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APPENDIX E Finite Element Analysis 

E.1 Introduction 

The performed project focused mainly on the experimental investigation of the rotational 
behavior of elastomeric bearings and the development of suitable design procedures. This 
requires the identification of characteristic engineering design parameters which (1) can 
be measured in the experiment (direct or indirect), and (2) are reasonably simple to use 
for the routine design of bearings.  

One key problem arising with experimental work is the selection of representative 
measures which can be tracked during testing. This restricts in-situ experimental 
observation to visible and measurable behavior on the surface of each tested bearing. 
Interior changes such as damage to the elastomer, permanent deformations in the steel 
shims and/or the elastomer, or damage to the interface between these components can 
only be observed post mortem, i.e. after the test program has finished. Local high strains 
in the interior of the bearing cannot be measured at all since a measurement would 
require modifications of the surface cover close to the end of the steel shims. This in turn 
would induce initial damage to exactly that portion of the bearing where initial debonding 
shall be used to identify the onset of structural damage to the bearing. These limitations 
of experimental procedures may result in observations which are often hard to interpret, 
and can void their relevance as a damage measure. 

Finite element analysis (FEA) provides a tool to simulate structural behavior and assess 
internal states of deformation and stress. Using FEA enables us to correlate 
experimentally observed or controlled measures with local (internal) quantities. This 
benefit, however, is limited to the simulation of a well defined structure made of 
idealized homogeneous material. The level of accuracy depends on the type of material 
and the quality of available material properties. Despite this limitation, FEA is used to 
identify the relationship between external loads or applied displacements and rotations, 
and the engineering design parameters used in a design procedure. These relationships 
are then used to evaluate and justify simplified design equations. 

The performed structural testing and evaluation of the experimental data identified the 
local shear strain zxγ  in the elastomer at (or near) the ends of the reinforcing steel shims 
as suitable engineering design parameter. Gent & Meinecke (1970) presented a simplified 
linear analysis for incompressible elastometric bearings. Stanton & Lund (2004) extended 
this theory for slightly compressible elastomers. Both formulations provide simple 
relations between axial force and average axial strain, as well as between moment and 
rotation. The shape of the bearings enters these relations solely through the shape factor S 
of the bearing. They also provide a convenient correlation between those global 
deformation measures and the local shear strain max,zxγ  inside the bearing. The linearity of 
the equations by Stanton & Lund (2004) provides an excellent basis for a design 
procedure. Their approach, however, utilizes superposition of axial and rotational loading 
and its validity has to be proven.  
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This chapter presents a numerical analysis by which the following hypotheses will be 
proven to hold for common bearings: 

1. The stiffness coefficients predicted by the linear theory of bearings by Stanton & 
Lund are in good agreement with a nonlinear FEA. 

2. The local shear strain predicted by the linear theory of bearings by Stanton & 
Lund are in good agreement with a nonlinear FEA. 

3. Superposition of axial and rotational effects provides a reasonably accurate 
representation of the nonlinear FEA. 

4. Internal rupture due to excessive tensile hydrostatic stress can only occur in 
bearings with bonded external plates and very low axial load intensities. 

Proving these three hypotheses is of crucial importance for the justification for using the 
simple linear analysis by Stanton & Lund for design purposes. 

E.2 Method and Model definition 

E.2.1 Method 

All nonlinear analysis presented in this chapter was performed using the multi-purpose 
Finite Element program MSC.Marc2003r2 by MSC.software. It provides a wide variety 
of specialized elements and material formulations. Through a long history of cooperation 
between MSC.software and the tire industry, MSC.marc2003r2 offers a good selection of 
material models for rubber and rubber-like materials. 

Test simulations revealed that the commonly known problems of large deformation 
simulations of elastomers, i.e. extensive mesh distortion and the potential loss of element 
stability (visible as hourglass modes) impose a serious limitation on the numerical 
analysis.  

Local mesh distortions are always observed near the end of the reinforcing steel shims. 
As loading progresses, mesh distortion inevitably results in inversion of elements and 
subsequent failure of the analysis. This limits the maximum axial compression and 
rotation which can be analyzed to average stresses of GS32= −σ  and rotations of 
0.008-0.020 rad/layer.  

Hourglass modes were observed in areas of a bearing where hydrostatic tension occurs. 
The performed analyses showed reliable results for hydrostatic tensile stresses (= positive 
values of mean normal stress) up to EG == 3σ , with shear modulus  and Young’s 
modulus 

G
E . This is approximately the magnitude described by Gent & Lindley (1958) 

for the generation of internal rupture. Hence, the FEA model can be used to assess critical 
hydrostatic tension in the bearings. 
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All analyses were performed on strip bearings using a large deformation plane strain 
analysis in a Lagrange setting. Three-dimensional analyses could not be performed at the 
necessary level of refinement due to numerical instabilities of the nearly incompressible 
element formulation at high hydrostatic stress. 

E.2.2 Loading 

One major consideration of creating the model was how to realistically portray the 
loading conditions.  In all of the experimental tests the bearing was placed between two 
metal plates to ensure uniform loading.  To simulate the experimental conditions the 
loading plates were represented using rigid surfaces and frictional contact between these 
surfaces and the bearings. The motion of the rigid loading surface can be controlled by 
defining the position (or velocity) of a reference point on the surface and an angle (or 
angular velocity) to identify its orientation. This requires the loading to be displacement 
controlled rather than, as desired, load controlled. The loading of the bearing was 
composed of slow axial compression to various levels of average axial strain azε , 
followed by rigid body rotation of the loading surface. Forces and moments on the 
loading surface, as well as local strain and stress measures were recorded for each load 
history.  

In order to discuss the method used to define the model, there are three main aspects that 
will be considered.  They are the geometry of the model and the boundary conditions, the 
material models, and the loading. 

E.2.3 Geometry and boundary conditions 

Bearings of various shape factor were considered in the numerical analysis. The most 
representative bearings were those with a cross section similar to the ones tested in the 
experimental program. An identical cross section as the tested 9 in x 22 in bearings with 
SF 6 yields a strip bearing with SF 9. (This is an effect of the different aspect ratio.) A 
model with SF 6 was generated by increasing the layer thickness from 0.5 in to 0.75 in. 
For validation purposes, a SF 12 bearing of the same type was obtained by reducing the 
layer thickness to 0.375 in.  

All two-dimensional finite element models possess two symmetry planes. Due to the 
applied rotation, the loading patterns possess only one symmetry plane. The model 
utilizes the horizontal symmetry plane which both the bearing structure and the loading 
pattern have in common. This plane goes through the center of the bearing. Symmetry 
boundary conditions were applied on the symmetry plane.  

Horizontal stability of the model was achieved through a very soft horizontal spring with 
vanishing stiffness once the loading surfaces are moved into contact with the bearing. 
This is necessary since the bearing will be held in place by friction on the loading 
surfaces but will move horizontally in the symmetry plane when rotation is applied at the 
loading surface. This would leave the bearing without horizontal support prior to contact 
with the loading surface except for the artificial soft spring. 
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Figure E-1, Figure E-2, and Figure E-3 show the geometry and the typically used Finite 
Element mesh for bearings with SF 6, SF 9, and SF 12, respectively. (Only top half 
modeled; not to scale.) The indicated reference point is used for shear strain analysis in 
sections E.4 and E.5. 

Reference Point A 

0.12 in.

0.75 in.

0.375 in. 
0.12 in.

0.25 in. 0.25 in. 8.5 in.

 
Figure E-1   Geometry and Finite Element mesh for a strip bearing with SF 6 

Reference Point A 

0.25 in.

0.50 in. 

  0.125 in.
0.12 in.

0.12 in.

0.25 in.0.25 in. 8.5 in. 

 
Figure E-2   Geometry and Finite Element mesh for a strip bearing with SF 9 

Reference Point A 

0.375 in. 

0.125 in.
0.12 in.

  0.375 in. 
0.12 in.
0.1875 in.

0.12 in.

0.25 in.0.25 in. 8.5 in.

 
Figure E-3   Geometry and Finite Element mesh for a strip bearing with SF 12 

Bearings with rigid or semi-rigid end-plates are modeled using the same mesh and 
loading but changing the interface properties from frictional contact to glue. This 
permanently attaches the bearing surface to the rigid loading surface and allows for 
identical load histories on bearings with and without rigid end-plates. 
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Elements representing elastomer were modeled using quadrilateral bi-linear elements 
with constant dilation, also known as Herrmann formulation [MSC.marc Manual A & B 
(2003)] (element type 80 in MSC.Marc2003r2). This formulation was designed for the 
analysis of incompressible and nearly incompressible material.  

Elements representing the steels shims were modeled using quadrilaterals bi-linear shape 
functions with full integration (element type 11 in MSC.Marc2003r2). Tests on 
alternative integration schemes and mixed formulations produced no noticeable 
difference in the solution. 

