20% 

Blue 40% White 5% 50% 

Red 50% White 5% 50% 

50% Black 10% 20% 

50% Green 7% 20% Yellow 

50% Red 7% 20% 

Orange 50% Black 7% 70% 

FYG 40% White 10% 20% 

 
 
3.3.2.2 Sign Shape Feature Extraction 

 

Sign shape is another important feature for traffic sign detection. The polygon approximation based algorithm is used 

for shape detection. In this algorithm, the boundary region of a traffic sign is identified first, and then the features 

within the boundary region is analyzed to determine if it is a candidate of a traffic sign. The use of a polygon 

approximation algorithm is based on the fact that 99.4% of traffic sign types are convex, and 99.8% of those convex 
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traffic signs have a limited number of vertices based on the sign types specified in the MUTCD. For example, a stop 

sign has a hexagonal convex boundary with eight vertices. Besides, even non-convex traffic signs (for example, the 

shield type) that typically appear within the information class of traffic signs have a rectangular boundary with a 

green background. As a result of such commonalities, the following assumptions can be made for traffic sign 

detection: (1) a traffic sign is convex and (2) a traffic sign has a limited number of vertices. These assumptions lead 

to the conclusions that a traffic sign boundary becomes a polygon because a traffic sign is a two-dimensional planar 

object and that the boundary shape is also a plane figure with a limited number of vertices. The non-convex 

exceptions are rare. One example of such an exception is the X-shaped sign (with MUTCD code W10-1) that occurs 

at rail crossings. However, a proprietary algorithm can be developed to detect such special objects and separate them 

from their backgrounds. This section briefly describes each step for the proposed shape feature extraction algorithm. 

STEP 1: Image preparation and binarization 

Polygon approximation needs a binary input image in which the line process for boundary detection is 

distinguished from others. To do this, several preprocessing steps are applied. First, from a given image, a Gaussian 

up-and-down sampling method is applied to smooth the fractional noises, such as those of JPEG lossy compression. 

It was found that LADOTD video log images are heavily compressed to reduce the total size of millions of images. 

To reduce noise, a 5x5 zero-mean Gaussian filter is used in the practice. Since Gaussian functions are rotationally 

symmetric, the filter operates equally in all directions. 

Second, for polygon approximation, the input image should be binarized so the boundaries of a traffic sign are 

emphasized. For this, two methods are employed: Canny edge detection and thresholding method. The Canny edge 

detector (25) is the first derivative of a Gaussian and closely approximates the operator that optimizes (26) the 

product of signal-to-noise ratio and localization. This has been used widely in civil engineering, such as for crack 

identification in bridges (27) and concrete damage analysis (28, 29). The Canny algorithm contains a number of 

adjustable parameters that affect computation time and edge candidates. Based on the experiments with large 

numbers of traffic sign samples, two hysteresis thresholds of the Canny algorithms are determined through practice: 

(1) the aperture size of the Sobel operator is set as 7, which provides the first derivative of Gaussian edges; (2) the 

upper threshold is set as 50 and the lower one to 0 to force the edges to merge. 

Although the Canny edge detector performs well in extracting a line segment, the images taken of traffic signs 

vary significantly because the environments surrounding signs vary by location and time. Consequently, the 

threshold technique needs to additionally be used. Thresholding is a method to convert a gray scale image into a 

binary image so that objects of interest are separated from the background. For thresholding to be effective in 

object-background separation, the object and its background must have sufficient contrast. However, because 

millions of outdoor images are to be handled under various lighting conditions, finding an optimal threshold value is 

not feasible. To overcome this problem, the threshold value is changed incrementally from 10 to 255 in 11 steps to 

achieve binarization. 

STEP 2: Nested contour chain detection for polygon approximation 

 The Douglas-Peucker (DP) algorithm (30) is used as a primary polygon detection algorithm; specifically, the 

computational speed enhancement (31) version is used for polygon approximation. The DP algorithm can 

approximate one or more curves with the desired precision. The output binarized images from thresholding and 

Canny edge detection are fed into the polygon approximation algorithm to retrieve contours. Then, a convex contour 

with a specified number of vertices is detected using a recursive algorithm. All retrieved contours are stored in a list 

chain in which they are arranged according to their spatial associations (find the nested spatial relationships facts 

associated with the polygon). This is essential because the detected contours are from the Canny edge detection result 

and are also from 11 thresholded images. Therefore, many contours found from multiple images could be spatially 
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overlapped. Within the overlapped polygons, if they are traffic sign candidates, only the most external contours in the 

nested groups are used.  

 
 
3.3.2.3 Sign Location Feature Extraction 

 

Traffic signs in video log images typically sit in several specific regions, such as the top-right area, because, in a 

practical survey, the survey vehicle travels along the roadway with the camera fixed on the vehicle, resulting in the 

locations of traffic signs exhibiting certain distribution patterns. Based on the statistical analyses on the actual 

locations of traffic signs on images, the sign location PDF is developed.  

A traffic sign is typically on the right side of the roadway. The survey vehicle follows the roadway so that the 

location of a typical is not uniformly distributed (non-uniform image sign location distribution) on the image plane. 

Therefore, in some areas of the images, a sign will be unlikely to occur, such as the bottom-left. The analyses of a 

large number of video log images provided by different highway agencies such as LADOTD and the City of 

Nashville shows that the non-uniform image sign location distribution can be used as a feature for sign detection. The 

main objective of the sign location PDF is to model the spatial distribution pattern of traffic signs on an image. In 

such a model, a location, which corresponds to a pixel location in the image, has a probability score ranging from 

zero to one; the high probability means that it is very likely that a traffic sign will appear in that location.  

     
 (a)PDF from 3,000 sign images         

 
(b) PDF from 1,000 sign images 

FIGURE 3 Sign location distribution from a) 3,000 and b) 1,000 images. The darker of a location (or pixel), 

the higher of probability of a traffic sign. 
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To develop a location PDF, the traffic signs on the images are manually tagged first and used as the training sets. 

