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SUMMARY OF FINDINGS

The overall objective of this research was to develop a fundamentally sound method
for designing wet detention ponds to treat highway stormwater runoff. This was achieved
by collecting highway runoff and wet pond discharge data during storm events at two
selected sites in Washington (Vancouver and Spokane) with differing climates and
rainfal] patterns. The design approach culminated in the development of a decision
support system (DSS) program that allows the user to predict the performance of an
existing wet pond or size a wet pond to achieve desired effluent water quality.

A 1:12 scale model of the Spokane pond was constructed and tracer tests were
performed to define pond hydraulic characteristics under a range of inlet configurations.
These data were used to develop default values for the DSS.

Numerous storm event, water column and sediment samples were collected from the
Washington wet ponds over a two-year period. These samples were analyzed for a range
of constituents that included metals, nutrients, suspended solids, COD, PAH, and
toxicity. In addition, pond water column and sediment samples were collected and
analyzed for the same constituents. The data was compiled in a database and analyzed to
determine constituent retention effectiveness of the ponds. TSS and total metal (Cu, Pb,
and Zn) concentrations were found to be significantly reduced during each storm event in
the Vancouver and Spokane wet ponds. Soluble metal concentrations, however, showed
no general trend of concentration reduction from the pond influent to effluent. Effluent
concentrations of all metals were found to be below the surface water quality standards
for the state of Washington.

Nitrate was the only nutrient found to have a seasonal pattern in the Spokane pond
discharge concentrations. Removal of nitrate was positive in the warmer months during
algae growing seasons, and was negative during the colder months during algae
senescence. In contrast, TKN and ammonia had positive removal efficiencies throughout
the year, based on storm event, event mean concentration (EMC) values. Average
phosphorus concentration reduction for all storm events was poor with essentially no
removal of ortho-phosphorus and approximately 30% removal of total phosphorous.

Rainfall patterns in Spokane and Vancouver had an effect on the presence or
absence of a first flush of pollutants into the pond. For the coastal northwest, the more
typical first flush behavior was minimal to nonexistent because of the small, frequent rain
pattern characteristics of marine influenced climates of the northwest. Mediterranean
climates have the majority of precipitation during the winter months, and for the inland
northwest, this precipitation comes in the form of snow. All of the winter storm events
investigated, except for one, had the pattern of a first flush for total metals but no first
flush was observed for soluble metals. For the three remaining seasons, the presence or
absence of a first flush coexisted for total and soluble metals. When a first flush
occurred, the metals exhibiting the greatest first flush phenomenon was in the order
Pb>Zn>Cu>Cd.

PAH compounds were detected in stormwater runoff and in water column
samples in both Vancouver and Spokane. The most prevalent were pyrene, fluoranthene,
phenanthrene, and benzo(a)anthracene which are all reported to be emitted by
automobiles. Although pond water column samples occasionally tested positive for PAH,
all pond effluent samples tested were below the MDL for PAH.
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Mildly toxic results were observed for 7 of 13 storm event samples tested. Only
one effluent sample (Vancouver pond) exhibited a toxicity and this sample was also the
only one to exhibit acute toxicity. No determination was made regarding the cause of
toxicity however, and this would be a potential area of future research.

Scale model tracer testing indicated that wet ponds behave primarily as a CSTR
with significant dead volume. This, and other factors, directed the numerical modeling
toward a relatively straightforward 1-D predictive code. The code, imbedded within a
decision support system, yields reasonably accurate predictions of TSS and metal
removal and affords the user a means of generating wet pond outflow hydrographs.

The results of this research show that wet ponds are effective at removing many of
the commonly found pollutants in highway runoff. Simple wet detention ponds,
however, may not be sufficient for treating dissolved highway runoff constituents, the
fraction that the USEPA has recommended to set and measure compliance with water
quality standards.
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1 CHAPTER 1
INTRODUCTION AND RESEARCH APPROACH

Historically, most efforts to control water pollution focused on reducing direct
point source discharges into surface water bodies (1). Despite intensive efforts to
improve water quality via end-of-the-pipe treatment methods, many water bodies still did
not comply with water quality standards for recreational use. This realization prompted
an investigation of other sources, including nonpoint source (NPS) pollution. A 1986
U.S. Environmental Protection Agency (USEPA) report indicated that for approximately
two-thirds of impaired water bodies, NPS pollution was the primary cause for the
depreciated conditions (2). In 1989, the USEPA again identified NPS as the major
continuing cause of water quality deterioration in receiving bodies (3).

Highway stormwater runoff’s contribution to NPS pollution is a well known
phenomenon (4-13). Highway runoff constituents that are frequently cited as being of
concern include heavy metals, sediment, nutrients, and hydrocarbons (4,4,14,15). A
popular and cost effective approach for improving the quality of highway runoff entering
surface water bodies is wet detention ponds (16-19). Wet ponds have been described as
detention systems comprised of “a permanent water pool, a temporary storage area above
the permanent pool, and a littoral zone planted with native aquatic vegetation” (20). The
USEPA states that in general, a higher level of nutrient removal and better overall storm
water quality control can be achieved in wet detention ponds than can be achieved in
other retention systems such as dry ponds, infiltration trenches, or sand filters (21).

To properly design wet ponds for highway runoff, the dual functionality that most
runoff control devices provide must be understood. The two often-competing
considerations are hydraulic and environmental (22). The primary hydraulic
consideration is to size the basin to mitigate downstream flooding. Satisfaction of
hydraulic constraints must be established in terms of local drainage criteria.
Environmental considerations are focused on the quality of the discharged water and
pollutant removal efficiency of the ponds. The conflict that can exist between hydraulic
and environmental design is created by the fact that from a hydraulic viewpoint, the
optimum condition is to store the water just long enough to meet the drainage criteria and
then release it so that most of the storage volume is then available for the next storm
event. For environmental mitigation, however, the ideal condition may be to store all of
the water for an extended period of time so that physical, chemical, and/or biological
processes can take place to improve quality of the effluent.

Designing wet ponds to effectively intercept and treat highway runoff is still in its
infancy. Case studies and design manuals are available to the design engineer, but
current designs are generally applicable only regionally and contain more “art” of
designing than engineers have come to expect (16-19,23-26). Despite its nascent state,
wet pond design has been charged with the responsibility of addressing some very
complex environmental problems. Due to the inherent complexities of NPS pollution, in
many instances designers have not been able to define the technical requirements of
stormwater management that will necessarily meet the regulators’ treatment goals. For
example, it is easier to specify the treatment goal of reducing total metals concentration
by 80%, than it is to specify the exact technical measures required to meet that reduction
in a cost effective manner. To address that deficiency, the USEPA funded the



development of a plan for urban wet-weather flow management and pollution control
research needs and anticipated research directions for the next five years (14). The
research plan was divided into five major areas, each discussing a specific wet weather
flow question. Three of the areas highlighted for research were:
1. Characterization and problem assessment of urban stormwater effects on
receiving waters,
2. Impacts and control of toxic pollutants, including heavy metals and organic
chemicals, and
3. Wet weather flow control technologies, specifically low-cost natural systems.

To overcome the disparity between technical requirements and treatment goals
and to develop appropriate stormwater management and mitigation technologies, a broad
understanding of the current knowledge base pertaining to highway water quantity and
quality issues is required. While runoff volume from highways can be estimated
relatively accurately using hydrologic models such as SWMM, similar accuracy in
characterizing the contaminant concentrations in the runoff is not currently available (27).
Highway runoff pollutant concentrations have been shown to be dependent upon traffic
volume, time between storms, rainfall intensity and duration, seasonality, and
surrounding land uses (5,28). These time-variant factors that control runoff quality result
in a design process that can be problematic unless a better understanding is gained
regarding the significance of these factors on overall contaminant detention in a wet
pond.

1.1  Constituents of Concern in Highway Runoff

A list of typical highway stormwater constituents and their concentrations is
presented in Table 1. As indicated in the table, highway runoff exhibits a wide range of
both constituent type and concentration. Reported concentrations for some constituents,
such as Cu, vary by more than two orders of magnitude. While this sort of variation is
the exception rather than the rule, the range of concentrations and loads reported can
easily vary by a factor of 10 or more. Similar variability has been reported in nearly
every study devoted to quantifying stormwater pollutant concentrations in highway
runoff (6,29-31). This is a result of the broad range of system specific conditions that
affect runoff quality. The challenge becomes, therefore, to determine which constituents
have a high potential to exhibit negative environmental impacts at anticipated
concentrations and to determine how best to design a wet pond to minimize potential
impacts.



Table 1. Constituents of highway runoff - ranges of average values (4).

Constituent Concentration Load Load
(mg/L unless noted) | (kg/ha/year) (kg/ha/event)

SOLIDS
Total 437 - 1147 58.2
Dissolved 356 148
Suspended 45 - 798 314-11,862 84 - 107.6
Volatile, dissolved 131
Volatile, suspended 43-79 45 - 961 0.89 - 28.4
Volatile, total 57-242 179 - 2518 10.5
METALS (totals)
Zn 0.056 - 0.929 0.22 - 10.40 0.004 - 0.025
Cd ND - 0.04 0.0072 - 0.037 | 0.002
As 0.058
Ni 0.053 0.07
Cu 0.022 - 7.033 0.030 - 4.67 0.0063
Fe 2.429-10.3 4.37-28.81 0.56
Pb 0.073-1.78 0.08 - 21.2 0.008 - 0.22
Cr ND - 0.04 0.012 - 0.010 0.0031

| Mg 1.062

| Hg (x 10—3) 3.22 0.007 0.0007
NUTRIENTS
Ammonia, as N 0.07 - 0.22 1.03 - 4.60
Nitrite, as N 0.013 - 0.25
Nitrate, as N 0.306- 1.4
Nitrite + Nitrate 0.15 - 1.636 0.8 - 8.00 0.078
Organic, as N 0.965 - 2.3
TKN 0.335-55.0 1.66 - 31.95 0.17
Nitrogen, as N 4.1 9.80 0.02 - 0.32
Phosphorous, as P 0.113 - 0.998 0.6 - 8.23
MISCELLANEOUS
Total coliforms number/100 Ml 570 - 6200
Fecal coliforms 50 - 590
number/100 mL
Sodium 1.95
Chloride 4.63 - 1344
pH 7.1-72
Total Organic Carbon 24 -77 31.3-342.1 0.88 - 2.35
COD 14.7 - 272 128 - 3868 2.90 - 66.9
BOD 5 12.7 - 37 30.60 - 164 0.98
Polynuclear Aromatic 0.005 -0.018
Hydrocarbons (PAH)
Oil and Grease 2.7-27 4.85 - 767 0.09 - 0.16
Specific Conductance 337 -500
(umohs/cm @ 25°C)
Turbidity (JTU) 84 - 127




1.1.1 Sediment and Metals in Runoff.

The most frequently cited constituents of concern in highway runoff are sediment and
toxic metals. Both are known to cause negative environmental impacts and since a
significant fraction of metals are often associated with sediment as a metal-particulate
complex, metals and sediment should be considered together when designing
contaminant concentration reduction devices. For example, Greb and Bannerman
investigated the influence of particle size on wet pond effectiveness (32). They
determined that ponds needed to remove particles smaller than 2 pm in order to control
toxic pollutants present in runoff.

Historically, metals were regulated on a total metal concentration basis. More
recently, however, and the USEPA has recommended the use of dissolved metal
concentration to set and measure compliance with water quality standards because the
dissolved form more closely approximates the bioavailable fraction in the water column
than does total recoverable metal (33). The fraction of dissolved metals in solution can
be affected by system specific conditions that include the concentration and type of
particle matter, pH, and solution chemistry (major anion and cation type and
concentration). Evidence exists suggesting that, in general, the fraction of dissolved
metals is inversely proportional to suspended solids (particulate matter) concentration.
This is a result of the sorptive capacity of particulate matter for certain metal species.
Consequently, at higher suspended solids concentrations, one could expect a larger
fraction of metals to be bound to the particles (34). Unfortunately, there are data that
both support and contradict this generalization. If the data is accepted at face value, its’
contradictory nature could be a result of system conditions other than suspended solids
concentration (e.g., pH and/or the physical and chemical characteristics of the particulate
matter) or the fact that some data sets have low suspended solids concentrations relative
to other data sets. In addition, those investigations that analyze and evaluate only very
low or very high solids concentrations and not a range of concentrations, may show little
correlation between dissolved and particulate bound metal concentrations.

For example, some researchers have found significant fractions of specific heavy
metals in highway runoff in the dissolved phase (10,35). In a study of highway bridge
runoff, Marsalek et al. (1997) found the dissolved fractions of Cd and Pb to be below the
detection limit (10). However, the average soluble concentrations of Cu, Ni, and Zn were
0.047, 0.031, and 0.148 mg/L, respectively, or 35% to 45% of the total metal load in the
runoff. Furthermore, they found poor correlations between metals and suspended solids,
concluding that a significant dissolved metal load was present in the highway bridge
runoff (10). Morrison et al. found Zn and Cd to be mainly present in the soluble phase of
stormwater runoff, while Pb was found in the dissolved phase only 12% of the time
above the limit of detection (36). Copper was fairly evenly distributed between the
soluble and insoluble phases. In a study of particles and metals from an urban watershed,
Characklis et al. (37) found dissolved Zn ranged from 44% to 83% of total Zn and
dissolved Fe ranged from 6% to 43% of the total Fe. As a result, they suggested that for
the case of Zn, presence in the dissolved phase might render simple detention basins a
relatively ineffective form of treatment. Yousef et al. in investigating highway runoff in
detention ponds found that Cd, Ni, and Cu were generally present in dissolved fractions



that were about 50 to 75% of the total metal. Lead and Fe were approximately 5 to 20%
in the dissolved phase, and Zn and Cd were 30 to 50% in the dissolved fraction (13).

1.1.2 TPH and PAH in Runoff

Concern has been raised regarding the accumulation of hydrophobic organic
contaminants in our environment. Polycyclic aromatic hydrocarbons (PAHs) and
polychlorinated biphenyls (PCBs) are known to bioaccumulate and some of the
compounds within these groups are toxic and/or potential carcinogens to higher
organisms including fish and humans (38,39). One significant source of PAHs is
vehicular emissions with most being emitted in the form of phenanthrene, fluoranthene,
and pyrene (40). A number of studies have been performed that quantify PAHs in
highway and urban runoff, but few have been performed that evaluate the effectiveness of
wet ponds to retain PAHs (41). Since PAHs have low solubility, it would be anticipated
that they would exist primarily in the particulate-bound form in runoff. Two studies that
evaluated roadside soils and soil in a swale showed that PAHs were retained within the
first 5 cm and that concentrations decreased rapidly to below detection in deeper samples
(42,43).

1.1.3 Metals in Wet Ponds.

Mesuere and Fish (1989) found dissolved Pb and Cd were very low in all urban
stormwater runoff detention pond water samples and most samples were below detection
limits (44). In contrast, they reported that dissolved Cu was greater than 1.0 pg/L in most
samples, usually in the 3-10 pg/L range, and occasionally as high as 15 pg/L.. Dissolved
Cu showed little depth-specific differences, indicating that the ponds were generally well
mixed, but it appeared to exhibit a seasonal cycle related to the climate of the maritime
northwest. Dilute input from steady winter and spring rains induced low Cu levels in the
water column from midwinter into the summer. They concluded that a significant
increase in dissolved metals in the ponds occurred in the fall, possibly from a
combination of high-metal runoff and the decay of accumulated algae.

Lee et al. (1997) investigated the geochemical mobility of soluble metals in a
detention pond receiving highway runoff (9). At the sediment-water interface conditions
can exist that lead to complex chemical and biochemical reactions affecting fluxes of
dissolved trace metals between the sediment and the water. Metals bound to particles and
organic matter were reported not to be fixed permanently and may have been recycled
through geochemical and biological reactions in response to changes of physical and
chemical conditions. In general, it was found that the concentrations of all the metals in
the interstitial water showed a definite tendency of decreasing in the deeper sections of
sediment cores, regardless of the sample location. Cadmium and Mn were considered the
most mobile elements in the retention pond, with a reported relative mobility sequence of
Mn>Cd>Zn>Pb>Fe (9).

In general for detention ponds receiving stormwater runoff, Zn and Cd are more
often stated by researchers as being present in the dissolved phase, while Fe and Pb are
more often reported being present in the particulate phase. Investigators have described
Cu as varying from generally soluble to fairly evenly distributed between soluble and
insoluble phases.