While the experimental data was collected and analyzed entirely using English system 
units, it was more convenient using metric units in the numerical analysis.  The units used 
to run the analytical model in MSC.Marc2003r2 were meters (m) for length and 
Newton (N) for force, resulting in Pascal (Pa) for stress.  These are the units on images 
and diagrams produced directly by MSC.marc2003r2. In order to analyze the data and to 
present comparisons with the linear theory by Stanton & Lund, the units were converted 
to the customary English system.  That is, inches (in) were used for length, kilo-pounds 
(kips) for force, and kips per square inch (ksi) for stress. 

E.2.4 Materials 

The elastomer material was modeled as nonlinear elastic, nearly incompressible material. 
MSC.marc2003r2 provides the Ogden model, a generalized Mooney model, and the 
extension to the generalized Mooney model known as Gent’s model [MSC.marc2003r2, 
manual A].  These models require between 8 and 12 parameters. Precisely speaking, the 
general Ogden model can be extended to any even number of parameters but 
MSC.marc2003r2 limits it for practical reasons [Ogden (1984)].  

Bearing manufacturer on the other hand have to test their elastomer material and report 
Shore A hardness, elongation at failure and nominal stress at failure as the only 
parameters relevant for the 3D characterization of the elastic material. This presents a 
challenge and leaves space for variability on the manufacturer’s side, and non-uniqueness 
of material parameters on the modeling part. Following a carefully justified suggestion by 
the project advisory group, the simplifying assumptions by Yeoh (1993) were adopted. 
Shore A hardness was used to estimate the shear modulus G. This parameter was later 
confirmed by shear tests performed on elastomer samples extracted from actual bearings. 
The bulk modulus K was obtained and later verified through a similar process. 
Parameters for Yeoh’s model were obtained as follows.  

First, a master tension test result was selected from the literature. This master curve is 
scaled linearly along the strain (or stretch) axis to match the ultimate elongation at break 
known from the manufacturer’s testing. Then the stress axis is stretched by a linearly 
varying scaling function such that (a) the ultimate stress corresponds with the 
manufacturer’s test, and (b) that the initial slope of the scaled curve (=uniaxial stiffness 

) matches Young’s modulus 0E GE 3=  as identified from the Shore A hardness. This 
procedure makes sense since most materials used for elastomeric bearings have a very 
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similar shape of the uniaxial tension curve and differ mainly in few characteristic 
stiffness and strength values. 

Second, Yeoh’s model can be represented as a sensible subset of the generalized Mooney 
model and as such can be easily implemented in MSC.Marc2003r2. The work function 
for Yeoh’s model is 

3
130

2
120110 )3()3()3()( −+−+−= ICICICW E , (E-1) 

where  is the Green-Lagrange strain tensor,  is the first 
invariant of the right Cauchy-Green strain tensor C

E Ctr3211 =++= λλλI 222

E1 2+= , and 3,2,1, =iiλ  are the 
principal stretches. The 2nd Piola-Kirchhoff stress tensor follows from (E-1) as 
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with the hydrostatic stress p to be determined from equilibrium equations. 

Other stress measures follow from standard transformation rules. (See, e.g., Malvern 
(1969), Gurtin (1981), Ogden (1984), Marsden & Hughes (1983) for details.) 
Equation (E-2) can be specialized for uniaxial tension and leads to the engineering stress  
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Equation (E-3) is used to identify the parameters  using a least square fit of 
the scaled material test. The initial stiffness  used to scale the reference material test is 
obtained as the initial slope of the stress-strain curve. It follows from 

,,, 302010 CCC
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(E-3) as 
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The following parameters were commonly used for the numerical analyses:  

• shear modulus G = 100 psi (0.689 MPa),  

• Bulk Modulus K = 400 ksi = 400,000 psi (2758 MPa),  

• C10 =  344,470 Pa  (49.961 psi),  

• C20 =  -6,216 Pa   (0.901555 psi), and  
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• C30 =  292.09 Pa   (0.042364 psi).  

The steel shims in the bearings were A1011 Gr 36 steel. (Specification provided by an 
undisclosed manufacturer.)  The material was modeled using isotropic, linear elastic-
perfectly plastic -plasticity (2D/3D von Mises material). The material properties used 
in the FEA were  

2J

• Young’s Modulus E = 210 GPa (29,000 ksi),  

• Poisson’s ratio 3.0=ν , and  

• a yield stress of MPa235=Yσ  (34.1 ksi). 

E.3 Evaluation and Validation of Stiffness Coefficients 

Gent & Meinecke (1970) demonstrated that axial stiffness and rotational stiffness of 
bearings can be expressed in terms of shear modulus G and shape factor S. Introducing 
four coefficients  yields the following relations for the equivalent axial 
stiffness 

ryryazaz BABA ,,,

)(3 2SBAGE azazaz +=  (E-6) 

and the effective bending stiffness 

ISBAGIE ryryry )(3 2+= . (E-7) 

Stanton & Lund (2004) extended the formulation for slightly compressible material and 
proved that by properly adjusting the stiffness coefficients, the general form of equations 

(E-6) and (E-7) remains valid. They also showed that 
3

== ryax AA 4  for all strip bearings. 

The subscripts introduced by Gent & Meinecke (1970) and Stanton & Lund (2004) are 
used throughout Appendix E. However, for the sake of simplifying the notation, a simpler 
and more compact notation will be introduced and used in subsequent Appendices 
concerning design equations. For the reader’s convenience, a list of equivalent symbols is 
given in Table E-1. 

Table E-1    Stiffness coefficients used by Gent & Meinecke (1970) and Stanton & Lund (2004) and 
their simplified equivalent in the proposed design equations 

Notation by Gent & Meinecke 
(1970) and Stanton & Lund 
(2004) 

Simplified (compacted) 
notation used in the 
proposed design equations 

azA ,  azB aA ,  aB

ryA ,  ryB rA ,  rB

azzxC ,  ryzxC aC ,  rC
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The aim of this section is to back-calculate these coefficients based on numerical results 
from nonlinear FEA. This will provide insight on both the significance of nonlinearity 
over the common load range for elastomeric bearings and on the potential model error of 
the linear theory by Stanton & Lund (2004). 

E.3.1 Axial Stiffness Coefficient Baz 

The bearing analysis is based on an infinite strip bearing. All simulations presented in 
this section were performed for axial compression only. Numerical instabilities limited 
the analyses to an average vertical stresses of GS32= −σ . Obtained numerical data 
represents the actual range of loading in real bearing applications, but lies below the 
experimentally applied load levels.  

The numerical analysis provides force, displacements, local strains, and stresses. The 
displacement data is used to compute the average axial strain 

t
bottomtop

az

δδ
ε

−
= , (E-8) 

where topδ  and bottomδ  are the vertical displacements of the shim on top and bottom, 
respectively, of the elastomer layer of thickness t . The average axial strain azε  is positive 
if the bearing is compressed and negative if elongated. Force p  as force per unit width of 
the bearing is then used to compute the equivalent stiffness coefficient  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= az

az
az A

EL
p

S
B

ε2

1  (E-9) 

with L as the length of the bearing (= 9 in), 3/4=aA , and 

G
KG

GE 3
3/1

13 ≈
+

= . (E-10) 

The error for using  will be below 1 % for all common elastomers, and 
henceforth we will use the relation 

GE 3=
GE 3=  instead of (E-10). 

E.3.1.1 Strip-bearing with SF 6 

The bearing analysis is based on an infinite strip bearing as shown in Figure E-1 and 
dimensions as given in Table E-2. The analysis was performed for axial compression 
only. Numerical instabilities limited the analysis to an axial load of  (or 
an equivalent of 

kips/in1.21=P
kips464=P

GS98.1=
 on a 9 in x 22 in bearing).This represents an average stress 

of σ . 
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Table E-2   Model parameters for SF 6 bearing 
K 400,000 psi  (2,760.0 MPa)
G 100 psi     (0.690 MPa)
E 299.98 psi     (2.068 MPa)
h.layer 0.750 in
n.layer 3
L 9 in

Figure E-4 shows the extracted secant value of  for SF 6 (S = 6.0) over the applied 
average axial strain, and compares it to the value obtained from Stanton & Lund (2004). 
The correlation is good and variations lie within 10-15 %. The reason for the difference 
can be explained by the simplifying assumption of an isotropic stress state in the 
theoretical analysis by Stanton & Lund versus a nonlinear plane strain analysis using the 
FEA. However, the value at zero axial strain, i.e., for the initial stiffness of the unloaded 
bearing, represents the only point where linear and nonlinear theories are expected to 
provide identical results. The difference can be explained from the difference between a 
real bearing with a ¼” cover layer and the idealized elastomer layer described by Stanton 
& Lund. Using the length of the shim (8.5 in) instead of the total length of the bearing 
(9.0 in) results in a theoretical shape factor of S = 5.67 instead of S = 6.0. This has some 
effect on the inverse calculation using 

azB

(E-9) with results presented in Figure E-5.  
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Figure E-4    versus average axial strain for bearing with SF 6 azB
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Baz vs. average axial strain
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Figure E-5    versus average axial strain for bearing with nominal SF 6 and calculation based on 

theoretical SF 5.67 
azB

Figure E-5 indicates that using the length of the shim for the computation of S yields 
better correlation for the stiffness of the unloaded bearing. However, subsequent 
nonlinear effects generate underestimation of the bearing stiffness up to 25 % as the axial 
load increases. 
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Figure E-6    versus average axial strain for bearing with nominal SF 6 and calculation based on 

the average SF 5.83 
azB
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Figure E-6 presents a back-calculation of  when using the average length of steel shim 
and total length of the bearing, leading to S = 5.83. This reduces the error for the loaded 
bearing without significant error at the unloaded state of the bearing.  

azB

The above analysis and comparison of Figure E-4 to Figure E-6 demonstrate that using 
the total length of the bearing when computing the shape factor results in a good balance 
of the model error over the common loading range of GS20= −σ . Using the actual 
length of the shim gives best results for the initial stiffness of the bearing but creates the 
largest model error as the axial strain, and thus the axial load increases. 

