Appendix K

Design Examples

Example 1 ${ }^{*}$ Two-Span I-Girder Bridge Continuous for Live Loads

(a) Bridge Deck

The bridge deck reinforcement using A615 rebars is shown below.

[^0]Redesign by using A1035 bars with $\mathrm{f}_{\mathrm{y}}=100 \mathrm{ksi}$.
$3,483(12)=0.90 A_{s}(100)\left(58.25-\frac{A_{s}(100)}{1.7(7.0)(26)}\right) ; \quad A_{s}=8.36$ in 2
Provide 28 \# 5 bars (14 on the top with 2.5 " cover and 14 on the bottom with $25 / 8^{\prime \prime}$ cover). The bars will be at 8 " o.c. Note: A1035 bars are not epoxy coated; hence, the cover is 2.5 ".

The centroid of the bars from the top is
$\bar{x}=\frac{14 \times(2.5+0.5 \times 5 / 8)+14(8.5-(2+5 / 8+0.5 \times 5 / 8))}{28}=4.12^{\prime \prime}$
Crack control reinforcement:
$s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s}}-2 d_{c}$
$\gamma_{\mathrm{e}}=0.75$
$f_{s}=$ Tensile stress in steel reinforcement at the service limit state.
$d=62.5-4.12=58.4^{\prime \prime}$
$\rho=\frac{A_{s}}{b d}=\frac{28 \times 0.31}{(26)(58.4)}=0.0057$
$k=\sqrt{2 \rho n+(\rho n)^{2}}-\rho n=\sqrt{2(0.0057)(5.718)+(0.0057 \times 5.718)^{2}}-0.0057 \times 5.718=0.225$
$j=1-k / 3=1-0.225 / 3=0.925$
$f_{s}=\frac{M_{s l}}{A_{s} j d}=\frac{2,141(12)}{28 \times 0.31(0.925 \times 58.4)}=56.6 \mathrm{ksi} \leq 60 \mathrm{ksi}$
$\therefore f_{s}=56.6 \mathrm{ksi}$
$d_{c}=2.5+0.5 \times 5 / 8=2.81$
$\beta_{s}=1+\frac{d_{c}}{0.7\left(h-d_{c}\right)}=1+\frac{2.81}{0.7(62.5-2.81)}=1.067$
$s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s}}-2 d_{c}=\frac{700 \times 0.75}{1.067 \times 56.6}-2 \times 2.81=3.07 \prime$
This spacing is too small. Aim for 6 " spacing, which is more realistic.
Try: 17 top bars: \# 5 @ 12" alternating with \# 6 @ 12"
17 bottom bars: \# 5 @ 12" alternating with \# 6 @ 12"

Distances to centroid of bars:
Top Bars: $\frac{(2.5+0.5 \times 5 / 8)+(2.5+0.5 \times 3 / 4)}{2}=2.84^{\prime \prime}$
Bottom Bars: $\frac{(8.5-(2+5 / 8+0.5 \times 5 / 8))+(8.5-(2+5 / 8+0.5 \times 3 / 4))}{2}=5.53{ }^{\prime \prime}$
$\bar{x}=\frac{17 \times 2.84+17 \times 5.53}{34}=4.19 "$
$d=62.5-4.19=58.31^{\prime \prime}$
$\rho=\frac{A_{s}}{b d}=\frac{17 \times 0.31+17 \times 0.44}{(26)(58.31)}=\frac{12.75}{(26)(58.31)}=0.0084$
$k=\sqrt{2 \rho n+(\rho n)^{2}}-\rho n=\sqrt{2(0.0084)(5.718)+(0.0084 \times 5.718)^{2}}-0.0084 \times 5.718=0.266$
$j=1-k / 3=1-0.266 / 3=0.911$
$f_{s}=\frac{M_{s l}}{A_{s} j d}=\frac{2,141(12)}{12.75(0.911 \times 58.3)}=37.9 \mathrm{ksi}$
$d_{c}=2.84375$
$\beta_{s}=1+\frac{d_{c}}{0.7\left(h-d_{c}\right)}=1+\frac{2.84375}{0.7(62.5-2.84375)}=1.068$
$s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s}}-2 d_{c}=\frac{700 \times 0.75}{1.068 \times 37.9}-2 \times 2.84375=7.28^{\prime \prime}>6^{\prime \prime} \mathrm{O} . \mathrm{K}$.

