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APPENDIX A 
Traffic Crash Data Detailed Assessment Outcomes 

Table 25 details the overall assessment of crash data based on data from nine states.  

Table 1. Traffic Crash Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness Crash reports are required in all states if the crash involves an injury or a fatality. In cases of property 
damage only, state limits vary on what constitutes a reportable crash (e.g., over $1500 in property 
damage). Therefore, state crash report datasets include most crashes; however, minor crashes may not 
be reported. There are many data elements and attributes (>1000 on most crash report forms), and 
depending on the state and data element, all may not be mandatory. Therefore, some data 
elements/attributes may be available, and others may not, which can make it difficult to properly 
analyze and combine crash data across states. For NCHRP Project 03-138 and the selected use cases, 
data on secondary crashes and roadway/incident clearance times were specifically needed. While 
roadway clearance time (RCT) and secondary crashes are both data elements in the 5th edition of the 
MMUCC (2017), many states do not have them on the crash report. Even if they do, in some cases they 
are not mandatory (e.g., Tennessee), which would result in incomplete data for the use cases. 

Timeliness For some states, crash data can be made available within a few days, while at the other extreme, some 
states do not make crash data available one or more years after the year of interest. Some datasets can 
also be augmented later if they are initially missing information because of pending legal action, and the 
timeline for when this missing information will be added is unknown.  

Consistency The MMUCC is a voluntary data collection guideline developed cooperatively by the National Highway 
Traffic Safety Administration (NHTSA) and the Governors Highway Safety Association (GHSA). The 
original guideline was developed in 1998, and the MMUCC is now in its 5th edition (published in 2017). 
The MMUCC 5th Edition includes 115 data elements. The goal of the MMUCC is to drive consistency in 
crash data collection across the states; however, because the MMUCC is voluntary, states can exercise 
control over what data elements are included on their crash forms and how these data are collected. 
And while some states strive to remain aligned with new editions of the MMUCC as a “standard,” others 
use it as more of a guideline. As such, data are inconsistent across states and sometimes even within a 
state (e.g., different jurisdictions may use different versions of the crash report and/or may include 
supplemental data elements like the TIM performance measures).  
In addition, despite instruction manuals and training, how data elements on the crash report are 
interpreted can vary widely from one officer to another. This has been shown by examining the use of 
various data elements associated with responder struck-by crashes, from implicit data elements (e.g., 
“working in trafficway – incident response”) to more explicit data elements (e.g., “was a responder hit”). 
In most cases, despite the data element used, a review of the crash report narrative is required to 
determine if the crash involved a responder being struck by a vehicle. This variability limits the 
possibility of automation and incorporation of these data into big data analysis. 
Additional issues to be aware of: 

• Commas within cells, free text fields, proper nouns, etc. 
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Assessment 
Criteria 

Assessment 

• Within dataset discrepancies (human entered data, changing formats from year to year, varying 
levels of completeness between agencies, varying levels of training between officers, subjective 
responses) 

• Between dataset discrepancies (different fields, different datatypes between similar fields, different 
available responses, different collection processes) 

Conformity Within a single state’s dataset, most data attributes conform to a given format, but across states these 
formats vary. This makes it difficult and time-consuming to convert data from multiple states into a 
common format for analysis. 
Crash data files are often stored in a CP1252 encoding and need to be re-encoded to UTF-8 for easier 
processing. Files are often in CSV or pipe-delimited formats and sometimes have formatting errors, such 
as extra quotation marks. These formatting issues must be corrected before various software tools are 
able to ingest and process these data. It helps to convert these data to a consistent, strongly typed 
schema so that it is easier to analyze the data across state lines, but in doing so some data points are 
left ignored and other data points are unavailable in some states. This reduces the usefulness of many 
data points when doing cross-state analyses. As crash data for a single state can include hundreds of 
thousands or millions of records, it is best to convert these data into formats (such as parquet) deployed 
to a cloud environment for easier querying and analysis. It is important to use strong typing for 
consistent querying capabilities across different states’ datasets. 

Accuracy Crash data are inherently limited in accuracy because they are manually recorded by humans. Manual 
data entry of any kind is prone to error.  
Figure 45 shows that there are crashes located outside the state lines for a few of the states, particularly 
for Ohio, Tennessee, and Florida. This is due to errors in the location coordinates for the crashes in the 
databases. What is not shown here are the crashes that were missing location data/coordinates (e.g., 
crash data from Colorado did not include location coordinates). 

 
Figure 1. Lat/long Errors Seen in Crash Data 

© 2021 Mapbox ©OpenStreetMap
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Assessment 
Criteria 

Assessment 

Given the nature of crashes, law enforcement officers have many things to tend to (e.g., keeping victims 
safe, calling in necessary resources, setting up temporary traffic control) in addition to completing crash 
reports. Additionally, they do not always have all the information needed to complete the form. For 
example, the time of the crash may be unknown, and the officer may have to estimate or rely on those 
involved in the crash. This leads to rounding artifacts and makes it so that certain attributes are often 
left unrecorded. Two areas that were identified as particularly problematic were: 1) confusing “no 
value” with “0”, and b) rounding. For example, if responders report a zero for the value of RCT where 
the roadway did not need to be cleared, and these zeros are not removed when calculating the average 
RCT, this will artificially decrease the average RCT. Furthermore, it has been observed that when 
humans enter in times, it appears as though they often round to the nearest 5-10 minutes, sometimes 
the nearest 30 min, creating artificial spikes in the data as seen in Figure 46. 

 
 Figure 2. Example of Probability Distribution Curve of ICTs from One State 

Integrability Crash data have good integrity within states, but these datasets can be difficult to analyze because of 
the variety of formats in which the data are stored across states. The attributes available in a particular 
state’s crash reports may vary year-over-year as well, which can complicate the data ingestion and 
unification process. It is important to store metadata about the data points that are available for each 
state and analysis period. 
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APPENDIX B  
ATMS/Integrated ATMS-CAD Data Detailed Assessment Outcomes 

Table 26 details the overall quality assessment of ATMS data based on data from these states. 

Table 2. ATMS/Integrated ATMS-CAD Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness ATMS data typically have a high rate of completeness for the areas of coverage; however, some 
TMCs focus on managing traffic and incidents in urban areas. As such, incidents that occur outside 
of these urban areas may not be in the ATMS data. Some of these incidents may never be 
reported to the transportation agency, as they are handled by local or state police. Figure 47 
shows the locations of ATMS incidents in the Minnesota and Tennessee datasets. While incidents 
in IRIS appear evenly distributed throughout the state of Minnesota, incidents in Tennessee’s 
Locate IM system are not evenly distributed and instead are numerous in the eastern part of 
Tennessee yet are only located along the interstate highways in the rest of the state. 

 
Figure 3. Location of ATMS Incidents in Minnesota and Tennessee 

When ATMS systems are integrated with law enforcement CAD systems or public safety 
answering point (PSAP) systems, this can expand coverage beyond the normal urban coverage 
area of the TMC. A good example is in Minnesota. Figure 48 shows the number of records 
available each day (between February 9 and April 21, 2021) in MnDOT’s IRIS system, which is 
integrated with the Minnesota State Patrol CAD system.  

© 2021 Mapbox ©OpenStreetMap

© 2021 Mapbox ©OpenStreetMap
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Assessment 
Criteria 

Assessment 

 
Figure 4. Count of MnDOT Daily ATMS-CAD Records (Feb 9 to Apr 21, 2021) 

Timeliness ATMS data are often very timely, with new data becoming available as soon as they are 
captured by the ITS devices or entered in the ATMS by TMC operator/field staff. However, most 
agencies do not have real-time feeds set up to share their ATMS data and can only provide 
historical data in batches on a request-by-request basis. This makes it difficult to use the data in 
real-time analyses. The team was able to get a real-time data feed from IRIS. Utah DOT 
provided a data feed through XML web services (SOAP standard). 

Consistency There are many different vendors of ATMS software. Therefore, while there are examples of 
ATMS software provided by the same vendor that would provide some consistency between 
the states using these systems, overall, there is little consistency between data from states that 
use different systems. Even among states that use the same software, customizations in 
software can lead to inconsistencies in the data. One example is that some systems allow for 
free text entry into some fields, which can result in inconsistent spelling and multiple values 
that represent the same detail. One common misspelling occurs when dates are entered, 
where some operators may enter year-day-month instead of year-month-day. 

Conformity ATMS data vary widely from agency to agency and sometimes even TMC to TMC within an 
agency depending on the vendor of the software, so there is little conformity between systems. 
One item of note on conformity of ATMS data is how operators interact with the ATMS 
interface. If operators do not use the system as intended, entering all data (e.g., lane by lane 
closures and openings), less information is available about the incident and the corresponding 
TIM activities. 

Accuracy As with all human-entered data, accuracy can be a concern.  

Integrability ATMS data are often represented as a table or as a CSV file, where one row represents a 
collection of attributes about one incident. As such, integrating these data with other datasets 
should be straightforward for most cases. A broader challenge is associating data by 
latitude/longitude and date/time. Integrating data from one ATMS with another ATMS can be 
difficult, as there is no accepted unified standard for column names and data types, and 
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Assessment 
Criteria 

Assessment 

acceptable cell values may differ. When this occurs, some standardization process needs to be 
followed before full integration can occur. 

APPENDIX C  
CAD Data Detailed Assessment Outcomes 

Table 27 details the results of the assessment of the CHP CAD data. 

Table 3. CAD Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness While CAD systems keep a complete log of all agency responses, the complete dataset is rarely 
shared as some data are considered sensitive (e.g., PII, criminal activities) and cannot legally be 
shared. However, the events recorded in an individual CAD system represent only part of all traffic-
related incidents. 
On the other hand, the completeness of CAD event status can be an issue when viewed from a TIM 
lens. Police, fire, and EMS may place different emphasis on the events that occur during an 
incident. Recording the TIM timestamps is an example. Following is a list of record completeness 
established from the publicly available CHP CAD data. 
Location data completeness: 

• No missing latitude and longitude points 
• Less than 0.1 percent missing location description 
• Less than 0.1 percent missing roadway name 

Event time data completeness: 

• 19 percent missing valid incident date. 
• 19 percent missing time incident was reported. 
• 32.4 percent missing time incident was verified. 
• 61.3 percent missing time responder was dispatched. 
• 57.5 percent missing time responder arrival on scene 
• 99.6 percent missing time roadway was cleared. 
• 99.6 percent missing time lane(s) opened. 
• 69.6 percent missing time incident was cleared/last responder departed. 
• 16.4 percent missing number of responders 
• 51.8 percent missing injury type/code 

In the analysis of the CHP CAD, the team also noticed that while some events were missing explicit 
information on timestamps, a quick natural language analysis of the text for the event status 
updates and the times when they were posted could be used to infer some of them. This is not 
ideal for real-time processing yet would allow more value to be extracted from CAD data. 