From the locations of these tagged signs, a distribution map can be generated from which a sign location PDF is 

formed by normalization. If the training signs are insufficient, interpolation can be used so that the probability for 

each pixel on the image can be assigned. Figure 3 shows two sign location distribution maps that were generated 

using different numbers of traffic signs from video log images provided by LADOTD and the City of Nashville 

respectively. The first one is obtained from 3,000 images containing signs, while the second one is obtained from 

1,000 images. The sign location map shows that the sign locations in the images are non-uniformly distributed. Both 

figures demonstrate the dominant, non-uniform location distributions, and in some areas, such as the bottom left and 

bottom right, traffic signs never appear. With such an image sign location distribution model, some FP cases can be 

removed in both traffic sign detection and recognition processes.  
With the above developed sign location PDF model, a sign candidate can be rejected with high confidence if it is 

located in the areas with a very low probability, such as at the left corner of the image. Also, a high probability can 

add scores to the final recognition results.  

 
 
3.3.2.4 Other Sign Feature Extraction 

 

Besides the above three features, some other sign features are also used, such as the sign size, the W/H  ratio of a 

sign, distortion angle, and sign color area ratio.  For example, a sign candidate will be rejected if its size is too small 

or too large, or the W/H ratio is abnormal according to the MUTCD standard. Distortion angle can also be used to 

accept or reject a sign candidate because most of the traffic signs have very regular shapes, such as a rectangle, 

pentagon, octagon, etc. As a result, those candidates with very irregular shapes, reflected by the distortion angle, are 

rejected.  

 
 
3.3.3 Sign Detection from Multiple Features 

 

Based on the above extracted features, the final decision rule is made for reliable sign detection. The decision rule is 

described in Figure 4. The input video log image is first processed with the shape analysis algorithm so that all the 

polygon-like sign candidates are detected. Then, each detected polygon candidate will be further processed by 

analyzing its other features, such as the location PDF, sign color profile, sign W/H ratio, sign area ratio, and sign 

angle distortion, which will contribute to the final decision.  

The detailed decision rules can be found in the paper (23). With the defined decision rules, a video log image can 

be identified as containing signs or containing no sign. Note that all the features are defined for the generalized traffic 

signs rather than one or two specific signs. For example, the shape detection part can detect all the possible shapes 

that are included in the MUTCD standard. The sign color profile features are also defined for all possible sign color 

distributions. Therefore, the detection algorithm is a generalized one that can handle all MUTCD traffic signs. 
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FIGURE 4 Sign detection from multiple features. 

 
 
3.3.4 Experimental Results 

 

This subsection presents the experimental results.  Firstly, the proposed SCM color model is tested. The video log 

images used for this test are provided by LADOTD and the City of Nashville. These two image sets have different 

acquisition situations and cover different roadway functional classes. Secondly, the proposed generalized sign 

detection algorithm is tested.  In this test, 37,640 images provided by LADOTD are used; they were taken in rural 

and urban areas. Finally, the detection algorithm is further tested by using 1,105 video log images provided by the 

City of Nashville; these were taken on city streets where the backgrounds are complicated by many sign-like objects 

that make sign detection more challenging. 

 
 
3.3.4.1 Experimental Results for Testing SCM 

 

The proposed SCM is tested with image data sets provided by LADOTD and the City of Nashville. There 37, 000 

video log images from LADOTD and 27,000 images from the City of Nashville. Testing results show that the overall 

root mean square (RMS) error on 413,724 training samples is 0.057198 and 19,422 bit failures out of 3,309,792 

(413,724 x 8 color outputs) input bits, a performance that achieves 99.5% correct matches. To quantitatively evaluate 

the test result of the color model, two factors, FP and FN, are used.  

Input Image 

Polygon Candidates by Shape Detection 

Color Profile Location PDF Area W/H Ratio Angle Distortion 

Decision Rule for Sign Detection 

Sign Detection Result (Y/N) 
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FIGURE 5 MUTCD SCM performance evaluation results for LADOTD set (LS) and Nashville set (NV). FYG 

in the X axis represents Fluorescent Yellow-Green color. 

To validate the performance of the color model built from LADOTD images, a different image data set collected 

and provided by the City of Nashville was tested; the set consists of 1,926,652 pixels and evenly covers eight distinct 

colors. The white bar in Figure 5 shows the results of the LADOTD data set; the gray bar is for Nashville data set. 

Results demonstrate that the proposed SCM model has very good performance with low FP rate and FN rate errors. 

Compared with other published works (14), our model registered 25,000 red color samples by predicting the correct 

values with 1.2% FP rate and 3.5% FN rate errors, whereas the red color model proposed in (14) produced an 11.8 % 

FP rate error and a 5.5% FN rate error. Comparing the two test sets from LADOTD and Nashville, although built 

from LADOTD images, our model demonstrates a robust performance when applied to a data set with different 

lighting conditions, varying contrasts, and different camera parameters. 

 
 
3.3.4.2 Detection Results with LADOTD Video Log Images 

 

This section critically assesses the performance of the proposed algorithm through testing the actual video log images 

provided by LADOTD. LADOTD collected the video log images of 35,000 miles (56,000 km) of directional 

roadways at an interval of 0.002 mile (3.21 meter). There are 17.5 million front-view images. The image resolution is 

1300 × 1060 pixels in JPEG format. The tested roadways are located in Jefferson Parish, Louisiana, and cover a 

portion of New Orleans. To evaluate the proposed algorithms, three categories of roadway settings (interstate, 

non-interstate urban and non-interstate rural) with different functional classes are chosen; 37,640 video log images, 

covering 75.17 miles (120.27 km) of directional roadways are used. In this test, the sign location PDF feature is not 

applied. 
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FIGURE 6 Traffic sign detection results of LADOTD video log images. 

