

Volume II: page 99

Chapter

2
Data Management, Analysis Tools, and
Analysis Mechanics

This chapter explores different tools and techniques for handling data for research purposes. This
chapter assumes that a research problem statement has been formulated, research hypotheses have
been stated, data collection planning has been conducted, and data have been collected from various
sources (see Volume I for information and details on these phases of research). This chapter discusses
how to combine and manage data streams, and how to use data management tools to produce
analytical results that are error free and reproducible, once useful data have been obtained to
accomplish the overall research goals and objectives.

Purpose of Data Management

Proper data handling and management is crucial to the success and reproducibility of a
statistical analysis. Selection of the appropriate tools and efficient use of these tools can
save the researcher numerous hours, and allow other researchers to leverage the
products of their work. In addition, as the size of databases in transportation continue to
grow, it is becoming increasingly important to invest resources into the management of
these data.

There are a number of ancillary steps that need to be performed both before and after
statistical analysis of data. For example, a database composed of different data streams
needs to be matched and integrated into a single database for analysis. In addition, in
some cases data must be transformed into the preferred electronic format for a variety of
statistical packages. Sometimes, data obtained from “the field” must be cleaned and
debugged for input and measurement errors, and reformatted.

The following sections discuss considerations for developing an overall data collection,
handling, and management plan, and tools necessary for successful implementation of
that plan.

The Data Collection, Handling, and Management Plan

The data collection, handling, and management plan plays an important role within a
research project. The plan provides a roadmap documenting the flow of data through the
sequential phases of collection, storage, cleaning, reduction, analysis, and finally to
archiving. Further, the management plan documents the relationships between all of the
software tools and programs necessary to guide the data through this research life cycle.

Volume II: 100

The data handling and management plan needs to be developed before a research
project begins. The plan, however, can evolve as the researcher learns more about the
data, and as new avenues of data exploration are revealed.

Considerations

The data collection, handling, and management plan addresses three major areas of
concern: Data Input, Storage, Retrieval, Preparation; Analysis Techniques and Tools; and
Analysis Mechanics. These concerns are not independent, and have synergistic impacts
on the plan.

Provided below is a list of questions that must be considered when formulating a data
collection, handling, and management plan. Although the questions are organized into
three major categories, many questions raised will affect decisions made in two or more
categories.

Data Input, Storage, Retrieval, and Preparation

Are the data “clean?” The data input process oftentimes introduces typos, miscodes,
and errors into the data. (These errors are distinctly different from random or
measurement errors introduced in the measurement process). Different storage strategies
support differing levels of data editing. [Do the data need to be edited? Do edits need to be
tracked?]

Are the data static, or will updates be available through the lifetime of the analysis?
Many data streams are updated periodically. For example, transportation safety data can
be updated on an annual basis. Pavement data may be updated on a route-by-route basis
as field observations are recorded. [Will new data constantly be added? Will new data be
in the same format? Will new fields be added?]

Are the data obtained from a variety of sources or from a single source? As data are
drawn from a greater number of sources, the need for transforming the data to a common
format becomes more critical and challenging. Further, one must always consider whether
the different sources use the same definitions for common variables. For example, does
one source define “average delay” in the same manner as another? If not, can a simple
transformation between definitions be established?

How much data will be managed and stored? Different storage strategies support
varying record sizes and large numbers of records. [Will storage space be a problem? Will
access time be a problem?]

Will all data be used in the analysis, or will subsets of the data be analyzed? To
speed analysis, the researcher will sometimes want to work with a subset of fields rather
than all database fields within a record at once. In other cases, only a subset of records
will be analyzed. For example, a research may investigate traffic flow and speed
relationships for workdays only. [Are sophisticated query and data sub-setting features
needed?]

Do records in the database share common, duplicated information? Duplicative
information wastes storage space, and in some cases creates database problems. In a
safety analysis, for instance, geometric information may be duplicated if accidents occur at

Volume II: 101

the same location. Techniques to reduce duplication of information (and thus reduce the
overall size of the database) are available. [Are tables needed?]