Timeliness CAD systems are often based on real-time systems capable of delivering updates to users in 
seconds and automatically recording event status updates in near real-time. 

Consistency The data recorded by CAD systems are not always consistent. Even though most systems are 
capable of real-time, automated data collection and voice transcription, there are still areas where 
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Assessment 
Criteria 

Assessment 

communication coverage is limited (e.g., rural areas), and responders are not able to report event 
status updates until they have better coverage. The CHP CAD data collected in Caltrans District 2, 
which is the most rural in the state, presents this kind of shortcomings. 

 
Source: FHWA. Unpublished. Developed as part of FHWA Every Day Counts Round 4 (EDC-4) Using Data to 
Improve Traffic Incident Management Innovation. 

Figure 5. Quality Analysis of TIM Performance Measures – CHP CAD data in 
Caltrans District 2 

It can be noted in Figure 49 that the CHP CAD data for District 2 contain fewer incidents and that 
most of them are recorded along main roads. 

Conformity CAD systems are often equipped with effective processes capable of validating and formatting 
location, time, and message content using natural language processing (NLP) to detect keywords 
and 10-codes in the event status updates. These data are typically standardized (e.g., Integrated 
Justice Information Systems Institute, or IJIS; Public Safety Technology standards, or IPSTSC; the 
National Fire Incident Reporting System, or NFIRS; the National Information Exchange Model, or 
NIEM; and the Global Justice XML Data Model, or GJXDM). These different standards, while 
overlapping, are inconsistent and are often customized to the culture and habits of agency 
personnel for maximum effectiveness. CAD data are manually collected, which can lead to natural 
variations from event status updates depending on the operators and responders, time of the day, 
experience, etc. 
As observed in the CHP CAD data, while the most common status updates are reported as 10-codes 
or 11-codes, less common event updates are reported using police lingo that varies from responder 
to responder. Before effectively parsing the text associated with event status updates, it is essential 
to learn/understand the lingo; using 10- and 11-codes is not sufficient.  
Locations expressed in CAD systems are typically uniformly expressed with recommended federal 
coordinate referencing systems, such as NAD 83 in the case of the CHP CAD data. 
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Assessment 
Criteria 

Assessment 

Accuracy CAD data are fairly accurate in terms of time and location. Time is captured automatically at the 
time of a call, and the near real-time processing by CAD systems allows the data to be processed 
and stored in less than a few seconds. CAD location data are often captured automatically using 
automated vehicle location (AVL) systems onboard responder vehicles, which are also fairly 
accurate. However, some incidents may have inaccurate times/locations. Timestamps can be 
inaccurate due to human error (e.g., officer forgetting to announce departure from the 
scene/being recorded several minutes or hours later). Locations can be affected by the 
environment (e.g., canyon effect in city centers with tall buildings can lead to imprecise GPS 
coordinates). 

Integrability CAD data are most often shared using data formats such as XML and JSON. XML, which while an 
aging format, is still dominant in most relational database systems including CAD systems. For such 
systems, exporting data in XML format is easy, reliable, and secure; however, most modern 
systems are built on more recent technologies, such as NoSQL, and have little to no support for 
XML data. This leads to the need for additional coding to integrate data with these modern 
systems. In the case of the CHP CAD XML data feed, the data are published in XML format and use a 
different XML standard than the strict XML document standard, most likely proprietary. To be 
parsed by common XML tools and loaded into more easily management formats like JSON that are 
usable by modern data analysis tools, the CHP CAD XML data require additional text processing to 
correct and make them adhere to the strict XML standard.  
CAD systems often use and publish data according to recommended federal coordinate referencing 
systems, such as the North American Datum of 1983 (NAD 83, a geocentric datum and geographic 
coordinate system based on the 1980 Geodetic Reference System ellipsoid (GRS80)), to geolocate 
event status updates. However, this is not ideal for integration with commercial vendor datasets, 
which use worldwide coordinate referencing systems such as WGS 84 (the standard for GPS) or 
Web Mercator (the de facto standard for web maps and online services). To integrate CAD data 
with these vendor datasets it requires the CAD data to be reprojected to fit the referencing systems 
of the other datasets prior to being integrated. This can be costly, especially in real-time systems. 
As the CHP CAD data were expressed using the NAD 83 coordinate referencing system, the team 
had to reproject the data using the WGS 84 so that the data could be merged with other datasets. 
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APPENDIX D  
SSP Data Detailed Assessment Outcomes 

Table 28 details the results of the assessment of the SSP data obtained by the team. 

Table 4. SSP Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness The completeness of SSP data varies from agency to agency. To assess completeness, the team used 
the WITS dataset, which covers 5 years and sufficiently identified patterns of missing data. The WITS 
dataset contains 342,976 records composed of 26 variables, including latitude, longitude, time of 
arrival at scene, and time of departure. In this dataset about 13.3 percent of the variables are 
missing. Below is a list of the missing variables and their associated percentages: 

• PrimaryIRDriverResponseIdentifier – 342,975 (> 99.9 percent) missing values. 
• ArrivalatSceneTime – 7,514 (2.2 percent) missing values. 
• AllLanesClearTime – 249,151 (72.6 percent) missing values. 
• SecondaryLaneClosure – 342,217 (99.8 percent missing values 
• TotalNumberVehiclesInvolved – 50,228 (14.6 percent) missing values. 
• IRResponseComment – 70,675 (20.6 percent) missing values. 
• LandmarkDescription – 116,368 (33.9 percent) missing values. 

For variables such as AllLanesClearTime and SecondaryLaneClosure, missing values are expected 
because they express information that is not relevant to every incident (although the rate of missing 
values is still high, especially for AllLanesClearTime). The other variables (ArrivalatSceneTime, 
PrimaryIRDriverResponseIdentifier, TotalNumberVehiclesInvolved, IRResponseComment, and 
LandmarkDescription) should not be missing. PrimaryIRDriverResponseIdentifier is missing for most 
records, which means that no information is available about which responder (driver) responded to 
the incident. The ArrivalatSceneTime is missing for only a small percentage of the records, which is 
acceptable. The TotalNumberVehiclesInvolved, IRResponseComment, and LandmarkDescription are 
missing for a non-negligible number of records. While the LandmarkDescription variable, which 
contains manually entered addresses or cross-street locations, can be easily completed using the 
latitude and longitude, the other two cannot, which impacts the ability to classify almost a third of 
the dataset in more detail. 

Timeliness The data reviewed were historical. The timestamps provided in the data are somewhat consistent 
with the other timestamps in the same record. They are within the same year, but some records 
show timestamps several weeks apart within the same record. The team visualized the frequency 
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Assessment 
Criteria 

Assessment 

distribution of incident clearance time (ICT) show this anomaly (Figure 50). Negative ICTs on the left 
side of the distribution indicate erroneously collected timestamps for some records. 

 
Figure 6. Frequency Distribution Plot of ICT from WITS (2015 and 2020) 

Consistency Agencies collect data on a variety of incident types, and these definitions vary from program to 
program. Washington’s incident response report includes fatal, injury, and non-injury collisions; 
blocking and non-blocking disabled vehicles; abandoned vehicles; and debris blocking traffic. 
Incidents/assists found in the CHART data are shown in Figure 51 and are categorized differently than 
Washington’s, which are shown in Figure 52. Most of the SSP data also contain information like RCT 
and ICT to track performance of the patrols. 
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Assessment 
Criteria 

Assessment 

 
Figure 7. Counts per Incident Type from the Maryland CHART SSP Dataset 

 

Figure 8. Count of WITS Incident Response by Type between 2015 and 2020 
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Assessment 
Criteria 

Assessment 

There can be many inconsistencies in what data are 
recorded for each incident, and these data may be 
inconsistent with crash reports or other datasets. For 
example, UDOT's SSP data differ from Maryland CHART’s 
SSP data in structure and content. UDOT's data are split 
across multiple files and contain various free-text 
descriptions of incidents, whereas CHART data have 
standardized incident types. The WITS dataset has a mix 
of standardized data types, including categorical data 
types for fields such as incident response type and 
primary lane closed, as well as free text for fields such as 
landmark description and incident response comments. 
The latter allows many variations of the same information, 
which creates unnecessary inconsistency in the dataset. 
Figure 53 shows an example of manually entered values in 
the WITS IR response comment field, leading to 
inconsistent spelling for the incident information. 

Conformity SSP data should conform to best practices for data typing and formatting, such as standard 
timestamps and the WGS84 referential system with nine decimal precision; however, there are cases 
where data do not conform to industry best practices. For example, none of the SSP data reviewed 
has a specified time zone in their schema despite using timestamp standards correctly. This is often 
considered unnecessary due to assumptions that the data will only be used within the state. Also, 
some data, such as addresses and even timestamps, are entered by hand without any guidance or 
checks at the interface or database level (e.g., WITS landmark data field, Utah incident timestamps). 
This leads to numerous inconsistencies and inaccuracy in the data, rendering the dataset much more 
difficult to analyze. In some cases, SSP data are exported in a format that is unreadable by any 
software. For example, UDOT’s incidents table was exported as a tab-delimited CSV but is missing 
quotes around fields containing tabs, which made it impossible to parse, short of going through it 
line by line and guessing the end of each field for each record and removing tab or adding quotes.  

Figure 9. Example WITS IR 
Response Comments 
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Assessment 
Criteria 

Assessment 

Accuracy The SSP data are generally accurate in terms of time and geolocation, 
but they lose accuracy when manual or non-standardized data entries 
are considered. The Maryland CHART dataset has latitude/longitude 
with six decimal places, which is accurate to ±11 centimeters. UDOT’s 
location data are encoded in an unknown coordinate referencing 
system. WITS latitude and longitude are accurate and standardized 
even accurately showing WITS responses in Oregon. They are also all 
matched to a linear referencing measure and a unique state route ID. 
Accuracy drops when reviewing manually entered data fields, such as 
“Landmark Description” where no standardized way to express 
address and location is enforced. Figure 54 shows a sample of the 
“Landmark Description” field and the variety of ways location is 
entered. 
Some coded (not free text) fields in the WITS dataset also have 
accuracy issues, such as the total number of vehicles involved in the 
incident, which is not bounded on entry and results in an excessively 
large number of vehicles involved entered in several hundred incident 
records. Figure 55 shows the distribution of number of vehicles 
involved in incidents, ranging from 50 to 1000 vehicles. 

