Evaluation of Bridge Rail Systems to Confirm AASHTO MASH Compliance

Appendices A-H

Appendices A-H are supplemental to NCHRP Research Report 1024: Evaluation of Bridge Rail Systems to Confirm AASHTO MASH Compliance (NCHRP Project 22-35). The full report can be found by searching for the report title on the National Academies Press website (nap.nationalacademies.org).

Appendix A: FHWA Open Letter
Appendix B: Preliminary Evaluation of AASHTO Geometrics
Appendix C: Detailed Evaluation of the Kansas Corral 32-In. without Curb
Appendix D: Details of Bridge Rails
Appendix E: Supporting Certification Documents
Appendix F: MASH-2016 Test 3-10 on NCHRP Bridge Rail on Deck
Appendix G: MASH-2016 Test 3-10 on NCHRP Bridge Rail on Curb
Appendix H: NCHRP Project 20-07 Marginal Bridge Rail

The National Cooperative Highway Research Program (NCHRP) is sponsored by the individual state departments of transportation of the American Association of State Highway and Transportation Officials. NCHRP is administered by the Transportation Research Board (TRB), part of the National Academies of Sciences, Engineering, and Medicine, under a cooperative agreement with the Federal Highway Administration (FHWA). Any opinions and conclusions expressed or implied in resulting research products are those of the individuals and organizations who performed the research and are not necessarily those of TRB; the National Academies of Sciences, Engineering, and Medicine; the FHWA; or NCHRP sponsors.

APPENDIX A

FHWA OPEN LETTER

May 26, 2017
An open letter to all in the highway safety hardware and roadside design community
The Federal Highway Administration (FHWA) is improving its process for issuing Federal-aid eligibility letters for roadside safety hardware systems. The FHW/A's Federal-aid eligibility letters are provided as a senvice to the States and are not a requirement for roadside safety hardware to be eligible for Federal-aid reimbursement. This change focuses the FHWNA on analyzing the materials submitted for review, rather than addressing the types of crash tests that should be submitted, as the latter are deterinined by the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Roadside Safety Hardware (MASH)

This letter serves to notify you that FHWA is implementing immediate process changes as described in this letter
Effective immediately, FHWA is implementing the following changes on how requests for Federal-aid eligibility letters for roadside safety hardware systems are accepted:

1. Moving forward, in order for manufacturers and States to qualify for a FHWA Federal-aid eligibility letter, all roadside hardware devices must complete the full suite of yecommended tests as described in AASHTO MASH. This applies to:
a. all devices currently in the FHM/A queue that have not received an eligibility letter by the effective date of this letter and,
b. retroactively to requests received after January 1, 2016.

Manufacturers and States that received an eligibility letter under AASHTO 's MASH standards and did not run the full suite of tests will be required to run the remaining tests in order to retain the Federal-aid eligibility letter, The FHWA has contacted the affected manufacturers These affected parties have up to one year, from the date of this letter, to run the balance of crash tests and-re-submit their request for an eligibility letter. A written request, including crash test results from an accredited Jaboratory, must be submitted to FHWA within one year
The retroactive date of January 1,2016 , corresponds to the official implementation date balloted by AASHTO and the date FHWA began issuing Federal-aid eligibility letters using standards from AASHTO 's MASH only, i.e., when FHWA ceased issuing eligibility letters using National Cooperative Highway Research Program (NCHRP) Report 350 guidance.
2. FHWA will no longer provide Federal-aid eligibility letters for modifications made to an AASHTO MASH-crash tested device. Manufacturers who have submitted requests for eligibility letters based on modifications have been notified

These changes are based on several important factors. The transition from guidance in the NCHRP Report 350 to standards in the AASHTO MASH continues per the FHWA- AASHTO Implementation Agreement balloted by AASHTO. Since its official launch, questions about the AASHTO MASH criteria have been identified by a range of stakeholders. Until such time these questions are answered and the transportation community has more experience with AASHTO MASH requirements, FHWA will require manufacturers and States to run all AASHTO MASH recommended crash tests in order to qualify for a FHWA Federal-aid eligibility letter.

This is a prudent action to support highway safety for the traveling public. This opportunity for improvement and consistency was noted in the Government Accountability Office's (GAO) final report dated June 2016, "Highway Safety: More Robust DOT Oversight of Guardrails and Other Roadside Hardware Could Further Enhance Safety, " GAD-16-575 and Evaluation of the Roadside Safety Hardware Process - Prepared for the FHWA's Office of Policy by the John A. Volpe National Transportation Systems Center.

The changes promote efficiency of Federal resources while advancing our Federal role to support public safety and ensuring that decision-making is at the State and local level.

The FHWA will address the initial "entry" of a device into the possibility for Federal-aid reimbursement, through examining crash testing, but the final decisions on selection and modifications to devices will be at the State and local level.

States and manufacturers will now have an outstanding opportunity to collaborate and deploy manufacturers' innovative modifications in a timely manner and/or respond to State-specific needs requiring significant and non-significant modifications - without the need of another Federal-aid eligibility letter from FHW/.

APPENDIX B

PRELIMINARY EVALUATION OF AASHTO GEOMETRICS

KEY DIMENSIONS OF BRIDGE RAIL SYSTEMS

With this information gathered for the various dimensions, the configurations for the bridge rail systems were determined. In order to distinguish the various bridge rail configurations, the following naming convention was used:

- CPB-SP = Concrete Post-and-Beam Snag Potential
- CPB-PS = Concrete Post-and-Beam Post Setback
- MPBD-SP = Metal Post-and-Beam Deck-Mounted Snag Potential
- MPBD-PS = Metal Post-and-Beam Deck-Mounted Post Setback
- MPBC-SP = Metal Post-and-Beam Curb-Mounted Snag Potential
- MPBC-PS = Metal Post-and-Beam Curb-Mounted Post Setback
- MPBP-SP = Metal Post-and-Beam Parapet-Mounted Snag Potential
- MPBP-PS = Metal Post-and-Beam Parapet-Mounted Post Setback

Table B. 1 shows the concrete post-and-beam systems that were used to evaluate the snag potential figure geometric relationships, and Table B. 2 shows the concrete post-and-beam systems that were used to evaluate the post setback figure geometric relationships.

Table B.1. Concrete post-and-beam systems evaluated for snag potential cases.

| \begin{tabular}{\|l|l|l|}
\hline
\end{tabular}						Pnag Potential Cases Setback Distance (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)
CPB-SP-System01	1.25	13	0.606	33					
CPB-SP-System02	2	13	0.552	29					
CPB-SP-System03	3	13	0.552	29					
CPB-SP-System04	4.25	13	0.552	29					
CPB-SP-System05	4.75	14	0.517	29					
CPB-SP-System06	5.25	15	0.483	29					
CPB-SP-System07	6	15	0.483	29					
CPB-SP-System08	1.25	10.75	0.629	29					
CPB-SP-System09	2	11.25	0.612	29					
CPB-SP-System10	3	12	0.586	29					
CPB-SP-System11	4.25	12	0.586	29					
CPB-SP-System12	4.75	12	0.586	29					
CPB-SP-System13	5.25	12	0.586	29					
CPB-SP-System14	6	12	0.586	29					

Table B.2. Concrete post-and-beam systems evaluated for post setback cases.

Post Setback Cases				
	Post Setback Distance (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)
CPB-PS-System01	1.25	13	0.606	33
CPB-PS-System02	2	13	0.552	29
CPB-PS-System03	2.5	13	0.552	29
CPB-PS-System04	3	13	0.552	29
CPB-PS-System05	3.5	13	0.552	29
CPB-PS-System06	4	13	0.552	29
CPB-PS-System07	2.5	6.5	0.803	33
CPB-PS-System08	3	9	0.727	33
CPB-PS-System09	3.5	11	0.667	33
CPB-PS-System10	4	11.5	0.603	29
CPB-PS-System11	4.5	13	0.552	29
CPB-PS-System12	5	14.5	0.500	29

Table B. 3 shows the deck-mounted metal post-and-beam systems that were used to evaluate the snag potential figure geometric relationships, and Table B. 4 shows the deckmounted metal post-and-beam systems that were used to evaluate the post setback figure geometric relationships.

Table B.3. Deck-mounted metal post-and-beam systems evaluated for snag potential cases.

Snag Potential Cases								
	Post Setback Distance (in.)	Total Clear Opening (in.)	First Vertical Clear Opening (in.)	Second Vertical Clear Opening (in.)	First Rail Size	Second Rail Size	Ratio of Contact Width to Height	Height (in.)
MPBD-SPSystem01	3	18	13	5	HSS6x3x1/4	HSS6x3x1/4	0.400	30
MPBD-SP- System02	4	21	13	8	HSS5x4x1/4	HSS5x4x1/4	0.323	31
MPBD-SPSystem03	4.5	21	13.5	7.5	HSS4x4.5x1.4	HSS5x4.5x1/4	0.300	30
MPBD-SPSystem04	5	23	14.5	8.5	HSS4x5x1/4	HSS5x5x1/4	0.281	32
MPBD-SPSystem05	6	22	15	7	HSS4x6x1/4	HSS4x6x1/4	0.267	30
MPBD-SPSystem06	7	23	15	8	HSS4x7x1/4	HSS4x7x1/4	0.258	31
MPBD-SP- System07	3	18	12	6	HSS6x3x1/4	HSS6x3x1/4	0.400	30
MPBD-SPSystem08	4	21	12	9	HSS5x4x1/4	HSS5x4x1/4	0.323	31
MPBD-SPSystem09	4.5	21	12	9	HSS4x4.5x1.4	HSS5x4.5x1/4	0.300	30
MPBD-SP- System10	5	23	12	11	HSS4x5x1/4	HSS5x5x1/4	0.281	32
MPBD-SPSystem11	6	22	12	10	HSS4x6x1/4	HSS4x6x1/4	0.267	30
MPBD-SPSystem12	7	23	12	11	HSS4x7x1/4	HSS4x7x1/4	0.258	31

Table B.4. Deck-mounted metal post-and-beam systems evaluated for post setback cases.

Post Setback Cases								
	Post Setback Distance (in.)	Total Clear Opening (in.)	First Vertical Clear Opening (in.)	Second Vertical Clear Opening (in.)	First Rail Size	Second Rail Size	Ratio of Contact Width to Height	Height (in.)
MPBD-PSSystem01	3	18	13	5	HSS6x3x1/4	HSS6x3x1/4	0.400	30
MPBD-PSSystem02	4	21	13	8	HSS5x4x1/4	HSS5x4x1/4	0.323	31
MPBD-PSSystem03	4.5	21	13.5	7.5	HSS4x4.5x1.4	HSS5x4.5x1/4	0.300	30
MPBD-PSSystem04	5	23	14.5	8.5	HSS4x5x1/4	HSS5x5x1/4	0.281	32
MPBD-PSSystem05	6	22	15	7	HSS4x6x1/4	HSS4x6x1/4	0.267	30
MPBD-PSSystem06	7	23	15	8	HSS4x7x1/4	HSS4x7x1/4	0.258	31
MPBD-PSSystem07	3	8	4	4	HSS11x3x1/4	HSS11x3x1/4	0.733	30
MPBD-PSSystem08	4	12	6	6	HSS9x4x1/4	HSS9x4x1/4	0.600	30
MPBD-PSSystem09	4.5	14	7	7	HSS8x4.5x1/4	HSS9x4.5x1/4	0.548	31
MPBD-PSSystem10	5	15	8	7	HSS7x5x1/4	HSS8x5x1/4	0.500	30
MPBD-PS- System11	6	16	8	8	HSS7x6x1/4	HSS7x6x1/4	0.467	30
MPBD-PSSystem 12	7	17	9	8	HSS6x7x1/4	HSS7x7x1/4	0.433	30

Table B. 5 shows the curb-mounted metal post-and-beam systems that were used to evaluate the snag potential figure geometric relationships, and Table B. 6 shows the curbmounted metal post-and-beam systems that were used to evaluate the post setback figure geometric relationships.

Table B.5. Curb-mounted metal post-and-beam systems evaluated for snag potential cases.