E.3.1.2 Strip-bearing with SF 9 

The bearing analysis is based on an infinite strip bearing as shown in Figure E-2 and 
dimensions as given in Table E-3. The analysis was performed for axial compression 
only. Numerical instabilities limited the analysis to an axial load of  (or 
an equivalent of 

kips/in1.21=P
kips464=P

GS98.1=
 on a 9 in x 22 in bearing).This represents an average stress 

of σ . 

Table E-3   Model parameters for SF 9 bearing 
K 400,000 psi  (2,760.0 MPa) 
G 100 psi     (0.690 MPa) 
E 299.98 psi     (2.068 MPa) 
h.layer 0.500 in 
n.layer 3 
L 9 in 

 

Figure E-7 to Figure E-9 show the extracted secant value of  for SF 9 (S = 9.0) over 
the applied average axial strain, and compares it to the value obtained from Stanton & 
Lund (2004) for the same three ways of computing the shape factor as in the discussion 
of 

azB

Figure E-4 to Figure E-6. The initial zero value for the back-calculated stiffness 
coefficient is an artifact of the way data was extracted from the FEA and has no physical 
relevance. The model error between linear and nonlinear analysis is still visible, though 
overall smaller than for SF 6 bearings. Moreover, its variation over the applied axial 
compression is significantly less that observed for SF 6.  

The correlation between linear and nonlinear analysis is very good and variations lie 
within 0-10 %, except when using the length of the steel shim (Figure E-8) when the 
model error lies within 10-20 %. Using the full length of the bearing or the average 
length of shim and bearings for computing the shape factor result in equally good 
representation of the axial behavior (Figure E-7 and Figure E-9). 
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Baz vs. average axial strain
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Figure E-7    versus average axial strain for bearing with SF 9 azB
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Figure E-8    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.50 
azB
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Baz vs. average axial strain
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Figure E-9    versus average axial strain for bearing with nominal SF 9 and calculation based on 

the average SF 8.75 
azB

 

 

 

E.3.1.3 Strip-bearing with SF 12 

The bearing analysis is based on an infinite strip bearing as shown in Figure E-3 and 
dimensions as given in Table E-4. The analysis was performed for axial compression 
only. Numerical instabilities limited the analysis to an axial load of  (or 
an equivalent of  on a 9 in x 22 in bearing). This represents an average 
stress of 

kips/in1.21=P
kips464=P

98.1= GSσ . 

Table E-4   Model parameters for SF 12 bearing 
K 400,000 psi  (2,760.0 MPa)
G 100 psi     (0.690 MPa)
E 299.98 psi     (2.068 MPa)
h.layer 0.375 in
n.layer 3
L 9 in

Figure E-10 shows the computed average stress (normalized by GS ) versus the average 
axial compressive strain. The computed response shows almost perfectly linear response 
over the entire load history. Local mesh instabilities near the edge of the steel shims 
prevent a numerical analysis beyond the shown load level. 
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Figure E-10   GS/σ  versus average axial strain for bearing with SF 12 

Figure E-11 shows the obtained value for  as well as the theoretical value after 
Stanton & Lund (2004) over the applied load history. The equivalent stiffness coefficient 
obtained from the nonlinear FEA is almost constant, which translates to a virtually 
constant secant stiffness and a model error of 7.5 %. This observation further supports the 
hypothesis of linear behavior of SF 12 bearings at average stress levels of 

azB

GS2≤σ . 

Baz vs. average axial strain
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Figure E-11    versus average axial strain for bearing with SF 12 azB

Data presented in Figure E-11 is based on a shape factor calculated from the total length 
of 9.0 in which includes both shims and cover layer. Using solely the length of the shims 
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(i.e., 8.5 in) results in a theoretical shape factor of SF 11.33 for the same bearing. The 
graph in Figure E-12 shows results of a similar analysis as used for data in Figure E-11 
but based on the theoretical shape factor of SF 11.33. Both figures clearly demonstrate 
that using the width of the shim and the total width of the bearing, respectively, for the 
definition of the shape factor, the linear theory by Stanton & Lund yields lower and upper 
bounds for the bearing stiffness.  

Baz vs. average axial strain
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Figure E-12    versus average axial strain for bearing with nominal SF 12 and calculation based 

on theoretical SF 11.33. 
azB

 

Using the average length of shim and that of the real bearing for computing the shape 
factor, results in SF 11.67 and a stiffness coefficient as shown in Figure E-13. Basing the 
shape factor on the average length of the bearing clearly achieves the best correlation 
between linear theory and nonlinear FEA at low to moderate axial load. 
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Baz vs. average axial strain
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Figure E-13    versus average axial strain for bearing with nominal SF 12 and calculation based 

on the average SF 11.67. 
azB

 

E.3.1.4 Summary for the axial stiffness coefficient Baz 

The stiffness coefficient  was analyzed for three types of bearings with SF 6, SF 9, 
and SF 12. The listed shape factors are nominal shape factors computed using the total 
length of the bearing (= 9.0 in). The analytical equations by Stanton & Lund, however, 
are based on bearings without cover layer. To assess the significance of the cover layer 
for the computation of the axial stiffness of a bearing, the identification of  from the 
numerical analysis was based on three different ways of computing the shape factor: 

azB

azB

B

1. Using the total lengths of the bearing, i.e. including the cover layer (L = 9.0 in), 

2. Using the actual length of the shim (L = 8.5 in), and 

3. Using the average of shim length and total length of the bearing (L = 8.75 in). 

This leads to three different coefficients for each bearing if based on the linear theory. 
For the actual nonlinear analysis,  becomes a function of average axial strain az azε  or of 
relative applied load GSGSLpAGSP /// = σ= . 

Table E-5 presents a summary of the obtained stiffness coefficients. 
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Table E-5   Comparison of stiffness coefficient  for modified definitions of S azB

Nominal 
S l (in) h (in) S lambda 

Baz  
(Stanton 

& 
Lund) 

Baz 
(FEA 

at 
0*GS)

Error 
(%) 

Baz  
(FEA 

at 1GS) 

Error 
(%) 

6 9.000 0.750 6.00 0.1643 1.28 1.15 11.2 1.26 1.2 
6 8.750 0.750 5.83 0.1598 1.28 1.25 2.3 1.37 -6.6 
6 8.500 0.750 5.67 0.1552 1.28 1.37 -6.1 1.49 -14.1 
9 9.000 0.500 9.00 0.2465 1.22 1.12 8.2 1.17 3.6 
9 8.750 0.500 8.75 0.2396 1.22 1.22 -0.1 1.27 -4.1 
9 8.500 0.500 8.50 0.2328 1.23 1.33 -8.0 1.39 -11.7 

12 9.000 0.375 12.00 0.3286 1.14 1.05 7.9 1.06 7.7 
12 8.750 0.375 11.67 0.3195 1.15 1.15 -0.1 1.15 -0.1 
12 8.500 0.375 11.33 0.3104 1.16 1.25 -7.6 1.26 -7.9 

 

The error value gives the relative error of the linear analysis under the assumption that 
the nonlinear analysis defines the correct answer. Due to the variability of the secant 
stiffness from the nonlinear solution, this error varies. Thus, in Table E-5 the relative 
error is presented first at zero load, and second at GS0.1=σ . Best results for each 
combination are indicated by shaded fields. In most cases, the best correlation between 
the linear theory by Gent & Meinecke (1970), and Stanton & Lund (2004) and the present 
nonlinear analysis is obtained when using the average length of the bearing and the shim 
for computing the shape factor. Using the linear theory and basing the shape factor on the 
total length of the bearing results in overestimation of axial stiffness by the linear theory, 
while using the true length of the shims underestimates the axial stiffness of the bearing. 