The productivity and reliability of the algorithm is evaluated by comparing the computed outputs with the 

manual review results.  Image-based and site-based evaluations are performed for the purpose of evaluating 

productivity and reliability, respectively. Image-based comparison is to compare the outputs (acquired from the 

computed and manual review) image by image. If the two are the same for an image (a sign is detected both by the 

algorithm and by a manual review, or no sign is detected), the result of this image is identified as “True”; otherwise, 

it is identified as “False.” To implement the computed outputs, it is required to differentiate between the “True” and 

“False” cases. One of the four evaluation factors (TP, FP, TN, and FN) is assigned to each image to evaluate the 

performance of the algorithm. If the algorithm outputs are reliable, agencies need to only review the images in which 

signs are positively detected by the algorithm, which are TP and FP images. This will save much effort for agencies 

by skipping the images that don’t contain any sign because, based on our experimental study on the actual video log 

images, more than 80% of images do not contain a sign. Apparently, the number of FP images directly affects the 

productivity because, in reality, there are no signs in them, but agencies still need to review them because the 

algorithm cannot correctly label them as no-sign images. In Figure 6, the dot-filled bars show the sum of images for 

these four factors. The solid line shows their percentages. There are a total of 2,528 (2,115 + 413) images with signs 

in them obtained by manual review, which is the ground-truth. In the meantime, 2,115 (83.67%) images are correctly 

detected by the algorithm, while 413 (16.34%) images are not detected. Meanwhile, among the 24,066 images with 

no sign in them, 20,969 (80.19%) images are correctly detected by the algorithm, while another 3,097 (19.87%) 

images are mistakenly detected as positives. Based on the above discussion, if the algorithm outputs are reliable, 

agencies need to only review 5,212 (2,115 + 3,097) out of total 37,640 images, which is approximately 14%. In other 

words, 86% of the workload in manual review can be saved. 

One important feature of video log images is that they are spatially continuous, which leads to a “site” detection 

in our algorithm. With a small image capturing interval (0.002 mile or 3.21 meters) for LADOTD, the same sign can 

appear in several consecutive images. A sign may not be detected by the algorithm in some images due to its small 

size or temporary blockage by moving objects; however, it won’t be missed in a traffic sign inventory if it can be 

detected from one of the consecutive images containing the same sign. To facilitate the evaluation, a site is defined to 

be a cluster of consecutive images with a sign or no sign in them. All consecutive images are clustered as sites based 

on the algorithm outputs and marked as positive (with sign) and negative (without sign) to conduct the site-based 
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evaluation. Similar to the image-based evaluation, each site can be classified as one of the four factors mentioned 

previously. Among these four factors, the FN determines the reliability of the algorithm outputs because it means the 

algorithm fails to detect signs from consecutive images (a site image cluster) containing the same sign. In other 

words, as long as the algorithm can detect one occurrence of the same sign in a site image cluster, it is not a problem 

that the sign in other images of the same site image cluster is not detected because the sign will not be missed. In 

Figure 6, the blank bars indicate the sum of sites for these four factors. The dotted line shows their percentages. 

There are 446 sites with signs in them. By comparison with the manual review, all 446 sites are all correctly 

identified as true, which means no sign is missed. Table 2 also details the results for each roadway category. As 

expected, rural areas, which typically have fewer complex objects, show slightly lower false-positive percentages. 

The above site-based evaluation has demonstrated that the proposed algorithm can reliably detect signs because no 

sign is missed. Based on the image-based evaluation, it also demonstrates that 86% of manual image review efforts 

can be saved. 

TABLE 2 Results of Experimental Study in Site (MC for major collect and MA for minor arterial) 

Category RouteID Mile Site TP (%) TN (%) FP (%) FN (%) 

Interstate 450-15 9.52 515 112(100%) 293(73%) 110(27%) 0(0%) 

006-02 3.47 203 39(100%) 121(74%) 43(26%) 0(0%) Urban\ 

Pri Art 006-30 6.29 339 30(100%) 257(83%) 52(17%) 0(0%) 

063-04 8.29 409 47(100%) 284(78%) 78(22%) 0(0%) Urban\ 

Min Art 282-01 2.00 137 10(100%) 66(52%) 61(48%) 0(0%) 

826-13 4.20 225 27(100%) 179(90%) 19(10%) 0(0%) Urban\ 

Collect 249-01 9.00 517 40(100%) 386(81%) 91(19%) 0(0%) 

826-05 5.10 298 20(100%) 248(89%) 30(11%) 0(0%) 

826-08 0.74 43 8(100%) 29(83%) 6(17%) 0(0%) 

826-10 0.86 49 5(100%) 35(80%) 9(20%) 0(0%) 

826-54 0.64 36 4(100%) 30(94%) 2(6%) 0(0%) 

Urban\ 

Local 

826-20 0.60 40 6(100%) 24(71%) 10(29%) 0(0%) 

Rural\MC 249-90 9.61 532 48(100%) 393(81%) 91(19%) 0(0%) 

Rural\MA 429-02 0.86 395 19(100%) 344(91%) 32(9%) 0(0%) 

826-06 2.99 174 14(100%) 90(56%) 70(44%) 0(0%) 

826-12 0.40 22 2(100%) 19(95%) 1(5%) 0(0%) 

826-39 0.29 17 2(100%) 13(87%) 2(13%) 0(0%) 

826-55 0.41 23 0(100%) 19(83%) 4(17%) 0(0%) 

826-56 0.32 20 3(100%) 15(88%) 2(12%) 0(0%) 

826-57 0.32 21 1(100%) 18(90%) 2(10%) 0(0%) 

826-58 0.24 14 0(100%) 12(86%) 2(14%) 0(0%) 

826-59 0.29 20 1(100%) 18(95%) 1(5%) 0(0%) 

826-60 0.30 13 1(100%) 11(92%) 1(8%) 0(0%) 

826-61 0.38 20 3(100%) 15(88%) 2(12%) 0(0%) 

Rural\ 

Local 

826-62 1.13 50 4(100%) 37(80%) 9(20%) 0(0%) 

Total   4132 446(100%) 2956(80%) 730(20%) 0(0%) 
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3.3.4.3 Detection Results with Nashville Video Log Images 

 

The algorithm was further tested with the Nashville dataset. There are a total of 1,105 video log images with 

acquisition interval between two consecutive images being 20ft (or 6m). Therefore, these images cover 

approximately a distance of 4 miles (6.4km). The testing site for these video log images is on a urban (or city) street 

area, where the image backgrounds are very complicated with a lot of sign-like shapes and objects, e.g. the 

advertisement panel, the windows on the wall, and other signs on the street. Among these images, 183 images have 

traffic signs, accounting for 16.6% of the total images. The sign features, including sign color, shape, location PDF, 

sign area, and sign distortion angle, are used for traffic sign detection. The results are presented in Table 3.  