  
Figure 11. WITS Total Number of Vehicles Involved Distribution 

Integrity SSP data are typically shared as Excel or CSV files, which are good formats to parse and ingest, but 
they lack metadata to increase data clarity (e.g., the referential system used by the latitude and 
longitude in the table). This means that additional documentation needs to be acquired to correctly 
parse and ingest the data. Timestamps are often missing time zone information, which is not an issue 
in most states but causes problems with states like Florida that have more than one time zone and 
Arizona, which does not participate in Daylight Savings Time. In these cases, some additional data 
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Assessment 
Criteria 

Assessment 

processing is required to identify the correct timestamp time zone. Regarding the categorization or 
classification of incident response, while there is some overlap across states, each state creates its 
own taxonomy, often loosely based on Traffic Management Data Dictionary (TMDD) but not entirely 
compliant. This makes it difficult to integrate data from multiple states as a mapping of categories 
needs to be established prior to merging the datasets. This can be difficult since the incidents in SSP 
datasets may not have identifying information that enables easy association with other datasets 
(such as crash reports) since the SSP data originate from entirely different systems. 
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APPENDIX E  
Free Navigation App Data Detailed Assessment Outcomes 

Table 29 details the results of the assessment of the free navigation app data obtained by the team. 

Table 5. Free Navigation App Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness Since the navigation app data assessed are crowdsourced from the public, there may be discrepancies 
in the number of users reporting in different regions, which results in various levels of completeness. 
The navigation app provider does not provide any metrics on how many users actively report on a 
specific roadway segment. Overall, the navigation app data captures more traffic-related events than 
traditional TMCs.  
The real-time navigation app data collected in Minnesota, Massachusetts, Maryland, Utah, and 
historical data archives did not show any apparent gaps. Figure 56 shows the number of alerts 
published by the navigation app provider in the entire state of Massachusetts between July 15 and July 
24, 2020. The number of alerts peaked toward the evening commute and dropped overnight. The alerts 
also dropped starting July 20, 2020, following the Massachusetts COVID stay-at-home order, and the 
number of alerts published afterward was significantly less but still showed a peak during the evening 
commute. 

 
Figure 12. Navigation App Alerts Per Hour in Massachusetts (July 15-24, 2020) 

Figure 57 shows a histogram comparing the number of crashes reported by the Arizona Department of 
Public Safety (AZDPS) and the number of “accidents” reported by navigation app provider by year for 
the years 2017 and 2020 across the state of Arizona. The number of navigation app alerts is within 
about 10 percent of the AZDPS crash count, which seems acceptable when considering the 
crowdsourced nature of the navigation app data. 
At the data fields level, navigation app alerts were not always complete; some alerts were missing 
some data fields. For example, city names may be missing when an incident occurs on a highway 
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Assessment 
Criteria 

Assessment 

between towns or when alerts were submitted using the navigation app touchless option (hand 
waving), which does not collect alert subtype. Following are the percentages of missing data found in 
the US DOT national navigation app data archive dataset: 

• Street name missing in 5.4 percent of all records. 
• Alert subtype missing in 5.3 percent of all records. 
• City name missing in 49.4 percent of all records. 
• Number of thumbs up missing in 25.9 percent of all records 
• Road type missing in 5.6 percent of all records. 

Location data fields, such as latitude, longitude, and heading were always present and usually within 
expected bounds. Latitude and longitude were sometimes inaccurate due to the use of a geohash and 
the location approximation it creates by the navigation app. Alert timestamp, alert update timestamp, 
alert reliability, and alert confidence were also always present in the data. 

 
Figure 13. Comparison between the number of crashes recorded by the AZ DPS and 
the number of accidents reported by the third-party in 2017, 2018, 2019 and 2020 
Figure 58 shows the locations of navigation app reports (orange) and incidents recorded by Maryland 
CHART (blue) in 2020. It is easy to observe that navigation app users provide insights on many more 
incidents than CHART with existing methods of incident detection. 
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Assessment 
Criteria 

Assessment 

 
Figure 14. Map displaying incidents recorded by  navigation app (orange) and MD 

CHART (blue) in 2020 

Timeliness The navigation app data are provided in real-time through a GeoRSS1 data feed, which is updated every 
minute. This refresh rate is acceptable for ingesting navigation app data into traditional data systems, 
but it is on the slow side when considering modern data systems, which are capable of ingesting and 
processing navigation app data coming in real-time through a web socket and then processing updates 
as soon as they are published. Despite this limitation, the navigation app data are timely; however, 99 
percent of the timestamps for all navigation app alert updates are the same as the time the event 
started. This makes it impossible to know when the update was published. The only way to capture the 
timestamps of these updates is to do so each time the navigation app GeoRSS data feed changes. This 
time can be used as a proxy for the alert update time, but it is limited in precision by the GeoRSS data 
feed refresh rate. 
Figure 59 shows a histogram representing the count of navigation app alerts binned by minute that 
occurred 30 minutes before (green) and 30 minutes after (red) and within half a mile of a TMC 
recorded crash (blue) on US-50 in Maryland in March 2020. Figure 59 shows that using the recreated 
update timestamps, navigation app alert updates occurred as soon as 30 min before the TMC had 
knowledge of the crash, and the rate of alert updates started drastically increasing 15 min before the 
TMC knew of the crash. The team found equivalent results through a similar comparison with crashes in 
Massachusetts.  

 
1 https://www.ogc.org/standards/georss 

© 2021 Mapbox ©OpenStreetMap

https://www.ogc.org/standards/georss
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Assessment 
Criteria 

Assessment 

 
Figure 15. Count of Alerts Occurring 30 Minutes Before and After a TMC Incident 

Record Time on US 50 in Maryland 
Consistency The navigation app data are simple and consistent, even with the errors (e.g., missing update 

timestamps) across all types of alerts. The data are consistent across the U.S. over several years with a 
slight increase in 2019 followed by a drop in 2020, like what can be observed in Figure 56 for 
Massachusetts. There are little unexpected variations (less populated areas, nighttime, holidays, etc.) in 
data quality or reporting frequency nationwide. 

Conformity The navigation app provider follows its own specification rather than publishing data using some other 
specification. The specification is simple and lacks the details found in other specifications. Roadway 
name and type are arbitrary and so are confidence and reliability indices.  
The navigation app provider has also adopted international standards for its location and timestamp 
data that are widely recognized and heavily used in modern data systems. The alert locations are 
expressed using decimal latitude and longitude in the WGS84 referential system, and timestamps are 
expressed using UNIX epoch time in milliseconds.  

Accuracy The accuracy of the navigation app data is another matter. The data are crowdsourced and human 
entered, which inherently creates errors (e.g., creating the wrong type of event, pointing the phone in 
the opposite direction of traffic when recording an alert associating it with the opposite traffic 
direction, recording a premature event, such as a disabled vehicle on shoulder alert when a vehicle is 
stopped to pick up a phone call). The navigation app alert locations are also inaccurate by design due to 
the distance traveled by the user after observing the event before reporting it. Thus, the alert locations 
are typically within a bounded distance from when they are reported often within a mile after the 
actual location of the event. 
This means that navigation app alerts should be carefully reviewed and assessed before being 
considered for action. This is also made difficult as update timestamps are inaccurate 99 percent of the 
time. 
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Assessment 
Criteria 

Assessment 

The navigation app provider includes three separate measures to assess the trustworthiness of data: a 
reliability score, a confidence score, and the number of “thumbs-up” reports received from other users. 
The exact algorithms that the provider uses to calculate reliability and confidence are not publicly 
available, but the number of “thumbs-up” reports received is a clear and intuitive measurement that 
performs well to identify reliable reports. 

The distributions of the reliability and confidence scores (shown in Figure 60) indicate that accurate 
event reporting (levels 8 to 10) is scarce, as most navigation app alerts have a consistent confidence 
score of 0 and a consistent reliability score of 6. It can also be noted that some event confidence scores 
have a value of -1, which most likely indicates failure of the algorithm to calculate a confidence score 
for these events. 

 
 

Figure 16. 2012-2017 Nationwide Navigation App Event Confidence Score (Left) and 
Reliability Score (Right) Distribution 

There are a limited number of navigation app alerts that contain erroneous timestamps, which are 
scattered between year 0001 and year 3713, but their frequency is so small that it can be considered as 
noise. 

Integrability Real-time navigation app event data are provided through a GeoRSS data feed, in either JSON or XML. 
Historical navigation app data are provided through access to a cloud database that contains the same 
data as the real-time data feed. By using JSON and XML, the real-time navigation app data can easily be 
integrated with traditional and modern data systems. The GeoRSS publishing process is limited but 
robust enough to support integration with systems designed to be near real-time. Furthermore, the 
Open Geospatial Consortium (OGC) retired the GeoRSS standard in September 2020, meaning it is 
becoming a legacy standard. 
On the contrary, the historical navigation app datasets, available through a cloud platform, are not 
easily integrated without adopting the platform and migrating part of the integration processes and 
data to that platform. While it is convenient to access such large datasets through data querying 
services, it represents a type of vendor lock by not allowing the data to be accessed through other 
platforms.  
The location data and bearing data provided in navigation app event messages also make it easy to 
associate events with agency road networks, even in real-time.  
Finally, the imprecise nature of the navigation app time and location data make it challenging to 
integrate it with other incident datasets, such as TMC or crash report data, as fuzzy matches resulting in 
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Assessment 
Criteria 

Assessment 

multiple matching candidates may be possible, and some rules or algorithms will need to be devised to 
select the correct matching event. 
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APPENDIX F  
DOT ITS Fixed Sensor Data Detailed Assessment Outcomes 

Table 30 details the results of the assessment of the DOT ITS fixed sensor data obtained by the team. 

Table 6. DOT ITS Fixed Sensor Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completenes
s 

In the case of the data from California’s PeMS, there are raw data from March 2001 to 
February 2021, with some missing months for certain districts. Sensors fail from time to time 
for several reasons. There are stations with missing data on some days, as can be observed in 
Figure 61 for eight stations on January 1, 2021. 