Analysis Techniques and Tools

Is the analysis well defined, or is it more exploratory in nature? For example, are you
simply testing statistical differences, or are you looking for unknown relationships?
Exploratory analysis and data familiarity requires graphical tools to help visualize
relationships between variables, and requires the researcher to guide the exploration. [Are
graphical capabilities needed?]

Is the technique well defined, or is it experimental? Well-defined analysis can be
performed by most statistical packages. Specialized software packages and even custom
applications developed using programming languages may be required to perform less
well known statistical tests or comparisons. [Does the software perform the necessary test
or compute the necessary statistics, or will it need to be developed?]

Analysis Mechanics

Is this a one-time analysis or will this analysis be repeated? How often will the
analysi s be repeated? The more times an analysis is repeated, the more important it
becomes to automate the analysis process. This becomes even more important if the
analysis requires that manual transformations be applied to the data. All statistical
experiments should be reproducible, not only by other researchers, but by the original
researcher also. [Automation: Is a macro or script (small program code that performs a
repetitive process) need to be created? Is a custom program needed?]

Will the analysis be repeated on different data? Will the data be provided from the new
site or device in the same format as the original experiment? [Is a script needed? Is a
monolithic application, or a series of filter/transformations needed?]

Will multiple researchers access the data, or will only one researcher be performing
the analysis? As more people become involved in the analysis, documentation of the
analysis procedure becomes more important. A tradeoff between level of training and level
of automation is revealed as more people become involved in the analysis process. [Will
data security be an issue? Will record locking be required? Are varying levels of secure
access necessary?]

How long does the analysis take? A computational procedure may require several
hours or days to complete. What happens if the procedure is interrupted? Can it be
restarted from where it was interrupted, or must the analysis be restarted from the
beginning?

Data storage: databases and data warehouses

The following sections discuss the range of data storage alternatives. Like programming
languages, these database solutions differ not so much by what they make possible, but in
what they make efficient. Of course, as databases grow in size, efficiency becomes
increasingly important.

Volume II: 102

The researcher may use one or more of the following solutions in the overall management
and handling of data. The key is to recognize that there is not a one-size-fits-all solution,
and so the best solution for the particular task at hand must be carefully selected.

Small-scale database solutions

Text files and spreadsheets are categorized as “small” databases.

In text files, often called “flat files,” all records related to a particular analysis are stored in
consecutive lines in the file. Text files are the “least common denominator” of files and are
generally used when transferring data from one statistical application to another.

From the research perspective, small-scale databases offer several advantages. First,
they are simple to understand. All records in the database are the same, and all the
necessary information is contained in each record (i.e., the researcher need not look up
additional information in a separate table.) Second, they are simple to use. In general, the
researcher will use all the information in the database, rather then selecting a portion of
the data. Third, flat-file or spreadsheet databases are simple to update, edit, change, or
append.

On the other hand, small-scale databases offer several disadvantages. First, they are not
designed for “querying” or locating specific records (e.g., all the accidents from a specific
site.) This becomes a greater problem as the number of records in the database
increases, and queries become important. Second, duplicate information across records
can increase storage requirements, and result in a propagation of errors through the
analysis. For example, suppose that records in an accident database contained site-
specific data. All accidents at a specific site would contain duplicate information. If the
researcher found it necessary to update the site-data at this site, all records in the
database would have to be updated simultaneously. Third, only one person (or
application) can use the database at a time. When edits or changes are being made, the
entire database is locked, and no one else can be provided access.

For many research projects, the small-scale solution (e.g., flat-file or spreadsheet) is
appropriate. Other solutions should be examined when multiple users require access to
the data, when the amount of data is large, or when the data is constantly being modified,
queried, or appended.

Medium-scale database solutions

Medium-scale data solutions include the desktop relational database management
systems (RDBMS). These systems store data in the form of related tables. Relational
databases are powerful because they require few assumptions about how data is related
or how it will be extracted from the database. Consequently, the same database can be
viewed in many different ways. An important feature of relational systems is that a single
database can be distributed across several tables. This differs from flat-file databases, in
which each database is contained in a single table. The internal organization of data can
affect how quickly and flexibly the analyst can extract information.