Nonlinear effects become more significant as the shape factor decreases. No significant 
nonlinear effect is observed over the given range of loads for SF 12. This statement, 
however, is only supported for load levels of GS0.2<σ  on SF 12 bearings, and 

GS0.3<σ  on SF 6 bearings. Excessive mesh distortion prevents further simulation, but 
also indicates significant changes in the load bearing mechanism. Experimental evidence 
clearly demonstrates that the finding of this section do not hold for much higher load 
levels. 
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E.3.2 Bending Stiffness Coefficient Bry 

Stanton & Lund (2004) showed that the moment-rotation relation for elastomeric 
bearings can be expressed as 

∑∑
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t
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t
SBAIGM y

ryry
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ryryy

θθ
)()(3 22 , (E-11) 

where  is the total moment on the bearing, yM EI  its linear elastic bending stiffness,  
and  are stiffness coefficients,  is the shape factor, 

ryA
B Sry yθ  the total rotation on the 

bearing, and  is the total thickness of all rubber layers (provided they do have 
identical layer thickness). Solving 
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For infinite strip bearings, Stanton & Lund (2004) showed that , effectively 
reducing 
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with as moment per unit width, W, of the bearing. WMm /= yy

Equation (E-13) is used for the identification of  from nonlinear FE analyses of 
bearings. It could be applied in its total form yielding an equivalent linear secant 
stiffness, or in an incremental manner yielding a tangent stiffness coefficient. The secant 
formulation was chosen in order to obtain linear relations for the design procedure.  

ryB

The following four subsections summarize the findings from a series of analyses of a 
SF 9 bearings with rigid end-plates. The aim of this sequence is to answer the question 
whether or not the rotational stiffness depends on the applied axial load, or if the 
variability (if any were observed) is sufficiently small to justify the use of a linear 
analysis in a design procedure. This is achieved by studying four distinct load histories 
for the same bearing. 

 - E-18 - 



E.3.2.1 Strip-bearing with SF 9 – Rotation at GS0.0=σ  

During the first sequence, rotation was applied to the bearing without any initial axial 
load applied to the bearing. The simulated moments were recorded, and  was 
computed using equation 

ryB
(E-13). Following identical arguments as presented in 

section E.3.1, evaluation was performed for SF 9 (= outer length/2 t), SF 8.5 (= length of 
shim/2 t), and SF 8.75 (= average length/2 t). Figure E-15, Figure E-16, and Figure E-17 
show the results from the respective back-calculation versus the value predicted by the 
linear theory of Stanton & Lund.  

The nonlinear analysis shows a constant stiffness coefficient for rad/layer0065.0/ <nyθ  
which indicates perfectly linear behavior. The stiffness appears to change rapidly for 

rad/layer0065.0/ >nyθ . A simple visual inspection of the computed deformation 
pattern in that regime reveals a significant hourglass mode pattern over that half of the 
bearing which is subjected to tension (marked area). Hence, the numerically obtained 
values are only valid for rad/layer0065.0/ <nyθ . Figure E-14 shows the deformed FE 
model at a rotation of  rad070.0=yθ  on the full bearing. The right (tensile) side of the 
bearing shows the typical hourglass mode pattern. 

 
Figure E-14   Hourglass modes distorting the right side of a bearing with bonded external plates 

subjected to rotation only 

The analysis shows that a shape factor based on the average length of shim and bearing 
yields the best correlation at virtually zero model error. Both of the other strategies result 
in a model error of up to +/-18 %. 

 - E-19 - 



 

Bry   vs.  Rotation per Layer

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.0000 0.0020 0.0040 0.0060 0.0080 0.0100

Rotation per Layer (rad)

B
ry

Bry (from FEA)

Bry (Stanton & Lund)

 
Figure E-15    versus average axial strain for bearing with SF 9 at P = 0 ryB
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Figure E-16    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.75 at P = 0 
ryB
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Figure E-17    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.50 at P = 0 
ryB
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E.3.2.2 Strip-bearing with SF 9 – Rotation at GS0.1=σ  

During the second sequence, an axial load of AGSAP 0.1== σ  was applied before 
rotating the bearing. The simulated moments were recorded and  was computed using 
equation 

ryB
(E-13). Figure E-18, Figure E-19, and Figure E-20 show the results based on 

SF 9, SF 8.75, and SF 8.5, respectively. 

The nonlinear analysis shows a constant stiffness coefficient for rad/layer0065.0/ <nyθ  
which indicates perfectly linear behavior. The stiffness appears to change rapidly at 

rad/layer0065.0/ >nyθ . An analysis of the computed deformation pattern in that regime 
again reveals significant hourglass mode patterns over that half of the bearing which is 
subjected to tension. Hence, the numerically obtained values are only valid for 

rad/layer0065.0/ <nyθ . 

The analysis shows that a shape factor based on the total length or on the average length 
of shim and bearing yields the best correlation at less than 10 % model error. Computing 
the shape factor based on the length of the shim results in a model error of 20 %. 

 

E.3.2.3 Strip-bearing with SF 9 – Rotation at GS5.1=σ  

During the third sequence, an axial load of AGSAP 5.1== σ  was applied before 
rotating the bearing. The simulated moments were recorded and  was computed using 
equation 

ryB

n/

(E-13). Figure E-21, Figure E-22, and Figure E-23 show the results based on 
SF 9, SF 8.75, and SF 8.5, respectively. 

The nonlinear analysis shows a very slightly increasing stiffness coefficient for the entire 
range of yθ . No hourglass mode patterns develop under these loading conditions. 

The analysis shows that a shape factor based on the total length or on the average length 
of shim clearly yields the best correlation at 0-7 % model error. Basing the shape factor 
on the length of the shim results in a model error of 40 % and thus linear analysis 
significantly underestimates the rotation stiffness if the wrong shape factor is used in the 
analysis. 
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Figure E-18    versus average axial strain for bearing with SF 9 at P = 1.0 GS A ryB
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Figure E-19    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.75 at P = 1.0 GS A 
ryB
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Figure E-20    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.50 at P = 1.0 GS A 
ryB
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Figure E-21    versus average axial strain for bearing with SF 9 at P = 1.5 GS A ryB
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Figure E-22    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.75 at P = 1.5 GS A 
ryB
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Figure E-23    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.50 at P = 1.5 GS A 
ryB
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E.3.2.4 Strip-bearing with SF 9 – Rotation at GS85.1=σ   

During the forth sequence, an axial load of AGSAP 85.1== σ  was applied before 
rotating the bearing. This represents the highest load for which a numerically stable 
solution can be obtained for the presented level of rotation. The simulated moments were 
recorded and  was computed using equation ryB (E-13). Figure E-24, Figure E-25, and 
Figure E-26 show the results based on SF 9, SF 8.75, and SF 8.5, respectively. 

The nonlinear analysis shows a very slightly increasing stiffness coefficient for the entire 
range of n/yθ . No hourglass mode patterns develop under these loading conditions. 

The analysis shows that a shape factor based on the total length or on the average length 
of shim clearly yields the best correlation at 0-10 % model error. Basing the shape factor 
on the length of the shim results in a model error of 40 % and thus linear analysis 
significantly underestimates the rotation stiffness if the wrong shape factor is used in the 
analysis.  

Neither the numerical results for , nor the error analysis shows any significant 
difference between a load level of 

ryB
AGSAP 5.1=σ  and AGSAP 85.1= =σ . =

E.3.2.5 Summary for the rotational stiffness coefficient Bry 

The stiffness coefficient  was analyzed for four different combinations of axial 
compression and simultaneous rotation. Back-calculation was performed for three 
different definitions of the shape factor: (a) using the full length of the bearing, (b) using 
the average between the length of the shim and the full length of the bearing, and 
(c) using the length of the steel shim to compute 

ryB

tLAAS 2// surfaceloaded == .The analysis 
shows that (1) using the full length of the bearing, i.e. including the surface cover for the 
definition of S yields best results for axially loaded bearings, (2) the model error 
decreases as the axial load increases, and (3) using the length of the steel shim for the 
computation of S can cause significant underestimation of the rotational stiffness.  
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Figure E-24    versus average axial strain for bearing with SF 9 at P = 1.89 GS A ryB
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Figure E-25    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.75 at P = 1.89 GS A 
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Figure E-26    versus average axial strain for bearing with nominal SF 9 and calculation based on 

theoretical SF 8.50 at P = 1.89 GS A 
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E.4 Evaluation of Local Shear Strain for Design Purposes 

Development of a reliable design procedure while maintaining reasonably low 
complexity of the required analysis requires 

1. a simple mechanical quantity to correlate experimental data, 

2. a compact and universal relation to compute that measure, and 

3. validation of the procedure against higher order (nonlinear) models. 

The theories by Gent & Meinecke (1970), and Stanton & Lund (2004) provide a suitable 
formulation to satisfy requirement 2, and at the same time suggest max,zxγ  in the elastomer 
at the end of the shims as the answer to requirement 1. This section will satisfy 
requirement 3, leaving the answer for the special case of lift-off to section E.5. 

E.4.1 Local Effects at the End of the Steel Shims 

Various levels of mesh refinement were applied to study local effects near the end of the 
steel shims. The shims were modeled deformable as mild steel with material parameters 
as given in subsection E.2.4. Very large strains are observed in the elastomer locally near 
the edge of the shim. The shim itself behaves almost rigid and remains elastic throughout 
the analysis. Using a linear theory, the sharp edge of the shim will introduce a singularity. 
Thus, the numerical analysis cannot provide sufficiently high resolution of that local area 
to provide actual numbers at the very edge of the shim. The shape of real edges of shims 
varies between manufacturers from sharp cuts to sanded (slightly rounded). Both the 
numerical limitations and the variability of the real product require some special 
consideration when analyzing and comparing numerical data and results from a linear 
analysis. This subsection contains a brief discussion of special phenomena observed at 
the ends of the steel shims. Based on these relations, a strategy for the subsequent 
analysis is developed. 