Snag Potential Cases								
	Post Setback Distance (in.)	Total Clear Opening (in.)	First Vertical Clear Opening (in.)	Second Vertical Clear Opening (in.)	First Rail Size	Second Rail Size	Ratio of Contact Width to Height	Height (in.)
MPBC-SP- System01	3	18	13	5	HSS3x3x1/4	HSS3x3x1/4	0.400	30
MPBC-SPSystem02	4	21	13	8	HSS2x4x1/4	HSS2x4x1/4	0.323	31
MPBC-SPSystem03	5	23	14.5	8.5	HSS2x5x1/4	HSS2x5x1/4	0.303	33
MPBC-SPSystem04	6	22	15	7	HSS2x6x1/4	HSS2x6x1/4	0.313	32
MPBC-SPSystem05	7	23	15	8	HSS2x7x1/4	HSS2x7x1/4	0.303	33
MPBC-SPSystem06	8	23	15	8	HSS2x8x1/4	HSS2x8x1/4	0.303	33
MPBC-SPSystem07	3	18	12	6	HSS3x3x1/4	HSS3x3x1/4	0.400	30
MPBC-SPSystem08	4	21	12	9	HSS2x4x1/4	HSS2x4x1/4	0.323	31
MPBC-SP- System09	5	23	12	11	HSS2x5x1/4	HSS2x5x1/4	0.303	33
MPBC-SP- System10	6	22	12	10	HSS2x6x1/4	HSS2x6x1/4	0.313	32
MPBC-SPSystem11	7	23	12	11	HSS2x7x1/4	HSS2x7x1/4	0.303	33
MPBC-SPSystem12	8	23	12	11	HSS2x8x1/4	HSS2x8x1/4	0.303	33

Table B.6. Curb-mounted metal post-and-beam systems evaluated for post setback cases.

Post Setback Cases								
	Post Setback Distance (in.)	Total Clear Opening (in.)	First Vertical Clear Opening (in.)	Second Vertical Clear Opening (in.)	First Rail Size	Second Rail Size	Ratio of Contact Width to Height	Height (in.)
MPBC-PSSystem01	3	18	13	5	HSS3x3x1/4	HSS3x3x1/4	0.400	30
MPBC-PSSystem02	4	21	13	8	HSS $2 \times 4 \times 1 / 4$	HSS2x4x1/4	0.323	31
MPBC-PSSystem03	5	26	14.5	11.5	HSS2x5x1/4	HSS2x5x1/4	0.278	36
MPBC-PSSystem04	6	27	15	12	HSS2x6x1/4	HSS2x6x1/4	0.270	37
MPBC-PSSystem05	7	28	15	13	HSS2x7x1/4	HSS2x7x1/4	0.263	38
MPBC-PSSystem06	8	29	15	14	HSS2x8x1/4	HSS2x8x1/4	0.256	39
MPBC-PSSystem07	3	8	4	4	HSS8x3x1/4	HSS8x3x1/4	0.733	30
MPBC-PSSystem08	4	12	6	6	HSS6x4x1/4	HSS6x4x1/4	0.600	30
MPBC-PS- System09	5	15	8	7	HSS4x5x1/4	HSS5x5x1/4	0.500	30
MPBC-PS- System10	6	16	8	8	HSS4x6x1/4	HSS4x6x1/4	0.467	30
MPBC-PSSystem11	7	17	9	8	HSS3x7x1/4	HSS4x7x1/4	0.433	30
MPBC-PSSystem12	8	17	9	8	HSS3x8x1/4	HSS4x8x1/4	0.433	30

Table B. 7 shows the parapet-mounted metal post-and-beam systems that were used to evaluate the snag potential figure geometric relationships, and Table B. 8 shows the parapetmounted metal post-and-beam systems that were used to evaluate the post setback figure geometric relationships.

Table B.7. Parapet-mounted metal post-and-beam systems evaluated for snag potential cases.

Snag Potential Cases								
	Post Setback Distance (in.)	Total Clear Opening (in.)	First Vertical Clear Opening (in.)	Second Vertical Clear Opening (in.)	First Rail Size	Second Rail Size	Ratio of Contact Width to Height	Height (in.)
MPBP-SPSystem01	3	13	13	-	HSS2x3x1/4	-	0.606	33
MPBP-SPSystem02	4	13	13	-	HSS2x4x1/4	-	0.606	33
MPBP-SPSystem03	5	14.5	14.5	-	HSS2x5x1/4	-	0.580	34.5
MPBP-SPSystem04	6	15	15	-	HSS2x6x1/4	-	0.571	35
MPBP-SPSystem05	7	15	15	-	HSS2x7x1/4	-	0.571	35
MPBP-SPSystem06	8	15	15	-	HSS2x8x1/4	-	0.571	35
MPBP-SPSystem07	3	12	12	-	HSS2x3x1/4	-	0.625	32
MPBP-SPSystem08	4	12	12	-	HSS2x4x1/4	-	0.625	32
MPBP-SPSystem09	5	12	12	-	HSS2x5x1/4	-	0.625	32
MPBP-SPSystem10	6	12	12	-	HSS2x6x1/4	-	0.625	32
MPBP-SPSystem11	7	12	12	-	HSS2x7x1/4	-	0.625	32
MPBP-SPSystem12	8	12	12	-	HSS2x8x1/4	-	0.625	32

Table B.8. Parapet-mounted metal post-and-beam systems evaluated for post setback cases.

Post Setback Potential Cases								
	Post Setback Distance (in.)	Total Clear Opening (in.)	First Vertical Clear Opening (in.)	Second Vertical Clear Opening (in.)	First Rail Size	Second Rail Size	Ratio of Contact Width to Height	Height (in.)
MPBP-PSSystem01	2	20	10	10	HSS2x2x1/4	HSS2x2x1/4	0.524	42
MPBP-PSSystem02	3	26	13	13	HSS2x3x1/4	HSS2x3x1/4	0.458	48
MPBP-PS- System03	4	26	13	13	HSS2x4x1/4	HSS2x4x1/4	0.458	48
MPBP-PSSystem04	5	29	14.5	14.5	HSS2x5x1/4	HSS2x5x1/4	0.431	51
MPBP-PSSystem05	6	30	15	15	HSS2x6x1/4	HSS2x6x1/4	0.423	52
MPBP-PS- System06	7	30	15	15	HSS2x7x1/4	HSS2x7x1/4	0.423	52
MPBP-PSSystem07	3	13	7	6	HSS7x3x1/4	HSS8x3x1/4	0.717	46
MPBP-PSSystem08	4	18	9	9	HSS5x4x1/4	HSS5x4x1/4	0.609	46
MPBP-PSSystem09	5	23	12	11	HSS2x5x1/4	HSS3x5x1/4	0.500	46
MPBP-PS- System10	6	26	13	13	HSS2x6x1/4	HSS2x6x1/4	0.458	48
MPBP-PSSystem11	7	28	14	14	HSS2x7x1/4	HSS2x7x1/4	0.440	50
MPBP-PSSystem12	8	30	15	15	HSS2x8x1/4	HSS2x8x1/4	0.423	52

OCCUPANT RISK RESULTS

Tables B.9-B. 12 present the FE computer simulation results for the concrete post-andbeam systems.

Tables B.13-B. 16 present the FE computer simulation results for the deck-mounted metal post-and-beam systems.

Tables B.17-B. 20 present the FE computer simulation results for the curb-mounted metal post-and-beam systems.

Tables B.21-B. 24 present the FE computer simulation results for the parapet-mounted metal post-and-beam systems.

Table B.9. Concrete post-and-beam results for snag potential cases (Test 3-10).

	Post Setback Distance (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height(in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
					x-dir	y-dir	x-dir	y-dir		
CPB-SP-System01	1.25	13	0.6061	33	9.3	-8.2	-8.0	10.3	Yes	No
CPB-SP-System02	2	13	0.5517	29	9.4	-8.2	-5.5	7.7	Yes	No
CPB-SP-System03	3	13	0.5517	29	9.1	-8.9	-4.7	6.0	Yes	No
CPB-SP-System04	4.25	13	0.5517	29	8.3	-9.0	-4.2	10.6	Yes	Yes
CPB-SP-System05	4.75	14	0.5172	29	10.2	-8.9	-7.4	-4.8	Yes	No
CPB-SP-System06	5.25	15	0.4828	29	11.1	-7.9	-3.7	3.5	Yes	No
CPB-SP-System07	6	15	0.4828	29	10.0	-8.5	-4.1	4.4	Yes	No
CPB-SP-System08	1.25	10.75	0.6293	29	8.1	-9.2	-3.2	9.5	Yes	No
CPB-SP-System09	2	11.25	0.6121	29	8.9	-9.0	-4.6	-3.7	Yes	Yes
CPB-SP-System10	3	12	0.5862	29	8.1	-9.2	-2.3	9.2	Yes	No
CPB-SP-System11	4.25	12	0.5862	29	8.1	-9.6	3.0	9.5	Yes	No
CPB-SP-System12	4.75	12	0.5862	29	8.6	-9.1	-2.7	9.4	Yes	No
CPB-SP-System13	5.25	12	0.5862	29	6.4	-9.5	-3.7	14.5	Yes	No
CPB-SP-System14	6	12	0.5862	29	7.0	-9.6	-2.6	14.4	Yes	No

Table B.10. Concrete post-and-beam results for post setback cases (Test 3-10).

	Post Setback Distance (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
					x-dir	y-dir	x-dir	y-dir		
CPB-PS-System01	1.25	13	0.6061	33	9.3	-8.2	-8.0	10.3	Yes	No
CPB-PS-System02	2	13	0.5517	29	9.4	-8.2	-5.5	7.7	Yes	No
CPB-PS-System03	2.5	13	0.5517	29	9.4	-8.3	-6.0	5.6	Yes	No
CPB-PS-System04	3	13	0.5517	29	9.1	-8.9	-4.7	6.0	Yes	No
CPB-PS-System05	3.5	13	0.5517	29	8.6	-9.0	-3.3	8.1	Yes	Yes
CPB-PS-System06	4	13	0.5517	29	8.6	-9.0	-3.8	7.7	Yes	Yes
CPB-PS-System07	2.5	6.5	0.8030	33	5.4	-9.8	-3.0	20.7	No	No
CPB-PS-System08	3	9	0.7273	33	5.8	-9.8	-2.8	16.9	Yes	No
CPB-PS-System09	3.5	11	0.6667	33	6.2	-9.6	-4.6	14.2	Yes	No
CPB-PS-System10	4	11.5	0.6034	29	7.3	-9.6	-2.9	13.2	Yes	No
CPB-PS-System11	4.5	13	0.5517	29	8.9	-9.2	-3.4	8.6	Yes	No
CPB-PS-System12	5	14.5	0.5000	29	9.4	-8.6	-4.9	3.8	Yes	No

Table B.11. Concrete post-and-beam results for snag potential cases (Test 3-11).

	Post Setback Distance (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
					x-dir	y-dir	x-dir	y-dir		
CPB-SP-System01	1.25	13	0.6061	33	5.9	-7.5	-5.0	15.4	Yes	No
CPB-SP-System02	2	13	0.5517	29	5.4	-7.6	-5.3	12.5	Yes	Yes
CPB-SP-System03	3	13	0.5517	29	5.3	-7.6	-4.2	12.5	Yes	Yes
CPB-SP-System04	4.25	13	0.5517	29	5.2	-7.7	-5.6	12.5	Yes	Yes
CPB-SP-System05	4.75	14	0.5172	29	5.4	-7.6	-4.8	13.7	Yes	Yes
CPB-SP-System06	5.25	15	0.4828	29	5.4	-7.4	-7.2	11.4	Yes	Yes
CPB-SP-System07	6	15	0.4828	29	5.3	-7.5	-4.9	13.8	Yes	Yes
CPB-SP-System08	1.25	10.75	0.6293	29	5.0	-7.7	-5.1	16.6	Yes	No
CPB-SP-System09	2	11.25	0.6121	29	4.8	-7.5	4.7	14.7	Yes	Yes
CPB-SP-System10	3	12	0.5862	29	4.9	-7.5	-5.2	14.1	Yes	Yes
CPB-SP-System11	4.25	12	0.5862	29	4.9	-7.4	-4.4	14.8	Yes	Yes
CPB-SP-System12	4.75	12	0.5862	29	4.8	-7.5	4.6	15.6	Yes	No
CPB-SP-System13	5.25	12	0.5862	29	4.5	-7.4	-4.6	14.0	Yes	Yes
CPB-SP-System14	6	12	0.5862	29	4.5	-7.5	-5.2	15.3	Yes	No

Table B.12. Concrete post-and-beam results for post setback cases (Test 3-11).