Requests for information from a relational database are made in the form of a query, or
stylized question. For example, the query

SELECT ALL WHERE NAME = “SMITH” AND AGE > 35

Volume II: 103

requests all records in which the NAME field is SMITH and the AGE field is greater than
35. The set of rules for constructing queries is known as a query language. Different
DBMSs support different query languages, although there is a semi-standardized query
language called SQL (structured query language). Sophisticated languages for managing
database systems are called fourth-generation languages, or 4GLs for short.

The information contained in a database can be presented in a variety of formats. Most
DBMSs include a report writer program that enables you to output data in the form of a
report. Many DBMSs also include a graphics component that enables you to output
information in the form of graphs and charts.

Medium-scale solutions tend to focus on the single-user. Performance of these systems
tends to degrade rapidly as the number of users accessing the data at any given time
increases.

Examples of medium-scale database management solutions include FoxPro, Paradox,
DBase, and Microsoft Access.

Medium-scale solutions are appropriate for a large number of research applications.
Other solutions should be examined when the size of the database exceeds around 500
megabytes (MB), when the data is constantly updated (e.g., real-time data collection), or
when the number of concurrent users and/or analysts is large.

Large-scale database solutions

While large-scale databases offer many of the same features as medium-scale
databases, they differ in several important aspects. First, they are generally designed to
handle large numbers of records (e.g., millions and greater.) As such, the overhead of
such a system is significantly greater than that of a medium-scale database, but this is
offset by the speed at which the data can be queried. Second, large-scale databases
include some level of transaction logging. This feature tracks changes to the database,
and allows the system manager to “rollback” or “undo” modifications if they are found to be
in error. Third, large-scale databases are designed to provide multiple users with
concurrent access to the data. It is common to have several hundred users concurrently
querying a large-scale database.

Large-scale databases tend to require a significant investment in the computer hardware,
and generally need expertise and resources available to manage, upgrade, and maintain
the system.

Large-scale databases include MS SQL Server, Oracle, Informix, Interbase, and Sybase.

Large-scale solutions are appropriate for special research applications. Traffic
management systems for a city, county, or state, for example, can manage their huge
databases with large-scale database management solutions.

Working with data warehouses

A data warehouse differs from a regular database in several aspects: 1) A data
warehouse is read-only; 2) A data warehouse contains data from disparate sources that

Volume II: 104

don’t easily share data; and 3) A data warehouse allows different applications and
software to make use of the same information.

Data warehouses also contain “metadata.” Metadata refers to data about other data.
Because a data warehouse contains data from disparate sources, the warehouse must
also contain information about the source itself (e.g., who owns it, where it is located, how
the data are collected, how often the data are updated, etc.) Prior to the use of data
warehouses, this information was typically stored in a manual.

As more state departments of transportation implement data warehouses, knowledge of
their content and access will be important to researchers.

From a data management perspective, the researcher would either access the data
warehouse directly, or create a new, local database (e.g., MS Access based),
downloading content from the data warehouse as needed.

Useful Data Handing Tools

Two tools are critical to the efficient and reproducible handling of statistical data: make and
perl. Taken together, perl and make offer an unbeatable combination for handling data
and managing large, complex statistical analyses.

Make

Make is one of several utilities originally developed for Unix programmers to aid in the
management of large software programming projects. The usefulness of make should not
be understated–it is an invaluable tool for the handling, management, and analysis of
statistical data. Make is available for a variety of computer operating systems and will run
on small laptops, desktops, workstations, and servers.

Make builds on the fact that every computer file has a time stamp associated with the last
time it was changed, edited, or updated. Make uses this time stamp to decide which files
are out of date with respect to each other. If make determines that two or more files are
out of date with respect to each other, make will automatically run the necessary programs
to get the files synchronized with each other.