TABLE 3 Sign Detection Results from Nashville Video Log Images 

Section# TP TP % TN TN % FP FP % FN 

FN 

% 

1 17 100 57 79.167 15 20.833 0 0 

2 26 100 12 80 3 20 0 0 

3 5 100 14 33.333 28 66.667 0 0 

4 4 100 35 89.744 4 10.256 0 0 

5 5 100 13 33.333 26 66.667 0 0 

6 9 100 26 100 0 0 0 0 

7 2 100 53 94.643 3 5.357 0 0 

8 2 100 5 100 0 0 0 0 

9 3 100 9 60 6 40 0 0 

10 1 100 0 100 0 0 0 0 

11 12 100 12 70.588 5 29.412 0 0 

12 15 100 42 70 18 30 0 0 

13 9 100 9 25 27 75 0 0 

14 2 100 0 100 0 0 0 0 

15 3 100 4 50 4 50 0 0 

16 18 100 21 53.846 18 46.154 0 0 

17 2 100 0 100 0 0 0 0 

18 13 100 24 64.865 13 35.135 0 0 

19 11 100 24 100 0 0 0 0 

20 24 100 306 78.061 86 21.939 0 0 

Total 183 100 666 72.2 256 27.8 0 0 

The results show that the algorithm can achieve a zero FN rate while keeping the FP rate as low as 27.8%. 

Therefore, with the proposed algorithm, more than 72.2% of the images containing no signs can be disregarded 

because they do not need manual review. These results further demonstrate that the proposed sign detection 

algorithm is very reliable even in the complicated environments. Based on the above discussion, if the algorithm 

outputs are reliable, agencies need to only review 439(256 +183) out of total 1, 105 images, which is approximately 

39.7%. In other words, 60.3% of the workload in manual review can be saved with the proposed algorithm even in a 

very complicated roadway conditions, such as on a unban street. 
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3.3.5 Summary 

 

This chapter presents the developed generalized sign detection algorithm, which is crucial for an intelligent sign 

inventory and management system. Sign detection is used for filtering out the images containing no sign and keeping 

the remaining images. Based on the MUTCD standard, several features, such as sign color, sign shape, sign location 

PDF, and other sign features are chosen for sign detection. An SCM color model is developed to process the 

MUTCD color for video log images. Then, sign shapes are analyzed by a polygon detection algorithm. Based on the 

statistical analysis on the sign location distribution in video log images, a location PDF model is developed to extract 

the non-uniform sign location features for video log images. Other features, like sign area, sign width-to-height ratio, 

and sign distortion angles are also used. These features are generalized from video log images and the MUTCD 

standard, which provides reliable sign detection. The proposed algorithm has been tested on two different video log 

image sets provided by LADOTD and the City of Nashville. The results with LADOTD video log images show that 

the algorithm could achieve a zero site-based FN rate, so there is not any sign that could be missed by the algorithm.  

In addition, the image-based TP and FP cases account for 14% of the total images, which means that 86% of the 

workload for manual review of images is saved. The results with the City of Nashville show that the algorithm can 

achieve 27.8% FP rate while keeping zero FN rate, and 60.3% of the workload for manual reviewing images are 

saved. The preliminary results from both LADOTD and the City of Nashville demonstrate that the algorithm can 

greatly help users save time and improve efficiency, which could also enhance roadway infrastructure data collection 

for an intelligent sign inventory and management system. 

 
 
3.4 PROPOSED SIGN RECOGNITION ALGORITHM 

 

Sign recognition aims at identifying sign type, MUTCD code, and other sign attributes. A successful sign recognition 

algorithm can extract sign’s information correctly and automatically input it into the sign inventory database, to 

minimize the manual review and sign attributes input.  

 
 
3.4.1 A Generalized Sign Recognition Algorithm  

 

As specified in MUTCD, there are more than 670 types of traffic signs on U.S roadways. An intelligent sign 

inventory and management system requires an algorithm to recognize all of them. It is not feasible to develop 

sign-specific algorithms, as proposed in the existing literatures. Instead, a generalized sign recognition algorithm is 

required to process more than 670 types of traffic signs. The main purpose for a generalized sign recognition 

algorithm is that each type of traffic sign can be recognized using the same framework. 

In order to develop a generalized sign recognition algorithm, sign features need to be extracted in a generalized 

way. In the proposed sign recognition algorithm, the following sign features are used: sign color, shape, location, 

Haar features, and other features like height-width ratio, area, angles. Each feature can be extracted in the same way 

for all types of traffic signs. For example, the SCM color model can be used to extract the ten MUTCD colors for all 

types of traffic signs. Once the features are extracted, they can be trained to recognize different types of traffic signs 

by using sign-specific training data. As a result, different types of traffic signs can be recognized by using different 

training sets and different training parameters for recognition. Since the features of sign color, shape, location, etc., 

are discussed in the sign detection chapter, this chapter only focuses on the Haar feature extraction and training with 

the Adaboost Cascade algorithm. 
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3.4.2 Feature Extraction and Training for Sign Recognition 

 
 
3.4.2.1 Sign Feature Extraction 

 

Since sign features, such as color, shape, location PDF, and other features have been discussed in the previous 

chapter, the Haar feature extraction is the focus of this section; Harr features are used to represent the sign texture or 

content for sign recognition. 