1.2 Contaminant Retention in Wet Ponds

Several studies have been performed regarding constituent retention in detention
ponds. A pilot scale study of a detention pond in Jarnbrott, Sweden provided the
following result: total suspended solids (TSS) removal of 14% to 82%, Zinc removal of
32% to 74%, and Lead removal of 10% to 82% (16). These data are typical in that they
indicate a wide range of pollutant retention effectiveness for each constituent studied.
This is due to the complex and interrelated phenomena that can affect retention in a wet
pond. In the Pettersson study, the pollutant removal capacity was greatly influenced by
the antecedent dry periods for each storm event. A study of pollutant removal by a
stormwater detention pond in Greenville, N.C., showed median pond treatment
efficiencies were 71% for TSS, 45% for particulate organic carbon and particulate
nitrogen, 33% for particulate phosphorus, and 26-55% for metals (45). A combined
probabilistic-deterministic simulation of a detention pond located in an mining area of
Raleigh County, West Virginia, indicated that pond designs seldom meet the regulatory
requirements for sediment concentration on a daily or monthly basis, even though they
may comply with annual sediment yield requirements (46). Nevertheless, investigations
have shown that suspended solids reduction can be significant in detention ponds (47).

In addition, wet ponds have the potential to reduce influent soluble pollutants,
such as, Ammonia (NH3), Nitrate (NO5’), and Phosphate (PO43') by biological uptake.
The uptake and transformation mechanism will be dependent upon total pond biomass,
reaction rates, and hydraulic retention time within the pond. The removal can be
expedited by artificial growth of aquatic plants. Duckweed mixtures in stormwater ponds,
for example, have been found to be effective for the removal of total Kjeldahl nitrogen
(TKN), total phosphorus (TP), and NHj; (48). Generally, however, reported nutrient
removal effectiveness is less than for suspended solids and negative removals have been
reported. For example, a study of several wet ponds yielded a range of PO,>
concentration reduction of 20%-57% and nitrate concentration reduction range of —17%-
60%, while suspended solids reductions in the range of 39%-91% were reported (49).

As previously stated, numerous system specific conditions affect the contaminant
retention effectiveness of wet ponds. If we consider only the wet pond itself, and take a
reactor theory approach to assessing the probable controlling factors, we would consider
pond hydraulics (flow phenomena and mixing) and its impact on sedimentation, metal
partitioning onto particulate matter, and reaction rates as they pertain to biological
nutrient uptake. The following subsections discuss the in-pond factors with regard to their
affect on wet pond performance.

1.2.1 Flow Phenomena and Mixing

The degree of mixing plays a vital role in the overall performance of a detention
pond. The principal mechanisms of mixing are diffusion and dispersion. Diffusion, a
result of random molecular motion, will not have a significant impact on mixing in the
water column of wet ponds. Dispersion, the scattering of particles by the combined
effects of shear and transverse diffusion, accounts for the majority of mixing within most
wet ponds. Quantifying the degree of mixing, or dispersion within a reactor (wet pond), is
an essential first step toward developing a predictive tool that can be used to define
performance.



Two idealized mixing models, continuously stirred tank reactor (CSTR) and plug
flow tank reactor (PFTR), have been widely used in analyzing the mixing characteristics.
These models describe the extremes in mixing; a CSTR assumes perfect and complete
mixing and a PFTR assumes absolutely no longitudinal mixing (50). Unfortunately, wet
ponds will exhibit neither complete mixing nor plug flow but will have some
intermediate degree of mixing. Additionally, ponds will likely exhibit a certain degree of
short-circuiting that renders a portion of the volume of the pond ineffective. This portion
of the pond is often referred to as a dead zone. The degree of mixing and percent dead
zone (effective volume) can be estimated through the performance of inert tracer
experiments. These tracer tests result in effluent concentration-time data that can be
analyzed to quantify mixing characteristics (50,51).

1.2.2 Sedimentation

It is generally accepted that the performance of a wet pond is primarily dependent
on suspended solids removal since pollutants such as metals and PAH are often primarily
associated with solids. Consequently, the concentration of many stormwater pollutants
are regarded as being proportional to the concentration of total suspended solids (TSS) in
stormwater, and the modeling of TSS removal may thus provide a reasonable estimate of
overall pollution control performance of detention ponds (52). Consequently, therefore,
to move beyond the prediction of TSS removal to other contaminants such as PAH and
metals, the degree of partitioning of constituents must be defined.

1.2.3 Contaminant Partitioning

Contaminants can be present in two phases in aqueous solution; either dissolved
or sorbed to the sediment (particulate matter). The equilibrium partition coefficient for
dilute solutions represents the ratio of solid phase metal concentration (metal mass on the
solid phase normalized to the dry mass of solids) to the liquid phase metal concentration.
Factors that affect partitioning in a wet pond system include the concentration and type of
both the sorbent (particulate matter) and contaminant. For example, the size of sediment
has been shown to be inversely proportional to metal partition coefficients, with the
smaller particles retaining the largest fraction of metals (53). Solution conditions such as
pH and ionic strength also impact the degree of contaminant partitioning. Unfortunately,
little data exists that either directly reports contaminant partition coefficients in
stormwater

1.3  Adequacy of Existing Design Criteria

1.8.1 Necessity of Modeling

Development of design criteria for wet ponds can be complicated due to the non-
ideal flow characteristics that would be typical in a wet pond setting. The flow
phenomenon in these ponds is unsteady and is governed by pond configuration,
inlet/outlet condition, rainfall-runoff characteristics, and many other factors. The
hydraulic characteristics within wet ponds also vary over time as it fills with sediment or
as aquatic vegetation grows and dies over the seasons. Under these complex, time-variant
conditions, mathematical modeling can be an indispensable tool to assist in quantifying
flow and contaminant transport as well as storage and treatment phenomena in wet ponds
under a wide variety of conditions. One of the primary advantages of modeling is that it
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affords a means of defining factors that control dependent variables of interest in
complex systems, wet pond TSS and total metal discharge concentration as a function of
average flow, for example.

The approach to model development in such complex systems can take two
tracks. First, one could attempt to completely describe pond flow characteristics through
a complex 3-D model. These type models require detailed input parameters for each
system being modeled if they are to accurately represent system hydraulics and
ultimately, contaminant retention. If these parameters are unavailable, as would likely be
the case for most wet ponds, then numerous assumptions have to be made to develop a
set of input parameters. If all or most of the input parameters are assumed, any perceived
advantage of using a more complex model is essentially negated.

The second approach would be to utilize a simple 1-D model and evaluate and
calibrate the model with reliable data to see if it yields an acceptable level of predictive
accuracy over a wide range of conditions. If the model yields acceptable results, there is
no need to consider more complex numerical models. An obvious advantage of 1-D
models is there relative ease of use; an important consideration if one of the goals is
widespread use in the design environment.

1.4 Sedimentation and Maintenance

Pond maintenance can directly affect the overall success of the stormwater
management program. The frequency of maintenance has a large impact on both upkeep
costs and water quality, and it is the designer’s responsibility to achieve an appropriate
operating maintenance schedule. The designer should always strive to minimize the
overall amount of maintenance at the pond and to make that amount as easy as
practicable to perform (54). According to Yu, the most important routine maintenance
functions are cutting grass and weeds, removing sediment, repairing any erosion, and
cleaning out debris (18). In particular, deposited sediment, as well as floating plant
growth, and vegetation growing in the sediment, needs to be periodically removed from
the basin to ensure that the intended hydraulic function of the pond is not impeded.

Another study found that the flood control capacity of a dry detention basin
receiving stormwater runoff had been significantly reduced because of sedimentation
over its 18-years in existence (55). The initial design capacity of the basin decreased
from a 13-year storm to a 4-year storm. A second study of a stormwater dry detention
pond revealed that only 0.16% of the pond storage volume had been lost per year due to
suspended solids retention (45). In determining that percentage, the author assumed that
the sedimentation was evenly spread over the pond. Stanley (1996) suggested that trash
accumulation and woody vegetation growth in the pond may reduce the storage volume
much more rapidly than sedimentation (45).

1.5 Objective

The overall objective of this research was to develop a fundamentally sound
method for designing wet detention ponds to treat highway stormwater runoff. This was
achieved by collecting highway runoff and wet pond discharge data during storm events
at two selected sites in Washington with differing climates and rainfall patterns.



Additional runoff data was collected at a third site in Louisiana but was not used in
defining wet pond design criteria because the pond receiving the runoff was operated in a
zero discharge mode during most of the year. The design approach culminated in the
development of a decision support system (DSS) program that allows the user to predict
the performance of an existing wet pond or size a wet pond to achieve desired effluent
water quality. The overall objective was met by performing the following specific project

tasks.
®

Collect and analyze wet pond influent and effluent samples during storm
events for.

Collect and analyze pond water column samples for constituents including
metals (total and soluble), nutrients, TSS, chlorophyll a, and PAH/TPH.
Collect and analyze algae in the Spokane pond for metals during the summer
months.

Collect and analyze sediment, and sediment interstitial water for constituents
including total and soluble metals.

Continuously monitor rainfall, flow, pH and conductivity at each field site.
Define pond hydraulic characteristics (hydraulic residence time, effective
volume, dispersion and mixing) by performing inert dye trace studies on a
1:12 scale model of the Spokane wet pond.

Determine the amount of sedimentation and the mass distribution of sediment
by collecting field survey data over time. '

Develop a decision support system that incorporates design criteria developed
from the field and laboratory data.



2 CHAPTER2
EXPERIMENTAL METHODS

2.1  Experimental Sites

Two wet ponds in the state of Washington that received highway runoff were
selected for contaminant retention evaluation. A third pond was selected that was located
in Shreveport, Louisiana. Since this pond was operated as “zero discharge” for most of
the year, it was not used for the development of wet pond design criteria. One
Washington pond was located on the western coast of Washington in Vancouver, near
Portland, OR; the second pond was located on the eastern side of Washington in
Spokane, near the Idaho border. The Vancouver pond at Leverich Park was built in the
summer of 1978 to receive highway runoff from approximately 3.2 km (2 mi) of north
and southbound lanes of Interstate 5. The wet pond received runoff from approximately
5 ha (12 ac) of land. This runoff area was 95% I-5 and 5% 40™ Street exchange, with an
Average Daily Traffic (ADT) of 101,000. Vancouver, WA had an annual rainfall of 94
cm (37 in), with the wet season occurring during the winter and spring months. This
pond had a permanent pool of water for approximately 10 months out of the ycar and a
respective full-pool volume, surface area and average depth of 1140 m>, 929 m?, and 1.2
m. During extended dry periods in July and August, evaporation and 1nﬁltrat10n
exceeded inflow, causing the pond to dry out.

The Spokane pond at the interchange of Interstate 90 and State Highway 190 was
built in the fall of 1993 to receive stormwater runoff from approximately 1.6 km (1 mi) of
east and west bound lanes of Interstate 90 and their associated unpaved medians and
shoulders. The wet pond drainage area consisted of approximately 10 ha (25 ac) of
pavement and 6.4 ha (15.8 ac) of pervious land within the right-of-way limits with an
ADT of 49,400. Spokane, WA had an average annual rainfall of 42 cm (16.5 in), with
the wet season occurring during the winter and spring months. This pond had a
permanent pool of water throughout the year as a result of intercepting groundwater
springs during construction. The respectlve full-pool volume, surface area, and average
depth of the pond were 1857 m®, 2378 m?, and 0.9 m.

2.2 Wet Pond Scale Model Development

Both wet ponds were surveyed using an electronic total survey station (Topcon,
Model AT-G4) to generate contour maps using Surfer 6.01 (Figure 1 and Figure 2). The
Spokane pond was selected for scale model development and the survey data used to
establish the physical shape and dimensions. The inlet structure was a 0.9 m (3 ft.)
diameter circular concrete pipe entering into the north side of the pond at a slope of 2.9%.
A year round base flow of approximately 0.02 m*/sec (0.8 ft*/sec) flows into the pond.
The outlet structure was a 0.6 x 1.2 m (2 x 4 ft.) flat rectangular grate located at the
northeast corner of the pond. Surface water enters through the grate into a drop structure,
and is then conveyed away from the pond via a 0.45 m (1.5 ft.) diameter corrugated metal

pipe.
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Figure 1. Contour map of the Vancouver, Washington wet pond showing the inlet
and outlet locations.
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Figure 2. Contour map of the Spokane, Washington wet pond showing the inlet and
outlet locations.
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A number of factors influenced the selection of the model scale. The model had
to be large enough to diminish the effects of the viscous forces and avoid excess
influence from bottom friction and surface water tension, all of which could play a
significant role in altering the dynamics and therefore adversely affect the reliability of
the results from a smaller model. The model also had to be small enough to be
economically feasible, relatively easy to construct, and fit within the confines of the
space provided. A scale model ratio of 1:12 (model to prototype) was chosen as the best
compromise to the above considerations.

Once the length scale was selected, all other scales are fixed and the Froude
number was used to scale the model parameters. Scaling factors according to the Froude
number are as follows: length scale = L, velocity scale = L', area scale = L2, flow scale
=1 2, time scale = L', volume scale = L3. The data in Table 2 summarize the results of
the scaling under Froude law relationships.

2.2.1 Model Construction

A 6.7 m (22 ft.) long by 3.8 m (12.5 ft.) wide by 0.3 m (1 ft.) deep box frame was
constructed out of plywood strips to house the model. The frame was sized to allow for
7.6 cm. (3 inches) of excess on all sides of the model. A total of 15 cross sections were
placed width-wise within the frame. The first and last cross sections were spaced 50.8
cm. (20 inches) from the frames’ end cross sections. The remaining cross sections were
placed 40.6 cm. (16 inches) apart on center. Each cross section member was cut to model
the contours of the cross section of the pond that it represented prior to placement in the
frame. To do this the cross sections were first drawn out on the surfer contour map and
the distance between elevation changes measured and scaled to model size. Distances
and elevation changes were then marked on the cross sections and cut to fit the contours.
The result produced a scaled profile of the bottom contours of the pond.

2.2.2 Elevation Guidance and Leveling

To ensure that the frame was level, the elevations of the corners were measured
using an electronic total station (Topcon, Model AT-G4) and then brought up to equal
elevation using shims. Metal lathe was next placed across the cross sections and nailed in
place to roughly represent the bottom of the pond. Numerous 4-inch screws were then
driven approximately 2.5 cm into the cross sections marking each change in elevation.
Each screw’s elevation was measured using a digital level and crosschecked with the
electronic total station to ensure proper representation of the pond bottom surface.

The placement of the inlet and outlet structures was then measured and determined. A
hole was cut into the metal lathe in the corresponding location of the outlet structure and
another in the side of the frame at the closest point. A 5.1 cm (2 inch) diameter PVC pipe
was then temporarily inserted through the holes to represent the placement of the outlet
structure.
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Table 2. Parameters resulting from the scale modeling effort.

Parameter Scale Pond Model
Length (m) L 78.5 6.6

Width (m) L 34.9 3.7

Inlet Diameter (m) L 0.9 0.08

Outlet Dimension (m) L 0.6X1.2 0.05X0.1
Flow (m”/s) LY 0.1 1.9x10*
Volume (m’) i 1857 1.07
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2.2.3 Concrete Placement and Finishing

The next step in the model construction was to place a lightweight, crack
resistant, concrete base over the metal lathe to the elevation of the screws. A “Pool-base”
expanded perlite mixture was used for the concrete. Perlite is a hydrous silicate mineral
that expands greatly when heated and is often used for the purpose of insulation. “Pool-
base” perlite is specially modified for use in the construction of pools and other
applications requiring lightweight concrete. To ensure adequate strength, a 1:4 ratio,
cement/perlite, recipe was selected yielding a compressive strength in the range of 21-35
kg/cm? (300-500 1b/in?). Approximately 1.15 m® (40.5 ft.%) of concrete was required to
lay a 7.6 cm. (3 inch) base over the metal lathe. The concrete was trowelled into place
and made level with the tops of the screws to represent the contours of the bottom of the
pond. To provide a surface for the outlet grate, a flat 6.4 x 12.7 cm. (2.5 x 4 inch) plate
with a 5.1 cm (2 inch) diameter hole was fitted over the outlet pipe and leveled

After curing, the concrete was sanded to a smooth finish and painted with
Gacoflex Aromatic Urethane Coating U66, a rubber based epoxy. The pond was then
filled and a water surface elevation established. For the inlet, a 1.8 m (6 ft.) long 7.6 cm.
(3 inch) diameter PVC pipe was fitted at a 2.9% slope from the water surface. The pipe
ran away from the pond at the determined inlet location. The temporary outlet pipe was
removed. An open 5.1 x 10.2 cm. (2 x 4 inch) Plexiglas box representing the outlet grate
was fitted onto the level platform at the outlet. The top of the box was measured to
correspond with the water surface elevation. A 5.1 cm (2 inch) diameter PVC pipe was
run from beneath the level platform to the drain.