Example: In its simplest form, the statistical analysis process includes the following steps:
“Load Data,” “Crunch Numbers,” then “Generate output.” One can think of these steps as a
“transformation” of “inputs” into “outputs.”

The “Crunch Numbers” activity needs to occur whenever the data is changed (e.g. new data
arrives, or existing data is edited), or the “Crunch Numbers” program itself is modified (e.g., a
new statistical test is added, or a new statistic is desired.)

The researcher often writes a “batch” file containing the necessary instructions to perform
the desired transformation, and executes these commands whenever necessary.

Make allows the researcher to store the “batch” commands within a “makefile.” Then, the
utility will execute these commands whenever the time stamp of the input or the program is
more recent than the time stamp of the output file.

Large statistical analyses often require that: 1) data from several sources be combined; 2)

Volume II: 105

several programs be executed on these data in a specific sequence with the outputs of
one program becoming the inputs to the next; and 3) reports be generated during the
process.

Large-scale analyses do not simply “appear.” They are performed incrementally, with the
researcher focusing on one small aspect of the problem, and when completed, turning her
attention to the next aspect of the analysis. In many cases, the results of one analysis (or
data transformation) are used as inputs to the next analysis.

Make allows the researcher to encapsulate the manipulations employed during each step
of the analysis into a single set of computer instructions. This helps ensure that other
researchers on other computers can repeat the overall analysis in the future.

Further, make helps the researcher operate more efficiently. For example, suppose that
one step of a complex analysis takes several hours to complete, and suppose that the
outputs of this analysis are used by subsequent programs for additional analysis. If the
researcher simply used a “batch” file to store the necessary instructions, the long analysis
step would have to be performed each time the researcher made a change to one of the
smaller, subsequent programs. By using make, only the necessary programs would be
executed, eliminating the need to constantly run the long analysis each time.

Perl

Perl is another of the Unix utilities that can save the researcher hours of time when
handling statistical data, and performing statistical analysis. Like make, perl is available
for most operating systems and will run on laptops, desktops, workstations, and servers.

Perl stands for “Practical Extraction and Reporting Language.” Perl was designed as a tool
for manipulating large data files, and as a “glue” language between different software
packages. Perl makes it easy to manipulate numbers and text, files and directories,
computers and networks, and especially other programs. With perl, it is easy to run other
programs, then scan their output files for specific results, and then send these specific
results off to other programs for additional analysis. Perl code is easy to develop, modify,
and maintain. Perl is portable, and the same perl program can run on a variety of
computer platforms without changes. Perl programs are text files and can easily be shared
with other researchers.

Example: The researcher spends a surprising amount of time transforming data from one
format to another. For example, many data collection devices generate text files with the
individual data elements separated by commas with each record containing a variable
number of characters and fields.

Many statistical analysis software packages require that each input record contain the same
number of characters and fields. In order for these software packages to analyze data from
data collection devices, the output of the data collection device must be cleaned (e.g., all
“funny” characters must be removed), and reformatted into an electronic format that can be
loaded by the statistical software.

For small amounts of data, many researchers perform this cleaning and reformatting task by
hand, or within a general-purpose software package like a spreadsheet. However, this
approach is prone to errors, and can result in irreproducible results. It also becomes very
cumbersome and time consuming when large data files, or large numbers of files are
transformed.

Volume II: 106

Perl is the perfect tool for these types of jobs, and it renders the analysis repeatable, which is
an important aspect of the scientific method.

References

1. Oran, A. and S. Talbott (1991.) Managing Projects with Make. O’Reilly and
Associates, Inc. Sebastopol, CA., ISBN 0-937175-90-0, 149p.

2. Singh, H. (1998.) Data Warehousing: Concepts, Technologies, Implementations and
Management. Prentice Hall, New Jersey, ISBN 0-13-591793-X, 332p.

3. Wall, L., T. Christiansen, and R. Schwartz (1996.) Programming Perl, 2nd Edition.
O’Reilly and Associates, Sebastopol, CA, ISBN 1-56592-149-6, 646p.