	Post Setback Distance (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
					x-dir	y-dir	x-dir	y-dir		
CPB-PS-System01	1.25	13	0.6061	33	5.9	-7.5	-5.0	15.4	Yes	No
CPB-PS-System02	2	13	0.5517	29	5.4	-7.6	-5.3	12.5	Yes	Yes
CPB-PS-System03	2.5	13	0.5517	29	5.3	-7.6	-5.7	12.6	Yes	Yes
CPB-PS-System04	3	13	0.5517	29	5.3	-7.6	-4.2	12.5	Yes	Yes
CPB-PS-System05	3.5	13	0.5517	29	5.2	-7.6	-5.2	12.1	Yes	Yes
CPB-PS-System06	4	13	0.5517	29	5.1	-7.6	-6.5	13.1	Yes	Yes
CPB-PS-System07	2.5	6.5	0.8030	33	4.6	-7.5	4.3	17.2	Yes	No
CPB-PS-System08	3	9	0.7273	33	4.6	-7.5	-5.1	17.2	Yes	No
CPB-PS-System09	3.5	11	0.6667	33	4.9	-7.5	-4.6	16.4	Yes	No
CPB-PS-System10	4	11.5	0.6034	29	4.8	-7.5	5.8	15.8	Yes	No
CPB-PS-System11	4.5	13	0.5517	29	5.1	-7.7	-4.9	12.9	Yes	Yes
CPB-PS-System12	5	14.5	0.5000	29	5.5	-7.5	-4.8	12.5	Yes	Yes

Table B.13. Deck-mounted metal post-and-beam results for snag potential cases (Test 3-10).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio ofContact Widthto Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBD-SP-System01	3	18	13	5	0.4000	30	8.3	-9.4	-7.7	12.0	Yes	No
MPBD-SP-System02	4	21	13	8	0.3226	31	7.7	-9.6	-6.0	12.8	Yes	No
MPBD-SP-System03	4.5	21	13.5	7.5	0.3000	30	7.1	-9.4	-3.6	11.7	Yes	No
MPBD-SP-System04	5	23	14.5	8.5	0.2813	32	9.3	-7.5	-12.4	22.7	No	No
MPBD-SP-System05	6	22	15	7	0.2667	30	9.0	-7.9	-10.3	15.9	Yes	No
MPBD-SP-System06	7	23	15	8	0.2581	31	8.2	-8.8	-8.0	7.9	Yes	Yes
MPBD-SP-System07	3	18	12	6	0.4000	30	6.3	-9.5	-4.5	14.6	Yes	No
MPBD-SP-System08	4	21	12	9	0.3226	31	6.8	-9.5	-3.1	14.3	Yes	No
MPBD-SP-System09	4.5	21	12	9	0.3000	30	7.0	-9.3	-3.2	13.1	Yes	No
MPBD-SP-System10	5	23	12	11	0.2813	32	7.1	-9.4	-3.8	14.0	Yes	No
MPBD-SP-System11	6	22	12	10	0.2667	30	6.9	-9.3	-3.2	12.3	Yes	No
MPBD-SP-System12	7	23	12	11	0.2581	31	6.9	-9.4	-4.9	13.2	Yes	No

Table B.14. Deck-mounted metal post-and-beam results for post setback cases (Test 3-10).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBD-PS-System01	3	18	13	5	0.4000	30	8.3	-9.4	-7.7	12.0	Yes	No
MPBD-PS-System02	4	21	13	8	0.3226	31	7.7	-9.6	-6.0	12.8	Yes	No
MPBD-PS-System03	4.5	21	13.5	7.5	0.3000	30	7.1	-9.4	-3.6	11.7	Yes	No
MPBD-PS-System04	5	23	14.5	8.5	0.2813	32	9.3	-7.5	-12.4	22.7	No	No
MPBD-PS-System05	6	22	15	7	0.2667	30	9.0	-7.9	-10.3	15.9	Yes	No
MPBD-PS-System06	7	23	15	8	0.2581	31	8.2	-8.8	-8.0	7.9	Yes	Yes
MPBD-PS-System07	3	8	4	4	0.7333	30	5.4	-9.7	-3.2	18.6	Yes	No
MPBD-PS-System08	4	12	6	6	0.6000	30	5.7	-9.6	-3.4	17.2	Yes	No
MPBD-PS-System09	4.5	14	7	7	0.5484	31	5.8	-9.7	-4.4	16.3	Yes	No
MPBD-PS-System10	5	15	8	7	0.5000	30	5.9	-9.6	-4.3	16.0	Yes	No
MPBD-PS-System11	6	16	8	8	0.4667	30	6.1	-9.6	-4.4	14.6	Yes	No
MPBD-PS-System12	7	17	9	8	0.4333	30	5.9	-9.6	-4.7	14.2	Yes	No

Table B.15. Deck-mounted metal post-and-beam results for snag potential cases (Test 3-11).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio ofContact Widthto Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBD-SP-System01	3	18	13	5	0.4000	30	5.6	-7.0	-4.0	12.3	Yes	Yes
MPBD-SP-System02	4	21	13	8	0.3226	31	5.8	-7.1	-4.4	12.9	Yes	Yes
MPBD-SP-System03	4.5	21	13.5	7.5	0.3000	30	5.5	-7.2	-4.3	11.9	Yes	Yes
MPBD-SP-System04	5	23	14.5	8.5	0.2813	32	7.6	-6.9	-3.9	7.9	Yes	Yes
MPBD-SP-System05	6	22	15	7	0.2667	30	5.8	-7.4	7.4	11.6	Yes	Yes
MPBD-SP-System06	7	23	15	8	0.2581	31	5.6	-7.4	-7.4	11.6	Yes	Yes
MPBD-SP-System07	3	18	12	6	0.4000	30	4.9	-7.1	-5.1	14.5	Yes	Yes
MPBD-SP-System08	4	21	12	9	0.3226	31	5.8	-7.0	-3.6	12.3	Yes	Yes
MPBD-SP-System09	4.5	21	12	9	0.3000	30	5.8	-6.9	-4.8	12.3	Yes	Yes
MPBD-SP-System10	5	23	12	11	0.2813	32	7.2	-6.8	-4.5	6.9	Yes	Yes
MPBD-SP-System11	6	22	12	10	0.2667	30	5.9	-7.0	-4.0	13.1	Yes	Yes
MPBD-SP-System12	7	23	12	11	0.2581	31	6.2	-7.1	-7.0	11.5	Yes	Yes

Table B.16. Deck-mounted metal post-and-beam results for post setback cases (Test 3-11).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBD-PS-System01	3	18	13	5	0.4000	30	5.6	-7.0	-4.0	12.3	Yes	Yes
MPBD-PS-System02	4	21	13	8	0.3226	31	5.8	-7.1	-4.4	12.9	Yes	Yes
MPBD-PS-System03	4.5	21	13.5	7.5	0.3000	30	5.5	-7.2	-4.3	11.9	Yes	Yes
MPBD-PS-System04	5	23	14.5	8.5	0.2813	32	7.6	-6.9	-3.9	7.9	Yes	Yes
MPBD-PS-System05	6	22	15	7	0.2667	30	5.8	-7.4	7.4	11.6	Yes	Yes
MPBD-PS-System06	7	23	15	8	0.2581	31	5.6	-7.4	-7.4	11.6	Yes	Yes
MPBD-PS-System07	3	8	4	4	0.7333	30	4.2	-7.0	5.4	17.4	Yes	No
MPBD-PS-System08	4	12	6	6	0.6000	30	4.3	-7.1	-6.1	17.0	Yes	No
MPBD-PS-System09	4.5	14	7	7	0.5484	31	4.7	-7.2	4.7	16.0	Yes	No
MPBD-PS-System10	5	15	8	7	0.5000	30	4.8	-7.0	5.2	14.1	Yes	Yes
MPBD-PS-System11	6	16	8	8	0.4667	30	4.9	-7.2	-4.7	13.4	Yes	Yes
MPBD-PS-System12	7	17	9	8	0.4333	30	4.9	-7.2	4.4	13.6	Yes	Yes

Table B.17. Curb-mounted metal post-and-beam results for snag potential cases (Test 3-10).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio ofContact Widthto Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBC-SP-System01	3	18	13	5	0.4000	30	12.1	-7.5	-10.0	-12.5	Yes	No
MPBC-SP-System02	4	21	13	8	0.3226	31	11.7	-7.4	-13.2	26.1	No	No
MPBC-SP-System03	5	23	14.5	8.5	0.3030	33	12.3	-5.9	-11.9	13.3	No	No
MPBC-SP-System04	6	22	15	7	0.3125	32	11.7	-6.4	-13.5	13.0	Yes	No
MPBC-SP-System05	7	23	15	8	0.3030	33	11.3	-6.9	-12.5	18.8	Yes	No
MPBC-SP-System06	8	23	15	8	0.3030	33	10.5	-6.7	-15.5	19.9	Yes	No
MPBC-SP-System07	3	18	12	6	0.4000	30	10.4	-9.4	-11.9	-11.7	Yes	No
MPBC-SP-System08	4	21	12	9	0.3226	31	8.3	-9.1	-11.7	9.4	Yes	Yes
MPBC-SP-System09	5	23	12	11	0.3030	33	8.7	-9.3	-9.8	8.7	Yes	No
MPBC-SP-System10	6	22	12	10	0.3125	32	7.4	-8.9	-7.4	10.7	Yes	Yes
MPBC-SP-System11	7	23	12	11	0.3030	33	7.2	-9.1	-3.2	10.3	Yes	Yes
MPBC-SP-System12	8	23	12	11	0.3030	33	7.1	-9.2	-2.8	11.2	Yes	No

Table B.18. Curb-mounted metal post-and-beam results for post setback cases (Test 3-10).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBC-PS-System01	3	18	13	5	0.4000	30	12.1	-7.5	-10.0	-12.5	Yes	No
MPBC-PS-System02	4	21	13	8	0.3226	31	11.7	-7.4	-13.2	26.1	No	No
MPBC-PS-System03	5	26	14.5	11.5	0.2778	36	12.7	-6.1	-13.7	19.5	No	No
MPBC-PS-System04	6	27	15	12	0.2703	37	13.5	-6.4	-23.9	-14.2	No	No
MPBC-PS-System05	7	28	15	13	0.2632	38	12.7	-6.4	-19.1	-10.4	No	No
MPBC-PS-System06	8	29	15	14	0.2564	39	11.1	-7.0	-14.2	20.6	No	No
MPBC-PS-System07	3	8	4	4	0.7333	30	5.8	-9.7	-4.0	15.7	Yes	No
MPBC-PS-System08	4	12	6	6	0.6000	30	6.3	-9.5	-3.4	14.6	Yes	No
MPBC-PS-System09	5	15	8	7	0.5000	30	7.2	-9.5	-2.8	11.0	Yes	No
MPBC-PS-System10	6	16	8	8	0.4667	30	6.4	-9.7	-3.8	14.7	Yes	No
MPBC-PS-System11	7	17	9	8	0.4333	30	6.8	-9.6	-3.2	13.3	Yes	No
MPBC-PS-System12	8	17	9	8	0.4333	30	6.5	-9.6	-4.6	13.4	Yes	No

Table B.19. Curb-mounted metal post-and-beam results for snag potential cases (Test 3-11).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio ofContact Widthto Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBC-SP-System01	3	18	13	5	0.4000	30	7.0	-6.8	5.5	10.2	Yes	Yes
MPBC-SP-System02	4	21	13	8	0.3226	31	9.0	-6.8	-5.6	6.5	Yes	Yes
MPBC-SP-System03	5	23	14.5	8.5	0.3030	33	9.8	-6.5	-5.9	6.3	Yes	No
MPBC-SP-System04	6	22	15	7	0.3125	32	6.3	-7.5	-6.1	12.5	Yes	Yes
MPBC-SP-System05	7	23	15	8	0.3030	33	7.0	-7.4	-5.7	12.2	Yes	Yes
MPBC-SP-System06	8	23	15	8	0.3030	33	6.1	-7.5	-6.8	11.8	Yes	Yes
MPBC-SP-System07	3	18	12	6	0.4000	30	8.7	-6.7	-4.6	7.6	Yes	Yes
MPBC-SP-System08	4	21	12	9	0.3226	31	8.1	-6.9	-4.2	7.5	Yes	Yes
MPBC-SP-System09	5	23	12	11	0.3030	33	8.4	-7.0	-5.8	7.2	Yes	Yes
MPBC-SP-System10	6	22	12	10	0.3125	32	8.1	-6.8	-9.2	6.3	Yes	Yes
MPBC-SP-System11	7	23	12	11	0.3030	33	8.1	-6.6	-5.1	7.2	Yes	Yes
MPBC-SP-System12	8	23	12	11	0.3030	33	7.9	-6.5	-4.0	8.6	Yes	Yes

Table B.20. Curb-mounted metal post-and-beam results for post setback cases (Test 3-11).