 
FIGURE 7 Feature prototypes of simple Haar-like and center-surround features. Black areas have negative 

weights and white areas have positive weights. 

Haar features are used as the basic image features to represent objects. The basic idea of Haar features comes 

from the Haar wavelet transformation. The Haar features-based Adaboost algorithm was used originally for face 

detection and has proven to be very effective (32). Figure 7 shows the different types of Haar features, including the 

edge features, line features, center-surround features, and the special diagonal line features. For a 24×24 sub-window, 

approximately 120,000 Haar features can be extracted, a number larger than the actual pixel numbers of the 

sub-window. Since so many Haar features are used in the object recognition step, it has very strong representative 

ability. 

The computation of a single Haar feature is straightforward. As shown in Figure 7, a Haar feature for each type 

is the difference between the white areas and the black areas. Since there are many Haar features even for a small 

sub-window of 24×24 (in pixel), the computation complexity is rather high. To solve this problem, Viola and Jones 

(32) proposed the integral image for feature extraction. An integral image is the sum of the pixels, which is above or 

to the left the corresponding location, which is given in the following formula (32): 


 


xx yy

yxiyxii ),(),(  

where ),( yxii is the integral image at location  yx,  and ),( yxi  is the original image. By using the integral 

image, the Haar features can be quickly computed. For example, in Figure 8, the sum of the pixel at the rectangle B 

can be computed by using the two integral images at the positions 1 and 2, and C from the integral images from 1 and 

3. D is also computed with four positions of 1, 2, 3, and 4. Since the Haar feature is defined by the difference of a 

pixel sum of a set of rectangles, all the Haar features can be quickly computed from the integral images. 

 



20 

FIGURE 8 Integral images for Haar feature computation. 

 
3.4.2.2 Sign Feature Training 

 

There are a huge number of Haar features even for a small image 24×24 sub-window--about 120,000 Haar features 

(32). For the practice, not all the extracted Haar features are used because some of the features may not be good 

enough for sign detection and recognition. Instead, the distinct, representative features need to be selected to identify 

a true traffic sign from a false one. This selection process is called training. The well-known Adaboost Cascade 

algorithm is one of the most successful and effective training methods. Details for the training steps with Adaboost 

algorithm can be found in (32). 

To perform the training, sufficient positive and negative samples are needed, from which the selected Haar 

features can correctly classify them. For example, Viola and Jones (32) used 9,832 positive and 10,000 negative 

samples to perform training. Sufficient and comparable positive images (with the specified sign type) and negative 

images (without specified sign type) should be prepared for the training to achieve good FN and FP rates. In practice, 

negative samples (without specified sign type) can be generated randomly from the non-sign video log images by 

extracting sub-images from random locations with random sizes. Before training, all the positive and negative 

samples are normalized to have the same size (e.g., 24×30 for speed limit sign).  

An insufficient number of positive samples might lead to an FP. Details of the training sample preparation and 

processing are presented in the experiment test section in this chapter. Besides Haar features, other features are also 

used to improve the recognition rate, which are presented below. 

 
 
3.4.3 Sign Recognition from Multi-Features 
 

We can use the features extracted from images to recognize sign types. The Haar features, sign shape, sign color, and 

sign location PDF, are used for sign recognition, as shown in Figure 9. From Figure 9, each feature can be used to 

reject or accept a sign candidate. Sometimes, a true traffic sign cannot satisfy all the features at the same time.  

 
FIGURE 9 Sign recognition from multi-features. 

The designed rules should remove the FP candidates while keeping the true positive ones. All the rules finally 

form a decision function as follows: 






signfalseif

signtrueif
otherLocationShapeColorHaarF

0

1
),,,,(  

The following are the decision rules used to distinguish a true sign candidate from a false sign candidate: 

Haar Features Sign Color Sign Shape Sign Location 

Sign Candidate 

Sign Recognition 

Other Features 
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RULE 1: candidate should be detected by Haar features; 
RULE 2: candidate should pass the sign location validation; 

RULE 3: candidate should pass either color OR shape validation. 

RULE 4: candidate should pass all the width-to-height ratio, area, and angle validations. 

Using the rules, sign type can be recognized. Examining the above features, it can be seen that the proposed 

algorithm provides a generalized methodology and framework for sign recognition because the sign features are 

generalized. Therefore, different types of signs can be recognized using the same framework. For example, under the 

same framework, a stop sign and a speed limit sign can be recognized with the following difference: 

1) Prepare different training images (stop signs or speed limit signs) for Haar feature extraction. However, the 

training steps are the same. 

2) Specify the shape to detect, e.g. a rectangle for a speed limit sign or an octagon for a stop sign. Both shapes 

can be automatically extracted using the same polygon-based shape detector. 

3) Define different color ratio thresholds. For stop signs, the ratio threshold needs to be trained for a red 

background and a white legend. For speed limit signs, the threshold for a white background and a black legend need 

to be trained. However, the same SCM color model is applied to extract their color features. 
As a result, by preparing different training image sets, training different thresholds, and adjusting different 

parameters, the proposed sign recognition algorithm can be applied to recognize different types of signs. The 

methods used, such as color analysis, shape extraction, and the training procedures, are the same for training different 

sign types. Therefore, the proposed algorithm is a generalized sign recognition algorithm. The following section uses 

the speed limit sign to demonstrate the capability of the developed algorithm. 

 
 
3.4.4 Experimental Results 

 

This section uses speed limit sign recognition to demonstrate the capability of the proposed algorithm. Two 

sub-sections are included. In the first sub-section, five tests are performed to show that it is difficult to produce a low 

FP and low FN using only the Haar features extracted from Adaboost Cascade method when there is limited number 

of positive samples (e.g. images containing signs). Besides Haar features, other features are incorporated, including 

color, shape, location, and sign height-to-width ratio, to further reduce FPs. In the second sub-section, the proposed 

algorithm using these features and models for recognizing speed limit signs is briefly introduced. The experimental 

tests using the real-world video log images to recognize speed limit signs are also performed to validate the proposed 

algorithm.        