2.3 Model Tracer Studies

Dye tracer experiments were conducted in a scale model of the Spokane wet
pond. Two field tests were also conducted on Spokane wet pond in order to compare
results. All tests consisted of a pulse input of FWT Red fluorescent dye, a specially
formulated version of the dye Rhodamine WT (hereafter referred to as Rhodamine WT).
Concentrations were recorded at known times at the outlets using a Turner Designs,
Model 10-AU-005 Field Fluorometer. The fluorometer was calibrated to 200 parts per
billion (ppb) with a linear range between approximately 10 ppb, and 400 ppb. All
measurements exceeding the linear range were diluted to achieve an accurate reading.
Analysis of results included C(t) Curves (time versus concentration), F(t) curves, (time
versus fraction of mass remaining in pond), and the procedure presented by Rebhun and
Argaman to describe hydraulic efficiency (51).

2.3.1 Analysis Procedure

The Rebhun and Argaman analysis quantifies the various flow regimes within a
system utilizing a graphical method based upon earlier work by Wolf and Resnick
(51,56). The Rebhun and Argaman equation allows one to quantify mixing in
sedimentation basins.

F()=1- exp{ - )l(""')[é_p(l_'")]] 1)
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where F(t) represents the fraction of the tracer mass remaining in the tank; m is the dead
space fraction of the tank volume; 1-m is the effective volume of the tank; p is the plug
flow fraction of the effective volume; and I-p is the perfectly mixed fraction of the
effective volume.

Wolf and Resnick determined that the F(t) function for a real system had the

form:

-a(r-8)

Ft)=1-e T 2

where a and @represent constants expressing the ratio between flow types within a
system, ¢ is time and T is hydraulic retention time. Rebhun and Argaman gave physical
meaning to the constants a and fin equation 1, with:

1

T a-pa-m ©)

and:
6 = p(1—m) @

Rearranging Rebhun and Argaman’s equation (Equation 1) and taking the natural
logarithm of both sides produces:

nfl- F()]= - —v P )

-p)t-mp  (-p)

in the form of Y = mx + b. In this form, the two unknowns (p and m) can be solved for.
Plotting In[1-F(t)] versus t/0 produces a plot with a straight line portion. In[1-F(z)] has a
value of zero until the breakthrough time (time of first arrival of tracer at the outlet. By
setting In[1-F(2)] equal to zero and using the breakthrough time divided by the theoretical
hydraulic residence time, and the slope of the straight line portion of the plot, the
variables m and p can be solved for.

Some subjectivity is inherent in the analysis procedure, primarily in the
determination of slope and breakthrough time. The slope of the straight-line portion of
the graph is dependent upon the choice of points use for it’s determination. The
procedure is fairly sensitive to change in slope. During the analysis of the experiments
conducted for this research slopes were chosen in a consistent manner thought best to
represent the largest portion of the straight line.

The breakthrough time was chosen as the point at which the slope intercepts the x
axis. Trace amounts of dye are generally detected at the inlet prior to this time but the
value of In[1-F(t)] is still approximately zero. An example plot is shown below, () to give
a clearer understanding of the determination of the values used for the analysis.
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Example Plot [ In [1-f(t)] vs. t/0]
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Figure 3. Example of the application of the Rebhun and Argaman analysis

procedure.
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2.3.2 Scale Model Experiments

Eleven experiments were conducted in triplicate (Table 3). Inflow was kept
constant throughout the experiments at 11.9 L/min (0.007 ft.%/s), with the exception of
Experiment M11, which was conducted using the Spokane wet pond base flow of 0.02
m*/sec (0.8 ft*/sec) scaled to model size, 2.8 L/min (0.10 ft*/min). Flow into the model
was generated using a calibrated, variable speed Masterflex peristaltic pump, (Model
7549-30) fitted with Masterflex 6402-82 tubing. Rhodamine dye was injected directly
into the tubing using a hypodermic needle and syringe to limit mixing prior to entrance
into the model. Entrance velocity was scaled by the size and slope of the inlet pipe to
correspond with the entrance velocity of the prototype.

Two sets of experiments were conducted with the existing Spokane pond
configuration, experiments M1 and M11. These experiments were designed to establish
the hydraulic performance and mixing characteristics of the existing wet pond and to
serve as a basis for comparison for the studies with modified configurations. The data
from these experiments was also used to establish parameters for the development of the
predictive computer model (DSS). The remaining experiments were performed to gain
information regarding the effects of placing inlet baffles on overall mixing characteristics
within the pond. A complete description of the other experiments (M2-M10) and their
results can be found in Coombs, 1998 (57).

2.4  Sample Collection

2.4.1 Water Samples

Automated flow meter/data loggers and sample collectors (American Sigma 960
flow meter/data logger and American Sigma 900 portable sampler) were installed at the
influent and effluent discharge locations at both the Spokane and Vancouver ponds. Each
sampling station included a 12-volt battery for power, Motorola 3W cellular telephone
(Model 19106NALSF) and modem, pressure transducer/velocity probes, pH/conductivity
probes, and rain gauge. The batteries were recharged with a Solarex solar panel, (model
MSX 64). The equipment was housed in two sealed 55-gallon steel drums.

Each station also included a tipping bucket rain gauge (Sigma Model 2149) that recorded
each 0.01 inches of rain. Precipitation, flow rate, water temperature, pH, and
conductivity were recorded at 2-minute intervals to define storm and inter-storm events
as accurately as possible. The data logger also recorded sampling dates and times for
each storm event. All data was downloaded remotely using the cell phone — modem
system and Sigma Insight (remote connection software).

During rainfall events, pond influent (highway runoff) and pond effluent samples
were collected automatically. Discrete water samples were collected based on a pre-
selected time interval after sampling was initiated. Sample initiation was triggered when
the water depth and the amount of precipitation exceeded predetermined setpoints. These
setpoints were changed to reflect weather patterns at different times of the year. Initially
the samplers were configured to collect discrete samples in each of 24, 575 mL
polyethylene bottles. Later, eight 950 mL glass bottles were used to collect samples for
polycyclic aromatic hydrocarbon (PAH) and total petroleum hydrocarbon (TPH) analysis.
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Table 3. Scale model experimental conditions for all tracer runs.

Experiment . ) Flow Volume Theqretical
No. Modification (L/min) (@) R§s1dence
Time (hr)
Ml None 11.9 1648 2.3
M2 Parallel Baffle 11.9 1648 2.3
M3 30° Baffle 11.9 1648 2.3
M4 60° Baffle 11.9 1648 2.3
M5 Short 60°
Baffle 11.9 1648 2.3
M6 5% Island 11.9 1500 2.1
M7 10% Island 11.9 1400 2.0
M8 15% Island 11.9 1300 1.8
M9 Submerged
Inlet 119 1648 2.3
M10 Angled
Submerged 11.9 1648 23
Inlet
Ml1 Base Flow 2.8 1523 9.1
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Water column samples were collected quarterly over a two-year period. The
samples were collected at three locations within the pond: near the inlet structure, near
the outlet structure, and in the dead zone area of both the Spokane and Vancouver ponds.
Two samples were collected at each site, one approximately 6 cm below the surface and
the other approximately 6 cm above the bottom.

2.4.2 Sediment Samples

Sediment cores were collected three times per year from October 1997 to May
1999 in three pond locations. A 5-cm (2-in) diameter sediment corer (stainless steel) was
used to collect cores up to 30 cm (12 in) deep, depending on the soil type. During each
sampling event, three “replicate” cores were taken from locations near the inlet structure,
near the outlet structure, and in the dead zone, an area of little water circulation. The
cores were sectioned, when possible, into 10 cm increments and the sections placed in
labeled Nalgene containers.

2.4.3 |Interstitial Water Samples

Sediment pore-water (interstitial water) was collected using porous cup lysimeters that
were place near the inlet, outlet and dead zone of the Vancouver and Spokane pond.
Samples were collected from the lysimeters three times per year by placing a Tygon tube
down the lysimeter and pumping out the contents with a Nalgene hand vacuum pump
(Fisher Scientific) and analyzed for soluble copper, iron, lead, cadmium, and zinc.

2.4.4 Algae Samples

Three times during the summer, samples of algae were taken from the pond at several
locations (Figure 4). The three sample sites (S1, S2, and S3) located between the pond
inlet and outlet were place in those locations because a significant portion of the inlet
flow was observed to travel along this path toward the outlet. Samples were collected by
placing a 30.5 cm square frame in the selected area to use as a visual refernce, as the alga
from the pond bottom to the surface was extracted and placed in a Nalgene container.
Excess water was decanted, and the alga dried. The dry alga was then ground, using a
porcelain mortar and pestle, and divided into triplicate samples. Each triplicate sample
was acid digested based on a method reported by Havalin and Soultanpout for subsequent
ICP analysis to quantify metal concentrations (58).
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Figure 4. Contour map of the Spokane, Washington wet pond showing the
algae sample collection locations.
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2.5 Sample Analysis

2.5.1 Water Analysis

Aqueous phase samples were collected and stored according to the procedures
specified in Standard Methods for the Analysis of Water and Wastewater (hereafter
referred to as Standard Methods) (59). Analyses for all pond influent and effluent N
samples included: Total Kjeldahl nitrogen (TKN), ammonia, nitrate, total phosphorus,
ortho-phosphorus, total suspended solids, volatile suspended solids, alkalinity, chemical
oxygen demand, and total and soluble copper, zinc, cadmium, and lead. Nutrients and
solids were analyzed according to the following Standard Methods procedures (59):

TKN 4500-Norg B. Macro-Kjeldahl, Ammonia 4500-NH3 B. Preliminary Distillation
Step and C. Titrimetric Method; Nitrate 4500-NO3E. Cadmium Reduction Method; Total
Phosphorus 4500-P B. Sulfuric Acid-Nitric Acid Digestion and E. Ascorbic Acid
Method; Ortho-phosphorus 4500-P E. Ascorbic Acid Method; Alkalinity 2320 B.
Titration Method; COD 5220 D. Closed Reflux, Colorimetric; TSS 2540 D. Total
Suspended Solids at 103-105 'C, and Volatile Suspended Solids 2540 E. Fixed and
Volatile Solids Ignited at 550°C.

Total and soluble metals were analyzed according to USEPA Method 200.7 (60).
The acid extracts resulting from this procedure were stored at 4 °C prior to inductively
coupled argon plasma (ICP) analysis in 50 mL Nalgene bottles. Initially, a Thermo Jarrell
Ash ICP spectrophotometer (Model ICAP-61) was used for all metal analyses. Due to the
MDL of the Thermo Jarrell Ash ICP (approximately 10 pg/L for Cu, Zn, and Cd and 20
ng/L for Pb) and the generally low metal concentrations present in aqueous phase
samples, many storm event and water column sample concentrations were reported as
less than MDL. A newly acquired ICP mass spectrometer (ICP-MS) was employed to re-
run over 500 samples that were collected during storm events. The Hewlett-Packard ICP-
MS (Model 4500 Plus) gave method detection limits (MDLs) for total metal
concentrations of: 0.759 pg/L for copper, 2.856 ug/L for zinc, 0.181 pg/L for cadmium,
and 0.327 png/L for lead. For soluble metal concentrations MDLs were: 0.175 pg/L for
copper, 2.983 pg/L for zinc, 0.157 pg/L for cadmium, and 0.062 for lead. The MDLs
were determined by applying a statistical analysis to ICP/MS data generated from
replicate blank samples and replicate samples that covered a range of concentrations (61).

Selected samples (storm event and water column) were also tested for TPH
(USEPA Method 418.1), PAH (USEPA Method 8270) and toxicity. Toxicity was tested
on a limited number of samples using the 96-hour Selenastrum capricornutum (algae)
chronic test and the 48-hour Daphnia magna acute toxicity test, which were performed at
Oregon State University. Addmonal toxicity data was collected on influent and effluent
samples usmg the Microtox® acute toxicity protocol. The test consisted of exposing the
Microtox® test organism, a luminescent marine bacteria Vibrio fischeri, to dilutions of a
known concentration of the sample. A concentration that was lethal to 50% of the
population, which was reported as an effective concentration or ECsy, was then
calculated.

22



2.5.2 Sediment Analysis

A known mass of sediment was sieved to determine grain size distribution, after
drying, through US sieve series number 4, 10, 60, and 200 (62). Sediment retained on the
60 and 200 sieves and sediment passing the 200 sieve was analyzed for metals that
included copper, lead, cadmium, zinc, and iron (60). This acid digestion procedure
extracts what is sometimes referred to as “available” metals and is not intended to
completely digest the sample to assess actual sediment mineralogy. The acid digest
solution was placed in 50 mL Nalgene bottles and stored at 4 °C prior to ICP analysis. In
addition, percent organic matter was determined for selected sediment samples.

2.6 Statistical Methods

The method selected for characterizing highway runoff and for estimating
stormwater pollutant loads in this research was the use of event mean concentration
(EMC). This method assumes that constituent concentration is constant within each time
step of the simulation and that calculated loads depend only on how well the EMC is
estimated and how well storm flows are measured (63). An EMC value represents a flow
average concentration computed as the total pollutant load (mass) divided by the total
runoff volume (Equation 6).

].c(t)q (r)dr

EMC=(,—‘=%—°— (6)

;|:q(t)dt

Where M is the total mass of constituent over the event duration; V is the total volume of

water generated during the flow event; C is the flow weighted average concentration for
the entire event; c(t) is the time variable pollutant concentration; g(?) is the time variable
flow; and ¢ is time. For this research, constituents that were present in the runoff samples
at concentrations below the MDL were assigned a value of zero during the calculation of
EMC values. The concentration flow data was manipulated using MathCAD to calculate
the values of EMC.

Correlation coefficients were used to evaluate potential relationships within the
observed data. The correlation coefficient, r, also known as the Pearson product moment
correlation coefficient, is an index of the degree of liner association between two random
variables. Mathematically, the correlation coefficient is written as:

n

2 (x,. _f)()’i . y)
)

" B -
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where: x; and y; are individual values of the two random variables, respectively, X and

y are the sample means of the two random variables, respectively, and n is the number
of samples. The correlation coefficient is unitless and varies between minus one and plus
one, where —1.0 represents a perfect negative correlation and +1.0 is a perfect correlation
of the two random variables. An r value of zero indicates that no linear relationship
exists between the variables being evaluated (64). A significance test was performed to
determine if an observed correlation coefficient was significantly different from zero.
When the true correlation is zero, it can be shown that the statistic

®)

has a t-distribution with n-2 degrees of freedom, provided that both variables are
normally distributed (64). This is an appropriate test for significance with highway
runoff constituents since EMCs vary from one storm to another following a log-normal
distribution (27,29,63).

2,7 Predictive Model Development

2.7.1 Flow Simulation

The mass conservation equation was applied to a wet pond system to define
outflow. The rate of change of storage in a detention pond can be found by writing a mass
balance equation between inflow, outflow and losses for the entire system in the
following manner.

AVIAt=I-0-L ©9)

= Lo+

i 2 10
b (10)

5=01+02 (1)
2

E:L‘+Lz (12)
2

AV =V,-V, (13)

where AV = change in pond volume (m®); At = time step (sec); 1= average inflow rate
during At (m*/s); 0= average outflow rate during At (m?/s); L = average loss rate during
At (m*/s); Iy = inflow at the beginning of time step (m”/s); I, = inflow at the end of time
step (m3fs); O, = outflow at the beginning of time step (m3/s); O, = outflow at the end of
time step (m*/s); L; = total loss at the beginning of time step (m*/s); L, = total loss at the
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end of time step (m*/s); V; = volume at the beginning of time step (m®); and V; = volume
at the end of time step (m).

For a given time step, I;, I, Oy, and V,; are known and O; and V; need to be
determined. O; can be determined from the storage — outflow relationship. If there is a
rectangular weir at the outlet for example, the outflow equation can be written as

0,=C,LH" (14)
with
2
C,= 5C.,,/zg (15)

where C,, = weir constant; L, = effective length of the weir (m); H = head measured
above the weir crest level (m); Cq4 = coefficient of discharge (dimensionless); and g =
acceleration due to gravity (m/sec?) (65).

Substituting all the values in Equation 9, V, can be found by

I, +1 + L +L
: 2Al‘—Ol 02At— 2 At (16)

V,=V +
2 2 2 2

2.7.2 Dissolved Constituent Simulation

Considering no reaction in a reactor, the following equation can be used to find
the number of CSTRs in series to account for measured or assumed reactor dispersion
(50)

NNt/ )™ i,

C =Co—(1vTe (17)

. ‘lcqﬂr
with Ip 23 (18)

where C = effluent concentration at any time (mg/1); C, = initial concentration (mg/); t=
time (sec); N = number of CSTRs in series; tg = theoretical residence time (sec); Vg =
Effective volume of the reactor (wet pond) or built volume minus dead volume (m3); Q=
average flow to the pond (m%/s).