	Post Setback Distance (in.)	Total Clear Opening (in.)	1st Vertical Clear Opening (in.)	2nd Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
							x-dir	y-dir	x-dir	y-dir		
MPBC-PS-System01	3	18	13	5	0.4000	30	7.0	-6.8	5.5	10.2	Yes	Yes
MPBC-PS-System02	4	21	13	8	0.3226	31	9.0	-6.8	-5.6	6.5	Yes	Yes
MPBC-PS-System03	5	26	14.5	11.5	0.2778	36	9.3	-7.0	-5.8	7.2	Yes	No
MPBC-PS-System04	6	27	15	12	0.2703	37	7.1	-7.5	5.5	15.5	Yes	No
MPBC-PS-System05	7	28	15	13	0.2632	38	7.3	-7.4	-6.1	15.0	Yes	No
MPBC-PS-System06	8	29	15	14	0.2564	39	7.1	-7.4	-6.0	16.3	Yes	No
MPBC-PS-System07	3	8	4	4	0.7333	30	4.5	-7.0	-5.2	16.8	Yes	No
MPBC-PS-System08	4	12	6	6	0.6000	30	5.0	-6.9	-5.0	13.8	Yes	Yes
MPBC-PS-System09	5	15	8	7	0.5000	30	5.3	-7.1	-5.0	13.5	Yes	Yes
MPBC-PS-System10	6	16	8	8	0.4667	30	5.3	-7.2	-4.0	12.7	Yes	Yes
MPBC-PS-System11	7	17	9	8	0.4333	30	5.3	-7.2	-5.5	12.7	Yes	Yes
MPBC-PS-System12	8	17	9	8	0.4333	30	5.3	-7.2	-5.0	11.9	Yes	Yes

Table B.21. Parapet-mounted metal post-and-beam results for snag potential cases (Test 3-10).

	Post Setback Distance (in.)	Total Clear Opening (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
						x-dir	y-dir	x-dir	y-dir		
MPBP-SP-System01	3	13	13	0.6061	33	6.7	-9.5	-3.6	16.0	Yes	No
MPBP-SP-System02	4	13	13	0.6061	33	6.0	-9.6	-3.9	16.4	Yes	No
MPBP-SP-System03	5	14.5	14.5	0.5797	34.5	6.1	-9.5	-3.6	15.6	Yes	No
MPBP-SP-System04	6	15	15	0.5714	35	5.9	-9.5	-4.8	16.7	Yes	No
MPBP-SP-System05	7	15	15	0.5714	35	5.9	-9.5	-4.9	15.7	Yes	No
MPBP-SP-System06	8	15	15	0.5714	35	5.8	-9.7	-3.6	16.6	Yes	No
MPBP-SP-System07	3	12	12	0.6250	32	6.1	-9.7	-6.0	15.1	Yes	No
MPBP-SP-System08	4	12	12	0.6250	32	5.8	-9.7	-4.2	16.1	Yes	No
MPBP-SP-System09	5	12	12	0.6250	32	5.8	-9.7	-3.8	16.2	Yes	No
MPBP-SP-System10	6	12	12	0.6250	32	5.5	-9.7	-4.1	18.0	Yes	No
MPBP-SP-System11	7	12	12	0.6250	32	5.4	-9.7	-2.8	18.3	Yes	No
MPBP-SP-System12	8	12	12	0.6250	32	5.6	-9.8	-3.7	16.7	Yes	No

Table B.22. Parapet-mounted metal post-and-beam results for post setback cases (Test 3-10).

	Post Setback Distance (in.)	Total Clear Opening (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
						x-dir	y-dir	x-dir	y-dir		
MPBP-PS-System01	2	20	10	0.5238	42	8.1	-8.9	-8.1	6.2	Yes	Yes
MPBP-PS-System02	3	26	13	0.4583	48	6.5	-9.6	-3.9	15.8	Yes	No
MPBP-PS-System03	4	26	13	0.4583	48	6.1	-9.6	-7.2	16.5	Yes	No
MPBP-PS-System04	5	29	14.5	0.4314	51	6.0	-9.5	-3.4	15.3	Yes	No
MPBP-PS-System05	6	30	15	0.4231	52	6.0	-9.5	-4.6	16.4	Yes	No
MPBP-PS-System06	7	30	15	0.4231	52	5.9	-9.5	-5.4	15.8	Yes	No
MPBP-PS-System07	3	13	7	0.7174	46	5.4	-9.7	-3.6	19.0	Yes	No
MPBP-PS-System08	4	18	9	0.6087	46	5.6	-9.8	-3.5	18.1	Yes	No
MPBP-PS-System09	5	23	12	0.5000	46	5.9	-9.6	-4.2	16.4	Yes	No
MPBP-PS-System10	6	26	13	0.4583	48	6.0	-9.6	-3.8	16.5	Yes	No
MPBP-PS-System11	7	28	14	0.4400	50	5.7	-9.6	-3.6	16.6	Yes	No
MPBP-PS-System12	8	30	15	0.4231	52	5.7	-9.7	-4.7	18.3	Yes	No

Table B.23. Parapet-mounted metal post-and-beam results for snag potential cases (Test 3-11).

	Post Setback Distance (in.)	Total Clear Opening (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
						x-dir	y-dir	x-dir	y-dir		
MPBP-SP-System01	3	13	13	0.6061	33	7.4	-7.3	-3.6	10.2	Yes	Yes
MPBP-SP-System02	4	13	13	0.6061	33	8.1	-6.9	-7.1	4.5	Yes	Yes
MPBP-SP-System03	5	14.5	14.5	0.5797	34.5	8.5	-7.2	-6.4	5.5	Yes	Yes
MPBP-SP-System04	6	15	15	0.5714	35	6.8	-7.4	-5.0	13.8	Yes	Yes
MPBP-SP-System05	7	15	15	0.5714	35	6.9	-7.5	-7.7	14.0	Yes	Yes
MPBP-SP-System06	8	15	15	0.5714	35	6.6	-7.4	7.3	13.4	Yes	Yes
MPBP-SP-System07	3	12	12	0.6250	32	8.6	-6.9	-5.3	6.5	Yes	Yes
MPBP-SP-System08	4	12	12	0.6250	32	8.4	-7.1	-5.0	5.5	Yes	Yes
MPBP-SP-System09	5	12	12	0.6250	32	6.9	-7.2	-6.4	9.5	Yes	Yes
MPBP-SP-System10	6	12	12	0.6250	32	7.6	-7.1	-5.0	6.9	Yes	Yes
MPBP-SP-System11	7	12	12	0.6250	32	6.9	-7.1	-4.1	8.3	Yes	Yes
MPBP-SP-System12	8	12	12	0.6250	32	6.6	-7.4	-6.0	10.6	Yes	Yes

Table B.24. Parapet-mounted metal post-and-beam results for post setback cases (Test 3-11).

	Post Setback Distance (in.)	Total Clear Opening (in.)	Vertical Clear Opening (in.)	Ratio of Contact Width to Height	Height (in.)	OIV (m/s)		RDA (g's)		Pass OIV/RDA Max Limits?	Pass OIV/RDA Preferred Limits?
						x-dir	y-dir	x-dir	y-dir		
MPBP-PS-System01	2	20	10	0.5238	42	7.4	-7.4	-5.7	11.7	Yes	Yes
MPBP-PS-System02	3	26	13	0.4583	48	8.7	-6.7	-6.7	6.7	Yes	Yes
MPBP-PS-System03	4	26	13	0.4583	48	7.3	-7.5	-4.8	12.4	Yes	Yes
MPBP-PS-System04	5	29	14.5	0.4314	51	7.9	-7.0	-7.7	7.9	Yes	Yes
MPBP-PS-System05	6	30	15	0.4231	52	8.4	-7.2	-10.0	5.9	Yes	Yes
MPBP-PS-System06	7	30	15	0.4231	52	8.4	-7.2	-8.5	8.2	Yes	Yes
MPBP-PS-System07	3	13	7	0.7174	46	5.4	-7.6	-4.4	18.9	Yes	No
MPBP-PS-System08	4	18	9	0.6087	46	5.6	-7.6	-5.2	16.5	Yes	No
MPBP-PS-System09	5	23	12	0.5000	46	6.7	-7.6	8.0	13.1	Yes	Yes
MPBP-PS-System10	6	26	13	0.4583	48	7.5	-7.2	-8.5	9.8	Yes	Yes
MPBP-PS-System11	7	28	14	0.4400	50	7.9	-7.1	-9.9	6.4	Yes	Yes
MPBP-PS-System12	8	30	15	0.4231	52	7.6	-7.6	-5.8	6.8	Yes	Yes

APPENDIX C

DETAILED EVALUATION OF THE KANSAS CORRAL 32-IN. WITHOUT CURB

DETAILED MODELING OF THE KANSAS CORRAL 32-IN. RAILING

The Kansas Corral barrier system is a concrete post-and-beam bridge rail system anchored to the edge of a concrete bridge deck overhang. One type of the Kansas Corral railing is the $32-\mathrm{in}$. cast-in-place concrete railing from the Commonwealth of Virginia Department of Transportation (VDOT). Figure C. 1 shows an elevation view of the VDOT 32in. Kansas Corral railing found on Plan No. BCR-4.

Figure C.1. Elevation view of the VDOT 32-in. Kansas Corral railing.
The Kansas Corral bridge rail element is 1 ft .2 in . wide with a height of 1 ft .7 in . This element is anchored on top of the concrete posts, which are located on $10-\mathrm{ft}$. centers. Each post is 3 ft . wide, 1 ft . deep and has a height of 13 in . Thus, the total system height from the deck surface is 32 in . A cross-section view of the bridge rail is shown in Figure C.2.

TYPICAL SECTION BETWEEN POSTS
Reinforcing steel on deck not shown
Figure C.2. Typical cross-section view between posts.
The details of the steel reinforcement placement, shapes, and connectivity are shown in Figures C.3, C.4, and C.5. It should be noted that the rail has a fully separated (open) joint at each internal post.

Figure C.3. Cross-section view through posts and the deck overhang.

ELEVATION SHOWING RUO5O2 PLACEMENT

(Elevotion shown is for deck slabs.
Placement of RU0502 is the same for slab spons.)
Figure C.4. Elevation at post showing reinforcement details.

Figure C.5. Reinforcement steel in the VDOT Kansas Corral system.
The FE model of the Kansas Corral rail developed for this project has four rail spans and a 3 -ft.-wide deck overhang. The model has three internal posts and two end posts. The overall view of the model is shown in Figure C.6. Figure C. 7 shows the meshing scheme used for the model. The steel reinforcement layout of the Kansas Corral rail, post, and overhang deck are shown in Figure C.8.