(b) Shear Reinforcement

If prestressing steel is ignored, \#4 A615 stirrups @ 4" o.c. will be needed.
Redesign by using A1035 U shaped \# 4 stirrups.
$s=\frac{A_{v} f_{y} d_{v} \cot \theta}{V_{s}}=\frac{0.4(100)(55.63) \cot 45}{284.6}=7.8^{\prime \prime} \quad$ Controls, say 7"
§5.8.2.5

$$
A_{v} \geq 0.0316 \sqrt{f_{c}^{\prime}} \frac{b_{v} s}{f_{y}} ; \quad 0.4 \geq 0.0316 \sqrt{7} \frac{8 s}{124} ; \quad s \leq 74 "
$$

§5.8.2.9 $v_{u}=\frac{\left|V_{u}-\phi V_{p}\right|}{\left\langle b_{v}\right.}=\frac{323.1}{0.9 \times 8 \times 5.63}=0.81 \mathrm{ksi} \quad$ Note that $\mathrm{s}<74$ "; hence, the simplified procedure with $\beta=2$ and $\theta=45^{\circ}$ may be used.

$$
v_{u}=0.81 \mathrm{ksi}<0.125 f_{c}^{\prime}=0.125 \times 8=1 \mathrm{ksi}
$$

$$
\therefore s_{\max } \leq \text { smaller of }\left\{\begin{array}{l}
0.8 d_{v}=0.8 \times 55.63=44.5 " \\
24 " \text { Controls }
\end{array}\right.
$$

Provide A1035 U shaped \#4 stirrups @ 7" o.c.

Interface Shear Reinforcement

Factored horizontal shear, $\mathrm{V}_{\mathrm{u}}=323 \mathrm{kips}$

$$
V_{n}=c A_{c v}+\mu\left[A_{v f} f_{y}+P_{c}\right] ; \quad c=0.28 ; \quad \mu=1.0
$$

Although shear reinforcement spacing was previously calculated to be 7" o.c., calculate the spacing of A1035 interface shear reinforcement with f_{y} limited to 60 ksi .

$$
V_{u}=\phi V_{n i}=\phi\left[c A_{c v}+\mu\left(A_{v f} f_{y}+P_{c}\right)\right] ; \quad 323=0.9[0.28(20 \times s)+1.0(0.4 \times 100+0)] ; \quad s=57 "
$$

Say 55"
5.8.4.1-2 \& 5.8.4.1-3 $V_{n} \leq \max$ of $\left\{\begin{array}{l}0.2 f_{c}^{\prime}{ }_{c} A_{c v}=0.2 \times 7(52 \times 20)=1456 \mathrm{kips} \\ 0.8 A_{c v}=0.8 \times 7(52 \times 20)=5824 \mathrm{kips}\end{array}\right.$

Hence, $\mathrm{V}_{\mathrm{n}}=323 / 0.9=359 \mathrm{kips}$ as used is o.k.

$$
A_{v f} \geq \frac{0.05 b_{v}}{f_{y}}=\frac{0.05 \times 20}{60}=0.017 \mathrm{in}^{2} / \text { length }
$$

5.8.4.10-4 Actual $A_{v f}=0.40 / 57=0.0070$ in $^{2} /$ length $\therefore N . G$. , Redcue the spacing

$$
0.40 / s=0.017 ; \quad s=23.5^{\prime \prime} \quad \text { say } 23^{\prime \prime}
$$

Use \#4 U shaped A1035 interface reinforcement at $\mathrm{s}=23$ ".
From a durability point of view corrosion resistant A1035 interface shear reinforcement provides advantages. However, practical issues may arise from a placement point of view as the spacing of girder shear reinforcement and that for interface reinforcement are significantly different.