Figure E-27 and Figure E-28 show the distribution of shear strain 122Ezx =γ , with 12Ε  as 
the in-plane shear component of Green-Lagrange strain. Only deformation and strain in 
the elastomer are shown. The undeformed mesh primarily consists of perfectly horizontal 
and vertical parallel element boundaries. The deformed mesh shows the magnitude of 
local shear strain even at relatively small axial loads of GS52.0=σ  (Figure E-27) and 

GS02.1=σ  (Figure E-28). The figures clearly illustrate that elastomer is squeezed out of 
the parallel layers and subsequently is pushed around the edge of the steel shim in a mode 
of lateral expansion of the elastomer layer. Eventually, this very local mode of 
deformation causes the large strains leading to massive mesh distortion and failure of the 
numerical analysis. However, the parabolic distribution of horizontal displacements as 
postulated by the theoretical approach by Gent & Meinecke and also used by Stanton & 
Lund remains valid at a distance of   from the edge of the shim. in1.0≥
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At GS52.0=σ , shear strain reaches extreme values over the last 0.05 in of the shim 
(Figure E-27). At GS02.1=σ , extreme values of shear strain are found concentrated at 
the edge and to both sides of it (Figure E-28).  

 
Figure E-27   Computed shear strain 12Ε2=γ  in (in/in) at GS52.0=σ  at the edge of a steel 

shim. 
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Figure E-28   Computed shear strain 12Ε2=γ  in (in/in) at GS02.1=σ  at the edge of a steel shim. 

As the deformation increases, the effect of lateral expansion of the elastomer becomes the 
dominant mechanism in the vicinity of the end of a shim. This mechanism forces 
elastomer of the cover layer to expand outward and, due to the nearly incompressible 
nature of the material, experience lateral contraction of approx. 50 %. Extreme local 
deformation causes tension both in horizontal and in thickness direction. This creates 
locally high hydrostatic tension despite an acting compressive stress in vertical direction.  

Figure E-29 and Figure E-30 show the magnitude of obtained hydrostatic stress = mean 
normal stress in tension at GS52.0=σ  and GS02.1=σ , respectively. Areas with 
compressive mean normal stress are shown in dark grey (largest contiguous area). 
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Figure E-29   Computed hydrostatic stress 0σ  in (Pa) at GS52.0=σ  at the edge of a steel shim. 

The amount of material subjected to hydrostatic tension is larger at GS52.0=σ  (Figure 
E-29) and shrinks as loading progresses to GS02.1=σ  (Figure E-30). The intensity of 
the hydrostatic tension, 0σ , however, increases as the applied load increases. At 

GS02.1≈σ  the hydrostatic tension at the end of the shim reaches the magnitude of 
GE 3≈≈0σ . Gent & Lindley (1959) showed that internal rupture of elastomers 

nucleates before this relation is satisfied.  

This observation has far reaching consequences since it indicates that delamination of the 
cover layer can be initiated by internal rupture of the elastomer rather than an adhesive 
bond failure at the interface between elastomer and steel. Visually, the failure mechanism 
may still be observed  as delamination since the highest hydrostatic tension is observed in 
close proximity of the interface. 
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Figure E-30   Computed hydrostatic stress 0σ  in (Pa) at GS02.1=σ  at the edge of a steel shim. 

The intensity of local hydrostatic tension and of local extreme shear strains remains 
linked to the shear strain in the elastomer at the interface to the steel shim close to the 
actual edge. Figure E-31 illustrates the distribution of shear strain in the elastomer along 
the interface to the steel shim at various load levels. 
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Figure E-31   Shear strain along the shim at different axial loads for a bearing with SF 9 
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This shows that the shear strain distribution for the inner 95 % of the shim is nearly 
linear, increasing with the distance from the center of the bearing. It was also found that 
local effects due to mesh distortion and stress concentration remain local within 1/8” to 
¼” from the end of the shim. These two observations motivate the following alternative 
procedure for the extraction of max,zxγ  from the FE analysis: 

1. Read the shear strain at a distance of ¼” from the end of the shim. 

2. Linearly extrapolate the obtained value to the edge of the shim. 

For the analyzed series of bearings, this procedure introduces a scaling factor of 
. 125.1)in4/1*2/( =−LL

125.1)in4/1*2/(

shimbearing

E.4.2 Shear Strain Coefficient Cazzx for Axial Loading 

As discussed in subsection E.4.1, the numerical analysis cannot directly provide the local 
shear strain at the very end of the shim. Instead, a shear strain at a distance of ¼” behind 
the end is recorded from the FEA and extrapolated to the end of the shim. For the given 
bearing, and for axial loading without rotation, the extrapolation is performed by a 
multiplicative factor of −shimbearing =LL . The extrapolated data was 
used to compute the equivalent stiffness coefficient C  as azzx

S
C

az

zx
azzx ε

γ max,=  (E-14) 

with max,zxγ  as the maximum shear strain at the end of the shim, azε  as the average axial 
strain, and shape factor S.  

The maximum shear strain max,zxγ  cannot be extracted directly from the FE analysis since 
the end of the shim induces a singularity, and as such cannot be assessed numerically.  

 

E.4.2.1 Strip-bearing with SF 6 

Figure E-32 shows the obtained value for  as well as the theoretical value after 
Stanton & Lund (2004) for a bearing with SF 6 over the applied load range. (Normalized 
as 

azzxC

GSAGSP // σ= .) 
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Figure E-32    versus azzxC GS/σ  for bearing with SF 6 

 

E.4.2.2 Strip-bearing with SF 9 

Figure E-33 shows the obtained value for  as well as the theoretical value after 
Stanton & Lund (2004) for a bearing with SF 9 over the applied load range. (Normalized 
as 

azzxC

GSAGSP // σ= .) 
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Figure E-33    versus azzxC GS/σ  for bearing with SF 9 
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E.4.2.3 Strip-bearing with SF 12 

Figure E-34 shows the obtained value for  as well as the theoretical value after 
Stanton & Lund for a bearing with SF 12 over the applied load range. (Normalized as 

azzxC

GSAGSP // σ= .) 
 

Cazzx  vs.  Stress / GS

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0.00 0.50 1.00 1.50 2.00 2.50

stress / GS

C
az

zx

Cazzx from FEA

Cazzx (Stanton & Lund)

 
Figure E-34    versus azzxC GS/σ  for bearing with SF 12 

The difference between the presented numerical analyses and the respective theoretical 
values remains below 7.5 %. The difference can be attributed to the error introduced by 
the simplifying assumption of an isotropic stress state in the theoretical analyses by Gent 
& Meinecke (1970) as well as Stanton & Lund (2004) versus a general stress state under 
plane strain conditions in the FEA.  

The relatively small model error justifies the use of the theoretical relations for the 
definition of design strains.  

E.4.3 Shear Strain Coefficient Cryzx for Rotation Loading 

As discussed in the previous subsection E.4.1, the numerical analysis cannot directly 
provide the local shear strain at the very end of the shim. Instead, a shear strain at a 
distance of ¼”  behind the end is recorded from the FEA and extrapolated to the end of 
the shim. This poses a difficult problem since the distribution of shear strain along the 
shim is no longer linear but rather parabolic.  

Extrapolation can be based on the location of zero shear strain along the shim, but for 
load combinations other than pure rotation, that point is moving. For the sake of 
completeness, this section presents a conservative attempt of extrapolating shear strain 
due to rotation to the end of the shims. The results have to be viewed under consideration 
of a likely error due to the employed procedure. Section E.5 will present an alternative 
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approach which does not utilize extrapolation and thus does not suffer from the discussed 
shortcomings.  

The extrapolated data was used to compute the equivalent stiffness coefficient  as  ryzxC

y

azazzxzx
ryzx

t
lS

SC
C

θ
εγ ∑−

=
)(2 max, , (E-15) 

with max,zxγ  as the extrapolated maximum shear strain at the end of the shim, the axial 
shear strain coefficient C  according to Stanton & Lund (2004), the average axial strain azzx

azε , the total rotation yθ , the layer thickness t, and shape factor S. In addition to the 
required extrapolation, equation (E-15) requires separation of shear strain contributions 
due to axial compression and due to rotation, a procedure which yet needs to be proven 
suitable for the given problem. 