Figure C.6. Overall view of the Kansas Corral FE model.

Figure C.7. Meshing scheme of the Kansas Corral model.

Figure C.8. Detailed view of the steel reinforcement bars (concrete is transparent).
The steel bars were modeled as beam elements and their dimensions were based on the steel schedule in Figure C.5. Figure C. 9 depicts the cross-sectional view of the bridge rail system and deck overhang showing the RU0502 (\#5) bars, RV0701 (\#7) and RV0402 (\#4) stirrup bars, RL06 (\#6) longitudinal bars, and the RS0301 (\#3) and RS0302 (\#3) loop bars.

Figure C.9. Cross-section view of the Kansas Corral model showing overall profile (left) and steel bars (right).

The model accounted for the overlap detail in bars and loops as shown in the post detailed view in Figure C. 10.

Figure C.10. Detailed view at an internal post showing the placement of steel bars.
Material models used in this system are the full elastic-plastic steel behavior of the Grade 60 reinforcement bars. The model reflected published data and material test reports (MTRs), so it is more realistic than the specification-based properties that are reflective of the minimum yield and strength requirements. However, the last simulation case (\#3) used the minimum specification values for the steel bar (Grad 6) as a comparison point. The concrete material is the damage-enabled constitutive material model (*MAT_CSCM/*MAT_159). The target concrete mesh size was 1 in . The model setup for MASH Test 3-11 consisted of the test vehicle ($5,000 \mathrm{lb}$. pickup truck) impacting the CIP at an impact speed and angle of 62 mph and 25 degrees, respectively. The CIP chosen for this analysis was 4.3 ft . upstream of a rail joint per MASH Section 2.2.1, Section 2.3.2, and Figure 2-1.

SIMULATION RESULTS

Simulation Case 1

The first simulation case was for MASH Test 3-11 impact at an internal post. The impact location was upstream from the post centerline to maximize the forces at the internal joint of the Kansas Corral system. The overall vehicular response is shown in Figure C. 11 where the pickup truck was redirected as it exited the Kansas Corral system.

Figure C.11. Key sequential gut view of MASH Test 3-11 on the Kansas Corral system at an internal post.

The extent of damage to the rail and post elements is shown in Figure C.12. This figure presents the damage in terms of spalling and material erosion due to shearing of concrete elements. The rail and the internal post experienced an extensive spalling of concrete.

Figure C.12. Scope of spalling damage to railing and post due to MASH Test 3-11.
In Figure C. 13 the extent of damage to the concrete is presented as a heat map of the damage function in the material constitute law. Basically, any value close to 1 indicates complete damage to the element, while a value of 0 indicates an undamaged element. The same damage function is presented as an iso-surface through the volume of the concrete parts in Figure C.14. The images indicate a potential of further failure in the post being impacted.

Figure C.13. Contour of material damage function to the rail and post due to MASH Test 3-11.

Figure C.14. Iso-surface of material damage function to the rail and post due to MASH Test 3-11.

The deck overhang portion shown in the figures herein exhibits a spread of red contours indicating a damage function of 1 along the boundary edge along the remainder of the bridge deck. This damage level is very narrow to the elements where the boundary is enforced. This thin spread would be more of an indicator of top surface cracking than of full spalling damage due to the rigid assumption of the boundary condition of the continuous deformable deck portion.

Figures C. 15 and C. 16 show the cross-sectional averaged axial stress in the steel bars. The units are in MPa, and thus the value of 460 MPa is 66.7 ksi . This value is greater than the yield stress specified for steel bars of Grade 60 but is lower than the typical test values reported in MTRs. However, this stress magnitude is an indication for potential plastic hinge development and subsequent post overhang failure.

Figure C.15. Maximum (cross-sectional averaged) stress in MPa in the reinforcement steel.

Figure C.16. Maximum (cross-sectional averaged) stress in MPa in the reinforcement steel after pickup truck backslap.

The acceleration signal histories and the angular velocity rates were collected from the center of gravity (CG) of the pickup truck and postprocessed by the TRAP program to calculate occupant risk values. The overall acceleration histories for both the longitudinal (X) and lateral (Y) directions are shown in Figure C. 17 and Figure C.18, respectively. The red line is the 50 ms average of the acceleration history.

Figure C.17. Longitudinal acceleration history at the CG of the pickup truck.

Figure C.18. Lateral acceleration history at the CG of the pickup truck.
As shown in Table C.1, occupant risk factors were within the limits specified in MASH.

Table C.1. Occupant risk factors for the post impact.

Occupant Risk Factors	Occupant Risk Values	Occupant Risk Values (Y-Direction)
Impact Velocity $(\mathrm{m} / \mathrm{s})$	6.6 (X-Direction)	-7.0 (Y-Direction)
Ridedown Accelerations (g's)	-8.3 (X-Direction)	11.3 (Y-Direction)

Maximum Roll (degrees)	-13.9	
Maximum Pitch (degrees)	-4.7	
Maximum Yaw (degrees)	34.4	

Simulation Case 2

The second simulation case was for MASH Test 3-11 impact at the rail span. The impact location was the midspan point of the concrete rail. The overall vehicular response is shown in Figure C. 19 where the pickup truck was redirected as it exited the Kansas Corral rail.

Figure C.19. Key sequential gut view of MASH Test 3-11 on the Kansas Corral system at midspan.

The extent of damage to the rail and post elements is shown in Figure C.20. This figure presents the damage in terms of spalling and material erosion (damage) due to shearing of concrete elements. The rail and the internal post experienced an extensive spalling of concrete starting from the midspan of the rail onward.

Figure C.20. Scope of spalling damage to railing and post due to MASH Test 3-11.
Like the internal post impact case (Simulation Case 1), the extent of damage to the concrete is presented as a heat map of the damage function in the material constitute law as shown in Figure C.21. Any value close to 1 indicates complete damage to the element, while a value of 0 indicates an undamaged element. The same damage function is presented as an isosurface through the volume of the concrete parts in Figure C.22. The images indicate a potential of further failure in the rail being impacted.

Figure C.21. Contour of material damage function to the rail and post due to MASH Test 3-11.

Figure C.22. Iso-surface of material damage function to the rail and post due to MASH
Test 3-11.
However, an interesting damage sequence is observed if the iso-surface of damage is presented from the back/field view (Figure C.23). Several through-the-rail damage levels of 0.5 (green) are presented in the rail.

Figure C.23. Field view of the iso-surface of material damage function to the rail and post due to MASH Test 3-11.

Further, Figure C. 24 shows the cross-sectional averaged axial stress in the steel reinforcing bars. Again, the units are in MPa and thus the value of 500 MPa is 72.5 ksi . This value is more than the yield stress specified for steel bars of Grade 60 and is close to the typical test values reported in MTRs. This level of axial stress is experienced in the back rail top longitudinal bar as shown in Figure C.24. Thus, due to the stress in the steel reinforcement well above the yield stress of the material, it is a concern that this rail may fracture due to the MASH TL-3 impact load.

Figure C.24. Maximum (cross-sectional averaged) stress in MPa in the reinforcement steel.

The acceleration signal histories and the angular velocities rates were collected from the accelerometer element located at CG of the pickup truck and postprocessed using the TRAP program to calculate occupant risk values. The overall acceleration histories for both the longitudinal (X) and the lateral (Y) directions are shown in Figures C. 25 and C.26, respectively. The red line is the 50 ms average of the acceleration history.

Figure C.25. Longitudinal acceleration history at the CG of the pickup truck.

Y Acceleration at CG

Figure C.26. Lateral acceleration history at the CG of the pickup truck.
As shown in Table C.2, occupant risk factors were within the limits specified in MASH.

Table C.2. Occupant risk factors for midspan impact.

Occupant Risk Factors	Occupant Risk Values	Occupant Risk Values (Y-Direction)
Impact Velocity (m/s)	7.4 (X-Direction)	-7.3 (Y-Direction)
Ridedown Accelerations (g's)	13.7 (X-Direction)	9.1 (Y-Direction)
Maximum Roll (degrees)	-3.0	
Maximum Pitch (degrees)	-1.3	
Maximum Yaw (degrees)	32.8	

Simulation Case 3

The third simulation case was for MASH Test 3-11 impact at the rail span. The difference between this case and Simulation Case 2 is that the steel properties were based on the minimum specification of Grade 60 reinforcement. The impact location was the midspan point of the concrete rail. The overall vehicular response is shown in Figure C. 27 where the pickup truck was redirected as it exited the Kansas Corral rail.

Figure C.27. Key sequential gut view of MASH Test 3-11 on the Kansas Corral system at midspan.

The extent of damage to the rail and post elements is shown in Figure C.28. This figure presents the damage in terms of spalling and material erosion (damage) due to shearing of concrete elements. The rail and the internal post experienced an extensive spalling of concrete starting from the midspan of the rail onward.

Figure C.28. Scope of spalling damage to railing and post due to MASH Test 3-11.
Like the internal post impact case (Simulation Case 1), the extent of damage to the concrete is presented as a heat map of the damage function in the material constitute law as shown in Figure C.29. Any value close to 1 indicates complete damage to the element, while a value of 0 indicates an undamaged element. The same damage function is presented as an isosurface through the volume of the concrete parts in Figure C.30. The images indicate a potential of further failure in the rail being impacted.

Figure C.29. Contour of material damage function to the rail and post due to MASH Test 3-11.

Figure C.30. Iso-surface of material damage function to the rail and post due to MASH Test 3-11.

However, an interesting damage sequence is observed if the iso-surface of damage is presented from the back/field view (Figure C.31). Several through-the-rail damage levels of 0.5 (green) are presented in the rail.

Figure C.31. Field view of the iso-surface of material damage function to the rail and post due to MASH Test 3-11.

Further, Figure C. 32 shows the cross-sectional averaged axial stress in the steel reinforcing bars. Again, the units are in MPa and thus the value of 424 MPa is 61.5 ksi . Hence, the red section of the bars has yielded according to the simulation. This level of axial stress is experienced in two longitudinal bars in the back of the rail and several deck rails on each post side as shown in Figure C.32. Thus, due to the stress in the steel reinforcement being well above the yield stress of the material, this rail may potentially fracture due to the MASH Test 3-11 impact load.

Figure C.32. Maximum (cross-sectional averaged) stress in MPa in the reinforcement steel.

The acceleration signal histories and the angular velocities rates were collected from the CG of the pickup truck and postprocessed using the TRAP program to calculate occupant risk values. The overall acceleration histories for both the longitudinal (X) and the lateral (Y) directions are shown in Figures C. 33 and C.34, respectively. The red line is the 50 ms average of the acceleration history.

Figure C.33. Longitudinal acceleration history at the CG of the pickup truck.

Figure C.34. Lateral acceleration history at the CG of the pickup truck.
As shown in Table C.3, occupant risk factors were within the limits specified in MASH.

Table C.3. Occupant risk factors for midspan impact.

Occupant Risk Factors	Occupant Risk Values	Occupant Risk Values (Y-Direction)
Impact Velocity $(\mathrm{m} / \mathrm{s})$	6.7 (X-Direction)	-7.1 (Y-Direction)
Ridedown Accelerations (g's)	17.7 (X-Direction)	11.9 (Y-Direction)
Maximum Roll (degrees)	-19.0	
Maximum Pitch (degrees)	-8.4	
Maximum Yaw (degrees)	41.0	

Based on the simulation results for these two impact cases, the Kansas Corral Bridge Rail as shown herein may be able to redirect the MASH TL-3 pickup truck but there is a good likelihood of excessive damage to the rail, the posts, and the deck as illustrated in the concrete damage and bar axial stresses presented above.