 
Figure 17. Missing data from shortly after noon to shortly after 7 p.m. from 

several sensors in the California PeMS data on January 1, 2021. 
Ohio’s speed sensor data are comprised of readings from only 158 sensor locations across the 
state. Of these locations, some are missing data, as displayed in Figure 62. 

 

Figure 18. Missing data from Ohio's speed sensor data. 

Timeliness The Caltrans station data, provided by PeMS, are available in raw form for the previous day, 
which is timely enough for certain applications but not for applications that require real-time 
or near real-time data. The same thing can be assumed for other states implementing PeMS, 
such as Utah. The latency of Florida and Ohio’s data is unknown; the team did not have direct 
access to the systems to assess the timeliness with which the data are refreshed. 

Consistency For Caltrans, data are consistent across districts and times. Data are available in 5-minute, 
hourly, and daily roll-ups. Whether data are observed or estimated is indicated explicitly. 

Time

La
ne

 1
 F

lo
w

Stations with Fewer than 750 Rows of Raw Data (January 1, 2021)

7AM    8AM   9AM   10AM  11AM  12PM   1PM    2PM    3PM    4PM    5PM    6PM    7PM     8PM   9PM    10PM  11PM 12AM

3,000

2,000

1,000

0
Individual Sensors

N
um

be
r o

f R
ec

or
ds



 22  

Assessment 
Criteria 

Assessment 

Ohio’s data are inconsistent across districts in terms of quantity of data, as shown above in 
Figure 62, but are otherwise consistent.  

Conformity The data come in different formats depending on the type of dataset, but they conform to a 
given schema across years and districts for each dataset. For example, the California PeMS 
data have multiple averaged datasets (station 5-minute, station hour, station day) that all have 
the same data structure. PeMS also has station AADT and station raw datasets (among others) 
that each have their own schema and data definition sets. Sensor data from Ohio has a 
different schema and format. More specifically, Ohio’s data track the number of vehicles per 
speed range (e.g., 0-40 MPH, 40-45 MPH, 45-50 MPH, etc.), whereas the PeMS data track 
speed averages for the given time interval. 

Accuracy In the PeMS data, outliers have either been culled or imputed already, or the sensors are 
relatively accurate. No extreme outliers were found in the samples. Ohio’s data schema does 
not allow for outliers in speed, as the speed bins are predefined, and while there are records 
with high numbers of vehicles, the distribution does not indicate any extreme outliers (Figure 
63). 

 
Figure 19. Histogram of number of vehicles per 5-minute period in Ohio’s 

speed sensor data. 

Integrability The California sensor data are only available through the PeMS portal, and while terabytes of 
data are available, downloading and processing the data is difficult. Files must be batch-
downloaded and moved to a data lake or other “big data” environment to be analyzed. Ohio’s 
sensor data must be requested from ODOT. Once obtained, the data can be integrated with 
other datasets via the latitude and longitude coordinates; however, as indicated above under 
“completeness,” the distance of the sensors from crashes/incidents will reduce the usefulness 
of the data.  
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APPENDIX G  
Vehicle Probe Data Detailed Assessment Outcomes 

Table 31 details the results of the assessment of the probe vehicle data obtained by the team. 

Table 7. Vehicle Probe (NPMRDS and a Third-Party Tool) Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness While the TMC road network used by NPMRDS covers the nation rather well; when querying 
NPMRDS, the number of road segments returned varies depending on the location or state, as well as 
the time interval for which the data are requested. This difference can be drastic; for some states, the 
data returned can have a complete dataset covering the states, and for other states, the data 
returned show very sparse road segments with probe data covering an exceedingly small amount of 
the state road network. The team looked at all TMC road segments with probe data returned from the 
NPMRDS for May 16, 2021, for the entire state of Ohio. The Ohio data are complete, with 35,626 road 
segments (out of a total of 35,698 TMC road segments in Ohio) containing probe data for every 5 min 
interval of that day. Similarly, the team looked at all TMC road segments with probe data returned by 
NPMRDS on the same data for the entire state of Minnesota. The Minnesota data are sparse, with 
only 27 road segments (out of a total of 9,970 TMC road segments in Minnesota) containing probe 
data for every 5 min interval. This means that NPMRDS data for the same day are available for 99.8 
percent of the Ohio road network but only 0.27 percent of the Minnesota road network. 
The third-party uses the same data providers as NPMRDS, and the team noticed similar issues with 
the completeness of the data. Completeness depends on the density of vehicle probe data on the 
road network at any given time. Figure 64 shows a road segment count distribution in the third-party 
data for the state of Utah on May 14, 2021. There are many road segments with fewer than 25 rows, 
which is less than 4 hours of data in that day, in the dataset. Figure 64 represents 24 hours of data 
(May 14, 2021) downloaded via a third-party tool for all road segments in Utah (a total of 12,085,127 
records over 276,916 total road segments). Figure 64 illustrates the number of road segments (y-axis) 
binned by the number of rows of data/records (x-axis) for every five-minute interval. In other words, 
for each five-minute interval, available vehicle probe readings are added as a row in the data. 
Therefore, for the 24-hour period of interest, there is a maximum of 288 five-minute intervals. The 
bar on the far-right of the chart illustrates that there are only 6225 road segments (2 percent) that 
have the full (or close to full) 288 rows of data, while the far-left of the chart shows that there are 



 24  

Assessment 
Criteria 

Assessment 

many road segments with data/records for very few of the five-minute intervals. This may be due to 
many rural roads that have few or no vehicles over many five-minute intervals. 

 
Figure 20. Histogram of Row Counts (Probe Vehicle Records) per Road Segments 

Timeliness The NPMRDS data can be downloaded manually via RITIS’s data downloader tool at 5-minute intervals 
(the lowest temporal resolution available). This process is not real-time or near real-time. It does take 
some time for it to process and return the data, from several minutes to days depending on the 
geographical area and/or time range selected when requesting the data. This means that the NPMRDS 
data are not readily available for big data analysis interactively and that real-time analysis is not 
possible. The latter is expected as NPMRDS was not designed to support real-time data feeds. 
The third-party data are typically available within 10 minutes of recording. Data are available using 
the API or the webpage by time of day, day of week, and time range. The tool is not meant to provide 
discrete data, aggregated or trended data. The latency of the data is typically a month; so just like 
NPMRDS, the third-party tool is not meant to support interactive data analysis over massive 
quantities of data or real-time analysis (i.e., big data analysis).  
Because the process for both data sources is manual and requires multiple requests of the system to 
obtain the necessary data, it prevents any automated processing on the data in a timely manner, 
which is required for big data analysis.  

Consistency NPMRDS data are consistent when considering metrics over time. Figure 65 shows the number of 
road segments for Ohio with data returned every 5 minutes for 24 hours on May 16, 2021. In Ohio, 
the NPMRDS data are consistent over 24 hours. A similar graph was drawn for Minnesota (not shown 
here) where, even though a small portion of the Minnesota network (27 road segments) is returned, 
the returned data are consistent over 24 hours.  
On the contrary, data from the third-party tool are not as consistent. Figure 66 shows a similar count 
of the number of links (road segments) in Utah with data every 5 minutes for 24 hours on May 14, 
2021. This time the count is a lot less consistent, showing a significant drop of road segment counts at 
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night, an improvement during the day, and a large spike during the evening, which is not very intuitive 
or explainable. 

 
Figure 21. Count of Road Segments with Vehicle Probe Data on May 16, 2021, in 

Ohio (from NPMRDS) 
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Figure 22. Count of Road Segments with Vehicle Probe Data on May 14, 2021, in 
Utah 

While NPMRDS is consistent over time, it is not geographically consistent. This is due to the drastic 
discrepancies between states (detailed in the completeness section) and because of the two versions 
of the TMC network that NPMRDS uses. There are discrepancies between the TMC network NPMRDS 
used for data pre-2017 and the TMC network NPMRDS uses post 2017. Figure 67 shows an overlay of 
the pre (blue) and post 2017 (red) NPMRDS TMC networks in Minnesota. Road segments in red, not 
covered by blue ones, are new road segments that were not part of the TMC network prior to 2017. 
There are also road segments present in the pre-2017 TMC network that do not exist in the post-2017 
NPMRDS TMC network, but they cannot be seen on the map. 

Time

110,000

100,000

90,000

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0

N
um

be
ro

fR
oa

d
Se

gm
en

ts

Fri 14           3AM           6AM            9AM           12PM 3PM            6PM             9PM



 27  

Assessment 
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Assessment 

 
© OpenSteetMap – Basemap used under the Creative Commons Attribution-ShareAlike 2.0 License 
(CC BY-SA 2.0), https://creativecommons.org/licenses/by-sa/2.0/legalcode (no changes made). 

Figure 23. Differences between NPMRDS TMC network pre and post 2017 

Conformity Both NPMRDS and data provided by a third-party have their own specifications. Their specifications 
conform to expected data types, and both use TMC (Traffic Message Channel) codes or Link IDs to 
identify road segments and associated TMC identification files containing metadata for each segment, 
as well as coordinates for each beginning and end point of a segment. The location data are simple, 
using plain text representation of latitudes and longitudes of road segments in multiple columns. The 
data do not use common modern geographical and geometry representation formats such as 
GeoJSON (Geometry JavaScript Object Notation) or WKT (Well-Known Text). Times are in local time 
without time zone information, and speeds are in miles per hour (mph). Time zone information is 
included. Both specifications also include some sort of quality metrics, such as the confidence score 
values and the C-Values, to provide more insights into the actual metric values, which aligns with data 
management good practices. 

Accuracy For both NPMRDS and the third-party, the data returned appear to be accurate without any obvious 
anomalies. However, many of the metrics returned are not the direct result of the aggregation of 
probe data; many values are imputed (i.e., missing values are estimated and inserted into the dataset) 
because there are not enough actual data for some periods of time or locations. This is because probe 
data vary widely based on the location, time of the day, week, and years as it depends on the number 
of vehicles traveling on a road segment at the time. Therefore, the team reviewed accuracy in both 
datasets by examining the quality metrics available with each record. Figure 68 and Figure 69 show 
plots of NPMRDS confidence scores for all road segments in Ohio and Minnesota, respectively, on 
May 6, 2016 (the dotted lines represent the minimum and maximum confidence scores found in the 
datasets throughout the day; the maximum all day for both states is 30 – shown at the top of the 
chart). For both states, the confidence scores, and therefore the accuracy of the data, drop 

https://creativecommons.org/licenses/by-sa/2.0/legalcode
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Criteria 

Assessment 

significantly overnight, as fewer vehicles are on the roadways, and more imputed data are used. It is 
interesting to note that in Minnesota, even at some points in the afternoon, the minimum confidence 
score is as low as it is overnight. This means that even though the average confidence score is high, 
some road segments in Minnesota are not traveled enough during the afternoon, and the data need 
to be imputed and are therefore less accurate. Interestingly, Ohio shows a consistent minimum 
confidence score of 10 during the entire day, revealing that some road segments never had enough 
data to generate good calculations across the entire day. 