Figure E-35 shows a comparison of back-calculated values for the rotational stiffness 
coefficient  according to ryB (E-13), the shear strain coefficient C  according to ryzx (E-15), 
and the coefficient 

2SBA
SC

D
ryry

ryzx
ryzx +

=  (E-16) 

which links local shear strain to the moment applied to the bearing as 

EI
lMDryzxzx 2max, =γ . (E-17) 
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Figure E-35   Coefficients for bearing with SF 9 
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The comparison of back-calculated values from the FEA and those values obtained from 
the linear theory shows reasonably good correlation for the stiffness coefficient . The 
shear strain coefficients C  and  , however show significant differences. This has 
to be attributed to the extrapolation of numerically obtained data and the approximate 
separation of axial and rotational contribution to the local shear strain. Due to the 
unreliable nature of the procedure outlined in this subsection, no further analysis of this 
type was performed for bearings with different shape factor. Instead, an alternative 
procedure was developed to verify the basic hypothesis that superposition remains valid 
at reasonably small error. This procedure and the obtained results will be discussed in 
section 

ryB
D

GS25.0=

ryzx ryzx

E.5 

 

E.4.4 Effect of lift-off on the local shear strain 

Another important piece of information regarding the relationship between applied angle 
of rotation and local shear strain is the effect of lift-off at low to moderate axial loads. 
This information was obtained from studying load combinations where a bearing is first 
loaded by an axial load and subsequently exposed to an increasing rotation. Force, 
moment, local strain, and length of lift-off  was recorded. 

Figure E-36 and Figure E-37 show the distribution of shear strain along the interface of 
elastomer and shim at various angle of rotation. Figure E-36 is based on an initial axial 
load level of σ . Figure E-37 is based on an initial axial load level of 

GS50.0=σ . 
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Figure E-36   Shear strain along a shim of a 3-layer bearing with SF 9: Axial load level 

GS25.0=σ  and total rotation %0.5/5.3/1.2/0.0=θ  
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Figure E-37   Shear strain along a shim of a 3-layer bearing with SF 9: Axial load level 

GS50.0=σ  and total rotation %0.5/5.3/1.2/0.0=θ  

Both figures show the approximately parabolic distribution of shear strain due to the 
applied rotation as predicted by Stanton & Lund (2004). Deviation from the parabolic 
distribution on the left end of the plots is due in part to local effects near the end of the 
shim, and in part due to the observed significant mesh distortion in that area. 

Furthermore, both diagrams show proportionally increasing shear strain over the left 
portion of the bearing (over-compressed by the rotation) as the applied rotation increases, 
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but reach an ultimate state on the right side of the bearing. Analyzing the deformed shape 
of the analyzed load combinations reveals that both combinations ultimately experience 
lift-off. At both load levels, lift-off occurs over a length of 3≈  in from the right (Figure 
E-36 and Figure E-37). Even though the amount of lift-off is approximately the same 
under both load combinations, the observed ultimate shear strain in those areas differs 
depending on axial  load intensity. Thus, the amount of lift-off by itself does not control 
this ultimate shear strain.  

Analyzing the amount of lift-off versus rotation per layer at different load levels provides 
the explanation. Figure E-38 shows the ratio of the length of the lift-off area over the total 
length of the bearing. The amount of lift-off increases as the applied rotation increases 
and appears to approach an ultimate limit. That limit is controlled by the employed 
displacement controlled loading. (Discussed in section E.2.2.) However, lift-off starts at 
increasing rotation angles as the axial load intensity increases.   

No lift-off is observed in any numerical simulation with GS2.1>σ . This does not state 
that no lift-off occurs above GS2.1>σ  in real bearings, but that at higher load levels the 
inevitable element distortion causes the numerical analysis to terminate at a rotation of 
approx. 0.006 radians/layer, i.e., before lift-off can be observed. 
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Figure E-38   Lift-off ratio versus rotation per layer for SF 9 bearing at various load levels 

The magnitude of the ultimate shear strain in the areas of uplift is approximately the 
observed magnitude of shear strain at the start of lift-off. Additional shear strain from 
rotation increments applied after lift-off was initiated affect mainly that part of the 
bearing under the loaded surface. This generates nonlinear behavior solely on a geometric 
basis.  
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Due to the displacement-controlled nature of the simulation, lift-off not only increases the 
eccentricity of the axial force on the bearing but also its magnitude. This causes the 
present FEA to underestimate the amount of lift-off on a real bearing. 

E.4.5 Bearings with Bonded External Plates – Uplift 

Bearings with bonded external plates are used where lift-off cannot be permitted, or 
where low axial forces cannot provide sufficient friction to hold the bearing in place if it 
is subjected to shear forces. These bearings do not experience the nonlinear geometric 
effect as observed in bearings with lift-off. A problem which can arise in bearings with 
bonded external plates is the presence of hydrostatic tension in parts of the bearing other 
than the already discussed local hydrostatic tension at the end faces of steel shims. This 
phenomenon becomes most significant under load combinations where conventional 
elastomeric bearings would experience lift-off. There is no difference between bearings 
with or without bonded external plates prior to lift-off. 

The aim of this section is to assess the magnitude of hydrostatic tension which might be 
observed in a bearing with bonded external plates. All presented results within this 
section are for a strip-bearing with shape factor SF 9. Since all FEA were performed 
using metric units, the hydrostatic stress data (= mean normal stress) presented in Figure 
E-39, Figure E-40, and Figure E-41 is given in Pascal (Pa). Gent & Lindley (1959) 
identified a hydrostatic stress of E≈0σ  as critical for internal rupture of rubber. With 

 , the stress scale in psi300=E Pa10*07.2= 6

E
Figure E-39, Figure E-40, and Figure 

E-41 is set such that the shown maximum intensity represents ≈0σ  (top end of the 
scale). Areas with compressive hydrostatic stress and hence without risk of internal 
rupture are shown in grey (largest contiguous area). 

Figure E-39 shows the distribution of tensile hydrostatic stress over the cross section of a 
bearing subjected to an average axial stress of GS00.0=σ  and subsequent rotation by 

0060.0=yθ  radians/layer. The entire right half of the bearing is subjected to hydrostatic 
tension, with a maximum approximately 2 inches inside from the right side surface. The 
maximum magnitude reaches E≈0σ  at 0060.0=yθ  (increment 83). The linear analysis 
and the numerical solution by FEA are in perfect agreement, both regarding location and 
magnitude of the hydrostatic tension. The latter can be verified through Figure E-42. A 
bearing subjected to such loading conditions is most likely to fail due to internal rupture 
on the side of uplift. 

Figure E-40 shows the distribution of tensile hydrostatic stress over the cross section of a 
bearing subjected to an average axial stress of GS16.0=σ  and subsequent rotation of 

0060.0=yθ  radians/layer. Approximately 2/3rd of the right half of the bearing is 
subjected to hydrostatic tension, with a maximum approximately 1.4 inches inside from 
the right side surface. The maximum magnitude reaches E6.00 ≈σ  at 0060.0y =θ  
(increment 83). A bearing subjected to such loading conditions is unlikely to fail due to 
internal rupture of the elastomer. 
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Figure E-39   Tensile hydrostatic stress in (Pa) for GS00.0=σ  and 0060.0=yθ  rad/layer 

 
Figure E-40   Tensile hydrostatic stress in (Pa) for GS16.0=σ  and 0060.0=yθ  rad/layer 
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Figure E-41 shows the distribution of tensile hydrostatic stress over the cross section of a 
bearing subjected to an average axial stress of GS445.0=σ  and subsequent rotation by 

0060.0=yθ  rad/layer. Only the rightmost 1 inch of the bearing experience hydrostatic 
tension of E1.0≤0σ  within the elastomer layer. Significant tensile hydrostatic stress is 
observed only in the immediate vicinity of the side faces of the center shim. The mesh in 
that area, however, is too coarse to capture such local phenomena at sufficient accuracy. 
The local phenomenon at the end of the shims was discussed previously in section  E.4.1. 
It is not considered intrinsic to uplift. 

 
Figure E-41   Tensile hydrostatic stress in (Pa) for GS445.0=σ  and 0060.0=yθ  rad/layer 

Figure E-41 clearly proves that the risk of internal rupture diminishes rapidly with 
increasing axial loads. Even axial load levels as low as GS445.0=σ  practically rule out 
internal rupture of the elastomer as cause of failure. Only large rotation at axial load 
levels below GS2.0=σ  possess real potential for this failure mode. 

Figure E-42, Figure E-43, and Figure E-44 show history plots for the hydrostatic stress 
(= mean normal stress) versus the load increment ID for the same three axial load 
intensities as used in the respective Figure E-39, Figure E-40, and Figure E-41. This 
enables easy correlation between the stress distribution images (all taken at 
increment 83). Increment IDs 60-90 map linearly onto rotations 

00778.0000.0 −=yθ  rad/layer. Each figure contains the stress history for 5 nodes, each 
located on a vertical section 2 inches to the left of the right side surface of the bearing. 
These nodes are evenly spaced across the elastomer layer and including the interface to 
the top and bottom shim, respectively. 
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All three figures show a nearly perfect linear relation between hydrostatic stress and 
applied rotation for 0060.0000.0=y −θ  rad/layer (increments 60-83). Only above 
increment 85, the graphs in Figure E-42 exhibit a radical change of behavior. This 
phenomenon is created by loss of numerical stability of the nearly incompressible finite 
element and is not of physical but of purely numerical origin. It can be identified simply 
by visual inspection of the simulated deformed shape of the bearing, where a fast 
evolving pattern of hourglass modes appears. This numerical limit restricts the range of 
reliably simulated rotations to 0060.0≤yθ  rad/layer. 
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Figure E-42   History of hydrostatic stress in (psi) for GS00.0=σ   (Increments 60-90) 
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Figure E-43   History of hydrostatic stress in (psi) for GS16.0=σ   (Increments 60-90)  
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Figure E-44   History of hydrostatic stress in (psi) for GS445.0=σ  (Increments 60-90)  

The simulation proves that within the suitable range of 0060.0≤yθ  rad/layer, 

1. the hydrostatic stress for any given point is linearly related to the applied rotation, 
and that 

2. the hydrostatic stress is nearly constant across the thickness of the elastomer 
layer.  