APPENDIX D. DETAILS OF BRIDGE RAILS

BRIDGE RAIL ON DECK

BRIDGE RAIL ON CURB

APPENDIX E. SUPPORTING CERTIFICATION DOCUMENTS

$\begin{aligned} & \text { Iexas A\&M } \\ & \text { Iransportation } \\ & \text { Institute } \end{aligned}$	QF 7.3-01 Concrete Sampling	$\begin{aligned} & \text { Dow } \mathrm{Na} \\ & \text { OF } 7, S-1 i=1 \end{aligned}$	$\begin{aligned} & \text { Reyision Dale: } \\ & 2020-07-29 \end{aligned}$
Quality Form	Kensed by, B.L Eriffith Appraval by: प. L. Kuhio	Revision: 7	$\begin{aligned} & P_{\text {Page }} \\ & 10 f 1 \end{aligned}$

Project No: 610571-03 \quad Casting Date: \quad 10/14/2020 Mix Design (psi): $\quad 4000$

Name of Teclunician Taking Sample	Name of Teohnisian			
Signature of Techniclan Taking Sample	TERR		nature of Breaking Sample	TERRACON
Load No.	Truck No.	Ticket No.	Locati	ncrete map)
1	7212	6343741		

Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average

CUSTOMER'S COPY

Martin Marietta

1503 LBJ Freeway
Suite 400

LOAD TIME	то лов	ARRIVE JOB SITE	BEGIN POUR	FINISH POUR	LEAVE JOB SITE	ARRIVE PLANT
12:47	12:58	.13	:	:	:	:

TER ADDED ON JOB AT CUSTOMER'S REQUEST
OWABLE WATER (withheld from batch)
$=$

GAL
GAL.
ST CYLINDERTAKEN \square YES $\square N O$ BY LINDER TAKEN a bEFORE a AFTER WATER
DITIONAL WATER ADDED TO THIS CONCRETE WILL REDUCE ; STRENGTH. ANY WATER ADDED IN EXCESS OF SPECIFIED UMP IS AT CUSTOMER'S RISK.

2B18-RT ON LEONARD RT ON HWY-47-LFT INTO RIUERSIDE
CAMPUS WILL MEET AT ROUND ABOUT
TOTAL

JANGER! MAY CAUSE ALKALI BURNS.
SEE WARNINGS ON REVERSE SIDE.

Report Number +	All 1710570149
Service Date:	$10 / 14 / 20$
Report Date:	$12 / 07 / 20 \quad$ Revision I - PO Correction
Task;	PO $\# 610571-03$

Comments: Not tested for plastic unit weight. F = Field Cured

Test Methods: ASTM C 3), ASTM C143, ASTM C231, ASTM C1004
The testa were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This repont is exclusively for the use of the clent indicated above and shall not be reproduced except in fuil without the written consent of our company. Test rasults transmitted herein are only applicable to the actual samples tested at the location(3) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials

REF. NUMBER:
SUPPLEMENTAL INFORMATION
*imas characteristics represented above are transterence of lest data documented by the source of inspection. All test are in
e with the mettods prescribed in the applicable SAE and/or ASTM specifications and are tree to
to which bismuth, selenium, tellurume orplead was intentionally ydded spectications and are tree from mercury contamination
Inc. deefers liability or wased to produce the bolts. Fluid Sealing

ces has the information been allered. Original documentation remainis on file for review. our testing laboratory, and under no

Dennis Galati - Q.A. Manager

HAIYAN YUXING NUTS CO．，LTD．

CHANGQIAN TOWN，HAIYAN COUNTY ZHEJIANG ， 314304 CHINA
QUALITY CERTIFICATE COUNTRY OF ORIGIN－CHINA
CUSTOMER：BRIGHTON－BEST INTERNATIONAL，INC．
SIZE：3／4－10 GOODS：HEAVY HEX NUT，A563－A，PLAIN（INCH） ORDERNO．：U32055

DATE：MAR．01，2016
PART NO．：318240
INV NO．：00846852
LOT SIZE：2．40MPCS
MATERIAL TYPE：SG100
HEAT NO．：G420007374

THISCERTIFICATECONFIRMINGQUALIFICATION TO ASME B18．2．2－2010／ ASTM A563－2007a
FACTORY INSPECTOR：黄伟明

CERTIFIED MATERIAL TEST REPORT

FOR ASTM A563, GRADE.A HVY HEX NUTS

THE REPORT IS ISSUED ACCORDING TO ISO 16228 F3.1(EN10204.3.1)
ALL TEST IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY.

MJ LATHERN CO INC
DBA METALS 2 GO
224 NORTH HEWITT DRIVE

MJ IATHERN CO INC
DBA METALS 2 GO
PO BOX 20425
WACO TX 76702

Tel: 254-235-7700 Eax: 254 235-7703
CERTIFICATE OE ANALYSIS and TESTS
Cert. No: HO 308791
OTHERWISE NOTED. 18 May20

Rage: $\quad 2 \ldots$ Last

Metals lag

MATERIAL TEST REPORT COVER SHEET

224 N HEWITT DR
HEWITT TX 76643
254-235-7700
FAX 254-235-7703 MTR@METALS2GO.COM

MACK MANUFACTURING \& MACHINE				
PO \#	36179		EXEECTED DELUERY	060920
TICKET \#	200456			

Metals 2 Go
Customer PO: 43090
Heat: 59090962
Shipment: 0020015119

Men	
Thatingy zunumumem	
边	

> Metals ¿ Co
> Customer PO: 43198
> Heat: 55064605
> Shipment: 0020017371

 102041.1	
	$\begin{aligned} & \text { Van wang } \\ & \text { ouaurvinsurance ager. } \end{aligned}$

SSAB
Melals 2 Go
Customer PO: 42233
Heat: M9I324
Shipment: 0019041614

METALS 2 GOPO BOX 20425 WACO． TX 76702 US

> MARHごミ E®口
> 254－2335－7700

Customer PO	43185	Sales Order \＃t	11016818－4．7
Product Group	Hot Roll－Merchant Bar Quality	Pradicet \＃	3006108
Grade	Nucor Multigrade	Lot \＃	110001156063
Size	$3^{\prime \prime} \times 3^{\prime \prime} \times 0.375^{\prime \prime}$	Heat \＃	7100011560
BOL \＃	BOL－500955	Load\＃	416499
Description	Hot Roll－Merchant Bar Quality Equal．Angle $3^{n \prime} \times 3^{n} \times 3 / 8^{\prime \prime}$ Nucor Multigrade 20＇ $0^{\prime \prime}$［240＂］4001－8000 lb 5	Customer Part\＃	
Production Date	05／06／2020	Qty Shipped LBS	5040
Product Country Ot Onigin	United States	Qty Shipped EA	35
Original llem Description		Original liem Number	

Mell Counfry of Origin：United Slales Melling Dale：04／27／2020

$\mathrm{C}(\%)$	$\mathrm{Mn}(\%)$	$\mathrm{P}(\%)$	$\mathrm{S}(\%)$	$\mathrm{Si}(\%)$	$\mathrm{Ni}(\%)$	$\mathrm{Cr}(\%)$	$\mathrm{Mo}(\%)$	$\mathrm{Cu}(\%)$	$\mathrm{Ti}(\%)$	$\mathrm{V}(\%)$	$\mathrm{Nb}(\%)$
0.13	0.90	0.012	0.019	0.210	0.10	0.15	0.04	0.24	0.000	0.042	0.001
$\mathrm{Sn}(\%)$											
0.009											

ASTM AS29 S78．2 CE（\％）： 0.38

Other Test Result

Yeld（PSI）： 59300	Yield（PSI）： 58900	Tensile（PSI）：73800
Tensile（PSI）$=74200$	Elongation in $8^{*}(\%): 20.0$	Elongation in $8^{*}(\%): 20.0$

Comnients：

NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF：ASTM A361A36M－14；A529／529M－05（2009）GR50（345）；A572／572M－07 GRS0（345）；
A709／709M－10 GR36（250）\＆GR50（345）；CSA G40．21－04 GR44W（300W）\＆GRSOW（350W）；AASHTO M27O／M270M－10 GR36（270）\＆GR50（345）：
ASME SA36／SA36M－07；MEETS REPORTING REQUIREMENTS OF EN10204 SEC 3.1
1．All manufacturing processes of the steel，including melling，casting \＆hol rolling，have been performed in U．S．A
2．Mercury in any form has not been used in the production or leating of ihis product：
2．Merrury in any form has not been used in the production o
3．Welding or weld repair was not performes on this material．
4．This material conforms io the specificalions descrlbed on this docurnent and may not be reproduced，except in rull，without written approval of
4ucor Corporation．
5．Results reported ASTM E45（Inclusion content）and ASTM E3A1（Macro－etch）are provided as interpretation of ASTM procedures

Nルロㅜㄹ
Mill Certification
05/20/2020

Ship To: M.JLATHERN COINC
224 N HEWITT DR
HEWITT, TX 76643 US.

Cuslomer PO	43185	Sales Order \#	11016818-5.1
Product Group	Hol Roll - Merchant Bar Quality	Product \#	3006306
Grade	Nucor Mutligrade	Lot \#	170001143860
Size	$4^{\prime \prime} \times 4^{\prime \prime} \times 0.25^{\prime \prime}$	Heat \#	1100011438
BOL \#	BOL-500955	Load \#	416499
Descriplion	Hot Roll - Merchant Bar Quality Equal Angle $4^{\prime \prime} \times 4^{*} \times 1 / 4^{\prime \prime}$ Nucor Mulligrade 20' $0^{\prime \prime}$ [240"] 2001-6000 lbs	Customer Part \#	
Production Date	04/28/2020	Qty Shipped LBS	10032
Product Country Ot Origin	United States	Qty Shipped EA	76
$\begin{aligned} & \text { Original Item } \\ & \text { Description } \end{aligned}$		Original Itern Number	

Commentr:

NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTM A36/A36M-14: A529/529M-05(2009) GR50(345): A572/572M-07 GR50(345);
A709/709M-10 GR36(250) \& GR50(345); CSA G40.21-04 GR44W(300W)\& GR50W(350W); AASHTO M270/M270M-10 GR36(270) \& GR50(345);
ASME SA36/SA36M-07: MEETS RERORTING REQUIREMENTS OF EN10204 SEC 3.1
7. All manufacturing processes of the steel, including metting, casting \& hot rolling, have heen periormed in U.S.A.
2. Mercury in any form has nol been used in the production or testing of this product.
3. Welding or weld repair was not performed on this material.
4. This malarial conforms to the specificallons described on this doçument and may not be reproduced, except in full, without written approval of

Nucor Corporation.
5. Results reported ASTM E45 (inclusion content) and ASTM E361 (Macro-etch) are provided as interpretation of ASTM procedures.

니ロํ

Mill Certification
MTR\#:416499-B
05/20/2020

DEA METALS 2
PO BOX 20425 WACO, TX 76702 US

Ship To: MJ LATHERN COINC 224 N HEWITT DR HEWITT, TX 76643 US

Customer PO	43185	Sales Order \#	11016848 -6.1
Product Group	Hot Roll - Merchant Bar Quality	Produci \#	3006440
Grade	Nucar Mulligrade	Lol \#	110001442063
Size	$4^{\prime \prime} \times 4^{\prime \prime} \times 0.375^{\prime \prime}$	Heat 7	1100011420
BOL \#	BOL-500955	Load \#	416499
Description	Hot Roll - Merchant Bar Quality Equal Angle $4^{\prime \prime} \times 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ Nucor Multigrade 20' $0^{\prime \prime}$ [240"] 2001-6000 lbs	Customer Part \#	
Production Date	04/29/2020	Qty Shipped LBS	4900
Produci Country Of Origin	United States	Qty Shipped EA	25
Original fiem Description		Original llem Number	

Other Test Results		
Yreld (PSI): 54900	Vield (PS1)	Tensile (PSI): 70800
Tensile (PSI): 71800	Elongation in $8^{*}(\% / 4)=24.0$	Elongation in $B^{*}(\%)=22.0$

Comments:
NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTM A36/A36M-14: A529/529M-05(2009) GR50(345): A572/572M-07 GR50(345): A709/709M-10 GR36(250) \& GR50(345); CSA G40.21-04 GR44W(300W)\& GR50W(350W); AASHTO M270/M270M-10 GR36(270) \& GR50(345); ASME SA38ISA38M-07: MEETS REPORTING REQUIREMENTS OF EN10204 SEC 3.1

1. All manufacturing processes of the steel, Including melting, tasling 品 holl folling, have been performed in U.S.A
2. Marcury in any form has nol been used in the production or testing of this product.
3. Weiding or weld repair was not performed on this materrial.
4. This material conforms to the specilications described on this document and may nol be reproduced, except in full, without vritten approval of

Nucor Corporation.
5. Resuits reported ASTM E45 (inclusion content) and ASTM E3A1 (M3cro-eich) are provided as inierpratation of ASTM procedures.