Example 2 * Simple Span T-Beam

Elevation

The reinforcement using A615 rebars is shown below.

The stirrups are symmetrically spaced at 10 " o.c. up to 5^{\prime} from the bearing center line and then @ 16 " o.c. up to 25^{\prime}.

[^1]Redesign by using A1035 bars with a specified yield strength of 100 ksi .

1. Girder - Flexure

Capacity

$\mathrm{M}_{\mathrm{u}}=2052 \mathrm{k}-\mathrm{ft}$.
With $10 \# 8$ bars in 2 layers, which fit within $22 ", \phi \mathrm{M}_{\mathrm{n}}=2204 \mathrm{k}-\mathrm{ft}$. O.K.
Maximum Reinforcement Requirement (§5.7.2.1)
$\frac{c}{d_{t}}=\frac{3.04}{39.5}=0.077<\frac{3}{8} \quad \therefore$ Tension - controlled, O.K.
Minimum Reinforcement Requirement ($\S 5.7 .3 .3 .2$)
$1.2 \mathrm{M}_{\mathrm{cr}}=1.2(4691 / 12)=469 \mathrm{k}-\mathrm{ft} \quad$ Controls
$1.33 \mathrm{M}_{\mathrm{u}}=1.33(2052)=2729 \mathrm{k}-\mathrm{ft}$
$\phi \mathrm{M}_{\mathrm{n}}=2204 \mathrm{k}-\mathrm{ft}>1.2 \mathrm{M}_{\mathrm{cr}} \quad$ Hence, minimum reinforcement requirements are met.
Maximum Spacing of Tension Reinforcement (§5.7.3.4)
$\mathrm{I}_{\mathrm{g}}=262874 \mathrm{in} .^{4}$
$f_{c}=\frac{M y}{I}=\frac{(1336 \times 12)(42-15.42)}{262874}=1.62 \mathrm{ksi}$
§5.4.2.6: $\quad f_{r}=0.24 \sqrt{f_{c}^{\prime}}=0.24 \sqrt{4}=0.48 \mathrm{ksi}$
$\mathrm{f}_{\mathrm{c}}>80 \%$ of f_{r}; hence, §5.7.3.4 needs to be checked.
$\mathrm{M}_{\text {service }}=1336 \mathrm{k}-\mathrm{ft} .>\mathrm{M}_{\mathrm{cr}}=391 \mathrm{k}$-ft. Use cracked transformed section properties
$\mathrm{I}_{\mathrm{cr}}=63200 \mathrm{in} .{ }^{4}$
$\mathrm{y}^{-}=6.21 \mathrm{in}$. (Measured from compression face)
$d_{c}=1.5+0.5+1 / 2(1)=2.5 "$
$f_{s}=n \frac{M y}{I}=\frac{29000}{57 \sqrt{4000}} \times \frac{(1336 \times 12)(42-2.5-6.21)}{63200}=67.9 k s i \quad\left(\right.$ Approximately $0.6 \mathrm{f}_{\mathrm{y}}=0.6 \times 100$
$=60 \mathrm{ksi}$)
$\gamma_{\mathrm{e}}=0.75$
$\beta_{s}=1+\frac{d_{c}}{0.7\left(h-d_{c}\right)}=1+\frac{2.5}{0.7(42-2.5)}=1.09$
$s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s}}-2 d_{c}=\frac{700 \times 0.75}{1.09 \times 67.9}-2 \times 2.5=2.09 "$

The actual spacing of $5 \# 8$ bars, in each layer, is $1+\frac{22-2(1.5+0.5)-5 \times 1}{4}=4.25^{\prime \prime}>2.09$ ", which is not acceptable.