Statement 1 is crucial for the applicability of the linear theory by Stanton & Lund (2004). 
It proves that the linear theory can be used to assess the magnitude of hydrostatic stress in 
bearings with bonded external plates. 

 Statement 2 also supports the linear theory by Stanton & Lund by proving their basic 
assumption of a hydrostatic stress state within the elastomer to be correct. This does not 
hold at higher axial load intensities GS0.1>σ . However, the above discussion 
demonstrated that for GS5.0>σ , hydrostatic tension and internal rupture are not 
possible for any practically reasonable load combination. 
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E.5 Model Error – Significance of nonlinear effects and 
Superposition 

One key research question behind the presented numerical analysis concerns the validity 
of the superposition principle based on the design relations by Stanton & Lund (2004). 
Strictly speaking, after considering the nonlinear elastic nature of elastomers and the 
locally large strains as observed near the ends of the steel shims, superposition is not 
valid for the given problem. However, nonlinear analysis provides the means to quantify 
the error which is introduced by the use of a linear theory and by application of the 
superposition principle. The following analysis proves that the error introduced by these 
assumptions remains within acceptable bounds for all reasonable combinations of axial 
loads and imposed rotations. 

This proof is performed as follows: 

1. Verify that the obtained results from nonlinear FEA and those obtained from the 
linear theory by Stanton & Lund are closely related. This was performed in 
Section E.3. 

2. Represent a characteristic numerical result, e.g. the local shear strain at the end of 
a shim, as a smooth function of average axial stress and the applied rotation. 

3. Extract the linear portion of the function. This represents all possible 
combinations as characterized by superposition of linear models for axial and 
rotational behavior. 

4. Analyze the difference between both functions, i.e. the error introduced by 
linearization and superposition. This provides an error map over the entire range 
of average axial stress and applied rotation. 

5. Verify that the obtained model error does not exceed the commonly accepted 
model errors. 

Steps 2 through 5 will be developed and discussed in this section. 

The typical results of a finite element analyses are a displacement field, a spatial 
distribution of stress and strain, and some characteristic functions thereof. A nonlinear 
analysis provides a sequence of such results for a given load history. Post-processing of 
numerical results can be performed in a spatial sense at any given time (path plots, or 
intensity plots), or in an evolutionary sense for any fixed material point (history plots, 
typically at nodal points).  

Assessing the significance of nonlinear behavior requires analysis of numerical data over 
the given load history (history plots). For elastomeric bearings, the primary numerical 
information of interest is the maximum local shear strain at the end of each steel shim. 

Placed in the space of input parameters for load (or GSGSAP // σ= ) and rotation per 
layer ( n/yL θ= ), such a history plot defines a single line. Figure E-45 shows a θ
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collection of results for a SF 9 bearing. Each line represents one nonlinear solution for a 
given loading history. 
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Figure E-45   Collection of  resulting shear strain (in/in) from 10 different nonlinear analyses of an 
elastomeric bearing with SF 9 

 

Such data is difficult to process for information such as load-combinations which cause 
equivalent max,zxγ , or the significance of nonlinear effects. One way to process such 
simulation data is to perform a least-square fit using higher order polynomial functions. 
In the present case, the simulation data was fitted by a function of the following type: 
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where  and  were restricted to i i mi j ≤+ . Using the full series given in (E-18) did not 
improve the obtained fit or even increased the value of the error function 
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In (E-19), ( )
kzx max,γ , kσ , and ky ,θ  are the maximum shear strain, the average axial stress, 

and the total rotation on an n-layer bearing, respectively, for a single data point k from 
any of the numerical simulations.  is the total number of such data points on all 
extracted history series (shown in 

datan
aFigure E-45). The coefficients  are obtained from 

minimizing the error function defined in 
ij

(E-19).  
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This fitting analysis was performed for four series of simulations: 

1. Strip bearings with SF 6 and bonded external plates. This series creates uplift at 
larger rotations. 

2. Strip bearings with SF 9 and bonded external plates. This series creates uplift at 
larger rotations. 

3. Strip bearings with SF 6 without bonded external plates. This series allows for 
lift-off with increasing rotation at low axial forces. 

4. Strip bearings with SF 9 without bonded external plates. This series allows for 
lift-off with increasing rotation at low axial forces. 

Table E-6 and Table E-7 present the obtained coefficients , listed as a(i,j), for 
. The residual error follows from 

ija
4,3,2,1=m

3=m 2=m
=m

(E-19). The relative error is the average error 
per simulated data point. The grey rows indicate the linear portion of the fit function. The 
theoretically exact value for a  is zero. By leaving it in the fitting function it provided 
an additional indicator for the quality of the obtained fit. Both 

00

Table E-6 and Table E-7 
show that a cubic fit ( ) does not improve the quality of the quadratic fit ( ). A 
fourth-order fit ( ), however, reduces the residual error by one order of magnitude. 
Hence, the fourth-order fit is used for further analysis of the simulation data for bearings 
with bonded external plates. 

4

Table E-6   Coefficients  for a bearing with SF 6 and with bonded external plates (creates uplift) ija

first order second order third order fourth order
residual error 0.614977 0.176999 0.0429617 0.00282347
relative error 2.90E-04 8.34E-05 2.03E-05 1.33E-06

filter 0.95 0.95 0.95 0.95

a(0,0) -0.0033718 -0.004127629 0.004038349 7.89336E-05
a(0,1) 99.83018 96.89916 87.27366 94.63276
a(0,2) -427.5588 436.738 -533.9755
a(0,3) -24699.46 2744.619
a(0,4) 306662.2

a(1,0) 1.227283 1.280348 1.217256 1.307392
a(1,1) 8.437844 34.04034 -7.632171
a(1,2) -838.0112 2671.265
a(1,3) -63230.05

a(2,0) -0.04531494 0.007186415 -0.1871607
a(2,1) -10.65604 28.63141
a(2,2) -1622.822

a(3,0) -0.009633514 0.1255976
a(3,1) -9.693649

a(4,0) -0.03011815  

 - E-45 - 



Table E-7   Coefficients  for a bearing with SF 9 and with bonded external plates (creates uplift) ija

first order second order third order fourth order
residual error 2.27244 0.632014 0.205623 0.056222
relative error 1.23E-03 3.43E-04 1.12E-04 3.05E-05

filter 0.95 0.95 0.95 0.95

a(0,0) 0.01290003 -0.007826721 0.004587233 0.000589096
a(0,1) 190.3133 213.4127 187.5294 202.3827
a(0,2) -4017.144 -1188.889 -2547.037
a(0,3) -234146.8 -602006.8
a(0,4) 5017239

a(1,0) 1.218682 1.307256 1.150499 1.267248
a(1,1) 12.40025 94.84205 -6.176302
a(1,2) -1437.27 17600.93
a(1,3) -181350.8

a(2,0) -0.04788143 0.1149509 -0.110806
a(2,1) -43.69741 22.84785
a(2,2) -9752.122

a(3,0) -0.03943107 0.09635822
a(3,1) -7.070999

a(4,0) -0.02552705  

Table E-8 and Table E-9 provide the coefficients for fitting data from series 3 and 4. 
These series differ from those used for Table E-6 and Table E-7 by the fact that series 1 
and 2 include bonded external plates while simulations of series 3 and 4 do not have 
bonded external plates and thus show lift-off at low axial load. Table E-8 shows that a 
cubic fit ( ) does improve the quality of the quadratic fit (3=m 2=m