 

Figure 24. NPMRDS Confidence May 6, 2021, Across Minnesota 
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Figure 25. NPMRDS Confidence Score on May 6, 2021, Across Ohio 
Another aspect of accuracy in both NPMRDS and the third-party data is the geographical accuracy of 
the road segments. Both use similar versions of the TMC network. Figure 70 shows a small section of 
Minneapolis. Green lines are the pre-2017 TMC road segments, purple lines are the post-2017 TMC 
road segments, and blue lines are the ARNOLD road segments. It is interesting to note how coarse the 
TMC network is in comparison to the ARNOLD network. Some TMC segments simplify the road 
network to the point of excluding two or more intersections and crossroads. This makes the precision 
of the speed provided for a segment coarse and difficult to extrapolate what the speed was near an 
actual point, an accident or construction zone, and along the actual road, especially if intersections 
before and after this point are considered in the data. The ability to snap a crash location from a crash 
report to a TMC road segment could also be challenging. The TMC road segments are simplified to 
straight lines between two intersections and can deviate several blocks away from the actual road. 
This makes it challenging to connect some crashes to the TMC segments. More sophisticated snapping 
methods than a simple range search need to be employed, and some crashes may still require manual 
intervention to be connected to TMC road segments. 
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Figure 26. NPMRDS TMC Network Resolution in Minneapolis 

Integrability Data are accessible, but only through a tedious manual process of downloading a series of individual 
files. The data can be tied to other datasets through the TMC codes. 
While NPMRDS and the third-party make data accessible by using modern formats and standards and 
providing APIs and web interfaces, they only do so through a tedious and restrictive manual process 
from the point of view of big data analysis and provide data only “drop by drop.” Both systems are 
optimized to show data as maps, aggregates, and trends on small portions of the network and time 
(e.g., route, month of the year). While both tools have the capacity to provide data that could be 
integrated at scale or in real-time, both are designed to limit the ability of users to perform analysis 
on data at a large scale. This is likely due to restrictions imposed on tool designers from the data 
source providers.  

  

© 2021 Mapbox ©OpenStreetMap
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APPENDIX H  
Roadway Inventory Data Detailed Assessment Outcomes 

Table 32 details the results of the quality assessment of the roadway inventory data from these states. 

Table 8. Roadway Inventory Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness Roadway inventory data are often incomplete and suffer a lack of conscientious data 
management. Roadway inventories are often missing road segments, as well as metadata for road 
segments. For example, in Tennessee’s roadway inventory, the “Pavement Roughness” metadata 
field is populated for only 0.06 percent of the records. The rest is listed as “No Data.” The dataset 
does not cover local roads. Figure 71 shows the “Local Roads” in Colorado. While local roads are 
included in the roadway inventory, the data are not available for many of them. Blue segments 
are included in the roadway inventory, and gray segments are on the map only, indicating that 
they are missing from the dataset. 

 
© OpenSteetMap – Basemap used under the Creative Commons Attribution-ShareAlike 2.0 License 
(CC BY-SA 2.0), https://creativecommons.org/licenses/by-sa/2.0/legalcode (no changes made). 

Figure 27. Roadway Inventory—Local Roads in Colorado 

In Massachusetts, the roadway inventory dataset is complete, covering all roads in the state even 
bicycling and walking pathways; however, metadata are lacking, with 25 percent of all metadata 
not populated (e.g., 35 percent of roadway numbers, 55 percent of road segment IDs, 10 percent 
of street names, 89 percent of road segment length and 58 percent of speed limits). 

Timeliness Roadway inventory data are not frequently updated. It may take several months to several years 
to update the geometry and metadata of roadway inventories. For example, Tennessee’s 
“Pavement Roughness” inventory as received in November of 2020, was last updated in June 
2016. These delays reduce data value, as this stale road inventory data become difficult, if not 
impossible, to integrate with other commercial or public data that include more up-to-date 
location information. 

https://creativecommons.org/licenses/by-sa/2.0/legalcode
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Assessment 
Criteria 

Assessment 

Consistency Inconsistencies can be found between data updates. Inconsistencies may be found because new 
formats are used to add updated data to the roadway inventory without modifying prior data. 
Inconsistencies can also be observed between highway and arterial metadata and local roads 
metadata where data come from different agencies using different standards, nomenclature, and 
precision requirements. 

Conformity Data conform to best practices for data typing and formatting, but it is important to review data 
for odd date formats or geometries that are not in the most common Coordinate Referencing 
System (CRS). Often conversions are needed so that the data can be used with latitude/longitude 
coordinates in other datasets. 

The Model Inventory of Roadway Elements (MIRE) is a recommended listing of roadway inventory 
and traffic elements critical to safety management. MIRE is intended as a guideline to help 
transportation agencies improve their roadway and traffic data inventories. It provides a basis for 
what can be considered a good/robust data inventory and helps agencies move towards the use 
of performance measures to assess data quality. The MIRE listing contains 202 data elements 
divided among three broad categories: roadway segments, roadway alignment, and roadway 
junctions. The composition of MIRE was purposefully designed to link with supplemental 
databases including roadside fixed objects, signs, speed, automated enforcement devices, land 
use elements related to safety, bridge descriptors, and railroad grade-crossing descriptors. Yet its 
adoption is only partial in most roadway inventories and often limited to the most traveled 
roadways, such as highways and arterials. Conformity drops significantly when considering 
smaller and less traveled roadways.  

Accuracy Geometries represented within road inventories may be off by tens of meters in some places but 
are generally accurate. The accuracy of the asset data can also be affected as agencies may not 
have the resources to update asset records as soon as an asset is upgraded or replaced, resulting 
in stale asset data several weeks or months after asset work has been performed. In the 
Massachusetts roadway inventory, for example, several versions of the same roadway segments 
coexisted without any reliable way to identify which was the most current. This drastically lowers 
the accuracy of the dataset. 

Integrability With a conversion of the geometries to a standard WGS84 CRS, roadway inventory data can be 
matched with other datasets; however, as is true with all geographical datasets, it may be difficult 
to match road segments within a roadway inventory to other maps or other geographic datasets. 
An intermediary process may be required to “snap” road segments to connect multiple data 
sources. As has been observed with accuracy, the presence of multiple versions of the same road 
segment without any clear indication of the currency will make integration with other datasets 
more challenging than it needs to be. Missing data, such as heading, roadway segment ID, or 
roadway name, can affect the integration with other datasets and only allow partial matching. A 
significant lack of metadata, such as speed limit, lane count, and presence of shoulder, can also 
drastically reduce the usability of roadway inventory dataset and lead data analysts to ignore 
them and use other datasets that are more current and more complete. 
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APPENDIX I  
LRS Data Detailed Assessment Outcomes 

Table 33 details the results of the quality assessment of the roadway inventory based on data from these 
states. 

Table 9. LRS Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness LRS data are typically complete in terms of the main highways in a state, but local roads are often 
not included. This limits how these data can be used. Often data for local and arterial roads are 
inaccurate (e.g., segment labeling and “from”/”to” measures are incorrect or missing). Figure 72 
shows a simple visualization of missing values by column in the Minnesota LRS data. 

 

Figure 28. Counts per column for Minnesota LRS data. Most fields are 
complete. 

Timeliness Updates to LRS data are infrequent; since it is unlikely for agencies to have a strong need for real-
time updates of changes to routes, this is often delayed. This is a limiting factor when using LRS 
data for real-time analyses. Stale LRS location data are difficult and sometimes impossible to 
match to data collected on new road segments that do not align with old ones. 

Consistency Most LRS data are consistent in naming of routes and format of geometries, but LRS datasets may 
be a combination of state-level and local-level geodata, and some inconsistencies can be found in 
how metadata are expressed between highways, arterials, and local roads. 

Conformity LRS data conform to best practices in how they represent geometries and metadata about 
routes. The data can come in different file formats, but are usually readable using the Python 
Geopandas package, QGIS, ESRI, or similar software. The geometries within an LRS dataset may 
use a different coordinate referencing system than the typical WGS 84 system, but it can be 
easily converted without too much loss. For example, Minnesota uses the NAD 83 / UTM zone 
15N system. 
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Assessment 
Criteria 

Assessment 

Accuracy LRS datasets provide a reasonably accurate representation of route geometries but may be off by 
tens of meters in some cases. In the case of Minnesota’s LRS data, there are cases where the 
geometry of a route does not line up exactly with the road—especially when there are curves or 
sharp changes in direction, but even sometimes when the road is straight. This can be observed 
in Figure 73. This causes problems when trying to snap points with a certain range and the 
distance of the LRS offset exceeds the snap range. 

 
©OpenSteetMap – Basemap used under the Creative Commons Attribution-ShareAlike 2.0 License (CC BY-
SA 2.0), https://creativecommons.org/licenses/by-sa/2.0/legalcode (no changes made). 

Figure 29. LRS route geometry (in dark blue) overlaid on a map. 

Integrability LRS datasets should have good integrability within themselves and across datasets. Care should 
be taken to ensure the same coordinate referencing system (CRS) is used across datasets. 

 

  

https://creativecommons.org/licenses/by-sa/2.0/legalcode
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APPENDIX J  
Third-Party Road Network API Detailed Assessment Outcomes 

Table 34 details the results of the quality assessment of the third-party road network API. 

Table 10. Third-Party Road Network API Data Detailed Assessment Outcomes 

Assessment Criteria Assessment 

Completeness The third-party road network data provider is known to have wide and up-to-date 
coverage of roads throughout the U.S.; however, they do not provide details about 
this coverage. The team was not able to perform an assessment of the completeness 
of the data, as queries to the API are limited for non-paying users. 

Timeliness The API returns results in near real time. The third-party road network provider is 
incentivized to provide up-to-date maps and therefore must make a certain amount 
of effort to ensure maps and roads are current. It is unknown how long it takes for 
new road segments to be reflected in the data. In 2021, the API started accepting 
date/time arguments in queries, so it is unknown how the API will deal with historical 
data queries if drastic changes have been made to the road system. 