 
 
3.4.4.1 Feature Training and Models Used 

 

Five tests with different numbers of negative and positive samples were performed using only the Haar features 

extracted from the Adaboost Cascade method to extract speed limit signs. The positive and negative samples first 

need to be prepared to train the Cascade network for performing Haar feature- based sign recognition. All the 

positive samples were generated from two sources: 1) manually tagging the video log images provided by state DOTs; 

2) searching sign images from websites. All the negative samples were generated by our program with random sizes 

and from random locations of the non-sign video log images. Before training, both the positive and negative samples 

are normalized to have the same image resolution, 24×30 pixels. This size is based on the width-to-height ratio of an 

actual speed limit sign. Different numbers of positive and negative samples were used to perform four training tests. 

Then, four trained Cascade networks were used to test the data set with 1,000-images; the results are in Table 4.  
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The first column in Table 4 shows five tests. The second and third columns are positive and negative sample 

numbers. The fourth column is the stage of the trained network (see more details in (32)). The FP and FN rates are 

shown in the fifth and sixth columns. The last column shows the number of test images. The same 1,000 test images 

were used for all five tests. Table 4 shows that the proposed algorithm can achieve low FN rates, which means that 

no sign or only very few signs will be missed. However, the algorithm has a high FP rate, which means that many 

non-sign objects are falsely identified as signs. A comparison of Test 1 and Test 2 shows that they have the same 

positive samples, yet different FN samples. By adding more negative samples, both the FP rate (FPR) (from 98% to 

59%) and the FN rate (FNR) (from 3.4% to 2.2%) can be decreased. However, when the negative sample (from 1,500 

to 6,000 negative samples) are continuously increased, as shown in Test 3, FPR and FNR do not decrease 

continuously; instead, they increase. This indicates that low FPR and FN cannot be achieved by simply increasing 

negative samples. In Test 4, after increasing the positive samples, we can see both FPR and FNR are decreasing, 

which achieves the best FPR and FNR results for the above four tests. However, the FPR is still as high as 42%. Test 

5 further demonstrates that fewer positive samples (100 positive samples) lead to even worse FPR and FNR. 

Therefore, more positive samples must be added to further enhance the algorithm’s performance because, in the 

original Adaboost Cascade method for face detection, Viola and Jones (32) used 9,832 positive and 10,000 negative 

samples to get good detection results. However, it would be difficult to collect more than 6,000 positive samples, 

especially for some types of signs. Therefore, besides using the Adaboost Cascade method, the proposed sign 

recognition algorithm incorporates other features, including color, shape, location, and height-to-width ratio, to 

further reduce FPs. Figure 9 illustrates the multiple-feature fusion using the proposed sign recognition algorithm. By 

incorporating multiple sign features, much better recognition performance can be achieved. Besides Haar features, 

the following are the additional features and models used for the subsequent experimental test of speed limit sign 

recognition:  

a) The SCM color model is developed from 45,151 video log images captured under various outdoor lighting 

conditions in Louisiana, producing 3,023 images. A total of 413,724 distinct samples and each reference 

count were used to build the SCM color model. For speed limit signs, two distinct color ratios are 0.5 for 

white and 0.07 for black. Details can be found from the paper (23). 

b) The image sign location PDF model is developed using 3,000 video log images that contain signs provided 

by LADOTD.  

c) The polygon-based shape analysis is performed to extract a speed limit sign’s boundary. A speed limit sign 

has 4 vertices. 

d) A speed limit sign has a height-to-width ratio between 1.05 and 1.35. A typical sign distortion angle is 10 

degrees, and the minimal sign size for recognition is 24×30 pixels.  

The following presents the proposed generalized sign recognition algorithm using multiple features with the 

actual images. The trained Cascade network from Test 4 in Table 4 is still used for the tests discussed in the 

following section. 

TABLE 4 Recognition Results of Speed Limit Sign with Different Positive and Negative Samples 

Test PS # NS # Stage# FPR (%) FNR (%) Test Images # 

Test-1 191 300 8 98%  3.4 % 1,000 

Test-2 191 1,500 8 59% 2.2% 1,000 

Test-3 191 6,000 8 77% 3.7% 1,000 

Test-4 293 6,000 8 42% 1.8% 1,000 

Test-5 100 6,000 8 100% 5.7% 1,000 
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3.4.4.2 Tests Using Video Log Images 

 

The proposed sign recognition algorithm was tested with the actual video log image data collected on I-75 from 

Macon to Atlanta, Georgia. There are 5,387 video log images covering 80 miles (128km) of urban and rural areas. In 

this test, the video log images were collected with the survey vehicle. The vehicle is equipped with cameras, two 

Global Position System (GPS) receivers, a Distance Measurement Instrument (DMI), a laser ranger, etc. The video 

log images were taken using a front-view camera. The image acquisition interval between two images is 24 meters 

with the interval pulse generated by a DMI device. The driving speed is about 70 miles per hour (70 MPH). All 

images have a resolution of 2448×2048 (pixels) in JPEG format. For the 24-m acquisition interval, a traffic sign 

appears about four times in consecutive images. For sign inventory, it is not necessary to recognize the same sign in 

all the consecutive images. Instead, if the sign in one of the consecutive images can be recognized, it won’t be missed 

by the algorithm. This “site-based” concept is same as the one introduced in the previous chapter of sign detection.  