> Bide R vanken

Mルロロロ＊

```
Sold To：MJ LATHERN GO INC
DBA METALS 2 GO
PO BOX 20425
WACO，TX 76702 US
DBA METALS 2 GO
WACO，TX 76702 US
MBAMETALS250
```

Ship To．MA LATHERN CO INC 224 N HEWITT OR HEWITT．TX． 76643 US

Customer PO	43185	Sales Order \＃	11018818－7．1
Product Group	Hol Roll－Mercham Ear Quality	Product \＃	2027159
Grade	Nucor Multigrade	Lol\＃	110001012060
Size	$5^{\prime \prime} \times 3^{\circ} \times 0.25^{\prime \prime}$	Heat \＃	1100010120
BOL\＃	8OL－500955	Load \＃	416499
Description	Hot Roll－Merchant Bar Qualify Unequal Angle $5^{n} \times 3^{*} \times 1 / 4^{*}$ Nucor Muftigrade 20 $0^{\circ} 0^{\prime \prime}$［240＂］2001－6000 lbs	Customer Part \＃	
Production Date	03／17／2020	Oty Shipped LBS	10032
$\begin{gathered} \text { Producl Country } \\ \text { Of Origin } \end{gathered}$	Urited States	Oty Shipped EA	76
Original liem Description		Original llem Number	

Mell Country of Origin United Slates	Mielting Dale：03／12／2020

$C(\%)$	$\mathrm{Mn}(\%)$	$\mathrm{P}(\%)$	$\mathrm{S}(\%)$	$\mathrm{Si}(\%)$	$\mathrm{Ni}(\%)$	$\mathrm{Cr}(\%)$	$\mathrm{Mo}(\%)$	$\mathrm{Cu}(\%)$	$\mathrm{Ti}(\%)$	$\mathrm{N}(\%)$
0.13	0.82	0.018	0.021	0.212	0.13	0.25	0.04	$0.2 \mathrm{Nb}(\%)$	0.001	0.041
$\mathrm{Sin}(\%)$										
0.010										

ASTM A529 S78．2 CE（\％）$)=0.39$

Other TestResults Yield（PSI）$: 57100$	Yield（PSI）： 57500	Tensile（PSI）：73500
Tensile（PSI）：73000	Elongalion in $B^{\prime \prime}(\%): 20.0$	Elongation in $8^{\circ}(\%): 20.0$

Commenis：

NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF：ASTM A36／A36M－14；A529／529M－05（2009）GR50（345）；A572／572M407 GR50（345）：
A709／709M－10 GR36（250）\＆GR50（345）；CSA G40．21－04 GR44W（300W）s GR50W（350W）；AASHTO M270／M270M－10 GR3E（270）\＆GR50（345）；
ASME SA36／SA36M－07；MEETS REPDRTING REQUIREMENTS OF EN10204 SEC 3.1
1．All manulacturing processes of the steel，including metting，casling \＆hot roting，have been periormed in U．S．A
2．Mercury in any form has not been used in the production or lesting of this product．
3．Welding or weld repair was nol performed on this maierial．
4．This material conforms to the specificalions describéd on thif document and may not be reproduced，except in full．without wrilten approval of
Nucor Corporation
Nucor Corporation．
5．Results reported ASTM E45（Inciusion content）and ASTM E3E1（Macro－etch）are provided as interpratalion or ASTM procedures．

Nル묘뭉

Mill Certification
05/20/2020

Sold To:	MJLATHERN CO INC
	DBA METALS 2 GO
	PO BOX 20425
	WACO. 7×76702 US

Ship To. MI LATHERN CO INC
224 NHEWITTDR
HEWITT, TX78643 US

Customer PO	43185	Sales Qrder \#	11016618-6.1
Product Group	Hol Roll - Merchani Bar Quality	Product \#	3007378
Grade	Nucor Multigrade	Lol \#	110001068061
Size	$6^{\prime \prime} \times 4^{\prime \prime} \times 0.3125^{\prime \prime}$	Heal \#	1100010680
BOL \#	BOL-500955	Load \#	416499
Description	Hol Roll - Merchant Bar Quality Unequal Angle $6^{n} \times 4^{n \prime} \times 5 i 18^{n}$ Nucor Multigrade 20' $0^{\prime \prime}$ [240*] 2001-6000 lbs	Customer Part \#	
Production Date	04/07/2020	Qty Shipped LBS	4738
Product Country ol Origin	United States	Qty Shipped EA	23
Original Item Description		Original llem Number	

ASTM A529 S78.2 CE (\%) : 0.41

pthar Test Results		
Vield (PSI) : 58106	Yield (PSI) ; $\mathbf{5 8 1 0 0}$	Tensile (PSi) : 78200
Tensile (PSI) : 76800	Elongalion in $8^{\prime \prime}(\%)$: 21,0	Elongation in $B^{*}(\%)$! 23.0

Comments:

NUCOR MULTGGRADE MEETS THE REQUIREMENTS OF: ASTM A36/A36M-14; A529/529M-05(2009) GR50(345): A572/572M-07. 3RS0(345); A709/709M-10 GR36(250) \& GR50(345): CSA G40.21-04 GR44W(300W)\& GR50W(350W): AASHTO M270/M270M-10 GR38(270) \& GR50(345). A/09/709M-10 GR36(250) \& GR50(345): CSA G40.21-04 GRA4W (300W)\& GR50W (350W
ASME SA36/SA3GM-07; MEETS REPORTING REOUIREMENTS OF EN1020A SEC 3.1

1. All marulacturing processes of the steel, including melling, casting a hot robling, have been performed in U.S.A
2. Mercury in any form has not been used in the production or testing of this product.
3. Welding or weld repair was not performed on this material:
4. This material conlorms to the specificalions described on this docyment and may not be reproduced, excepl in full, without written approval of Nucor Comporation.
5. Results reperied ASTM E45 (Inclusion content) and ASTM E381 (Macro-etch) are provided as interpretation of ASTM procedures.
PgRaR Tautant
rage 1 तll 5
Reridy Vantarl, Chief Melallergist

Nu며뭉

Sold To: MJ LATHERN CDINC
DBA METALS 2 GO
PO BOX 20425
WACO, TX76702 US

Sold Tp:	MJ LATHERN CO INC
	DBA METALS 2 GO
	POBOX 20425
	WACO, TX 76702 US

Mill Certification
D5/20/2020

Ship To: MJ LATHERN CO INC
$224 N$ HEWITT DR
HEWITT, TX 76643 US

Customer PO	43185	Sales Order \#	11016818-11.1
Product Group	Hot Roll - Merchan! Bar Quality	Produci \#	3007482
Grade	Nucor Muiligrade	Lot ${ }^{\text {P }}$	120202214720
Size	10" x 15.3\#	Heat \#	1202022147
BOL \#	BOL-500955	Load \#	416499
Description	Hot Roil - Merchant Bar Quaity Structural Channel $10^{\prime \prime} \times 15.3^{\#}$ Nucor Mulligrade 20' $0^{\prime \prime}$ [240"] 2001-6000 lbs	Customer Part\#	
Production Date	05/10/2020	Qty Shipped LES	3672
Product Country Of Origin	United States	Qty Shipped EA	12
Original Item Description		Original Item Number	

Melt Country of Origin; United Stales	Melting Date: 04/27/2020

C (\%)	Mn (\%)	P (\%)	S(\%)	Si 3%)	Ni (\%)	$\mathrm{Cr}(\%)$	Mo (\%)	Cu(\%)	T1\%)	V (\%)	N6 (\%)
$\begin{gathered} 0.75 \\ \operatorname{Sn}(\%) \end{gathered}$	0.85	0.013	0.020	0.24	0.00	0.19	0.02	0.23	0.001	0.014	0.001
0.018											

ASTM A529 578,2 CE (\%) : 0.39
ASTM Ag92 $5.4 \mathrm{CE}(\%): 0.35$
Other Test Results

Yield (PSI): 59200	Yleid (PSI): 59200	Tensile (PSI): 79400
Tensile (PSI): 79300	Elongaton in $8^{*}(\%): 27.0$	Elongatlon in $8^{\prime \prime}(\%): 26.0$

Comments

ASTM A36/A35M-19, ASTM A529/A529M-19 GR50, ASTM A572/A572M-18 GR50, CSA G40. 21-73(R2018) 44W(300W)/50W(350W), ASTM A709/A709M-1B GR36/GR50 (NO CVN), AASHTO M 270/M 370M-19 GR36/GR50, ASME SA36/SA36M-17
Material is certified to the most recent reviston level of the sperification and grade indicated altime of production/lesing.
Nucor-Plymouth is an ISO-9001:2015 and an ABS carnified mill. CMTR complias wilh DIN EN 10204 - 3.1 All manulacturing propeesses of the sie日l materials in this product, including molting, casting, and hot rolling have accurred in the Unitad States of America. All products produced era weld free. Mercury, in any form, has not been used in the production or testing of this maleria!

Nリ둥

Mill Certification

05/20/2020

Sold To: MJ LATHERN CO INC
DBA METALS 2 GO PO BOX 20425 WACO, TX 76702 US

Ship To: M.JLATHERN COINC	
	224NHEWITT DR
	HEWITT, TX 76643 US

224 N HEWITT DR HEWITT, TX 76643 US

Customer PO	43185	Sales Order \#	11016818-12.1
Product Group	Hot Roll - Merchant Bar Quality	Peoduct \#	3016420
Grade	Nucor Mulligrade	Lot\#	110001101160
Size	$0.25^{\prime \prime} \times 4^{\prime \prime}$	Heal\#	1100011011
SOL\#	BOL-500955	Load\#	416499
Description	Hot Roll - Merchant Bar Quality Flat $1 / 4^{\prime \prime} \times 4^{n}$ Nucor Multigrade $20^{\prime} 0^{\prime \prime}$ [240"] 4001-8000 fbs	Customer Par \#	
Production Date	0.4/21/2020	Oty Shipped LES	4900
$\begin{gathered} \hline \text { Product Country } \\ \text { Of Origin } \\ \hline \end{gathered}$	Uniled States	Qly Shipped EA	72
Original hem Description		Original llem Number	

Mell Couniry of Origin: United States								Melting Date: 04/07/2020			
$\begin{gathered} C(\%) \\ 0.14 \end{gathered}$	$\begin{gathered} \text { Mn }(\%) \\ 0.86 \\ \hline \end{gathered}$	$\begin{aligned} & P(\%) \\ & 0.016 \end{aligned}$	$\begin{aligned} & S(\%) \\ & 0.020 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Si (\%) } \\ & 0.225 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Ni}(\%) \\ 0,14 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Co}(\%) \\ 0.24 \\ \hline \end{gathered}$	MO (\%) 0.05	$\begin{gathered} \mathrm{Cu}(\%) \\ 0.38 \\ \hline \end{gathered}$	$\begin{aligned} & \pi(\%) \\ & 0.001 \end{aligned}$	$\begin{aligned} & V(\%) \\ & 0.041 \end{aligned}$	$\begin{gathered} \mathrm{Sn}(\%) \\ 0.010 \end{gathered}$
ASTM 4529 S78.2 CE $(\%) \div 0.42$											
QtherTest Results											
Yield (PSI) $=62200$			Vield (PS1); 61100				Tersile (PSil): 77800				
Tensile. (PS1) + 78400			Elongation in $8^{\prime \prime}(\%): 22.0$				Elongation in $8^{\prime \prime}(\%) \quad 24.0$				

Comments:

NUCOR MULTIGRADE MEETS THE REQUIREMENTS OF: ASTM A36/A36M-14; A529/529M-05(2009) GR50(345); A572/572M-07 GR50(345);
A709/709M-10 GR36(250) \& GR50(345); CSA G40.21-04 GR44W/ 300 WJ GR50W(350W); AASHTO M270/M270M-10 GR36(270) a GR50(345):
ASME SA36/SA 36 M-07: MEETS REPORTING REQUIREMENTS OF EN10204 SEC 3. 1

1. All cranufaciuring processes of the steel, Including melting, casting \& hot rolling, have been performed if U.S.A
2. Mercury in any form has nol been used in the production or testing of this product.
3. Welding or weld repair was not periormed on this material.
4. This materiat conforms to the specifications described on thit document and may nol be reproduced, except in full. Withoul wrilten approvel of

Nucor Corporation.
5. Results reporied ASTM E45 (Inciusion contunt) and ASTM ESBT (Macro-etch) are provided as interpretstion ol ASTM procedires.