Revise the design by using 12 \# 8 bars in 2 layers.
Capacity
$\mathrm{M}_{\mathrm{u}}=2052 \mathrm{k}-\mathrm{ft}$.
$\phi \mathrm{M}_{\mathrm{n}}=2672 \mathrm{k}-\mathrm{ft} . \quad$ O.K.
Maximum Reinforcement Requirement (§5.7.2.1)
$\frac{c}{d_{t}}=\frac{3.64}{39.5}=0.109<\frac{3}{8} \quad \therefore$ Tension - controlled, O.K.
Minimum Reinforcement Requirement (§5.7.3.3.2)
$1.2 \mathrm{M}_{\mathrm{cr}}=1.2(4803 / 12)=480 \mathrm{k}-\mathrm{ft} \quad$ Controls
$1.33 \mathrm{M}_{\mathrm{u}}=1.33(2052)=2729 \mathrm{k}-\mathrm{ft}$
$\phi \mathrm{M}_{\mathrm{n}}=2672 \mathrm{k}-\mathrm{ft}>1.2 \mathrm{M}_{\mathrm{cr}} \quad$ Hence, minimum reinforcement requirements are met.
Maximum Spacing of Tension Reinforcement (§5.7.3.4)
$\mathrm{I}_{\mathrm{g}}=267731 \mathrm{in} .^{4}$
$f_{c}=\frac{M y}{I}=\frac{(1336 \times 12)(42-15.56)}{267731}=1.58 \mathrm{ksi}$
§5.4.2.6: $\quad f_{r}=0.24 \sqrt{f^{\prime}{ }_{c}}=0.24 \sqrt{4}=0.48 \mathrm{ksi}$
$\mathrm{f}_{\mathrm{c}}>80 \%$ of f_{r}; hence, §5.7.3.4 needs to be checked.
$\mathrm{M}_{\text {service }}=1336 \mathrm{k}-\mathrm{ft} .>\mathrm{M}_{\mathrm{cr}}=400 \mathrm{k}$-ft. Use cracked transformed section properties
$\mathrm{I}_{\mathrm{cr}}=74218 \mathrm{in} .{ }^{4}$
$\mathrm{y}^{-}=6.74 \mathrm{in}$. (Measured from compression face)
$d_{c}=1.5+0.5+1 / 2(1)=2.5^{\prime \prime}$
$f_{s}=n \frac{M y}{I}=\frac{29000}{57 \sqrt{4000}} \times \frac{(1336 \times 12)(42-2.5-6.74)}{74218}=56.9 k s i\left(\right.$ Approximately $0.6 \mathrm{f}_{\mathrm{y}}=0.6 \times 100$
$=60 \mathrm{ksi}$)
$s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s}}-2 d_{c}$
$\gamma_{\mathrm{e}}=0.75$
$\beta_{s}=1+\frac{d_{c}}{0.7\left(h-d_{c}\right)}=1+\frac{2.5}{0.7(42-2.5)}=1.09$
$s \leq \frac{700 \gamma_{e}}{\beta_{s} f_{s}}-2 d_{c}=\frac{700 \times 0.75}{1.09 \times 56.9}-2 \times 2.5=3.46 "$
The actual spacing of $12 \# 8$ bars, in each layer, is $1+\frac{22-2(1.5+0.5)-6 \times 1}{5}=3.4 "<3.46$ ", which is acceptable.

Skin Reinforcement (§5.7.3.4)

$d_{e}=39.6^{\prime \prime}>36$ "; skin reinforcement needs to be provided. However, for consistency with the original example, skin reinforcement is not provided in the redesign with A1035 reinforcing bars.