It was determined that under a variety of flow and pond configurations, wet ponds
behave essentially like a CSTR type reactor with dead volume (a complete discussion of
the foundation of this finding can be found in Chapter 4). Considering a CSTR with a
first-order reaction, the mass balance equation can be written as

25
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The above written mass balance equation can be approximated for the time
interval At as
C2V2 _C1VI — Cilll L CizI2 . C101 +C202 _ C1L1 +C2L2 -K Ctvl +C2V2
At 2 2 2 2

(20)

where C; = effluent concentration at the beginning of time step (mg/L); C; = effluent
concentration at the end of time step (mg/L); C;; = influent concentration at the beginning
of time step (mg/L); C;; = influent concentration at the end of time step (mg/L); and K =
first order reaction rate constant (sec'l).

From the solution of the flow routing equations, I, I, Oy, Oy, L;, Ly, V;, and V
are known. The concentration in the pond at the beginning of the time step, C;, and the
influent concentrations, C;; and C;, are also known. Knowing the first order decay rate,
K, the effluent concentration, C,, can be found by rearranging Equation 20 as

C 1L +C,1I
clvl+( Al 4 2)At—clol e -Gl g, ECY

€= - KA 20 L2 : 21)
v, 14220 ) Do pr g 22
2 2 2

2.7.3 Solids Removal Simulation

Sediment removal was predicted using discrete particle settling theory that is
based on Stoke’s law. The terminal settling velocity of a discrete particle can be defined

as
4 gd

V.= |—=—(@S A -1 22

; 1’3%(" ) (22)

where V; = settling velocity of particle (m/sec); d = diameter of particle (m); S, = specific
gravity of particle (dimensionless); and Cp = drag coefficient (dimensionless) (66).

Additionally,

C, =2 Nk <05, or (23)
Ng

= 24 3 1034,if0.5<Ng <10% or (24

v
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Cp, =0.4,if Ng > 10* (25)
where
Np=—Z, (26)
1 %

Nr = Reynolds number (dimensionless); and v = kinematic viscosity (m2/sec).

Percent removal of suspended solids is a function of the overflow rate or design
settling velocity (66). Surface overflow rate is given by

y =L Q7)

where V,, = surface overflow rate (m/sec); Q, = average outflow from the pond (m3/s);
and A = surface area of the pond (m2).

Percent solids removal was computed by
177

FR=(1-F,)+= [V,dF (28)
V.5

where FR = Fraction of solids removed; (1 — F,) = fraction of particles with settling

Fa
velocity Vi greater than V. Vl- J‘deF = fraction of particles with settling velocity V;
o0
less than V,,.

2.7.4 Metal Partitioning Model

A linear isotherm model approach was used to correlate the particulate bound
solid phase and dissolved liquid phase concentration of each metal. At equilibrium, the
linear model is expressed as

C,=K,C, (29)
where C; = equilibrium particulate bound metal element mass (mg/kg of dry solids, TSS);
K4 = partition coefficient between solid and dissolved mass (I/kg); and C, = equilibrium
dissolved (liquid phase) concentration of metal (mg/L).

The total metal concentration was written as

C,=C. +C, (30)

After accounting for unit inequalities and then rearranging we have
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_ G (31
© (K,*TSS, /10° +1)

where C; = Concentration of total metal (mg/L); and TSS;, = Total suspended solids in
the solution (mg/L). Equation 31 was used to calculate the dissolved phase metal
concentration knowing C;, K4, and TSS;,.

Assuming that metals partition on to particles uniformly, regardless of the size,
the fraction of particulate bound metal exiting the pond was expressed as

C,=(-FR)*C, (32)

where C,. = solid phase metal concentration in the effluent (mg/L); and FR = total
fractional removal of suspended solids.

Therefore, the total metal concentration exiting the pond was written as

Cte = Cse + Ce (33)

where C,. = total metal concentration in the effluent (mg/L).

Metal removal efficiency was defined as

y= %XIOO (34)

!

where y = metal removal efficiency (%).

2.7.5 First Order Nutrient Rate Constant Determination

First order rate constants were estimated for the degradation of TKN, NHj, total
phosphorous, ortho phosphorous, and NO;3™ by collecting data utilizing three in-field
reactors that were placed in the Spokane wet pond. The reactors were made from clear
Plexiglas, and measured 30cm x 30cm x 137cm and were open on each end. Each reactor
was placed in the pond by forcing the bottom-end into the pond sediment. The reactors
were further secured by attaching them to concrete blocks. This approach was used to
simulate actual pond conditions of light and temperature and to afford a means of
accounting for any sediment-water column interaction with regard to its affect on nutrient
concentration. The reactors were then spiked with highway runoff slurry that was
collected by pouring deionized water onto the pavement of SR 195 and extracting the
water from the pavement with a hand-held vacuum. This slurry was added to each
reactor, the reactor contents mixed and a time zero sample taken for quantification of
nutrients. Samples were collected intermittently over a 42-day period for constituent
analysis.
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The samples nutrient concentration-time data that resulted was used to estimate
first order reaction rate constants for each constituent. The standard first order rate
equation was integrated and linearized and the data fit using linear regression was used as
shown below.

4g __ KC
dt
C, t
fdc = —Kj dt (35)
Co 0

InC, -InC, =-Kt

Where Cy and C, are constituent concentrations at time zero and ¢, respectively and X is
the first order rate constant. The slope of the least squares best fit line (linear regression)
after plotting In(C) vs ¢ yields K.

29



3 CHAPTER3
RESULTS AND DISCUSSION

3.1 Wet Pond Constituent Retention

At the Spokane experimental site, 16 storm events were monitored from
September 1997 to April 1999. Of those 16 events, 9 had a full complement of inlet and
outlet nutrient and suspended solids data and 7 had a full complement of inlet and outlet
metal data. The remainder of the events had inlet data but no corresponding outlet data, a
result of insufficient flow in the outlet to trigger the sampler or sample collection device
malfunction. During the same time frame, 10 storm events were monitored at the
Vancouver site but only 3 could be used for metal removal interpretation.

The data in Table 4 presents the constituent EMCs, mean, standard deviation, and
pond removal efficiencies (expressed as a reduction in concentration from the inlet to the
pond outlet) for all analyzed runoff constituents for all storm events monitored at the
Spokane pond. The data in Table 5 presents the constituent EMC, mean, and standard
deviation for monitored events at the Vancouver pond. Because the outlet control
structure functioned erratically, making the collection of effluent samples difficult and
inconsistent, pond removal efficiency data is not available for the Vancouver site. In
general, highway runoff pollutant concentrations entering the Spokane pond were
approximately twice those entering the Vancouver pond. This was attributed to the more
frequent, smaller storm events occurring in coastally influenced western Washington as
compared to the more arid climate of eastern Washington. With less time between runoff
events in Vancouver, build up of pollutants on the highway was minimized.

3.1.1 Metals

Driscoll et al. (1990) compiled the following median EMC data for total metals
from highways with ADT greater than 30,000 vehicles: lead 400 pg/L; zinc 329 pg/L,
and copper 54 nug/L (29). In this research, EMCs were determined for both total and
soluble lead, zinc, copper, and for total cadmium. For the influent and effluent water at
the Spokane pond, the mean EMC for total lead was 58 pug/L and 8 pug/L, respectively,
with a mean removal efficiency of 63.3% and a range of 7.1% to 98.7% removal. As
expected with the removal of lead from fuel, lead concentrations were much lower than
those found in previous decades. The corresponding soluble lead mean EMC was 6 pug/L
for both the influent and effluent with a mean removal percentage of —48.47, with a range
of -350% to 100%. Only two events, October 9, 1998, and February 16, 1999, had
positive removal efficiencies for soluble lead; all other events had zero or negative
removals. In comparing the fraction of soluble lead to total lead, soluble lead accounted
for 10% of lead in the influent and 75% of lead in the effluent, a result of lower sediment
concentration in the pond effluent.

The mean influent EMC at the Vancouver pond was 30 pg/L for total lead and 3
ng/L for soluble lead. While these concentrations were approximately half of those
determined for the Spokane runoff, the two means were not statistically different at o =
0.05 based on the two-tailed, unequal variance ¢-test.
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Total zinc mean EMCs were 489 ug/L for the influent and 122 pug/L for the
effluent, in good agreement with that listed by Driscoll et al. (29). The influent mean
soluble zinc EMC was 53 pg/L, and the effluent mean was 38 pg/L.. The mean removal
efficiencies were 62.44 % and 41.14 % for total and soluble zinc, respectively, with
respective ranges of 8.22% to 92.82% and —9.68% and 57.84%. In comparing the
fraction of soluble zinc to total zinc, soluble zinc accounted for 11% of zinc in the
influent and 31% of zinc in the effluent. The relatively low percentages of dissolved zinc
are in contrast to the findings of Sansalone and Buchberger (1997) who found that 95%
of zinc existed in the dissolved state in runoff..

As with the total lead concentrations, the total zinc mean influent EMC in
Vancouver was approximately half of that found in Spokane, 228 pug/L. The soluble zinc
concentration, however, was slightly higher at 69 pg/L. Neither mean zinc values were
statistically different at the o = 0.05 level.

Spokane total copper mean EMCs were 63 pg/L for the influent and 13 pg/L for
the effluent, again in good agreement with Driscoll ez al. (29). The mean removal
efficiency for total copper was 68.16%, with a range of —14.29% to 92.91%. Soluble
copper had a mean influent concentration of 13 ug/L and a mean effluent concentration
of 7 ug/L for a mean removal efficiency of 45.41%. The removal efficiency range was
10.00% to 76.92%. In comparing the fraction of soluble copper to total copper, soluble
copper accounted for 21% of copper in the influent and 54% of copper in the effluent. As
with lead and zinc, the effluent copper concentration was below the Washington state
surface water standard. Sansalone and Buchberger (1997) reported that copper existed
primarily as a dissolved constituent in highway runoff; our effluent percentage agreed
with that assessment (35). Mean EMC values at the Vancouver pond were 30 pug/L for
total copper and 9 ug/L for soluble copper. These differences also were not statistically
significant.

Total cadmium, a metal not reported by Driscoll et al (1990) had the following
mean EMCs: 3 ng/L for the influent, 1 pg/L for the effluent, and a removal efficiency of
54.75% for the Spokane site. The range of removal efficiency was 0.00% to 93.75%.
The Vancouver influent mean EMC for total cadmium was also 3 pg/L. Soluble
cadmium was also tested in each storm event but was consistently below the MDL, and
thus, is not report here.

Unlike Mesuere and Fish (1989), the results from the Spokane pond do not show
an increase in soluble metal concentration in the fall months due to algae die off (44).
However, effluent concentrations of dissolved metals as a percentage of total metals were
at least 2.5 times greater than influent concentrations, suggesting that the dominant
removal mechanism in the pond was sedimentation. This confirms the work of
Characklis and Wiesner who stated that sedimentation alone may not be completely
effective for removal of metals from runoff (37). They suggested that the nature and
removal efficiency of individual metals may need to be evaluated separately before
assessing the potential merits of any stormwater treatment system. The results of this
study concur with that assessment. It should be noted, however, that although the
dissolved metal fraction was significantly greater in the effluent, the concentrations were
well below surface water quality standards.
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3.2 Nutrients

3.2.1 Nitrogen

Driscoll et al. (1990) listed a median EMC for nitrate and nitrite of 0.76 mg/L for
highways with ADT greater than 30,000 vehicles (29). The Spokane pond had a mean
nitrate EMC of 3.52 mg/L for the influent and 3.37 mg/L for the effluent, much higher
than the value listed by Driscoll ef al. (1990). The high nitrate concentrations were
attributed to the intercepted spring water, which is believed to flow through soils of
former septic systems. The mean removal was —16.01%, with a range —-113.81% to
64.23% (Figure 5). During the summer months, this pond became almost entirely
covered with filamentous algae (Mougoutia and Gomphonema). With the onset of colder
weather, the algae died, likely releasing some nutrients through degradation and decay.
As shown in Figure 5, the nitrate removal data followed this growth and decay pattern.
Removal efficiency was positive in the warmer months of May through October. The
removal efficiency was negative in the colder months of November through April during
algal senescence and nutrient release.

In contrast, both TKN and ammonia had positive removal efficiencies at 50.15%
and 51.70%, respectively. The range of removal efficiency for TKN was 3.34% to
81.83% and for ammonia was —0.36% to 88.23%. Mean influent TKN EMC was 4.53
mg/L and mean effluent EMC was 1.98 mg/L; mean influent ammonia EMC was 1.50
mg/L and mean effluent EMC was 0.62 mg/L. The effluent ammonia concentrations
were below the Washington state surface water quality standard of 735 pg/L. TKN,
ammonia, and nitrate runoff concentrations were elevated with respect to the natural
spring water entering the pond. The spring water had a TKN concentration of 2.4 mg/L,
an ammonia concentration of 0.43 mg/L, and a nitrate concentration of 3.9 mg/L. The
most likely source of nitrogen-based nutrients was fertilizer applied to right-of-ways and
median natural ground covers.

The mean EMCs for nitrogen-based nutrients in the Vancouver influent were
3.402 mg/L for TKN, 1.019 mg/L for ammonia, and 1.889 mg/L for nitrate. All
concentrations were lower in the Vancouver runoff as compared to the Spokane runoff,
but none were statistically different at the o = 0.05 level.

3.2.2 Phosphorus

As shown in Figure 6, phosphorus-based nutrients had no clearly discernable
pattern as compared to the nitrogen-based nutrients. The mean EMC for Spokane
influent total phosphorus was 0.5 mg/L and for ortho-phosphorus was 0.082 mg/L.. The
mean EMC for effluent total phosphorus was 0.2 mg/L and for ortho-phosphorus was
0.080 mg/L.. Overall average removal efficiencies were 29.31% for total phosphorus,
with a range of ~143.52% to 84.70%, and 1.03% for ortho-phosphorus, with a range of —
92.86% to 69.66%. The influent values for both total phosphorus and ortho-phosphorus
were higher during storm events than background concentrations coming from the natural
groundwater springs. The springs had an average total phosphorus concentration of
0.19mg/L and ortho-phosphorus concentration of 0.16 mg/L. As with the nitrogen-based
nutrients, the most likely source of phosphorus-based nutrients was fertilizer.
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Mean influent EMCs in Vancouver were 0.398 mg/L for total phosphorus and
0.018 mg/L. for ortho-phosphorus. These nutrient concentrations were also lower than
those found in Spokane, but again were not statistically significant at o = 0.05.

It is important to note that observed nutrient removals based on EMC could be an
artifact of simple dilution that occurs as storm water enters a wet pond with higher
concentration than the existing constituent concentration within the pond. This
“observed” concentration reduction would be exacerbated if the in-pond constituent
concentration is low and the runoff concentration is high, after a relatively long
antecedent dry period, for example. This dilution affect will be pointed out later in a
section pertaining to numerical model simulation (Section 3.7.2).

3.3 Other Parameters

Total suspended solids and volatile suspended solids had the highest removal
rates of all analyzed constituents, with 74.18% of TSS and 64.82% of VSS removed by
the Spokane wet pond. Removal efficiency ranged from —6.05% to 99.39% for TSS and
from 7.99% to 95.51% for VSS. For highways with an ADT greater than 30,000,
Driscoll et al. (1990) compiled median EMC data of 142 mg/L for TSS and 39 mg/L for
VSS. At the Spokane pond, for all events the mean influent EMC for TSS was 255 mg/L
and for VSS it was 59 mg/L.. The high mean TSS EMC was not surprising considering
that sand and gravel application was used during the winter to improve road conditions.
For all events the mean effluent EMC for TSS was 31 mg/L and for VSS was 11 mg/L.

In Vancouver, the mean influent EMC for TSS was 195 mg/L and for VSS was 66
mg/L. These differences were not significant at the o = 0.05 level. The Vancouver site
was expected to have a lower mean EMC for TSS. Vancouver had a more temperate
climate with less snow producing storm events, requiring less sand and gravel application
on major thoroughfares.

Alkalinity had a mean influent EMC of 88 mg/L and a mean effluent EMC of 108
mg/L, yielding a negative mean removal efficiency of —29.67%, with a range from
-94.01% to 30.68%. The larger effluent value was most likely the result of the
groundwater springs intercepted by the pond. The average alkalinity of incoming spring
water was 132 mg/L. The less alkaline highway runoff diluted the pond water to a small
degree but not enough to offset the naturally alkaline spring water that was constantly
entering the pond. Alkalinity in the runoff to the Vancouver site was considerably lower,
23 mg/L, as compared to the Spokane site. The large difference, however, was not
statistically significant. As evidenced by the Spokane effluent concentration, the
groundwater springs were the major contributors to this difference.