Consistency The data are consistent across the different API services. The main data point of 
interest is the “place ID,” which represents a third-party-defined place within its 
ecosystem.  

Conformity The API conforms to the WGS84 standard for all its location data of data typing. 
Snapped points returned by the API include latitude and longitude coordinates with 
15-decimal precision. The third-party has its own proprietary standard to express 
PlaceIDs (road segment identifier). 

Accuracy Since the “nearest road” service does not accept a heading parameter, it may be 
difficult to attach a coordinate to the correct road segment in some places. Outside of 
this limitation and the limitations inherent in other data sources (e.g., crash reports), 
the API itself is highly accurate. 

Integrability Since the data returns a proprietary “place ID” as a result, its data are mostly useful 
only within the third-party’s ecosystem. The place ID does not translate well to other 
datasets, nor is it easy to try to map TMC codes or other road encodings to the third-
party’s place ID. This limits the usefulness of these services. 
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APPENDIX K  
SharedStreets Referencing System/OpenStreetMap Detailed Assessment 
Outcomes 

Table 35 details the results of the quality assessment of the SharedStreets Referencing System/OSM. 

Table 11. SharedStreets Referencing System/OSM Data Detailed Assessment Outcomes 

Assessment Criteria Assessment 

Completeness SharedStreets data are as complete as OpenStreetMap, as they are based on that 
dataset. OpenStreetMap is a crowdsourced effort, meaning updates are made by a 
vested community of users. Whether or not an arbitrary geographic point from 
another dataset can be matched with a point in SharedStreets, however, is 
dependent on how close that point is to a road and whether an accurate heading is 
provided. 

The SharedStreets Referencing System has the potential to provide data that can help 
analysts tie together disparate data sources in the development of big data pipelines. 
Therefore, the team assessed the SharedStreets Referencing System/OSM. To assess 
SharedStreets, the team used the SharedStreets toolkit to integrate the location of 
known crash locations in Ohio to an OSM road segment.  

SharedStreets has good coverage, yet there are gaps. Figure 74 and Figure 75 
illustrate the coverage and the gaps. Figure 74 shows the portion of the Ohio crash 
records that could (orange) and could not (blue) be snapped to a SharedStreets point. 
Only about 56 percent of the crash records were snapped to SharedStreets. Figure 75 
maps these points – what is in orange represents a crash location that was snapped 
to SharedStreets (good overall coverage across the state), and what is in blue are the 
crash locations that could not be snapped to a SharedStreets point (many still show 
through). In other words, if the team were to use SharedStreets as reference data, 
many of the crash/incident locations would be lost. 

 

Figure 30. Ohio Crash records “Snapped” to a SharedStreets Point 
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Assessment Criteria Assessment 

 

Figure 31. Crashes in Ohio with SharedStreets Points in Orange 
Overlaying the Original Coordinates in Blue 

Timeliness A timestamped version of OpenStreetMap data can be used when making calls to the 
SharedStreets API. This allows use of specific versions of OpenStreetMap, which is 
updated nightly. 

Consistency Results from the SharedStreets API are consistent with each other and a particular 
version of OpenStreetMap yet may change with different versions of OSM as it is 
updated. 

Conformity The results of the SharedStreets API are formatted as JSON and follow conventions 
for well-formatted JSON and geometries. 

Accuracy When snapping or matching arbitrary points to SharedStreets points, the accuracy of 
results is highly dependent on the accuracy of the original coordinates’ bearing. For 
instance, if the bearing is north instead of northeast and the road’s bearing in 
SharedStreets is northeast, then it may not match at all or it may match to a point 
farther away from where it should match. Due to this, SharedStreets may not be the 
best choice for datasets that do not have accurate bearings specified. 

Integrability Since SharedStreets uses OSM and includes latitude/longitude coordinates and 
geometries in its results, it is quite easy to integrate with other datasets. 

© 2021 Mapbox ©OpenStreetMap
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APPENDIX L  
ARNOLD Detailed Assessment Outcomes 

Table 36 details the results of the quality assessment of the ARNOLD data. 

Table 12. ARNOLD Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness Completeness of ARNOLD data depends on the state submissions. There are situations where not 
all fields are consistently populated across roadway types or locations, such as rural arterials vs. 
urban primary classes.  
The ARNOLD data reviewed by the team are complete in the sense that there are no missing 
attributes for any row; however, the data are less complete than the ARNOLD description, 
particularly regarding the metadata associated with road segments. Figure 76 shows a count of all 
missing values in each column of the Minnesota ARNOLD network (no missing data). 

 
Figure 32. Ratio of non-null data in each column of the Minnesota ARNOLD 

dataset 
The US DOT website states that ARNOLD includes all roads in the US, and only a few local roads are 
missing from ARNOLD. It includes all highways and arterials but lacks some sections of road 
segments in the local road system, which can be observed when comparing ARNOLD road segments 
to the OpenStreetMap base map. Figure 77 shows this kind of comparison in the area around 
Lynchburg, VA. Blue lines represent ARNOLD segments overlaid on the OpenStreetMap base map 
where highways are in red, arterials are in yellow, and local roads are in gray. OSM roads can barely 
be seen because ARNOLD covers most of them in blue.  
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Assessment 
Criteria 

Assessment 

 
© OpenSteetMap – Basemap used under the Creative Commons Attribution-ShareAlike 2.0 License (CC BY-SA 
2.0), https://creativecommons.org/licenses/by-sa/2.0/legalcode (no changes made). 

Figure 33. ARNOLD Network in Blue Overlayed on the OSM Base Map Around 
Lynchburg, VA 

Timeliness The ARNOLD data are dependent on the input of all states in the nation and, as such, it is difficult to 
synchronize the collection and verification of data to allow for rapid publishing of network updates. 
State agencies have different road networks on which they collect data with varying levels of 
precision, often only on the road segments for which they are responsible. They also have varying 
levels of resources to collect and prepare new or not yet collected data. The last ARNOLD update 
used data sent by states in 2017 and was published in 2018. While road changes are not frequent, 
this frequency is too slow to accurately support most modern real-time application. 

Consistency The ARNOLD data are consistent across states with similar content being used to describe road 
segments. This is not surprising as there is little metadata associated with road segments in 
ARNOLD and all columns, including the comments column, are well-defined and standardized. 
Unfortunately, this standardized content is minimal. 

Conformity The ARNOLD dataset is entirely standardized. This is true for the date-time and location fields 
expressing the state and recency of the data and for route IDs (both local and national), which are 
expressed using a specific ARNOLD format including a positive and negative distinction on 
separated roadways. Road types are expressed using standardized text in the comments fields to 
identify main roads, ramps, etc. All geometries are expressed using the WGS84 referential system 
for every state. 

Accuracy The geometric accuracy of ARNOLD is not ideal. It is as good as the state data it depends on. Its 
geometric accuracy is also affected by the fact that ARNOLD is published several years after the 
data are collected, and new construction projects may be started and completed during that time. 
Figure 78 shows the ARNOLD network in purple. There is a missing roundabout in ARNOLD at an 
exit on I-80 in Utah. 

https://creativecommons.org/licenses/by-sa/2.0/legalcode
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Criteria 

Assessment 

 
© OpenSteetMap – Basemap used under the Creative Commons Attribution-ShareAlike 2.0 License (CC 
BY-SA 2.0), https://creativecommons.org/licenses/by-sa/2.0/legalcode (no changes made). 

Figure 34. Missing Roundabout in ARNOLD Off I-80 in Utah 
The ARNOLD metadata is also generally accurate; however, these data are so minimal, restricted to 
year, state code, automatically calculated shape length, and simplistic road type. 

Integrability Integrating the ARNOLD dataset may pose some challenges. While the ARNOLD geometry is 
accurate enough to be conflated to other geo-datasets with “close enough” road segments, it will 
be much more difficult to integrate ARNOLD with datasets that have less accurate and more 
simplistic road geometries. Integrating with such datasets would require some additional steps to 
match road segment metadata, such as common road name, directional/flow indicator, road type, 
mileage/road measure, which as of now are missing in ARNOLD despite the plan to incorporate 
them. Also, since ARNOLD is a compilation of LRS routes, topology as a measure of connected 
segments is completely missing. This means any process relying on connecting nodes is suspect and 
every attempt will need to be made via fuzzy tolerances to find subsequent segments. ARNOLD 
would definitively benefit from adding a flow direction/heading attribute to the road segments. 
This would avoid having to calculate the flow direction for each heading to be matched during 
integration efforts. 

 

  

https://creativecommons.org/licenses/by-sa/2.0/legalcode
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APPENDIX M  
MADIS Data Detailed Assessment Outcomes 

Table 37 provides more details on the quality assessment of the MADIS data. 

Table 13. MADIS Data Detailed Assessment Outcomes 

Assessment Criteria Assessment 

Completeness The MADIS data sample provided on the NCEP website (after being serialized and 
flattened from its NetCDF format to a tabular format) contains 1,032,107 records, each 
composed of 192 columns. Out of these 192 columns, only four appear to be missing data. 
Below are the measures with missing data and the percentage of the missing data in the 
dataset: 

• Elevation is missing in 0.0013 percent of the records. 
• Station is missing in 0.0027 percent of the records. 
• Station type is missing in 0.48 percent of the records. 
• Skycvr is missing for 99 percent of the records. 

Three out of these four – elevation, station name, and station type – could be easily fixed 
using data imputation, but Skycvr cannot, as most data for that measure are missing. 
Figure 79 shows the breakdown of the few thousand records in the sample dataset with 
non-null Skycvr values in over one million records. 

 
Figure 35. Count of SkyCvr Measure in the Entire MADIS Sample Dataset 

Timeliness The MADIS data are not meant to be used for real-time analysis, and out of the many data 
sources, while some may be in near-real-time (e.g., weather station broadcasting data 
every 5 to 30 minutes) others (e.g., satellites) take several hours before they send data. To 
assess timeliness of this single day MADIS sample, the team tried to detect if measures 
with non-null values were consistent across all hours of the day. Figure 80 shows that for 
most of the measures, about 80,000 of them were reported consistently every hour. 
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Assessment Criteria Assessment 

Some measures containing nulls, such as Skycvr, are shown at the bottom with almost 
zero record counts. 