Fatigue Limit State

$\mathrm{M}_{\mathrm{f}}=278 \mathrm{k}-\mathrm{ft}$
Cracked transformed section properties: $\mathrm{I}_{\mathrm{cr}}=74218 \mathrm{in}^{4}$ and $\mathrm{y}^{-}=6.74 \mathrm{in}$.
$f_{s}=n \frac{M y}{I_{c r}}=8 \frac{(278 \times 12)(42-2.5-6.74)}{74218}=11.8 \mathrm{ksi}$
$f_{f}=21-0.33 f_{\text {min }}+8(r / h)$
$\mathrm{f}_{\text {min }}=$ stress under dead load moment, which is $597 \mathrm{k}-\mathrm{ft} .>\mathrm{M}_{\mathrm{cr}}=400 \mathrm{k}-\mathrm{ft}$.
$f_{\min }=n \frac{M y}{I_{c r}}=8 \frac{(597 \times 12)(42-2.5-6.74)}{74218}=25.3 \mathrm{ksi}$
$f_{f}=21-0.33 f_{\min }+8(r / h)=21-0.33 \times 25.3+8 \times 0.3=15.1 k s i$
$11.8 \mathrm{ksi}<15.1 \mathrm{ksi}$ O.K.

Summary: From a strength point of view, 10 \#8 A1035 bars $\left(\mathrm{A}_{\mathrm{s}}=7.9 \mathrm{in}.{ }^{2}\right)$ provide adequate flexural capacity. However, the requirements related to spacing of mild reinforcement (§5.7.3.4) result in additional area of steel. The use of A1035 bars as flexural reinforcement saves about 49% in terms of the amount of steel ($10 \# 11 \mathrm{~A} 615\left(\mathrm{~A}_{\mathrm{s}}=18.72\right.$ in. $\left.{ }^{2}\right)$ vs. $12 \# 8 \mathrm{~A} 1035\left(\mathrm{~A}_{\mathrm{s}}=9.48\right.$ in. ${ }^{2}$)).

Girder - Shear

h	42.0	in.
$\mathrm{d}_{\mathrm{s}}=\mathrm{d}_{\mathrm{e}}$	38.5	in.
a	3.09	in.
$\mathrm{d}_{\mathrm{v}}=\mathrm{d}_{\mathrm{s}}-\mathrm{a} / 2$	37.0	in.
0.72 h	30.2	in.
$0.9 \mathrm{~d}_{\mathrm{e}}$	34.7	in.
Final d_{v}	37.0	in.

Assume 1'-4" wide support.
The critical section is at $x=37+8=45^{\prime \prime}=3.75^{\prime}$

Distance (ft.) x	Point along span x / L	V_{u} kips
0	0	189
0.67	0.0134	185
3.75	0.07	168
5	0.1	160
10	0.2	132
15	0.3	103
20	0.4	75
25	0.5	46

Use U shaped \# 4 A1035 stirrups

$$
s_{\max }=\frac{A_{v} f_{y}}{0.0316 \sqrt{f_{c}^{\prime}} b_{v}}{\begin{array}{c}
\mathrm{A}_{\mathrm{v}} \\
\mathrm{f}_{\mathrm{c}}
\end{array}}_{\mathrm{f}_{\mathrm{y}}} \begin{array}{ccc}
0.4 & \mathrm{in.}^{2} \\
\mathrm{~b}_{\mathrm{v}} & \mathrm{ksi} \\
\mathrm{~b}_{\mathrm{v}} & 22 & \mathrm{ksi} \\
& \mathrm{in.} \\
\mathrm{~s}_{\max } & 28.8 \mathrm{in.}
\end{array}
$$

The simplified procedure for the determination of β and θ may be used if the spacing of the stirrups does not exceed $\mathrm{s}_{\max }=28.8 \mathrm{in}$. For the simplified procedure $\beta=2.0$ and $\theta=45^{\circ}$.