Chemical oxygen demand had a mean influent EMC of 172 mg/L and a mean
effluent EMC of 45 mg/L, resulting in a removal efficiency of 55.12%, with a range of
—62.42% to 93.90%. The median EMC value reported by Driscoll et al. (1990) was 114
mg/L. The average COD of nonrunoff incoming water was 26 mg/L, more than six times
less than the incoming runoff. From the effluent data, it was apparent that the runoff
water is sufficiently high in COD to elevate the concentration in the exiting pond water.
Vancouver runoff had a mean EMC of 156 mg/L, again not statistically different from
Spokane runoff.
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3.3.1 PAH

Results of the PAH analyses are summarized in Table 8 through Table 9. It can
be seen that the most common PAH compounds detected were pyrene, fluoranthene,
phenanthrene, and benzo(a)anthracene, the PAHs emitted by automobiles (40). It should
be noted that no PAHs were detected above the MDL in either pond effluent.

3.3.2 Toxicity

As shown in Table 5, highway runoff from selected events was tested for toxicity
using algae (S. capricornutum) and D. magna as previously described. One test sample
exhibited mild acute toxicity from the Vancouver pond effluent. Of the 13 samples tested,
this was the only one to exhibit any acute toxicity. Seven of the 13 samples exhibited
mild toxicity in the chronic test with S. capricornutum. The Microtox testing protocol
also yielded mildly toxic results with an EC50 (15 minute exposure) of 60% for the
Spokane inlet sample collected on 9/9/98. Two of the three Spokane events that produced
toxic results, September 9, 1998 and September 16, 1998, also had positive results in
PAH testing. However, the third Spokane event that tested positively for PAHs, February
19, 1999, resulted in no toxic effects for D. magna. More research is needed in this area
to determine which pollutants or combinations of pollutants are producing toxic effects in
these aquatic organisms.
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Table 6. Washington State surface water quality standards.

Constituent Influent | Effluent
(glL)
(:glL)

Ammonia 735 735
Cadmium 11 6

Copper 46 27
Lead 199 108
Zinc 280 171
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Table 10. Highway runoff chronic and acute toxicity results (NTE: not toxic

affect.
Selenastrum Dafhia. magna
Sample ID|Sample location|{Pond Location| Sample type | Sample date | capricornutum -
ECS0 (%) EC50 (%)
SICOM1 Spokane influent storm 10/2/1997 NTE NTE
SICOM2 Spokane influent storm 10/2/1997 NTE NTE
VICOM | Vancouver influent storm 3/1/1998 NTE NTE
VECOM | Vancouver effluent storm 3/1/1998 NTE NTE
SICOM Spokane influent storm 9/9/1998 47 NTE
SICOM Spokane influent storm 9/16/1998 71 NTE
SICOM Spokane influent storm 12/07/98 78 NTE
VICOM Vancouver influent storm 2/2/1999 75 NTE
VECOM | Vancouver effluent storm 2/2/1999 70 NTE
SICOM Spokane influent storm 2/18/1999 NTE NTE
SECOM Spokane effluent storm 2/18/1999 77 NTE
VICOM | Vancouver influent storm 2/22/1999 NTE NTE
VECOM | Vancouver effluent storm 2/23/1999 37 27
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Figure 5. Spokane pond nitrogen-based nutrients removal efficiencies.
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Figure 6. Spokane pond phosphorus-based nutrients removal efficiencies.
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3.4 First Flush

First flush refers to the delivery of a disproportionately large load of constituents
during the early part of the runoff hydrograph and is defined as existing when the
dimensionless normalized mass is greater than the dimensionless normalized flow
volume (23). Figure 7 is a graphic example of this definition for an October 9, 1998
storm event in Spokane for total metals. Conversely, little or no first flush phenomenon
was observed for soluble metals (Figure 8) since the metal loading lines plotted near the
y=x line. This pattern was present in two other storm events, November 25, 1998, and
February 16, 1999. With the exception of the December 7, 1998 event, which did not
exhibit a first flush for total or soluble metals, all of the winter events followed this same
pattern of a total metal first flush but no first flush of soluble metals.

Highway runoff into the Vancouver pond exhibited a definitive first flush in only
one event, June 15,1998. Because of the Mediterranean climate, it was unusual to have a
runoff-producing event during the summer months. Particulate matter and other
pollutants accumulated over long durations not only on road surfaces but also in the
atmosphere. This summer storm had a disproportionately large amount of pollutant build
up, and consequently introduced a significant first flush of material into the pond.

The more typical first flush behavior was minimal to nonexistent. First flush was
not expected to be of significance in Vancouver because of the small, frequent rain
patterns characteristic of coastal climates.

3.5 Scale Model Tracer Testing

Eleven sets of dye studies were conducted in the scale model of the Spokane wet
pond. These studies were designed to determine the hydraulic performance of the
existing configuration, as well as to assess the effects of baffles, islands and inlet
submergence on hydraulic performance. Here, we point out the primary results of these
studies as they relate to the selection and development of the predictive model that was
used within the DSS. The results of the model experiments are summarized in Table 11.
All concentration values have been normalized (C/Cyp) to allow for direct comparisons. C
is the concentration of the given sample and C, is the concentration within the pond
assuming a completely mixed homogeneous system (mass added/pond volume). The
values given for % CSTR and % Plug Flow are based on the “live” storage fraction of the
pond (i.e. pond volume minus “dead” storage).

3.5.1 Results of Model Experiments without Modification

The hydraulic performance of the existing pond (no modification to the inlet) can
be explained visually by examining a series of time lapsed photographs as shown in
Figure 10. Upon injection, the dye traveled across the surface of the pond with little or
no apparent vertical mixing. When the dye reached the opposite side, the flow path
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Figure 7. October 9, 1998 Storm Event Cumulative Total Metals Loading Curves
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Table 11. Summary of the scale model tracer testing; means of triplicate
runs for each configuration and confidence intervals (a=0.05) are
presented. The field result is from a single tracer test event.

i y Mean Peak Mean Mean % Dead |Mean % V, Plug| Mean %V,
Exp # | Configuration| ™, el ghorstca Volume Flow CSTR
No
M Modification | 1.86 (+/- 0.21) | 0.64 (+/- 0.02) | 38.33 (+/- 2.11) | 3.33 (+/- 080) | 96.66 (+/- 0.80)
M2 Parallel
Baffle 2.80 (+-0.14) | 0.56 (+/- 0.02) | 44.67 (+/- 2.88) | 4.33 (+/- 0.80) | 95.67 (+/- 0.80)
30°
ik Baffle 1.57 (+/- 0.08) | 0.67 (+/- 0.02) | 33.00 (+/- 1.39) | 16.67 (+/- 4.00) | 83.33 (+/- 4.00)
Y 60°
e Baffle 2.67 (+/-2.09) | 0.55 (+/- 0.23) |43.33 (+/- 25.00) | 29.67 (+/- 3.20) | 70.33 (+/- 3.20)
M5 60° Short
Baffle 1.37 (+/- 0.08) | 0.79 (+/- 0.02) | 6.00 (+/- 1.39) | 15.67 (+/- 0.80) | 84.33 (+/- 0.80)
M6 5% Surface
Area lsland | 5.10 (+/- 0.14) | 0.59 (+/- 0.03) | 42.67 (+/- 2.88) | 4.33 (+/- 0.80) | 95.66 (+/- 0.80)
M7 10% Surface
Area Island | 2.70 (+/- 0.42) | 0.67 (+/- 0.09) | 30.33 (+/- 7.63) | 8.33 (+/- 2.17) | 91.66 (+/- 2.17)
M8 15% Surface
Area Island | 1.73 (+/- 0.38) | 0.59 (+/- 0.04) | 38.67 (+/- 5.60) | 14.00 (+/- 0.00) | 86.00 (+/- 0.00)
M9 Submerged
Inlet 2.07 (+/- 0.16) | 0.75 (+/- 0.01) | 28.67 (+/- 2.88) | 3.00 (+/- 0.00) | 97.00 (+/- 0.00)
M10 Submerged
Inlet (angled) | 1.20 (+/- 0.28) | 0.66 (+/- 0.07) | 31.33 (+/- 7.63) | 8.33 (+/-2.17) [ 91.67 (+/- 2.17)
M11 Pond Base
Flow 1.67 (+/-0.21) | 0.78 (+/- 0.05) | 23.33 (+/-8.00) | 3.00 (+/- 0.00) | 97.00 (+/- 0.00)
Field
Test 36 0.003 96.8 9.4 90.6
1/26/98
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became divided with approximately 60-70% of the mass traveling towards the outlet, and
the remaining 30-40% heading toward the far end away from the outlet. In essence, the
inlet flow path divided the pond roughly in half creating two separate vortices. The mass
heading towards the outlet initially skirted the perimeter of the pond but became divided
from the bank prior to encountering the outlet. The outlet therefore was not in the main
path of flow and only collected dye from the perimeter of the plume on this first pass.
This path continued around and was eventually reintroduced to the inlet flow path. The
flow path on the opposite side of the model also initially followed the perimeter but its’
energy was more quickly dissipated by the larger volume and so was dispersed
throughout the area. Dye was first detected at the outlet within two minutes of injection,
and peak normalized concentrations were recorded within the first 7 minutes as the dye
passed near the outlet. The average normalized peak concentration for the three runs was
1.9 with a maximum of 2.0 and a minimum of 1.7, as shown in Figure 10. Retention
times obtained from the experiments were significantly lower than theoretical. The
average normalized retention time was 0.63 with minimal variability based on an average
mass recovery of 97%. Results of the Rebhum and Argaman analysis showed a relatively
ineffective use of the pond volume, with dead space averaging 38%. CSTR type mixing
was dominant, accounting for 97% of the effective volume.

3.5.2 Model Experiments with Base Flow Results

The base flow results echoed those of the original configuration with slight
exceptions. The reduced flow rate produced a much greater residence time,
approximately 78% of the theoretical and decreased dead space. Dead space decreased to
an average of 20% of the pond volume. Apart from that, changes were minimal.
Normalized peak concentrations obtained were similar, averaging 1.7. CSTR type
mixing was essentially the same, accounting for 96% of the mixing within the effective
volume. Base flow C(t) curves are shown in Figure 11.
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Figure 9. Photographs of dye as a function of time for the scale model pond
without modification.
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Figure 10. C(t) curves from triplicate experiments for the model
configuration without modification.
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Figure 11. C(t) curves from triplicate experiments for the model
configuration without inflow modification and flow scaled to the
Spokane Pond Base Flow.

3.5.3 Field Tracer Test Results

The results of the two field tracer tests conducted on the Spokane Pond differ
considerably (Figure 12). During both of the tests the water level was slightly lower than
the top of the outlet grate. Outlet flows were generated from seepage through the outlet
structure. In both tests, upon introduction to the pond, the dye was immediately split by
the inlet sediment berm into two or more smaller plumes. In the January 25-26" test, dye
was detected at the outlet within an hour of injection. A normalized peak concentration
(C/Cy) of 36 was recorded at the end of the second hour. The test was concluded after 21
hours with just 20% of the dye mass recovered. Results of the Rebhum and Argaman
analysis revealed a dead space of 97% of the pond volume. CSTR mixing accounted for
the mixing in 90% of the effective volume (Table 11).

The second test was unsuccessful, as a peak dye concentration was not detected
during the sampling period. It was later determined that a change in the inlet berm shape
caused the dye to be directed away from the pond outlet and it is likely that the peak
concentration arrived after sample collection ceased. The result of the second test was
instructive however, in that it highlighted the importance of minor changes in inlet
configuration and their impact of pond hydraulic characteristics.
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Figure 12. C(t) curves collected in the field at the Spokane pond.
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3.6 Development of Numerical Model Parameters

3.6.1 Determination of Nutrient Degradation Rate Constants

Upon assessment of the in-pond reactor data, it was observed that concentration
reduction for all nutrients species (TKN, NH3;, NOs', TP, and Ortho-P) occurred over the
first 15 days. After 15 days, however, TKN and TP concentrations were observed to
increase while NHj, Ortho-P, and NO3™ continued to decrease in concentration. Based on
the short wet pond residence time relative to the observed degradation rates, it was
decided to develop first order rate constants for the first 15 days of data collection. These
data, therefore, were used to estimate first order reaction rate constants exhibited within
each of the three reactors as described in Section 2.7.5. A summary of the first order rate
constants determined from the linear regression analysis is presented in Table 12 and the
data used to calculate the rate constants are presented in Appendix A (Figure 26 through
Figure 28). The lines of best fit in Figure 26 through Figure 28 indicate generally good
approximations of the data for all the nutrients except TKN. This implies that a first order
reaction rate approach to describing nutrient degradation is appropriate. As a result, the
average value of the rate constant, X, for each nutrient species was used in the numerical
model to predict soluble nutrient concentration in the wet pond discharge. As will be
discussed later, the rate constants were low relative to wet pond residence time, resulting
in relatively poor performance for nutrient removal.

3.6.2 Determination of Metal Partition Coefficients

Storm event partition coefficient values (Kq) for Cu, Pb, and Zn resulting from the
analytical method described in Section 2.7.4 are presented in Figure 13. The Student’s t
test was performed between average values of Ky for the Spokane pond inlet and outlet
and the Vancouver pond inlet and outlet to determine whether there were statistically
significant differences (o0 = 0.05) (Table 13). As the statistical analysis data in Table 13
indicate, the average effluent K4 values are significantly greater than the influent values
in both the Spokane and Vancouver ponds. This is likely a result of the general inverse
relationship often observed between particle size and metal partitioning (67,68). Since
smaller particles will be exiting the ponds, relative to the inlet particle size, one might
expect a higher partition coefficient to be calculated when using the pond outlet data. In
fact, this phenomenon was observed in our data as shown in Figure 14, data that is
representative of both the Vancouver and Spokane ponds at all sample collection
locations.
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Table 12. Reaction rate constants for different nutrient species from three reactors

in Spokane wet detention pond

TKN NH; NO; TP OP
day’l day'1 day'l day'1 day']
Reactor 1 0.013 0.048 0.054 0.136 0.107
Reactor 2 0.029 0.065 0.043 0.161 0.108
Reactor 3 0.0 0.042 0.053 0.111 0.055
Average 0.014 0.052 0.050 0.136 0.090
Standard deviation 0.014 0.012 0.006 0.025 0.030
Confidence interval (95%) | £0.016 | £0.013 | £0.007 | £0.028 | +0.034
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Figure 13. Event average partition coefficient (K4) values of Cu, Pb, and Zn at the

inlet (Inf) and outlet (Eff) of the Spokane and Vancouver ponds.
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Table 13. Test of equality of means (t test) for K, values at the Spokane and
Vancouver wet detention ponds.

Null Hypothesis: Difference between means = 0

Samples Cu Pb Zn
Spokane influent and effluent reject reject reject
Vancouver influent and effluent reject reject reject

Spokane and Vancouver influent

do not reject

do not reject

do not reject

Spokane and Vancouver effluent

reject

reject

do not reject

All influent and effluent

reject

reject

reject
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Figure 14. Solid phase concentration of Cu, Pb and Zn as a function of soil particle size —
sample collection location near the inlet of the Spokane wet detention pond.

Confidence intervals (o0 = 0.05) are based on triplicate analyses at each particle size.
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The t test also indicated there is no statistically significant difference in the
partition coefficient (Kq) values of Cu, Pb, and Zn between the influent of Spokane and
Vancouver. However, there was statistical difference between the Spokane and
Vancouver effluent K4 for Cu and Pb. The K, value at Spokane was found to be higher
than that of Vancouver, possibly a result of the presence of algae in the Spokane pond
effluent, which can accumulate metals. Although this hypothesis cannot be confirmed,
the data in Figure 15 indicated significantly higher average concentrations of chlorophyll
in the Spokane pond effluent (106 mg/L) relative the average concentration in the
Vancouver pond effluent (13 mg/L).

Table 14 provided a summary of average K4 values for Cu, Pb, Zn, and Cd with
their maximum, minimum, standard deviation, and 95% confidence interval. These
averages were used in the numerical model to calculate the efficiency of metal retention.

3.7 Numerical Model Evaluation

3.7.1 Flow Component

The flow component of the numerical model was first tested using a hypothetical
rainfall event that generated a 1000 gpm inflow. The Spokane pond outflow from this test
is shown in Figure 16. The pond was assumed to be full before the event and the rate of
infiltration per unit pond surface area was taken to be 0.2 in/hr. The outflow hydrograph
from this simulation (and others) is typical and indicated that the flow component of the
numerical model was functioning properly.