 
Figure 36. Distribution of MADIS values per hour 

Consistency See Accuracy 

Conformity The MADIS data are strictly standardized and provided using a NetCDF file format. Data 
and associated metadata, including level-1 quality metrics, provide information on the 
conformity of the data in each record. Using NetCDF data analysis tools, it is easy to 
quickly identify nonconforming data and filter them out. In the MADIS data sample, all 
records passed the level-1 quality check. 

Accuracy The team was not able to perform comparisons on the MADIS dataset to establish the 
accuracy and consistency of the sample observations. Instead, the team used the quality 
control metadata provided as part of the MADIS dataset and assessed how many of the 
records did not pass the quality control. The MADIS quality control is composed of two 
categories of quality control (QC) checks – static and dynamic. The static QC checks are 
single-station, single-time checks for validity, internal consistency, and vertical 
consistency. The dynamic QC checks include position consistency, temporal consistency, 
and spatial consistency. The results of these tests are combined into three levels: 

• level 1 = validity 
• level 2 = internal consistency, temporal consistency 
• level 3 = spatial consistency check 

The team observed that in the sample, all but 126,645 records (12 percent) passed all 
quality controls. Non-null measures that did not vary across the entire day were also 
identified. They were mostly data fields such as IDs, documentation references, elevation 
and quality and consistency measures that were not expected to change over the course 
of the day. Non-varying measures included: 
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Assessment Criteria Assessment 

• handbook5Id 
• homeWFO 
• numericWMOid 
• pressChangeChar 
• pressChange3Hour_pascal 
• pressChange3HourDD 
• pressChange3HourQCA 
• pressChange3HourQCR 
• pressChange3HourQCD_pascal 
• pressChange3HourICA 
• pressChange3HourICR 
• windDirICA 
• windDirICR 
• windSpeedICA 
• windSpeedICR 
• windDirMaxQCD_degree 
• visibilityQCD_meter 
• visibilityICA 
• visibilityICR 
• precipAccumQCD_mm 
• precipAccumICA 
• precipAccumICR 
• precipRateQCD_meter_second 
• timeSinceLastPcp_second 
• seaSurfaceTempICR 
• roadLiquidIcePercent4_percent 
• soilMoisturePercentQCD_percent 
• mobileElev_meter 

Integrability The MADIS data are meant to be available for the widest range of users, but primarily for 
NOAA scientists. As such, MADIS uses the NetCDF file format, which is designed to store 
scientific data. Originally created by NASA, NetCDF, which stands for network Common 
Data Form, is a file format for storing multidimensional scientific data (array oriented) 
such as temperature, humidity, pressure, wind speed, and direction. This file format is 
supported by many libraries and tools created by the scientific community that make it 
easy to extract and filter data out of each NetCDF file. Unfortunately, these tools were 
also mostly created for programming languages used by scientists (e.g., FORTRAN, C/C++) 
not for the current data science and GIS toolkits, which are built around the Python and R 
programming languages. This makes data stored in NetCDF files a bit more challenging to 
extract and use with common data science and GIS tools. 
A few libraries have been developed in Python and R to work with NetCDF files, but they 
are not as complete as the ones in FORTRAN and C/C++. This means that for data analysts 
to use NetCDF data, they need to learn the NetCDF data structure, understand its multi-
dimensional array structure and where the data and metadata are located and related, 
and then develop custom code before they can convert the NetCDF data into a format 
they can easily use with Python or R. This is not a trivial task, and the project team had to 
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Assessment Criteria Assessment 

develop custom code using Jupyter Notebook (a Python data analysis tool) before 
assessing the MADIS data sample. 
NetCDF and the data contained in the MADIS dataset are beyond the needs of most 
transportation agencies, and it would be preferable for such data to be simplified and 
available in a format that could be imported without any complex extraction process. 
Commercial weather data services have already identified this as an opportunity, and 
some weather data services use the MADIS data in combination with a few other weather 
data sources, combine them, simplify them, and make them available to the public for a 
fee in formats that are much easier to consume. 

NOAA provides access to its MADIS real-time and archived NetCDF files via file transfer 
protocol (FTP), which is now considered a legacy file sharing service and is not ideal for 
sharing large datafiles. MADIS data are also accessible in two other ways – a client and a 
server tool called Local Data Manager (LDM),2 which can provide event-based MADIS data 
or through a web-based data retrieval tool following the open-source project for Network 
Data Access Protocol (OPeNDAP).3 The latter has client libraries in Python and R but is still 
a scientific tool. While it may be easier than parsing NetCDF files, it will still require some 
work to integrate the MADIS with a common datastore or system and will be better suited 
for real-time/event-based data processing than for historical data analysis. 

 

 
2 https://www.unidata.ucar.edu/software/ldm/  
3 https://www.opendap.org/  

https://www.unidata.ucar.edu/software/ldm/
https://www.opendap.org/
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APPENDIX N  
Road Weather/Weather Data Environment (WxDE) Data Detailed 
Assessment Outcomes 

Table 38 details the results of the quality assessment of the WxDE data. 

Table 14. WxDE Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness WxDE data are assembled from weather data collected by contributing states from distinct types 
of weather stations equipped with different sensors measuring different weather observations 
(based on the need and climate of each state). While the team was able to subscribe for data feeds 
from seven states, the data received did not include weather observations for every state and the 
amount of data received was inconsistent for each interval and each state where data were 
available. Figure 81 shows the number of records received every five minutes from four states 
over five days.  

 

Figure 37. Count of WxDE Records per State per 5-Minute Interval over 3-Hours 
Figure 82 shows a count of all observations collected in a data sample from Arizona, Maine, Ohio, 
and Utah and illustrates that the data collected in one state can be different than the data 
collected by another, both in terms of the measures and the quantity of measurements. For 
example, Utah collects data pertaining to snow, while other states have very sparse or non-
existent snow data. Figure 82 also shows that the reviewed states are equipped with weather 
stations and sensors unequally, with states like Utah covering most of their main roadways, while 
Maine only shows two weather stations for the entire state. This makes the WxDE data incomplete 
geographically, as not enough fixed weather stations are present in some states to get sufficient 
weather observations along their road network.  
Completeness of the WxDE data with regard to time is good for some states in the data sample. 
Figure 83 shows that the state of Utah (green) consistently reports observations every five min 
with minimal misses, while states like Ohio (red) have wider variations in the data reported, the 
numbers of observations they report every 5 minutes, and even how frequently they report 
observations. 
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Figure 38. Observations Counts per Observation Type Per State 
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Assessment 
Criteria 

Assessment 

 

Figure 39. Number of Air Temperature Observations per 5 Minutes, May 5-10, 
2021 for Arizona, Maine, Ohio, and Utah 

One of the main drawbacks of the reviewed WxDE data sample is that it only contains observations 
from fixed weather station measures and therefore can only be used reliably to associate 
atmosphere and pavement conditions with traffic incidents that occur near weather stations. 
According to the WxDE documentation, the WxDE data should also contain observations from 
mobile/telematics weather stations. Such data would definitively improve the geographical and 
temporal completeness (some mobile/telematics datasets are listed on the WxDE website, but 
none were accessible at the time the data were assessed). Should this data become available, 
WxDE would become a much more complete dataset, especially if mobile/telematics reporting are 
numerous enough to report on most road segments at regular intervals. 

Timeliness Weather observation data from the WxDE are captured and reported at different frequencies 
depending on the state, station, sensor, and observations. As such, the same observation measure 
in WxDE can be updated every 5 minutes in one state and every 15 or 30 minutes in another. This 
is also observed within states, as weather stations can be of different generations, having different 
communication capabilities. While WxDE allows for its subscribers to pull data every five minutes, 
the data received are not aligned with this requirement, which can result in missing data. This can 
be seen when reviewing the WxDE archived observation data in Figure 82 and Figure 83. 
The team also found that in some states, such as Utah, while decent quality real-time data were 
available, historical data were unavailable. This is problematic as any long-term analysis would 
require the analyst to capture the data for months/years before being able to perform the analysis. 
The team also discovered that certain states did not return any data in the real-time feed for over 
three hours, which would make the assembly of a historical dataset difficult. 
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Assessment 
Criteria 

Assessment 

Consistency Data across the WxDE system are consistent with each other in format and content. This is due in 
part to the standard developed by WxDE and the conversion and quality control applied to every 
observation measure received. It can be noted that WxDE only publishes the best data received 
(the ones that pass quality control). For some states, this means that the number of observation 
measures is inconsistent because too many observation measures are missing or fail quality 
control. These states may have legacy equipment that needs to be replaced or low-quality 
communication lines between stations and the DOT.  

Conformity WxDE has developed its own specification for the data it publishes. The sample dataset reviewed 
conformed to the specified WxDE data types and formats, which align with industry best practices. 
Observation data were provided in the expected units of measurement and the units of 
measurement were always specified for each observation. Two measures and units, International 
System of Units (SI) and imperial system of units, were provided for most measurements. Location 
data were provided using latitude/longitude coordinates expressed using the WSG 84 coordinate 
referencing system. The timestamps were expressed in the UTC) time zone to eliminate the need 
to convert time data between time zones and to adjust to seasonal time zone changes.  

Accuracy ESSs may not always be maintained or monitored to counter sensor failure and sensor drift, which 
can lead to data quality issues (e.g., missing data, erroneous data). To circumvent this problem, 
quality control is performed by WxDE on collected data. Quality control metrics are computed with 
each collected observation and provide an indication of the quality of that observation, including 
checking if the observation is significantly different from historical norms for the observation area 
or checking if the observation is significantly different from similar nearby observations. Quality 
control metrics are composed of two categories: Weather Data Environment quality control 
metrics and Vehicle Data Translator quality control metrics, as well as an overall quality control 
metric called “Complete.” The “Complete” quality control metric can take the following values: 

• "P" – The observation passed the quality check. 
• "N" – The observation did not pass the quality check. 
• "-" – The quality check was not run for the observation, usually due to insufficient 

background field data. 
• "/" – The quality check was not configured for the observation type. 

In the data sample collected during May 5 to 10, 2021 from Arizona, Maine, Ohio, and Utah, all 
observation records for all observation types have a “Complete” quality control metric value of 
“P,” indicating a high accuracy of all records provided by WxDE.  
It is interesting to note that for Maine, WxDE shows observations coming from two weather 
stations in the data sample; the MADIS data, on the other hand, indicate the presence of 18 
different weather stations in Maine. This suggests that the WxDE may be removing observations 
that do not pass the quality checks rather than publishing them.  