Distance (ft.) x	v_{u} ksi	Is $\mathrm{v}_{\mathrm{u}}<0.125 \mathrm{f}_{\mathrm{c}}$?	$\mathrm{s}_{\text {max }}$ (in.)
0	0.258	Yes	24
0.67	0.253	Yes	24
3.75	0.229	Yes	24
5	0.219	Yes	24
10	0.180	Yes	24
15	0.141	Yes	24
20	0.102	Yes	24
25	0.063	Yes	24

The maximum shear resistance, V_{n}, is given by the lesser of $V_{n}=V_{c}+V_{s}+V_{p}$ and $V_{n}=0.25 f^{\prime}{ }_{c} b_{v} d_{v}$. $\mathrm{V}_{\mathrm{n}}=0.25 \mathrm{f}^{\prime}{ }_{\mathrm{c}} \mathrm{b}_{\mathrm{v}} \mathrm{d}_{\mathrm{v}}=0.25(4)(22)(37)=814$ kips
$\mathrm{V}_{\mathrm{u}} @$ the critical section $=168<\phi \mathrm{V}_{\mathrm{n}}=0.9(814)=733 \mathrm{kips}$

$$
\begin{aligned}
& V_{c}=0.0316 \beta \sqrt{f_{c}^{\prime}} b_{v} d_{v}=0.0316(2) \sqrt{4}(22)(37)=103 \mathrm{kips} \\
& V_{s}=\frac{A_{v} f_{y} d_{v}(\cot \theta+\cot \alpha)(\sin \alpha)}{s}=\frac{A_{v} f_{y} d_{v}(\cot 45+\cot 90)(\sin 90)}{s}=\frac{A_{v} f_{y} d_{v}}{s}
\end{aligned}
$$

At the critical section, $\mathrm{V}_{\mathrm{u}}=168$ kips

$$
\begin{aligned}
& V_{u}=\phi\left(V_{c}+V_{p}+V_{s}\right) \\
& 168=0.9\left(103+0+\frac{A_{v} f_{y} d_{v}}{s}\right)=0.9\left(103+0+\frac{0.4 \times 100 \times 37}{s}\right) ; s=17.69^{\prime \prime}
\end{aligned}
$$

Stirrup layout (symmetrically placed) of U-shaped \#4 A1035 stirrups:

- Start the first stirrup at 9" from the support.
- Provide 3 spaces @ 17" o.c.
- Provide 10 spaces @ 24" o.c.

Tensile Capacity of Longitudinal Reinforcement (§5.8.3.5)

The following equation needs to be satisfied.
$A_{p s} f_{p s}+A_{s} f_{y} \geq \frac{\left|M_{u}\right|}{\phi d_{v}}+0.5 \frac{N_{u}}{\phi}+\left(\left|\frac{V_{u}}{\phi}-V_{p}\right|-0.5 V_{s}\right) \cot \theta$
For this case, the above equation is simplified to $A_{s} f_{y} \geq \frac{M_{u}}{\phi d_{v}}+\left[\left(\frac{V_{u}}{\phi}\right)-0.5 V_{s}\right] \cot \theta$

(i) Critical Section

$\mathrm{M}_{\mathrm{u}}=633 \mathrm{k}$-ft \& $\mathrm{V}_{\mathrm{u}}=168 \mathrm{kips}$
For \# 4 stirrups @ 17" o.c., $V_{s}=\frac{A_{v} f_{y} d_{v}}{s}=\frac{0.4 \times 100 \times 37}{17}=87.1 \mathrm{kips}$
V_{s} in Eq. 5.8.3.5-1 cannot be $V_{u} / \phi=168 / 0.9=187 \mathrm{kips} \quad$ Hence, use $V_{s}=87.1 \mathrm{kips}$.
$T=\frac{M_{u}}{\phi d_{v}}+\left[\left(\frac{V_{u}}{\phi}\right)-0.5 V_{s}\right] \cot \theta=\frac{633 \times 12}{0.9 \times 37}+\left[\left(\frac{168}{0.9}\right)-0.5 \times 87.1\right] \cot (45)=371 \mathrm{kips}$
$l_{d b}=\max \left(\frac{1.25 A_{b} f_{y}}{\sqrt{f_{c}^{\prime}}}, 0.4 d_{b} f_{y}\right)=\max \left(\frac{1.25 \times 0.60 \times 100}{\sqrt{4}}, 0.4 \times 0.875 \times 100\right)=37.5^{\prime \prime}$
No modification factors are necessary; hence, $l_{d}=l_{d b}=37.5^{\prime \prime}>12 " \therefore l_{d}=38^{\prime \prime}$
As seen below, the available distance to develop the bar is 55 ", which is larger than $l_{d}=38$ ".
Therefore, $\mathrm{f}_{\mathrm{sx}}=\mathrm{f}_{\mathrm{y}}$