The model output was then compared to field data for several storm events. A
typical response is shown in Figure 17. The rising limb of the predicted outflow
hydrograph yields a reasonably good representation of the field data. The falling limb,
however, decreases at a lower rate in the prediction compared to the field data. This
discrepancy is likely a result of variable infiltration rates that are known to exist in the
pond. The Spokane pond has a partial clay liner that does not have the same elevation as
the water level at full pool (it is at a lower level). Therefore, when the pond fills
completely the infiltration rate is significantly greater due to the sandy soil in the area,
causing a more rapid decrease in the measured outflow. The model, however,
accommodates a single infiltration rate (0.2 in/hr for this simulation) that resulted in a
smooth output curve.

3.7.2 Nutrient Removal Component

The numerical model nutrient removal evaluation was performed for NH; using
the average first order rate constant of 0.05 day (Table 12). Runoff from a one-hour
storm was assumed that contained NH3 at 1 mg/L and the initial NH3 concentration in the
pond was assumed to be zero. The predictive model indicated that 4 days were required
to achieve a 50% reduction in pond effluent NH; concentration and it took more than 12
days to reduce the NH3 concentration to near zero (Figure 18). When these data are
compared to the average hydraulic detention time in the pond of less than a day for a 2
year, 24 hr event, it can be seen that nutrient reduction would not be expected under these
conditions.

61



120.00
100.00 -
% 80.00 -
g
% 60.00 -
=2
e
g
3 40.00 -
20.00 - .
= =
Spokane Vancouver Spokane Vancouver
influent influent effluent effluent
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Table 14. Average and range of all partition coefficient data (K4 ) for the inlet and
outlet of both the Spokane and Vancouver ponds for Cu, Pb, and Zn.

Event mean Ky Cu(L/kg) | Pb(L/kg) | Zn (L/kg)
Average 37097 32423 80917
Maximum 234257 132485 204577
Minimum 6437 11465 21164
Standard deviation 58002 38645 61497
Confidence interval (95%) + 30382 + 25248 + 32213
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3.7.3 Solids Removal Component

Removal of total suspended solids from the pond was calculated based on influent
TSS concentration and their particle size distribution (PSD). Due to limited observation
on PSD of influent TSS samples, a result of insufficient solids in the influent storm event
samples to perform a sieve analysis, a defensible basis to determine the PSD of TSS was
needed. Sediment samples were collected quarterly from three locations of the Spokane
and Vancouver pond. The effluent and dead zone sample locations were in low velocity
fields and exhibited a higher percentage of fines. These sample locations were, therefore,
selected as being representative of pond influent TSS. The sieve size and percent finer
data of the dead zone sediment samples of Spokane wet pond were analyzed and a mean
particle size distribution curve was prepared (Figure 19). This PSD was used for
evaluation of the TSS removal component of the numerical model.

A comparison of predicted and observed percent TSS removal four storm events
at Spokane wet pond are shown in Figure 20. The predicted removal of TSS from the
model is relatively close to the observed (maximum discrepancy is 16%). The model
predicted higher removal in all cases, however.

A sensitivity analysis was performed to evaluate the influence of flow on percent
TSS removal. The results indicate that, for the selected PSD, flow has a relatively small
affect on removal (Figure 21). This result indicates the importance of PSD on pond
performance. Specially, the removal is very sensitive to the smallest particles (those
passing the No. 200 sieve). The data in Table 15 highlight this fact; it can be seen that
even under a flow as high as 3000 gpm, the smallest particle that will be completely
removed is 14.9 pm.

3.7.4 Metal Removal Component

As aresult of the observed large range in values of K4 (Table 14) a sensitivity
analysis was performed to evaluate the affect of K4 on predicted metal removals by
varying K4 from 0 to 100,000 L/Kg. The results depicted in Figure 22 were encouraging
when consideration is given to our measured range of K4 values. It can be seen that metal
removal is significantly affected by K4 values up to approximately 5000 L/Kg. Removal
is moderately sensitive between 5000 to 15000 L/Kg and beyond a partition coefficient of
15000 L/Kg, removal is essentially unaffected. Since the measured partition coefficients
for this study were = 32000 L/Kg, the selection of an average value for use in the model
will be sufficient.

Comparisons of percent metal removal predictions to measured values are
presented in Figure 23through Figure 25. The “Kq4 average” refers to the average
partition coefficient of all the storm events as presented in Table 14. The flow, TSS, and
metal concentration input were obtained from the data collected from the pond for each
storm event. The predicted percent removals matched reasonably well with the observed
data.
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Figure 16. Spokane pond outflow resulting from a 1000 gpm inflow of one hour
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Table 15. Percent removal and the smallest particle completely removed as a

function of flow.

Flow TSS in Predicted Removal | Smallest particle completely
(gpm) (mg/L) TSS out (%) removed
(mg/L) (um)
50 500 3.71 99.26 1.9
100 500 371 99.26 2.7
200 500 4.06 99.19 3.8
350 500 5.71 98.86 5.1
500 500 6.36 98.73 6.1
750 500 12.29 97.54 7.5
1000 500 15.62 96.88 8.6
1500 500 24.29 95.14 10.5
2000 500 30.86 93.83 12.2
3000 500 40.97 91.81 14.9
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Figure 22. Sensitivity analysis for percent metal removal as a function of K4 (Flow

and TSS concentration were held constant)

72



O observed

120.0 I
B predicted with Kd average

100.0 A

80.0 -

% removal of Pb
(@)}
o
[an]

N

o

o
I

20.0

0.0 . : .
11/25/1998 1/16/1999 2/16/1999 3/25/1999

Date

Figure 23. Comparison of predicted Pb removals, using a single average value of Kg,
with observed removals for four storm events in the Spokane wet
detention pond.
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Figure 24. Comparison of predicted Cu removals, using a single average value of K,
with observed removals for four storm events in the Spokane wet
detention pond.
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Figure 25. Comparison of predicted Zn removals, using a single average value of K,
with observed removals for four storm events in the Spokane wet
detention pond.
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4 CHAPTER4
CONCLUSIONS AND SUGGESTED RESEARCH

Pond influent and effluent discharges have been characterized with respect to several
constituents found in highway runoff. TSS and total metal (Cu, Pb, and Zn)
concentrations were found to be significantly reduced during each storm event in the
Vancouver and Spokane wet ponds. Soluble metal concentrations, however, showed no
general trend of concentration reduction from the pond influent to effluent. Effluent
concentrations of all metals were found to be below the surface water quality standards
for the state of Washington.

Nitrate was the only nutrient found to have a seasonal pattern in the Spokane pond
discharge concentrations. Removal of nitrate was positive in the warmer months during
algae growing seasons, and was negative during the colder months during algae
senescence. In contrast, TKN and ammonia had positive removal efficiencies throughout
the year, based on storm event EMC values. Average phosphorus concentration
reduction for all storm events was poor with essentially no removal of ortho-phosphorus
and approximately 30% removal of total phosphorous.

Although the EMC data indicated nutrient removal in some cases, in-pond reactor
data indicated that first order reaction kinetics are slow relative to pond hydraulic
detention time during storm events. The appearance of EMC concentration reduction
could be a result of dilution of the pond influent nutrient concentration as it enters the wet
pond when water column concentrations are less than the influent. Further evaluation
would be necessary to confirm this hypothesis.

Rainfall patterns in Spokane and Vancouver had an effect on the presence or
absence of a first flush of pollutants into the pond. For the coastal northwest, the more
typical first flush behavior was minimal to nonexistent because of the small, frequent rain
pattern characteristics of marine influenced climates of the northwest. Mediterranean
climates have the majority of precipitation during the winter months, and for the inland
northwest, this precipitation comes in the form of snow. All of the winter storm events
investigated, except for one, had the pattern of a first flush for total metals but no first
flush was observed for soluble metals. For the three remaining seasons, the presence or
absence of a first flush coexisted for total and soluble metals. When a first flush
occurred, the metals exhibiting the greatest first flush phenomenon was in the order
Pb>Zn>Cu>Cd.

Nutrients did not follow the same first flush pattern. Ammonia, TKN, and total
phosphorus were the most likely nutrients to exhibit a first flush; ortho-phosphorus had a
first flush in only 18% of events analyzed. When a first flush occurred, the nutrients
exhibiting the greatest first flush phenomenon was in the order TKN>ammonia>total
phosphorus>nitrate>ortho-phosphorus.

PAH compounds were detected in stormwater runoff and in water column
samples in both Vancouver and Spokane. The most prevalent were pyrene, fluoranthene,
phenanthrene, and benzo(a)anthracene which are all reported to be emitted by
automobiles. Although pond water column samples occasionally tested positive for PAH,
all pond effluent samples tested were below the MDL for PAH.

76



Mildly toxic results were observed for 7 of 13 storm event samples tested. Only
one effluent sample (Vancouver pond) exhibited a toxicity and this sample was also the
only one to exhibit acute toxicity. No determination was made regarding the cause of
toxicity however, and this would be a potential area of future research.

Scale model tracer testing indicated that wet ponds behave primarily as a CSTR
with significant dead volume. This, and other factors, directed the numerical modeling
toward a relatively straightforward 1-D predictive code. The code, imbedded within a
decision support system, yields reasonably accurate predictions of TSS and metal
removal and affords the user a means of generating wet pond outflow hydrographs.

The results of this research show that wet ponds are effective at removing many of
the commonly found pollutants in highway runoff. Simple wet detention ponds,
however, may not be sufficient for treating dissolved highway runoff constituents, the
fraction that the USEPA has recommended to set and measure compliance with water
quality standards.

4.1 Future Research

The Spokane pond scale model testing indicated that the addition of inlet baffles
and/or islands can enhance hydraulic performance by reducing dead volume and
decreasing peak discharge concentration. Currently, the design of a baffle or island would
be based on specific field conditions and a good understanding of the impact of flow
character on contaminant fate within a wet pond. Future research may focus on
developing a set of nomographs for a range of pond shape and size so that “optimum”
design could be more easily determined.

An expanded study on toxicity effects in receiving water would be warranted. The
concentrations of constituents of concern in highway runoff are generally quite low, often
near the limit of detection. In order to more fully understand and define perceived
negative impacts, a carefully planned “impact” study would be very beneficial.

4.2 Wet Pond Maintenance and Modification

The field data from the Spokane pond clearly indicated that frequent dredging
would be required to maintain optimum contaminant retention within the pond. This is a
result of traction sand and gravel that is added to the highway receiving runoff. A
substantial berm built up during the winter months that directed influent water toward the
outlet, minimizing the effectiveness of the pond. The pond should be dredged at least
once per year and preferably twice if it is a heavy snowfall year. Although the Vancouver
pond also had a sediment berm that increased in size over the two-year study period,
dredging frequency may be as infrequent as once every three years. These data indicate
that pond maintenance (dredging) is required for optimum retention effectiveness and
that the frequency of dredging would be site specific. It should be noted that under most
circumstances only the inlet sediment berm would have to be removed to return the pond
to design condition. A sediment forebay, designed to capture the larger fraction of runoff
sediment prior to the main wet pond, could be effectively used in areas of high sediment
load (traction sand application) to minimize cost associated with dredging.

Results of scale model testing of the Spokane wet pond indicated that hydraulic
efficiency could be improved by disrupting the inlet flow path and directing it away from
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the outlet. Tracer experiments showed that inlet baffles angled towards the dead zone
(away from the outlet structure) increased the effective volumes and decreased
normalized peak concentrations during testing. Long baffles, at too great an angle,
however, had the propensity to create a narrow plume and did not improve the hydraulic
performance of the pond. Baffles creating broader plumes, such as the 30° angled baffle
and the short 60° angled baffle, are more likely to improve performance under a wider
range of circumstances.

Conclusions based on the island studies conducted in the model show that islands
could effectively promote enhanced performance in wet ponds. Displaced pond volume
due to the islands did not account for higher normalized peaks as might have been -
suspected. The largest island, accounting for 15% of the surface area, and approximately
11% of the pond volume, actually had the lowest average normalized peak of the three
sets of island experiments. This suggests that the angle at which the island deflects the
inlet stream is of critical importance. Islands should placed in such a manner as to direct
as much of the inlet stream as possible towards the dead zone(s) and/or away from the
outlet, and at an abrupt enough angle so as to avoid creating a flow path that simply
follows the perimeter of the island.
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6 APPENDIX A — NUTRIENT REACTION RATE DATA
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Figure 26. Data from reactor 1 of the Spokane wet detention pond that was used to
calculate the first order reaction rate constants.
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Figure 27. Data from reactor 2 of the Spokane wet detention pond that was used to
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calculate the first order reaction rate constants.
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Figure 28. Data from reactor 3 of the Spokane wet detention pond that was used to
calculate the first order reaction rate constants.
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7 APPENDIX B — POND SEDIMENT DATA
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Table 19. Estimate of total algal biomass in the pond, and the measured metals
concentrations contained in the algae.

July 11, 1997 Total algal biomass = 200 kg
location S1 S2 S3 S4 S5 S6 S7 S8 S9
Units mg/kg | mg/kg | mg/kg | mghkg | mg/keg | mg/kg | mg/kg | mg/kg | mg/kg
Calcium 10534 | 60022 | 64830 | 31574 | 60072 | 45398 | 96834 s L

3
Magnesium 12891 | 10819 | 16034 | 16566 | 16654 | 8986 | 15441 N *k
Iron 5501 | 13370 | 3913 | 6532 | 4574 | 5019 | 2092 B *ok
Copper 19 40 14 20 20 18 10 e *k
Lead 29 74 28 41 33 37 13 3 ok
Zinc 196 369 244 322 233 221 148 *ok *E
Cadmium nd nd nd 0.22 nd nd 0.05 *ok ol

May 9, 1998 Total algal biomass not recorded

Calcium X 12213 o 10658 Ll LL L 18096 X
7 6 7
Magnesium k] 4803 okl 4278 N b Lt 4879 L
Iron it 6699 L3, 3381 L] L L 13876 B
Copper Kk 29 ksk 13 &k sk kK 20 ek
Cadmium *ok nd ok nd l *k *k nd ik

July 16, 1998 Total algal biomass = 650 kg
Calcium 8257 8978 aE 8728 ol 8313 ok 8427 8635
Magnesium 9107 | 17673 ok 16915 Ll 6105 ol 12758 | 7918
Iron 3864 493 ot 423 L] 683 B 536 1296
Copper 18 8 it 9 o 9 ek 13 11
Lead 26 8 oK 4 B 7 *ok 5 9
Zinc 142 97 L] 58 R 65 i 68 75
Cadmium 1 1 *ok 1 ** nd Fk nd nd

September 16, 1998 Total algal biomass = 650 kg

Calcium 8862 | 9001 [ 9755 [ 9430 | 9271 9407 | 9218 | 9295 | 9922
Magnesium 25007 | 16238 | 16080 | 25323 | 20606 | 23391 [ 19086 | 15623 | 20832
Iron 506 219 798 459 437 1253 441 961 2762
Copper 9 5 7 11 5 7 6 8 11
Lead 5 2 6 7 3 8 2 8 22
Zinc 58 31 37 45 33 42 30 45 109
Cadmium 1 nd 1 2 nd nd nd 2 nd

** - No algae present in this location at time of sample collection.
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Approzioale
Watse Level

Figure 29. Location of inlet, outlet, and algae sampling locations for the
Spokane wet pond.