Integrability The WxDE is a research project built as an open-source platform meant to collect and share 
transportation-related weather data, particularly CV application weather data. It stores 
observation measures in a relational database and makes the data accessible using the CSV or XML 
format, either as a subscription to a real-time data feed or as an archive download. The data 
available from WxDE include latitude/longitude coordinates in the WSG 84 coordinate referencing 
system, which allow the sensor data to be conflated with other datasets. It also includes 
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Criteria 

Assessment 

timestamps in the UTC time zone as well as measures expressed in standard units for each 
observation type. These aspects of the WxDE data make it easily integrated with other datasets. 
But there are concerns in practice when trying to consume/access WxDE data. These may be due 
to the research nature and current initial stages of the project. At the time of assessment, there 
was no way to download WxDE historical data or a robust real-time data feed. Data feed setup 
required some light “hacking” to work unreliably (some data feeds did not return any data in the 
real-time feed for over 3 hours), and downloading historical data failed due to an internal website 
error. 
These findings made the WxDE platform impossible to use reliably to integrate weather data with 
other systems/datasets. When considering (at the time) that WxDE only collected and shared fixed 
weather station data, the prospect of having the platform able to easily collect and share aspiring 
mobile/telematics weather seems unlikely, especially when considering the legacy technology 
stack selected for the platform, which will be ill-suited to handle the very large flow of sensor data 
that will come from mobile/telematics weather sensors. 
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APPENDIX O  
Third-Party Weather API Data Detailed Assessment Outcomes 

Table 39 details the results of the quality assessment of third-party weather data.  

Table 15. Third-Party Weather API Detailed Quality Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness The third-party weather API data are meant to be hyperlocal, that is, very precise in terms of 
location and time. To assess the completeness of the data, the team assessed how close the 
third-party weather measures were to the locations of eight million crashes in seven states. 
The team found that 99.7 percent of all crashes had a weather station source within ten miles 
or less of the crash location. Figure 84 shows a map of a sample of crashes in Ohio color coded 
by their distance to the nearest weather station. The map shows that most crashes in Ohio 
were associated with weather data from a weather station that was five miles away or less 
(blue). The crashes that were associated with data from weather stations that were between 5 
and 10 miles away (red) are less numerous and located in rural areas. 

 

Figure 40. Distance from Nearest Weather Station 

Timeliness Third-party weather API requests can be made in real-time to obtain data at a specific location 
from the past, present, or future (forecasted). When queried, the weather API returns a result 
immediately, and this result may contain weather data at three levels of precision: 

• Currently – at the exact requested time 
• Hourly – within the hour of the requested time 

© 2021 Mapbox ©OpenStreetMap
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Assessment 
Criteria 

Assessment 

• Daily – the day of the requested time 
Issues in timeliness, outside of service outages, occur when the third-party service cannot 
generate weather data exactly at the requested time. In the more than eight million crash 
locations and times that the team submitted to the weather API over the course of 20 hours, 
no API call failed, and none of the returned results missed the “currently” weather data. 

Consistency Due to the specific location/time nature of the third-party weather data, it is difficult to test 
data consistency without collecting a large amount of data over a long period of time at 
multiple locations. Understanding that MADIS is the main data source used by the third-party 
weather data provider, it can be assumed that the observation measures coming into the 
third-party model are consistent, but no information was available regarding the influence of 
the given modeling algorithm processing the data. The third-party weather data provider does 
maintain and publish a service status page containing a list of its downtime and incidents since 
2012. According to the provider, between January 2019 and April 2021, the service 
encountered ten downtime events ranging from 3 to 100 minutes with an average of 33 
minutes. 

Conformity The third-party developed its own specification, in an analogous way to the free navigation 
app data provider. It provides data using the REST API protocol, which is the most common API 
standard in modern data systems. It returns data in JSON format, which is also the most 
common data object standard in modern systems. Data in the weather API is expressed using 
a mix of U.S. Imperial and International System (SI) units. Observation narratives are 
standardized as well, but no documentation is provided on them. Across the eight million data 
records collected, the team counted 64 unique weather “summary” types. 

Accuracy One of the ways to assess the accuracy of the third-party weather data would have been to 
compare its measurements to measurements taken at the same time and location by another 
source, such as the WxDE. Unfortunately, the team was not able to gather enough WxDE data 
to perform such a comparison. As a substitute, the team calculated the distance to the nearest 
weather station provided by the third-party weather API in each query result. It can be 
assumed that the farther the weather station is from the requested location the less accurate 
the weather measurements may be. Overall, 99.7 percent of all crashes had a weather station 
within less than 10 miles, which would provide more accurate results for most of the queries. 
The farthest weather station found in the crash dataset was located 62 miles away from the 
crash location. 

Also, the team compared the weather narrative provided by the third-party weather data 
provider for each crash location and time to the weather information provided in each crash 
report. The comparison was done using the Levenshtein distance method, which measures the 
proximity between two texts by calculating the number of characters they do not have in 
common. Table 40 shows the results of this comparison with Levenshtein distance (number of 
uncommon characters between the two texts) group by ranges. It can be noted that 72 
percent of all third-party weather data records between 20 and 40 characters long have less 
than 10 uncommon characters with crash report weather narratives. This means that about 70 
percent of the third-party weather narratives are a partial match to the crash report 
narratives. 
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Assessment 
Criteria 

Assessment 

Table 16. Comparison of Crash Report and Third-Party Weather Narrative 

Number of uncommon 
characters 

Percent of 
records 

0 to 5 40% 
5 to 10 32% 

10 to 20 27% 
20 to 30 21% 
over 30 0% 

 

Integrability The weather API data are meant to be consumed by modern data systems through a REST API 
returning JSON formatted data. The weather API does not provide access to a historical 
dataset; instead, it allows historical, current, and forecasted data to be requested for a specific 
location and time. This is ideal for integration with modern real-time data systems if the 
service is reliably available. The use of JSON format, the WGS84 referential system, and 
standard timestamp and time zone information makes it easy to enrich commercial or public 
datasets using the weather API in batch or in real-time. The third-party also provides a 
consistent weather summary narrative. The team counted 64 unique “summary” types across 
the eight million data points collected. This also allows the third-party weather data to be 
integrated with other datasets containing weather information in text form, such as crash 
reports, without too much difficulty. 

The third-party also offers more than 50 API client libraries allowing calls to the API to be 
embedded into applications. Many languages are supported, from C++ to Swift, covering 
desktop, web, mobile, and backend applications. 
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APPENDIX P  
Third-Party CV Data Detailed Assessment Outcomes 

Table 41 details the results of the assessment of the third-party CV data obtained by the team. 

Table 17. Third-Party CV Data Detailed Assessment Outcomes 

Assessment 
Criteria 

Assessment 

Completeness The team performed a review of third-party CV data to determine their completeness for the 
selected geography and time. The attributes of the data were all provided and there were no 
missing attributes within the rows for either the CV driver events data or the CV movement 
data. It was also noted that no gaps were detected within the provided time. The provided data 
was complete, as expected. 

The third-party CV dataset included CV movement data on all levels of roadway in the study 
area for the provided time, but the actual market penetration is unknown. However, the 
completeness of the data on all available roads allows the data to be used to represent the 
conditions of an average vehicle on the network. Figure 85 shows a depiction of the provided 
data, including the spatial representation of the latitude and longitude points representing the 
individually reported movements that occur independent of a specific roadway allowing for 
increased accuracy to represent the location of the vehicle or event at each reported interval. 

 
 Source of aerial photo: Esri 

Figure 41. CV Movement Data dataset excerpt 

Timeliness The third-party CV datasets represent vehicle events and movements across the world with a 
timestamp based on Universal Time Coordinated (UTC), which allows the data to fluidly cross 
geographies and other boundaries. The precision of the data collected is based on determined 
latitude and longitude derived from either satellite connections or triangulation, allowing good 
precision and does not restrict the capture of this data to any singular roadway network. As this 
data is not a complete 100 percent capture of the traffic on the network, the capture relies on 
market penetration which varies by geography, roadway type, and time of day due to the 
number of vehicles on the network. This gap is expected to continue to close over time as 

Speed
0 – 5 mph
5 – 10 mph
10 – 15 mph
15 – 20 mph
20 – 25 mph
25 – 30 mph
30 – 35 mph
>35 mph

Crash location
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Assessment 
Criteria 

Assessment 

adoption increases. While this did not impact the use of the CV data in the use cases of this 
study, the collection rate variation did warrant noting. 

Consistency As these data are provided by a third-party to represent vehicle movements and driver event 
data, there are no consistency concerns between various data collection or vehicle 
manufacturers contained within the data. Any required normalization or standardization is 
completed by the third part and therefore provides a consistent representation of the data 
across geographies and time periods. 

Conformity The data are highly uniform and standardized based. The CV movement and the CV driver event 
data have not undergone a standardization across third-party providers. This is observed in 
several of the more detailed attribute categories of the driver event data where certain 
attributes, such as road type, are described which, while consistent within the provided data, do 
not yet have national standards established. The third-party CV data conform to the expected 
standards of UTC for time and displaying latitude and longitude in a ready-to-read format in 
separate attribute columns. 
The data also conforms to expected data transfer using parquet and CSV, which are recognized 
standards and are readable by various automated data tools. 

Accuracy The provided latitude and longitude of the third-party CV datasets are populated directly from 
the vehicle or collection device and represent the location of the reported record at the time of 
collection. These datasets are not snapped or spatially positioned to a nearby roadway feature. 
This preserves the most precise location information of the provided data. This does require the 
user to undertake a post-process of the data if the information is needed to be snapped to a 
roadway network for analysis. 

The provided precision does allow for the raw location-based information to be used; however, 
two important considerations are noted: 

1) The beginning and ending points of the vehicle movement are provided at a higher 
scale to ensure anonymity of the provided vehicle. This typically includes the first and 
last quarter mile or less of the trip path. 

2) While the precision is detailed to determine path, turns, and other movements, the 
current accuracy does not allow for depiction of roadway specifics, such as which lane 
the vehicle used on a multilane highway. The grouping of the points suggests this may 
be possible in the future as precision across all geographic coverage areas increases, 
but currently the data does not yet consistently provide this level of detail. 

Integrability The third-party CV data have potential for integrability with other datasets. The data location 
and time stamp information is provided in a near raw point format allowing the data to 
consistently represent the information across geographies regardless of the base network that 
is used (ARNOLD or other). The use of this data will require some additional post processing 
work to further perform analyses, but as this data provides consistent highly detailed data and 
attributes it is considered highly integrable. 
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