> Rga, R vantad

Certificado de Calidad de Pruebas Físicas y Quimicas (Mill Test Report)

Fecha / Date:02/06/2020 17:56 PM
Fecha Impresiön / Print Dale:02/06/2020 17:57 PM

Las unidades expresadas en L.E. y U.T son en PSI. La composición quimica esta expresada en $\%$ en peso.
The units expressed in L.E and U.T are in PSI. The chemical composilion is expressed in $\%$ in weight.

Certificamos que el producto aqui descrito, cumple y ha sido
fabricado, muestreado, probado e inspeccionado de acuerdo con los requisitos aplicables de la especificación
2014. ASTM AGI AE M-13-A529/ A529M ASTM A370-12

Rebar - ASTM A615

We certify that the product above mentioned accomplishes and ha: been manufactured, sampled, tested and-ijspected in accordance wilh applicable requirements of speatifications:
ASTM A6/ A6 M-13 a (2014); A36; A529 / A529M
ASME SA- $-/$ /SA-6M; ASTM A 370 - 12 I (2014); ASME SA 36.
Rebar - ASTM A615
zn SIBOSA, SA DE CV nos compromelemos a satislacer las expeciativas y requerimientos de nuestros clientes, Mediante un sistema de Gestión de Calidad, la mejora continua de nuesira roducios, el uso eliciente de los recursos, y la participación índividual y de equipo de lodo su personal.

FUR-CAL-CAL-UOI REF- A OCTUBRE 2014.
19Junib 13：22 TEST CERTIFICATE NO：MRR B03862 INDEPENDENCE TU日E CORPORATION
$254235 \cdot 7700$

Metals 2 Go
Customer PO: 42687
Heat: W85348
Shipment: 0020005276

MATERIAL TEST REPORT

[^0]

APPENDIX F. MASH-2016 TEST 3-10 ON NCHRP BRIDGE RAIL ON DECK

VEHICLE PROPERTIES AND INFORMATION

Figure F.1. Vehicle properties for test no. 610571-03-2.

Date:	2020-10-29	Test No.:	610571-03-2	VIN No.:	3N1CN7AP5FL881103
Year:	2015	Make:	NISSAN	Model:	VERSA

Tire Inflation Pressure: 36 PSI
Odometer: 80538
Tire Size: P185/65R15
Describe any damage to the vehicle prior to test: None

- Denotes accelerometer location.

NOTES: None

Engine CID: 1.6 L

None

Geometry: inches

Mass Distribution:

lb
LF: 752
RF: 709
LR: 463
RR: 507

Figure F.2. Exterior crush measurements for test no. 610571-03-2.

Date:	2020-10-29	Test No.	610571-03-2	VIN No.	3N1CN7AP5FL881103
Year:	2015	Make:	NISSAN	Model:	VERSA

VEHICLE CRUSH MEASUREMENT SHEET ${ }^{1}$

Complete When Applicable	
End Damage	Side Damage
Undeformed end width	Bowing: B1 ___ X1
Corner shift: A1	B2 ___ X 2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	$X 1+X 2$
<4 inches	$2=$
≥ 4 inches	

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{gathered} \text { Field } \\ \mathrm{L}^{* *} \\ \hline \end{gathered}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	\pm D
		Width** (CDC)	$\begin{gathered} \text { Max }^{* * * *} \\ \text { Crush } \\ \hline \end{gathered}$								
1	Front plane at bmp ht	15	12	24	-	-	-	-	-	-	-16
2	Side plane above bmp ht	15	14	40	-	-	-	-	-	-	60
	Measurements recorded										
	\checkmark inches or $\square \mathrm{mm}$										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.
**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
***Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Figure F.3. Occupant compartment measurements for test no. 610571-03-2.
*Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT
Before After Differ. (inches)

A1	75.00	75.00	0.00
A2	74.00	74.00	0.00
A3	74.00	74.00	0.00
B1	43.00	43.00	0.00
B2	37.00	37.00	0.00
B3	43.00	43.00	0.00
B4	46.50	46.50	0.00
B5	42.50	42.50	0.00
B6	46.50	46.50	0.00
C1	26.00	23.00	-3.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	12.50	14.25	1.75
D2	0.00	0.00	0.00
D3	10.00	10.00	0.00
E1	48.00	41.50	-6.50
E2	48.75	50.50	1.75
F	47.50	47.50	0.00
G	47.50	45.25	-2.25
H	39.00	39.00	0.00
1	39.00	39.00	0.00
J*	48.50	41.50	-7.00

SEQUENTIAL PHOTOGRAPHS

0.000 s

0.100 s

0.200 s

0.300 s

Figure F.4. Sequential photographs for test no. 610571-03-2 (overhead and frontal views).

0.400 s

0.500 s

0.600 s

Figure F.5. Sequential photographs for test no. 610571-03-2 (overhead and frontal views, ctd.).

Figure F.6. Sequential photographs for test no. 610571-03-2 (rear view).

VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch, and Yaw Angles

Figure F.7. Vehicle angular displacements for test no. 610571-03-2.

VEHICLE ACCELERATIONS

X Acceleration at CG

Figure F.8. Vehicle longitudinal accelerometer trace for test no. 610571-03-2 (accelerometer located at center of gravity).

Y Acceleration at CG

Figure F.9. Vehicle lateral accelerometer trace for test no. 610571-03-2 (accelerometer located at center of gravity).

Z Acceleration at CG

Figure F.10. Vehicle vertical accelerometer trace for test no. 610571-03-2 (accelerometer located at center of gravity).

APPENDIX G. MASH-2016 TEST 3-10 ON NCHRP BRIDGE RAIL ON CURB

VEHICLE PROPERTIES AND INFORMATION

Figure G.1. Vehicle properties for test no. 610571-03-1.

Date:	2020-11-09	Test No.:	610571-03-1	VIN No.:	3N1CN7AP8EL807317
Year:	2014	Make:	NISSAN	Model:	VERSA
Tire In	ation Pressur		Odometer:		Tire Size: P185/65R15

Describe any damage to the vehicle prior to test: None

- Denotes accelerometer location.
Engine CID: 1.6 L
Transmission Type:

Dummy Data:

Type:	50 th Percentile Male
Mass:	165 lb
Seat Position:	

Geometry: inches

A 66.70	F 32.50	K 12.50	P 4.50	U 15.50
B 59.60	G	L 26.00	Q 24.00	$\checkmark 21.25$
C 175.40	H 40.72	M 58.30	R 16.25	W 40.70
D 40.50	17.00	N 58.50	S 7.50	$\times 79.75$
E 102.40	J 22.25	O 30.50	T 64.50	
Wheel Center Ht Front 11.50		Wheel Center Ht Rear 11.50		W-H -0.02

Figure G.2. Exterior crush measurements for test no. 610571-03-1.

VEHICLE CRUSH MEASUREMENT SHEET ${ }^{1}$

Complete When Applicable	
End Damage	Side Damage
Andeformed end width	
Corner shift: A1	Bowing: BI
End shift at frame (CDC)	
(check one)	
<4 inches	Bowing eonstant
≥ 4 inches	$\frac{X 1+X 2}{2}=$

Note: Measure C_{1} to C_{6} from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific Impact Number	Plane* of C-Measurements	Direct Damage		$\begin{aligned} & \text { Field } \\ & \mathrm{L}^{* *} \\ & \hline \end{aligned}$	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	$\mathrm{C}_{\text {F }}$	$\pm \mathrm{D}$
		$\begin{aligned} & \text { Width** } \\ & \text { (CDC) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Max*** } \\ \text { Crush } \\ \hline \end{gathered}$								
1	Front plane at bumper ht	14	14	40	-	-	-	-	-	-	-8
2	Side plane at bumper ht	14	14	60	-	-	-	-	-	-	46
	Measurements recorded										
	回 inches or mm										

${ }^{1}$ Table taken from National Accident Sampling System (NASS).
*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (c.g., free space).
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following; bumper lead, bumper taper, side protrusion, side taper, etc.
Record the value for each C-measurement and maximum crush,
**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).
${ }^{* * *}$ Measure and document on the vehicle diagram the location of the maximum crush.
Note: Use as many lines/columns as necessary to describe each damage profile.

Figure G.3. Occupant compartment measurements for test no. 610571-03-1.

Date:	$2020-11-09$	Test No.:	610571-03-1	VIN No.:	3N1CN7AP8EL807317
	Mear:	2014	Make:	NISSAN	Model:

*Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT			
	Before	After (inches)	Differ.
A1	75.00	71.00	-4.00
A2	74,00	74.00	0.00
A3	74.00	74.00	0.00
B1	43.00	43.00	0.00
B2	37.00	37.00	0.00
B3	43.00	43.00	0.00
B4	46.50	46.50	0.00
B5	42.50	42.50	0.00
B6	46.50	46.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	26.00	0.00
D1	12.50	12.50	0.00
D2	0.00	0.00	0.00
D3	10.00	10.00	0.00
E1	48.00	41.00	-7.00
E2	48.75	48.75	0.00
F	47.50	47.50	0.00
G	47.50	42.50	-5.00
H	39.00	39.00	0.00
1	39.00	34.00	0.00
J^{\star}	48.50	42.00	-6.50

SEQUENTIAL PHOTOGRAPHS

0.000 s

0.100 s

0.200 s

0.300 s

Figure G.4. Sequential photographs for test no. 610571-03-1 (overhead and frontal views).

0.400 s

0.500 s

0.600 s

0.700 s

Figure G.5. Sequential photographs for test no. 610571-03-1 (overhead and frontal views, ctd.).

Figure G.6. Sequential photographs for test no. 610571-03-1 (rear view).

VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch, and Yaw Angles

Figure G.7. Vehicle angular displacements for test no. 610571-03-1.

VEHICLE ACCELERATIONS

X Acceleration at CG

Figure G.8. Vehicle longitudinal accelerometer trace for test no. 610571-03-1
Test Number: 610571-03-1
Test Standard Test Number: MASH-2016 Test

Test Vehicle: 2014 Nissan Versa
Inertial Mass: 2,404 lb
Ioss Mass. 2,509
Impact Angle: 24.9° (accelerometer located at center of gravity).

Y Acceleration at CG

Figure G.9. Vehicle lateral accelerometer trace for test no. 610571-03-1 (accelerometer located at center of gravity).

Z Acceleration at CG

Figure G.10. Vehicle vertical accelerometer trace for test no. 610571-03-1 (accelerometer located at center of gravity).

APPENDIX H. NCHRP PROJECT 20-07 MARGINAL BRIDGE RAIL SYSTEMS

Profile views for the NCHRP Project 20-07 bridge rail systems listed in Chapter 5 are provided in this appendix.

Figure H.1. Two-tube railing 36d (Wyoming).

Figure H.2. Two-tube TL-3 SBB36c railing (Wyoming).

Figure H.3. Open concrete rail with 34 in. height (Nebraska).

Figure H.4. S3-TL4 (Massachusetts).

Figure H.5. Four-bar steel traffic/bicycle railing on curb (Maine).

Figure H.6. George Washington Memorial Parkway railing (Federal Lands).

Figure H.7. Side-mounted metal bridge railing (New Mexico).

[^0]: Authorized by Quality Assuranee: كand
 The results reported on this report represent the actual attributes of the material furnishred and indicate full compliante with all applicable specification and contratt requirements. El

 $$
 \text { Pane: } 7 \text { nt }
 $$