Table 20. Measured metals concentration found in the roots as compared
with the metals concentrations found in the bloom of algae from

Spokane wet pond.
Sample S8 Algae bloom near S8 | Algae roots near S8
Location
Metals mg/kg mg/kg mg/kg
Calcium 9295 22282 6578
Magnesium 15623 9232 8794
Iron 961 404 497
Copper 8 5 6
Lead 8 27 29
Zinc 45 4 2
Cadmium 2 0 0

135



11 APPENDIX F - DSS USERS MANUAL

136



INSTALLATION AND OPERATING GUIDE

HIGHWAY RUNOFF WET POND DESIGN
DECISION SUPPORT SYSTEM

For NCHRP Project 25-12

Department of Civil and Environmental Engineering

Washington State University
“Pullman, Washington —

March 11, 2002



TABLE OF CONTENTS

1
1
2

3

4
5

CHAPTER 1 INTRODUCTION AND RESEARCH APPROACH.......................... 1

INtrOAUCHION......cuerueeneesen iisiisisiinisvasasiao e SRS TS TN A SAA S AT e IS L8 Komessarmermentmrase 1

Installation Of SOftWATE........cecveeriiiriiieeeee e b e e 1
2.1  Installation Procedure .............usssasirisisiisossssvssiisiusisssiio it 1

DSS OPETation .....couimiiuisinesenmnoe e im0 o550 RS S A TS PSSR S S sA RN e apmsayees 2
3.1  Input Screen SUMIMATY........... csssranusmmsssavessre s R s 2
3.2 Detailed Description of the input SCIEEnS ..........ccvevvrerierrirserieiesreseeeseseeseeseesenns 5
Screen 3 — Determination of Storm Hydrograph..........cccceeeeevivcriciesencicscssscsscseessenns 5
Screen 4 — Hydrograph creation by SCS method ..........cceveeererreineeniiininesesseresssseseene 5
Screen 5 — Hydrograph creation by SCS method (Cont’d)........c.covvevieerciiiireinsensnssennns 7
Screen 6 — Hyetograph CrEation..........coeueeueueueriniorenrerieirensisetesssssssssssssesssesesessesessesnene 8
Screen 7 — Runoff coefficient calculation...........cceuevieiiirieisereieiesseeiesisseeesesessesessesnenens 8
Screen 8 — Hydrograph SUMMATY .........cccoeiiivevinieniiennenieieee e eesesssssss s aseeenens 8
Screen 9 — NCHRP Pollutant Removal Model..........c..cvvveieiereeinseneeiesiressesesessesssesssnens 9
Screen 10 - Data REQUESLS ........covrrvrerreossistsscinsiisisssisssmveisisasnvimesisssisintsistsisssiissess 9
Screen 11 — Data REQUESES.......c.coveerereieriiisisiesiesseieesaesessesssseaesassesssssssessenssssessssesseses 10
Screen 12 — Data Requests sssissinsnsimsssimsiisaiarsiiiasasimminimss 10
Screen 13 — Metals Contamination Data ............ceveveereereirirereresinsiorssssicsscssesessesessessnes 10
Screen 14 — Nutrient Concentration REqUEStS .........c.eceerererrrereesaeeresressensessesessesesssseses 10
Screen 15 — Data REQUESES........cccoviieieencciereccrcnreresestsseiassssssssssssassssessssessssssesssssassssses 11
Screen 16 — Data REQUESES........c.ccvuivceieiiiniiissseeeesessesesssssessssesesesassessssesssessssessssenee 11
Screen 17 — Depth-Area Relationships ......c.cccceeinresininieniensiee s sssesssesesssessnsens 11
Screen 18 — Particle size fraction Data ...........cvceverevvererineieeerinseisesecassssssessssssssssssssenes 12
Screen 19 — User defined INflow data..........co.eueeveeenriiviiinniirenenecseseseseseseseenssesesesans 13
Screen 20 — OQULPUL FHIE ..ottt e eae e sssassse e e ss s e s 13
Screen 21: Results SUMMATY 1 ...ccciviiiiiiniieeseisrensssresesesassssseessessssssessesessssessssens 14
Screen 22: Results SUMMArY 2 suuissssiumsisssvsansivsissisasisssssisssasaisiisrasisssiin, 14
Screen 23: ANOther DESIZN .....c.ccveueiricueiiriiieiririessss e sseasssssesaesaesessesessesssassssessesssssasnes 14

Design EXAMPIE.......cccviiiieiiiriieenieenteiereesenie e etesestsssesesaesasssessssesnssssssnnessenses 14

REFERENCES wnesicssusussnsacsvinonsen otisisisossssssssoessssss s dssesansiionsisssissssssassinss 37

ii



1 INTRODUCTION

This version of the wet pond design decision support system (DSS) is capable of
predicting suspended solids, metal, and nutrient concentrations exiting a wet pond. The
DSS can also be used to develop a runoff hydrograph that can be used as inflow to the
wet pond. It can estimate required pond volume given desired pollutant discharge
concentrations through a user-initiated iterative process. In either case, the user is
required to enter input parameter values (flow, TSS concentration, particle size
distribution, etc.) or use default values supplied in the DSS (default values can be
changed as the user progresses through the program).

Details of the DSS predictive methods are presented in the final report. In brief, the
model] treats a wet pond as a completely mixed reactor and dead volume is accounted for
by a user-entered “effective volume” fraction. Estimates of dead volume and effective
volume were developed from inert tracer experiments that were performed in field and
scale mode] tests. Effluent suspended solids concentration prediction incorporates
discrete particle settling theory (Stokes Law) while effluent metal (Cd, Cu, Pb, and Zn)
concentration is determined by assuming that the metals partition onto particulate matter
and are removed during sedimentation. Metal partition coefficients were determined from
storm water samples collected during storm events in Vancouver and Spokane,
Washington. The model assumes that the soluble fraction of metals remains constant and
is not altered within the pond. The DSS calculates effluent nutrient (total Kjeldahl
nitrogen, ammonia, nitrate, total phosphorus, and orthophosphate) concentration by
applying first order kinetics where the reaction rate order and constants were determined
using in-pond reactor data collected in the Spokane pond. Again, default values for the
metal partition coefficients and nutrient reaction rate constants can be used or the user
can change the default values at any time during a DSS run.

2 INSTALLATION OF SOFTWARE

Although the DSS may be run from the supplied floppy disk if your system has the
appropriate operating system files, it is recommended that the program file (nchrp.exe)
on the supplied floppy disk be copied to your hard drive prior to executing the program.
The DSS has been tested on Windows 95, Windows 98, Windows NT-service pack 4.0
and 6.0, and Windows 2000. Windows 95 requires a dll file (msvbvm60.dll) and
Windows 2000 requires an ocx file (comdlg32.ocx). These files have been supplied on
the enclosed floppy disks. Other operating system files may be required depending on
your particular version of the Windows operating system. If after the DSS and required
dll or ocx files are loaded and an error message is received when attempting to run the
program, please call (509) 335 — 2147 or email yonge @wsu.edu and indicate what the
error message states. Every effort will be made to resolve the problem.

2.1 Installation Procedure

The installation of the DSS is straightforward and only requires that files be copied
from the supplied floppy disk to you hard drive. For ease of finding the file after transfer,
it is recommended that a folder (directory) with a descriptive name (e.g., DSS) be made
on the hard drive and the DSS file (nchrp.exe) be place in that directory. If you are



running Windows 95 or 2000, add the respective msvbvm60.dll or comdlg32.ocx to the
directory.

3 DSS OPERATION

Go to the directory containing the DSS. Double click on the ncrhp.exe icon and the
program should load the input screens one by one. Section 3.1, below, briefly
summarizes the input screens that the user will encounter during the use of the DSS.
Section 3.2 presents more detailed information on screens that require user input,
describing the input parameters and defining the methods used for calculations. Finally,
Section 4 presents a design example, showing individual screens as the user would see
them with input parameters and DSS output.

3.1 Input Screen Summary

Screen - 1:

This is an introductory screen.
e Click on “Continue”.

Screen - 2

This is an introductory screen.

¢ Click on “Accept” to move to the next input screen.

Screen - 3
The screen provides two choices for the input hydrograph. The SCS Triangular
unit hydrograph and the “User Defined” unit hydrograph (see Section 3.2 for
details).

e Select one of the choices.

e Click on “Continue” to move to the next screen.
Screen - 4

If the SCS triangular hydrograph is selected in the previous screen then this
screen will appear. The user has to select a method to compute the overland flow.
¢ Select a method.

e Click on “Continue” to move to the next input screen.
Screen - 5

This screen will ask for a curve number and duration of the excess precipitation
when the SCS triangular unit hydrograph is selected.
¢ Enter the curve number in the appropriate box.

e Enter duration of the excess precipitation in the appropriate box.



e Click on “Continue” to move to the next input screen.
Screen - 6

A hyetograph is a graph of rainfall intensity as a function of time. The model uses a one-
ordinate hyetograph system for simplicity (i.e., an average constant value of rainfall over
the time of excess rainfall).

e Enter the average precipitation value.

No input is needed at the first box of “constant duration time step” as the model will
show the value in the screen.
¢ Click on “Next” button to complete entering precipitation value.

e Click “Continue” to move to the next screen.

Screen — 7

If the user selects “Federal Aviation Agency” (FAA) equation to compute
overland flow, this screen needs to be completed. For further details, please
consult section 3.2,

e Enter percent area of each type of ground cover.

e Click on “Continue” to move to the next screen.

Summation of all the areas entered must be 100%.

Screen - 8

This screen provides a summary of the unit hydrograph generated and allows the
user to select flow that to be used in designing the wet pond.
e Select a method.

e Click on “Continue” to move to the next screen.
A design based on peak flow will result in a conservative approach to the design.
Screen -9

e Select “default data”.

e Click on “Continue” to move to the next screen.

The next screen contains default data for modeling. The default data can be
modified if site specific data is available.
Screen — 10

The screen requests data for pollutant modeling.
e Enter all the required data.

e Click on “Continue” to move to the next screen.
Please consult Section 3.2 for details of this screen.

Screen - 11



This screen requires information on the outflow weir that will be used as the
outflow device for the wet pond being designed.
Enter all the information.

Click on “Continue” to move to the next screen.
Screen - 12

The information requested is for an existing pond or for a pond that is going to be
designed. Design of a pond (determination of pond volume to achieve a desired
discharge water quality) by DSS is an iterative process.

Enter the values requested.

Click on “Continue” to move to the next screen.

Screen - 13

This screen requires information on the chemicals to be modeled.
Enter influent concentrations.

Enter partitioning coefficients.

Click on “Continue” to move to the next screen.

Screen - 14

This screen requires information on the nutrients and their first order decay rate.
The model assumes first order kinetics.
Enter pond influent (highway runoff) concentrations.

Enter first order decay rates.
Click on “Continue” to move to the next screen.

Screen - 15

This screen requires initial concentrations of the nutrients in the pond (those
concentrations that existed prior to the storm event.
Enter concentrations of the nutrients in the pond.

Click on “Continue” to move to the next screen.

Screen - 16

The screen requires information on the number of data sets for the pond depth-
area relationship (a data set contains water surface elevation, pond volume at that
elevation, plan area at that elevation, and wetted surface area at that elevation),
particle size distribution data pairs (a particle size and the corresponding percent
smaller than, is one data pair) of the suspended solids entering the pond. The
actual data set values are entered in Screen 17 and Screen 18.

Enter how many data sets you have to define the depth-area relationship.

Enter how many data sets you have to define the grain size distribution curves.



Click on “Continue” to move to the next screen.
Screen - 17

Ponds usually have irregular geometry. The depth-area relationship must be
provided for transport modeling.
Enter the required information.

Click on “Continue” to move to the next screen.

Screen — 18

This screen requires particle size distribution for the influent suspended solids.
Enter the required values.

Click on “Continue” to move to the next screen.

For more than four data sets (or pairs), the user should use the “Advance List”
option.
Screen - 19

Site specific hydrograph data can be entered by using this screen.
Enter the required data.

Click on “Continue” to move on to the next screen.
The user can use the “Advance List” option to enter more than 4 data sets.
Screen - 20

This screen allows the user to enter the output file name. The output file contains
elaborate data for plotting.
Enter output file name.

Click on -“Continue” to start the modeling. - - - -

3.2 Detailed Description of the input Screens

Screen 3 — Determination of Storm Hydrograph

Select either “SCS Triangular Unit Hydrograph” or “user defined inflow
hydrograph”. The SCS Triangular Unit Hydrograph method will enable the user to create
a hydrograph based on standard SCS method. However, the user can use his/her own

constant or variable flow through the second selection (“user defined”). Click “Continue’

?

to proceed.

Screen 4 - Hydrograph creation by SCS method

The SCS triangular rainfall-runoff hydrograph, as shown in Figure 30, is used
frequently for its simple design. The DSS will provide the user with the peak
discharge (qpx) after the input of the necessary parameters as defined below.
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Figure 30. Elements of an SCS triangular unit hydrograph

The peak discharge, qpx (ft)s), is given by the following equation:

484-W,, - A,
q ox =_T—

r

(B.1)

Where T; is the time of rise (hr), W is the effective rainfall (in), and Ap is the
area of the drainage basin (mi2).
The user must provide appropriate data in the defined units.

The maximum distance from basin divide to outlet is the mainstream length of a
watershed (mile) that is used to find time of concentration - a measure of
watershed response time. This is basically the longest flow path for runoff to
reach the outlet of the watershed, which is the inlet of the wet detention pond in
this context.

The basin drainage area is the total area of the watershed (mile?) for which the
wet pond is receiving runoff.

Basin slope is the average grade of the terrain in (ft/ft) that also affects the time of
concentration.

The user then needs to check one box for calculating overland flow (surface
runoff).

Further data, as input to the next screen, may be needed based on the box
checked. If no box is checked, the first option (SCS equation) becomes the
default. For small watersheds, less than 2000 acres, the SCS equation provides
good estimate of runoff. The user can use any method on a trial and error basis.
The following information will be needed, as input to the next screen, depending

upon the runoff hydrograph calculation method chosen.



Composite curve number of the area if SCS method is chosen.

Izzard runoff coefficient and average rainfall intensity for Izzard’s equation.
Rational method runoff coefficient if FAA method is chosen.

Manning’s roughness coefficient and average rainfall intensity for Ragan’s

equation.
e Kerby’s runoff coefficient if Kerby’s equation is chosen.

Screen 5 — Hydrograph creation by SCS method (Cont’d)

This screen asks for different values to be used in calculating overland flow based on
the box checked by the user in the previous screen. Provide the values in specified units.

Composite curve number: U.S. Soil Conservation Service has assigned
curve numbers for various soils and land cover complexes. The user can find
the curve numbers in McCuen (1998). The user can specify the duration of
excess precipitation or click on “compute duration” to get a computed value.
Average rainfall intensity: This is the average precipitation intensity in in/hr
that occurs over the drainage area. Total volume of rainfall divided by the
duration gives the intensity of rainfall.
Izzard runoff coefficient: This coefficient is needed to compute runoff, if the
user has selected the “Izzard’s equation” in the previous screen. Click on
“values” button to get an idea of the coefficients. Typical values of Izzard’s
coefficient are:

Smooth asphalt = 0.007

Concrete pavement = 0.012

Tar and gravel pavements = 0.017

Closely clipped sod = 0.046

Dense bluegrass turf = 0.060

Rational runoff coefficient (C): The Federal Aviation-Agency Equation uses
the runoff coefficient from the Rational method to compute the time of
concentration. The value of runoff coefficient is a function of land use, cover
condition, soil group, and basin slope. The coefficients can be found in
McCuen (1998), Chow (1964), or in any hydrology textbook. However, if the
user wants to compute the runoff coefficient by clicking on the “values”
button, he/she will move to a new screen to compute the coefficient based on
the data of land use of a non-homogeneous area.

Manning’s roughness coefficient (n): This is a coefficient based on channel
conductance/resistance. The user can find values of Manning’s n in Chow
(1959), Dingman (2002), McCuen (1998), or in any hydraulic text.

Kerby runoff coefficient (N): If the user selects the Kerby’s method for
computing overland flow in the previous screen, a coefficient is needed to
compute the runoff. Typical values of the Kerby’s N are:

Smooth impervious surface = 0.02
Bare packed soil = 0.10
Poor grass = 0.20



Deciduous timberland = 0.60
Pasture or average grass = 0.40
Conifer timberland or dense grass = 0.80

¢ Time of concentration: This is defined as the time it takes for water to travel
from the hydraulically most distant part of the watershed to the watershed
outlet (wet pond inlet). The time of concentration will be computed by the
DSS program.

e Duration of excess precipitation: This is the part of the rainfall that results in
direct runoff. The model can compute this duration, when the user selects the
“SCS Equation” for computing overland flow and clicks on “compute
duration” button. However, the user can use a user-defined value for this input
if data are available.

Screen 6 — Hyetograph creation

A hyetograph is a graph of rainfall intensity as a function of time. The model uses a
one ordinate hyetograph system for simplicity (i.e., an average constant value of rainfall
over the time of excess rainfall). The user only needs to enter that precipitation value in
inches at the provided box. No input is needed at the first box of “constant duration time
step” as the model will show the value in the screen. Click on “next” button to complete
entering precipitation value.

Screen 7 - Runoff coefficient calculation

If the user selects “Federal Aviation Agency” (FAA) the FAA equation is used to
compute overland flow, he/she will need to know the Rational Formula runoff coefficient
(C). The FAA method requires the time of concentration, t. in minutes, to be calculated
by the following equation.

t, =1.8(1.1-C)L*°S (B.2)

Where C is the Rational Formula runoff coefficient, L is the flow length (ft), and S is the
slope (ft/ft).