4=m
), almost to the level 

of a fourth-order fit ( ). Table E-9 shows the same trend as observed in bearings 
with bonded external plates. (Compare Table E-6 and Table E-7.) For consistency with 
the bearings with bonded external plates, the fourth-order fit is used for further analysis 
of the simulation data for bearings without bonded external plates. 
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Table E-8   Coefficients  for a bearing with SF 6 without bonded external plates (allows lift-off) ija

first order second order third order fourth order
residual error 1.74733 0.516877 0.168999 0.119117
relative error 8.89E-04 2.63E-04 8.59E-05 6.05E-05

filter 0.95 0.95 0.95 0.95

a(0,0) -0.01007482 -0.006510036 0.001616491 -0.000855979
a(0,1) 94.23355 88.50083 73.80879 79.26412
a(0,2) -1057.981 -504.3859 -2112.06
a(0,3) -49808.31 -68183.09
a(0,4) 485376.7

a(1,0) 1.244375 1.306771 1.271672 1.35963
a(1,1) 18.10389 66.64402 57.6341
a(1,2) -143.0969 5357.56
a(1,3) -22222.19

a(2,0) -0.06390393 -0.08245211 -0.3462506
a(2,1) -25.20037 -39.19804
a(2,2) -2554.959

a(3,0) 0.02386593 0.2663517
a(3,1) 10.01065

a(4,0) -0.06752026  
Table E-9   Coefficients  for a bearing with SF 9 without bonded external plates (allows lift-off) ija

first order second order third order fourth order
residual error 3.92332 1.17059 0.632986 0.495678
relative error 2.21E-03 6.60E-04 3.57E-04 2.79E-04

filter 0.95 0.95 0.95 0.95

a(0,0) 0.006298161 -0.007256052 0.00325945 0.000250963
a(0,1) 180.5578 182.9504 148.7345 172.6307
a(0,2) -4341.195 -3437.645 -15751.6
a(0,3) -164318.4 -177393.2
a(0,4) 42724700

a(1,0) 1.230061 1.313274 1.174864 1.280184
a(1,1) 37.60824 153.109 125.8076
a(1,2) -1231.523 31999.2
a(1,3) -1394922

a(2,0) -0.05232264 0.08770535 -0.1379262
a(2,1) -58.91758 -105.4658
a(2,2) -8694.133

a(3,0) -0.03263682 0.1138073
a(3,1) 23.18539

a(4,0) -0.02891924  
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The obtained fitting functions allow for smooth interpolation between simulated data. 
Moreover, it can be used to construct contours (iso-lines) of constant local shear strain. 
Figure E-46  to Figure E-49 show the obtained fourth-order fit functions and contour 
lines for bearings with SF 6 and SF 9, with and without bonded external plates. The left 
image in each figure shows the relation in a 3D plot, together with the simulated data 
(visible as curves on the fitted surface), and the obtained contour lines (equal local shear 
strain). The right images show the projection of the simulated data curves and the contour 
lines for local shear strain in (in/in).  

Due to the inevitable mesh distortion at large local strains and the problem of hourglass 
modes at high hydrostatic tension, reliable simulation data does not cover the entire 
parameter space of axial loading ( GSGSAP // σ= ) and rotation per layer ( n/yLθ θ=

/
). 

This is visible at ratios 5.1/ >= GSGSAP σ  and increasing rotation. Contour lines 
beyond this data range are obtained through extrapolation and have to be viewed with 
caution. 

For bearings with bonded external plates, Figure E-46 and Figure E-47 show an almost 
linear relation between GSGSAP // σ= n/, yL θ= , and the local shear strain zxθ γ  over 
the entire range of practically suitable loads and rotations. Within the presented range, 
uplift is only observed for  1// <= GSGSAP σ . 
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Figure E-46   Fourth-order fit to simulation data for a SF 6 bearing with bonded external plates for 
shear strain at ¼” distance from the critical edge of the shim.   Simulated data (lines/curves), fitted 

surface (left image), and contour lines for shear strain (in/in). 
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Figure E-47   Fourth-order fit to simulation data for a SF 9 bearing with bonded external plates for 
shear strain at ¼” distance from the critical edge of the shim.   Simulated data (lines/curves), fitted 

surface (left image), and contour lines for shear strain (in/in). 

In bearings without bonded external plates, lift-off is observed instead of uplift at 
increasing rotation and 1// = GSGSAP <σ . This introduces a geometrically driven 
nonlinearity to the bearing response. Figure E-48 and Figure E-49 show the computed 
behavior (curves) and the identified smooth fit. Again, the simulated data does not cover 
the entire parameter space and thus values on the fitted surface for 

)2503(// LGSGSAP σ θ−>≈=  represents extrapolation and must not be considered for 
interpretation. 

For both SF 6 and SF 9 an almost linear relation between GSGSAP // σ= , nyL /θθ = , 
and the local shear strain zxγ  is observed over most of the range of practically suitable 
loads and rotations. However, the relation becomes nonlinear at small axial loads. This 
reflects the effect of lift-off during rotation at low axial loads. 
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Figure E-48   Fourth-order fit to simulation data for a SF 6 bearing without bonded external plates 
for shear strain at ¼” distance from the critical edge of the shim.   Simulated data (lines/curves), 

fitted surface (left image), and contour lines for shear strain (in/in). 
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Figure E-49   Fourth-order fit to simulation data for a SF 9 bearing without bonded external plates 
for shear strain at ¼” distance from the critical edge of the shim.   Simulated data (lines/curves), 

fitted surface (left image), and contour lines for shear strain (in/in). 

The smooth fitted function (E-18) with parameters from Table E-6 to Table E-9 provide 
further insight into the overall behavior and allow further interpretation of the analysis.  

Using the linear terms in (E-18), i.e., 
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provides the ideal approximation of the nonlinear behavior by means of a linear theory of 
bearing deformation. It is used to identify the significance of using a geometrically and 
physically nonlinear theory over a much simpler (and thus more usable) linear theory. 
This significance is measured in terms of a relative error of a linear solution defined as 
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This error represents a model error or analysis error which affects the computation of 
maximum shear strain when using a linear analysis model.  

Figure E-50 and Figure E-51 show iso-error plots for bearings with bonded external 
plates for SF 6 and SF 9, respectively, up to load levels of 5.2/ GS ≈σ  and rotations per 
layer of radians=L 006.0θ . Figure E-52 and Figure E-53 show the equivalent results for 
similar bearings without bonded external plates.  

Bearings with bonded external plates subjected to rotations typically show a model error 
below 5 %, reaching maxima around 10 %. (Higher error values in Figure E-51 lie 
outside the supported domain and represent extrapolations beyond the actual 
simulations.) The largest model error is observed along the line of pure rotation 
( 0/ =GSσ ).  
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Figure E-50   Iso-error plot for shear strain zxγ  for a SF 6 bearing with bonded external plates based 
on a fourth-order fit. (Constructed for shear strain at ¼” distance from the critical edge of the shim.) 
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Figure E-51 Iso-error plot for shear strain zxγ  for a SF 9 bearing with bonded external plates based 
on a fourth-order fit. (Constructed for shear strain at ¼” distance from the critical edge of the shim.) 

 

Bearings without bonded external plates experience lift-off at low load levels. This is 
reflected in the iso-error plots shown in Figure E-52 and Figure E-53. The typical model 
error lies below 5 %, but reaching maxima above 15 %. At high axial loads, higher error 
values are observed outside the supported domain and represent extrapolation errors 
introduced by the fit functions. At low axial force, the higher error value may be affected 
by extrapolation errors, but are also due to the geometric nonlinearity due to lift-off. This 
latter contribution has to be addressed in a semi-linear analysis by introducing the amount 
of lift-off into the analysis. This issue of implementing the effect of lift-off into a semi-
linear analysis model will be addressed in greater detail in Appendix F. 
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Figure E-52   Iso-error plot for shear strain zxγ  for a SF 6 bearing without bonded external plates 
based on a fourth-order fit. (Constructed for shear strain at ¼” distance from the critical edge of the 

shim.) 
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Figure E-53   Iso-error plot for shear strain zxγ  for a SF 9 bearing without bonded external plates 

based on a fourth-order fit. (Constructed for shear strain at ¼” distance from the critical edge of the 
shim.) 
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E.6 Conclusions 

This chapter presented key results of performed numerical analyses. The extracted 
information provided proof of the key hypotheses needed for an effective while simple 
design procedure. In detail, these findings support the following statements. 

1. The stiffness coefficients predicted by the linear theory of bearings by Stanton & 
Lund (2004) are in good agreement with a nonlinear FEA and thus provide a 
simple way to predict axial and rotational stiffness of elastomeric bearings. 
Typical model errors are below 5-7 %. 

2. The local shear strain predicted by the linear theory of bearings by Stanton & 
Lund (2004) is in good agreement with a nonlinear FEA. Typical errors due to 
spuerposition are in the range of 5-10 %. 

3. Superposition of axial and rotational effects provides a reasonably accurate 
representation of the nonlinear FEA. The presented error analysis proved that 
model errors combined with errors due to superposition are typically below 7.5 %. 
Only load combinations which cause lift-off were found to reach model errors up 
to 20 %, thus suggesting modification of Stanton & Lund’s relations for bearings 
with lift-off. 

4. Within the investigated load combinations, Internal rupture due to excessive 
tensile hydrostatic stress can only occur in bearings with bonded external plates 
and low axial load intensities of GS2.0< ≈σ . 

The relatively small overall error within the common load regime for elastomeric 
bearings, as identified in section E.5, justifies the use of the linear analysis by Stanton & 
Lund (2004) for design equations.  

Most standard bearings can be designed safely with the worst model error up to 20 % for 
bearings with limited lift-off permitted. However, for specialty bearings for which lift-off 
shall be permitted by design, the extra effort for using a more accurate piece-wise linear 
design analysis can be justified by a reduced model error.  
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