TABLE 5 Recognition of Speed Limit Signs Appearing on I-75 from Macon to Atlanta  

Site # Image# TP FP TN FN 
Image Rec 

Rate (%) 

Site Rec 

Rate (%) 

1 4 3 0 0 1 75 100 

2 5 5 0 0 0 100 100 

3 6 4 0 0 2 66.7 100 

4 7 6 0 0 1 85.7 100 

5 4 0 0 0 4 0 0 

6 4 2 4 0 2 50 100 

7 5 2 0 0 3 40 100 

8 4 2 0 0 2 50 100 

9 5 3 0 0 2 60 100 

10 4 2 0 0 2 50 100 

11 3 0 0 0 3 0 0.0 

12 3 3 0 0 0 100 100 

13 4 3 0 0 1 75 100 

14 4 1 0 0 3 25 100 

15 5 3 0 0 2 60 100 

16 3 2 0 0 1 66.7 100 

17 5 3 0 0 2 60 100 

18 5 3 0 0 2 60 100 

19 5 3 0 0 2 60 100 

20 4 3 0 0 1 75 100 

21 4 2 0 0 2 50 100 

22 4 3 0 0 1 75 100 

23 4 2 0 0 2 50 100 

24 5 0 0 0 5 0 0.0 

25 6 1 1 0 5 16.7 100 

26 5 3 0 0 2 60 100 

27 4 3 0 0 1 75 100 

28 4 2 0 0 2 50 100 
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29 3 2 0 0 1 66.7 100 

30 4 4 0 0 0 100 100 

31 4 2 0 0 2 50 100 

Total 136 72 5 0 64 52.9 90 

From these 5,387 video images, there were 136 images containing 31 different speed limit signs from both the 

rural and urban areas. The ground truth for the speed limit signs was established by manually reviewing all the video 

log images and tagging the images containing speed limit signs. The recognition results with the proposed algorithm 

were then compared to the ground truth data. Table 5 shows the recognition results automatically generated by the 

proposed sign recognition algorithm.  

In Table 5, the first column is the “site” number; 31 sites mean 31 different speed limit signs. The second 

column is the number of consecutive images for each speed limit sign. The third column is the successfully detected 

images, and the fourth is the FP for all the images in each site. The fifth and the sixth columns are for the true 

negative and FNs. The seventh column is the image-based recognition rate for each site. The last column is the 

site-based recognition rate.  

In the results, 28 out of 31 speed limit signs were successfully recognized with the proposed algorithm, a 

recognition rate of 90%. The results show that the algorithm is very promising for sign recognition. Besides, the 

algorithm only generated 5 FPs from the 136 video log images, which demonstrates that the algorithm is effective in 

removing FP using multi-feature fusion. By analyzing the signs that were not recognized by the proposed algorithm, 

it can be seen that these signs have the following conditions that make recognition difficult: a) blocked sign; 2) too 

small; 3) too-complex background; and 4) extreme lighting conditions, which greatly affect the sign color, sign shape 

features, and Haar features.  

 With the proposed algorithm, the information of sign type, MUTCD codes, sign color, etc. can be automatically 

stored into a database to save manual input efforts. Users need only to manually enter the information for the 

remaining 3 speed limit signs into a database. As a result, the recognition algorithm can cut workload and enhance 

sign data collection efficiency. 
 
 
3.4.5 Summary 
 

Image detection and recognition algorithms are crucial for developing an intelligent sign inventory and management 

system that uses video log images. The technical challenge is to detect and recognize more than 670 different types 

of signs specified in the MUTCD. This chapter develops a generalized image recognition algorithm that can 

recognize different types of signs based on shape, color, location PDF, and Haar features extracted from the 

Adaboost Cascade method. With the algorithm, traffic sign attributes, such as sign type and MUTCD code, can be 

extracted automatically, which can further reduce manual workload for sign inventory and management system. The 

proposed algorithm was tested with the actual video log images collected on Interstate I-75 from Macon to Atlanta, 

Georgia, a distance of 80 miles (128km), in both rural and urban areas. Speed limit signs are used to validate the 

proposed algorithm. Our results show that the algorithm can recognize 28 of 31 speed limit signs for a 90% 

recognition rate. Among the images with signs, the algorithm has only 5 FPs. The results show that the algorithm can 

effectively remove FNs with multi-feature fusion. These preliminary results show significant promise for 

development of an intelligent sign inventory and management system. With sufficient image training data sets, the 

proposed algorithm can be applied to other sign types. 
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4. CONCLUSIONS AND RECOMMENDATIONS 
 

Collecting roadway infrastructure data, including traffic signs (stop signs, speed limit signs, etc.), with the designated 

locations (mileposts and x, y coordinates) is essential for state DOTs to submit HPMS data annually and for state and 

local transportation agencies to plan, design, construct, operate, and manage their transportation systems. Traffic 

signs are also important for roadway safety; therefore, the inventory of sign data is a necessity for compliance with 

the MUTCD standard. 

However, sign inventory data collection is time-consuming and costly. Current software reviews one image at a 

time, so extracting sign types from millions of images is time consuming and hinders effective sign inventory data 

processing. There is a need to develop algorithms that can batch-process more than ten million video log images 

instead of reviewing them frame by frame and support an intelligent inventory system. Although algorithms have 

previously been developed for automatically detecting and recognizing particular signs (e.g. stop and speed limit 

signs), they do not work for a comprehensive sign inventory because sign-inventory algorithms must be capable of 

recognizing more than 670 types of traffic signs on U.S roadways. It is technically challenging to develop the 

generalized algorithms that are capable of detecting and recognizing more than 670 types of signs. In this research 

project, two innovative modularized algorithms, sign detection and sign recognition, are developed for sign inventory 

data collection. They form the foundation for developing an intelligent sign inventory and management system. A 

two-step sign inventory data collection process is proposed to seamlessly incorporate these two algorithms so that 

millions of video log images can be batch processed, which can save time and cost for transportation agencies.  