The coefficient C can be found in McCuen (1998), or any hydrology textbook. For a
non-homogeneous watershed area, the user can click on “values” button to compute C.
This screen helps to compute the coefficient based on different land use. The user only
needs to enter percentage area of each type of land use in the appropriate boxes.
Remember, the sum of the areas must be equal to 100 percent. Click on “continue” to
compute the runoff coefficient.

Screen 8 - Hydrograph Summary

This screen summarizes the hydrograph created by SCS triangular unit hydrograph
method. If the user has entered “1 inch” excess rainfall in screen 6 of “hyetograph
creation”, the result gives a unit hydrograph for that duration. Otherwise, it gives the total
runoff hydrograph.



The primary objective of the DSS is to design a wet pond. The design of the pond
mainly includes sizing (plan area and depth). Click on the box “Check if you want to size
a pond” and select one of the three options in the drop down window. If the first option
“Inflow hydrograph” is checked, the model takes into account the variable ordinate
hydrograph that has been computed or entered by the user. If the second option “Peak
discharge” is checked, the model assumes the peak discharge throughout the whole
duration of hydrograph. Similarly, if third option “average discharge” is checked, the
model assumes the average discharge throughout the hydrograph period. For a
conservative approach, it is customary to use peak discharge. Click “Continue” to
proceed.

Screen 9 - NCHRP Pollutant Removal Model

Select the “Use default data” or “Enter new data” and click “continue”. It is
recommended that the default data be used as many of the values are ‘recommended’ and
will assist the user in progressing efficiently through the program. The default data is
based on an existing wet pond near Spokane, Washington where extensive data were
collected. The user may look at section 2.1 of the main report to find details about the
pond. The pond design afforded by the DSS is based on a trial and error approach. A
preliminary design of pond size and volume is made depending upon the inflow to the
pond. A depth-area-volume relationship is prepared from the preliminary design. The
model predicts the outflow hydrograph, effluent nutrient, TSS, and metal concentration.
These numbers are checked with the regulatory limit. If regulatory requirements are not
met, a bigger pond size will be assumed in the next trial. This procedure will be repeated
until satisfactory results are obtained. Click “Continue” to proceed.

Screen 10 - Data Requests

The value entered for “how long do you want to run the model?” defines the
simulation time for the model and the time period will normally be larger than the
duration of the inflow that will “enter” the pond. It is recommended that the model should
run for 24-48 hours for a 2-5 hour inflow hydrograph in the pond. The run time is chosen
to be higher so that peak outflow can be computed, which is the most essential parameter
to find percent TSS removal. The time step is needed for the numerical computational
scheme. The recommended time step is 30-60 sec. A very small time step will cost the
user a lengthy run time. However, if the model needs to be run for months or years, a
bigger time step in hours or days should be used.

Provide the “average plan area” of the pond from preliminary design information.
The “fraction of active volume” allows the user to account for pond dead volume. Based
on field and scale model inert tracer testing, dead volume can occupy from 40% to 60%
of the total pond volume. Elevation of the bottom of the pond is the elevation in ft above
mean sea level. Enter “seepage rate” in in/hr of the pond. This rate is dependent on the
soil type, the absence or presence of a clay lining or geomembrane, etc. If no data is
available, it is a conservative approach to set the rate at “zero”. Click “Continue” to
proceed.



Screen 11 — Data Requests

The weir equation used in the model is
0=C,LH" (B.3)

where C,, is the weir coefficient, L is the length of the weir, and n is the exponent of
the weir equation. Please see the section 2.7.1 of the main report for details about the
weir equation. Values of C,, can range from 2.3 to 3.3, depending on the losses that occur
at the weir (McCuen, 1998), but values from 2.6 to 3.1 are common for English units.
The exponent “n” is always 1.5 unless the weir has been calibrated. It can vary 5-10%
after calibration. Elevation of the top of the weir is the elevation in ft above mean sea
level.

“Influent TSS” refers to the average value of total suspended solids concentration
entering the pond. This value may be found from the literature, if available, or from direct
measurement. Click “Continue” to proceed.

Screen 12 — Data Requests

The “initial pond volume” is the pond volume in cubic ft at the beginning of the
runoff event. For a conservative design viewpoint, “initial pond volume” is assumed to be
a volume up to the outlet weir elevation. This can be found from the depth-area-volume
relationship of the pond. “Outflow” is the volumetric flow rate of water that is escaping
from the pond through some outflow structure, such as, weir. The “initial outflow” refers
to the outflow, if any, just prior to the runoff event entering the pond. It is assumed to be
zero if the water level in the pond is below outflow weir level.

Click “Continue” to proceed.

Screen 13 - Metals Contamination Data

Check the appropriate box for calculation of Zn, Pb, Cu, or Cd effluent concentration.
As each box is checked, a drop-down menu appears that lists default values for the pond
influent concentration and particulate (TSS) partition coefficient. The partition coefficient
is the ratio of particulate bound solid phase and liquid phase metal concentration. Please
see the section 2.7.4, and 3.6.2 of the main report for details regarding metal partitioning.
The default values of partition coefficient are based on “average” values from the
Spokane and Vancouver storm event data base. Please see Table 14 and Figure 13 of the
main report for the “average” values of the partition coefficients. It should be mentioned
here that the default values are for initial approximation only and apply to similar
conditions of Spokane and Vancouver storm events. Note: At least one box has to be
checked for the model to operate properly.

Screen 14 — Nutrient Concentration Requests

Check the appropriate box for calculations of total Kjeldahl nitrogen, ammonia,
nitrate, total phosphorous, and orthophosphate removal. As each box is checked, a drop-
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down menu appears that lists the pond influent concentration and first order reaction rate
constant. The model assumes a first order reaction for nutrient removal. The reaction can
be written as:

dac
T KC B.4)
Where, C is concentration of the nutrient, t is time, and K is the first order reaction
rate constant. The default values of the rate constants are based on “average” values from
the Spokane in-pond batch reactors. The user can refer to sections 2.7.5, 3.6.1, and figure
26-28 for the details about the nutrient degradation rate constants. Note: At least one
nutrient has to be checked for the model to operate properly.

Screen 15 — Data Requests

The values for initial nutrient concentration apply to values that exist in the pond just
prior to the runoff event.

Click “continue” to proceed.

Screen 16 — Data Requests

The number of data sets in the depth area and particle size fraction is the number of x-
y data pairs used to define pond depth verses pond surface area and the data pairs used in
the particle size distribution (PSD) data. Note that the default number of data sets for the
particle size data is 30. This is greater than what is normally used for a typical sieve
analysis and results from the use of an automated particle size analyzer for sediment that
passed the #200 U.S. standard sieve. Click “Continue” to proceed.

Screen 17 - Depth-Area Relationships

The depth-area relationship requires the input of pond volume, plan area, and
wetted surface area as a function of pond water surface elevation. The wetted
surface area refers to the area of the pond bottom in contact with the water and is
used to determine water loss from infiltration. The wetted pond bottom area is
less than 1 percent greater than the plan area for wide shallow ponds and
therefore, the plan area data can be used in both columns if wetted pond volume
data is unavailable. A typical depth-area-volume relationship for Spokane wet
pond is shown in Table 21. For an existing wet pond a survey is required to
establish a contour plot. The contour plot of Spokane pond is shown in Figure 2 of
the main report. An example is provided here to calculate contour volume from
contour plot.

At elevation (E; =100 ft), Area A; = 1000 ft2

At elevation (E; =101 ft), Area A, = 1100 ft2

11



Volume between Elevation E; and E,, AV =

Total volume at a particular elevation is obtained by adding the volumes of
successive contour volumes from the pond bottom.

At4,
2

-(E, - E,) = 1050 ft3.

The “review list” and “advance list” button allows user to enter and review each data
pair. Note: Data must be entered from lower elevation to higher elevation.
Click “Continue” to proceed.

Table 21. Depth-area-volume relationship for Spokane pond

Elevation (ft) Volume (ft’) Plan area (ft*) Wetted surface area (ft%)
1785 96.81 1175.4 1175.7
1785.5 1530.3 4572.9 4575.5
1786 4645.2 7875.7 7884.5
1786.5 9248 10399.4 10419.9
1787 14957.6 12377.9 12416.3
1787.5 21596.8 14174.8 14236.4
1788 29136.6 15968.4 16057.5
1788.5 37586.4 17896 18015.9
1789 47121.1 20235.1 20386.6
1789.5 57803.8 22531.8 22712.5
1790 69786.1 25623.2 25827.2

Screen 18 - Particle size fraction Data

The particle fraction data requires the input of particle size in micron and percent (by

weight) passing that sieve size. Particle size distribution of TSS can be done by sieve
analysis. However, if TSS contains a significant fraction of particles finer than #200
sieve, it is imperative to do delineate the finer size range. A typical sieve analysis result
of Spokane pond dead zone sediment is shown in Table 22. The “review list” and
“advance list” button in the screen allows user to enter and review each data pair. Note:
Data must be entered from higher to lower sieve size and largest sieve size must have

100% passing.

Table 22. Typical sieve analysis result

Particle size, micron % finer
4760 100
2000 94.5
250 49.1
75 27.5
72.5 26.4
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Particle size, micron % finer

70 26.0
67.5 26.0
65 259
62.5 25.9
60 25.7
57.5 254
55 25.2
52.5 25.0
50 24.6
47.5 244
45 243
42.5 23.8
40 23.5
37.5 23.1
35 22.6
32.5 22.0
30 21.3
27.5 204
25 19.3
22.5 18.3
20 16.8
17.5 15.4
15 13.5
12.5 11.2
10 8.5
7.5 5.1
5 1.6
25 07—

Screen 19 - User defined Inflow data

This screen is used to enter user specified flow to the wet pond if the user does not
want to create a hydrograph. In that case, the user should have an understanding of
average and/or peak discharge at the inlet of the pond. Note: At least three points are
needed to enter a user defined inflow hydrograph. However, if the user wants a constant
flow option, he should put the constant flow value in all the inflow ordinates (at least
three). Note: the data of time coordinate of the hydrograph must be entered in
ascending order, i.e., smaller to higher.

Screen 20 - Output File

Enter the name of the file in which you would like to store the data calculated by the
DSS. Give the filename extension ”.txt”, (e.g., “out.txt”). This file can be imported in
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Excel and put in row-column format. Open Excel and click on “Open” in the File menu
(or click on the open icon on the tool bar). In the Open window on the “Files of type”
bar, select all files. In the “Look in:” bar select the location where the output file was
saved and double click on the “txt” file. In the Text Import Wizard window, select
“Delimited” and click “Next”. Select “Tab” and “Comma” under “Delimiters” and click
“Next” and then “Finish”. The text file can now be saved as an Excel file for future
access. However, some important on screen results will be shown by the model in the
next two screens. Click “Continue” to proceed.

Screen 21: Results Summary 1

Sediment, flow, and metal removal summary information are presented in this screen.
The first number represents the smallest particle size that will be removed completely by
the wet pond under the specific conditions. Particles larger than that will also be
completely removed but particles smaller than that will be partially removed. The output
file in text format has the detailed removal results. The effluent concentrations of TSS
and metals can be checked against surface water quality discharge criteria to establish
whether the pond size is adequate. The user cannot go back to the previous screen once
results are displayed in the screen. The user has to start over again to make changes in the
design.

Screen 22: Results Summary 2

This screen gives the summary of maximum inlet and outlet concentration of nutrient
that was checked in screen 14. The maximum effluent concentrations are checked with
regulatory standards to satisfy the design objective. Note: The user cannot go back to
the previous screen from this screen. The user has to start over again to see previous
results, or to make changes in the design.

Screen 23: Another Design

If the user selects “yes” the program will return Screen 3, “Determination of Storm
Hydrograph”, and input data can be changed as desired. If “no” is selected, the user exits
from the program.

4 DESIGN EXAMPLE

A screen-by-screen example of the DSS operation is shown in next few pages.
The user can run this example problem to become familiar with DSS.
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'w NCHRP Screen 1: Stat

i
NCHRP Decision Support System

for the

Design of Highway Wetponds

Project 25-12

Version 1.0

July 2001

Washington State University
Department of Civil and Environmental Engineering

Pulltrnan, Washington 99164-2910
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This is a DECISION SUPPDRT SYSTEM [DSS] for stormwater runoff wet
pond design. It was developed to provide wet pond desigh and
contaminant retention effectiveness information for highway runoff pollutant
control. Itis NOT meant to supplant local experience or new information.
Users of this program agree that the developer does not assume
responsibility for desighs based on this DSS.
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| NCHRP Screen 3: Hydrograph Selection

nanqular Unit Hydroqrapk

® |ser Defined Inflow Hydiograph
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SCS Triangular Unit Hydrograph Method

What is the maximum distance from the basin divide mi
o the outlet (inlet to pond)*

What is the basin drainage area? Sq miles

| Tt

ou like to yse? —

® Federal Sviation Sgency (FAL)
® Fagan's Equation
@ Kerby's Equation
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SCS Triangular Unit Hydrograph Method

(continued)

What is the composite curve number for the area? X l S

What is the duration of the excess precipitation? EIEE hr
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Hyetograph Information

What is the constant-duration time step being used?

Enter the hyetograph precipitation values.

Precipitation equals [ in

| flzne -,
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= NCHRP Screen 8: Unit Hydtograph summary

Unit Hydrograph Summary
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| NCHRP Screen 9: Pollutant Removal Model

NCHRP Pollutant Removal Model

An example for this model has been included. To access
oxarmple check the box for "Use default data "

o Lse default data

@ Enter new data

Note: It is recommended to use the default
data and change wherever necessary
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DATA REQUESTS

Enter elevation of the bottom of pond.

| Enter estimate for seepage rate

Hours

=, SRR NG
Seconds

ft:2

fest

infhr
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What is the perimeter of the weir?

| Enter the coefficient of the weir equation.

Enter the exponent of the weir equation.

Enter the elevation of the top of the weir.

l
|
i
i

Enter the influent TSS concentration.

24



Enter the initial pond volume.

What is the initial outflow over the weir?

gpm
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= NCHRP Screen13 Pollulanl Removal Hodel '

I"T—I— I_ I_IEI_ @zl

Metals Contamination Data

Enter influent concentration (mgfL)

Enter partioning coefficient (Likg)
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| m NCHRP Screen 14: Pollutant Removal Model

NUTRIENT CONCENTRATION REQUESTS

B Check to nclude total Keldahl nitrogen remcyal in mode|

| " Check to include ammonia (NH2) rernoval inr
Erterinfluent concentration frogdl) 5

B Check toinclude nitrate (MO2) remo

|
|
|
|
|
|
|
I
|
|

| W Checkto include orthophasphate re

I
|
|
I
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!_f_F— !_ I_Tl_ A

DATA REQUESTS

Enter the initial concentration of Ammonia
in the pond {mofL)

Enter the initial concentration of Total
Phosphorus in the pond {mafL)
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| = NCHRP Screen 16:

DATA REQUESTS

| the number of data sets in the
| depth area relationship.

| Choose the number of data sets in the
| particle size fraction data.
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Data Set
Mumber

o
s |

Depth-Area Relationships

Water Surface Volume of Flan-&mea

Elevation [ft) Pond [t"3) (ft°2)

EET EZE
1763 |
79 [t [Wonosst |
i7es5 _ [lls7e0as Wi |

Sur &3

Tz
Te0iss |
e ]
225 |
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Pollutant Removal Model

Sl Partticle Size in Fercent
Data Set micIons Smaller
Murmber L. -
COMMOM SIEVE #'S

5 o |

25 o | i
0 o0

#200 = 75
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WED as a TEXT FILE. Once

25 CAN BE OPENE ITHIN EXCEL.
DELIMITING THE DATAWITH CO WL
SEPARATE THE DATA INTO INDIVIDUAL COLUMNS.
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Results Summary 1

The sr

The total cancentration of zinc in the influentwas............

The total concentration of zincin the effluentwas............
The total concentration of lead in the influentwas. ...
The total concentration of lead inthe effluentwas.........
The total concentration of copper in the influentwas...........

The total concentration of copper in the effluentwas.. ...

rizion
E, mg.-"L

apm
0.0000

1.0769

FI'IQ:"L
ma/L

ma/L

= o
—=ll >
[
£18

m ;‘l.v" L
0.0000

2646 |

£

rngf'L

i

rrug‘-"L
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The maximum MH3 outlet concentration

The tirme that the maximum value occure

The maximurn TP outlet concentration was

| The time that the maximum value ocoured Was...o.oo .

- m ma/L
m }'ti:‘l,ll'
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| m NCHRP Screen 23: Repeat 2

Would you like to design another wet pond system?
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NCHRP 25 - 12

| This concludes the assistance screens currently programmed in this DSS. |

Thank you for using this DSS.
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