The generalized sign detection algorithm, the first step of the intelligent sign inventory and management system, 

is developed using the sign shape, color, location, and other features defined in the MUTCD standard. During the 

sign detection phase, the goal is to remove all the images containing no sign, while keeping the images containing 

signs so that users don’t need to review tens of millions of images manually. In order to achieve this goal, a desirably 

low FN rate should be guaranteed so that no traffic signs will be missed. Also, the FP rate needs to be kept as low as 

possible, since it reflected the extra percentage of images that still need manual review. Sign shapes are detected 

using the polygon approximation approach. Sign colors are processed with the SCM by using an ANN. The trained 

colors for SCM were selected manually from the video log images and then trained by a hybrid Neural Network. The 

SCM model was tested using two different data sets and has demonstrated a promising result. The PDF of sign 

locations is trained from the manually tagged sign locations on the images. The final sign detection algorithm from 

the multiple features was tested on two data sets. One is from the video log images provided by LADOTD, where 

there are more than 37,640 video log images. The developed algorithm could achieve zero FN rates and 19% FP 

(site-based) rates for the LADOTD data set and could save 86% of the workload for the manual review (because the 

TP and FP images account for approximately 14% of the total images). The algorithm was also tested on the 

Nashville video log images covering a street with many sign-like objects, such as advertisements, windows, etc., 

which makes the detection more challenging. The results show that the algorithm could still achieve 27.8% FP rate 

while keeping a zero FN rate. And, it can save 60.3% of the workload for manual review even in very complicated 

roadway conditions, such as in an urban street area, where many sign-like shapes and objects make the detection 

much more difficult. 

Sign recognition follows sign detection in an intelligent sign inventory and management system. The generalized 

sign recognition algorithm, the second step of an intelligent sign inventory and management system, is developed to 

automatically identify and extract correct sign type and MUTCD code from the images containing signs, which are 

identified in the sign detection phase. This can reduce the manual data entry effort. In this instance, a multi-feature 

fusion algorithm is proposed for sign recognition. The basic features used in the algorithm include Haar features, sign 
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color, sign shape, and sign PDF, based on the fact that a sign can be recognized from its shape, color, texture, and 

location in the image. Haar features encode the sign texture information and are used in the Ada-Boost algorithm, 

which consists of the training and testing parts. In the training part, the sign images were selected and normalized and 

the weak classifiers were selected by the boosting training approach. A final strong classifier is then generated based 

on a cascade structure. In this part, two different data sets are used to test the proposed recognition algorithm. One 

data set was collected with our developed survey vehicle along Interstate I-75 from Atlanta to Macon, Georgia, 

which covers 80 miles (128km) of interstate highways. The proposed recognition algorithm was used to recognize 

the speed limit sign along the roadway. The results show that the algorithm could successfully recognize 28 out of a 

total of 31 speed limit signs, with 90% recognition rate, which is promising. With results from the recognition 

algorithm, the sign attributes can be automatically input into the sign inventory database. Therefore, it can greatly 

save manual effort and improve sign data collection efficiency. 

In summary, the proposed algorithms have demonstrated its promising capabilities in saving time and effort on 

transportation agencies’ sign inventory data collection. The following are recommendations for future research: 

 

1) Perform more large-scale tests on the proposed algorithms using the images collected under real-world 

environments in which sign dimension, color, text fonts, etc. may not exactly follow the MUTCD standard, 

and the varying lighting and illumination conditions may change sign appearances. The large-scale image 

data tests provided by both state DOTs and local transportation agencies for interstate, state, county, and 

city roads can be used to further refine the developed algorithms for final implementation. 

2) Based on the developed sign detection and recognition algorithms, other sign feature data, including sign 

geometric attributes (33) , such as sign-to-camera distance, height, GPS coordinates, tilt angle, etc., sign 

condition changes (34), such as missing, tilted, and block signs, can be automatically collected. 

3) Software, which seamlessly incorporating sign detection and recognition algorithms, needs to be developed 

to effectively perform traffic sign inventory. 

4) GIS technology can be incorporated into an intelligent sign inventory and management system. 

5) Although image processing algorithms have been developed to automatically extract traffic signs (14-16, 

23) and other roadway features such as traffic geometry (33, 35) and roadway horizontal curvature (36-38), 

and automatically detect deficient video log images (39), video log image data acquisition has yet to be 

designed to support the automatic feature extraction. There is a need to study the impact of different sensor 

configurations on automatic feature extraction. It will help to promote the integration of hardware and 

software in support of automatic roadway data collection. 

6) The proposed algorithms can be extended to collect other roadway assets, such as roadway geometry 

(pavement width, shoulder widths), guardrails, pavement marks, etc. from video log images.



27 

 
 
5. PLANS FOR IMPLEMENTATION 
 

With the support of the IDEA concept exploration research project, two generalized algorithms, sign detection and 

sign recognition, are developed to automatically detect and recognize more than 670 different types of signs specified 

in the MUTCD standard by using video log images that are widely available. The preliminary tests demonstrate these 

developed algorithms are promising and provide new capabilities to significantly reduce the cost and time spent by 

state DOTs for acquiring traffic sign inventory data using video images. 

With the incoming support of the US DOT RITA program and GDOT, the IDEA concept exploration research 

outcomes, including the developed sign detection and recognition algorithms, will be migrated to a large-scale, 

national demonstration for further implementation of the developed algorithms. It will, also, allow the developed 

algorithms tested under real-world environmental conditions in which sign dimension, color, text fonts, etc. may not 

follow the MUTCD standard exactly, and the varying lighting and illumination conditions may change sign 

appearances. The large-scale image data tests provided by both state DOTs and local transportation agencies for 

interstate, state, county, and city roads will be used to further refine the developed algorithms for final 

implementation. 

 Based on the developed sign detection and recognition algorithms, other sign feature data, including sign 

geometric attributes (33), such as sign-to-camera distance, sign height, GPS coordinates, sign tilt angle, etc., sign 

condition changes (34), such as missing, tilted, and blocked signs can also be extended. Some of the work has been 

accepted for publication in journals (33, 34). As a result, a complete sign inventory and management system can be 

developed in which sign data and feature can be reviewed, queried, and evaluated more effectively to support sign 

management and maintenance.  

Based on the developed algorithm, software will be developed to effectively perform traffic sign inventory. GIS 

technology can also be incorporated in the intelligent sign inventory and management system. Many transportation 

agencies, including GDOT, the Ohio Department of Transportation, the Connecticut Department of Transportation, 

the Oklahoma Department of Transportation, and the City of Nashville have committed to providing video log 

images in support of the national demonstration project.  
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