$T_{\text {provided }}=A_{s} f_{y}=(16 \times 0.79) 100=1264 k i p s>T=371$ kips \quad O.K.
(ii) Midspan
$\mathrm{M}_{\mathrm{u}}=2052 \mathrm{k}-\mathrm{ft}$ and $\mathrm{V}_{\mathrm{u}}=46 \mathrm{kips}$
For \# 4 stirrups @ 24 " o.c., $V_{s}=\frac{A_{v} f_{y} d_{v}}{s}=\frac{0.4 \times 100 \times 37}{24}=61.7 \mathrm{kips}$
V_{s} in Eq. 5.8.3.5-1 cannot be taken greater than $\mathrm{V}_{\mathrm{u}} / \phi=46 / 0.9=51 \mathrm{kips}$; hence, use $\mathrm{V}_{\mathrm{s}}=51 \mathrm{kips}$.

$$
T=\frac{M_{u}}{\phi d_{v}}+\left[\left(\frac{V_{u}}{\phi}\right)-0.5 V_{s}\right] \cot \theta=\frac{2052 \times 12}{0.9 \times 37}+\left[\left(\frac{46}{0.9}\right)-0.5 \times 51\right] \cot (45)=765 \mathrm{kips}
$$

At midspan, there is no concern about development length; hence, $\mathrm{f}_{\mathrm{sx}}=\mathrm{f}_{\mathrm{y}}$.

$$
T_{\text {provided }}=A_{s} f_{y}=(16 \times 0.79) 100=1264 \mathrm{kips}>T=765 \mathrm{kips} \quad O . K .
$$

(iii) Face of Bearing

$\mathrm{M}_{\mathrm{u}}=0$ and $\mathrm{V}_{\mathrm{u}}=168 \mathrm{kips}$ (Note: V_{u} is taken as the shear at d_{v} from the face of support.)
For \# 4 stirrups @ 17" o.c., $V_{s}=\frac{A_{v} f_{y} d_{v}}{s}=\frac{0.4 \times 100 \times 37}{17}=87.1 \mathrm{kips}$
V_{s} in Eq. 5.8.3.5-1 cannot be taken greater than $\mathrm{V}_{\mathrm{u}} / \phi=168 / 0.9=187 \mathrm{kips}$; hence, use $\mathrm{V}_{\mathrm{s}}=87.1$ kips.
$T=\frac{M_{u}}{\phi d_{v}}+\left[\left(\frac{V_{u}}{\phi}\right)-0.5 V_{s}\right] \cot \theta=0+\left[\left(\frac{168}{0.9}\right)-0.5 \times 87.1\right] \cot (45)=143 \mathrm{kips}$
$l_{d}=38^{\prime \prime}$
As seen below, the available distance to develop the bar is 21 ".

$f_{s x}=\left(\frac{l_{d, \text { available }}}{l_{d}}\right) f_{y}=\left(\frac{21}{38}\right) 100=55.2 \mathrm{ksi}$
$T_{\text {provided }}=A_{s} f_{s x}=(16 \times 0.79) 55.2=698 \mathrm{kips}>T=143 \mathrm{kips} \quad$ O.K.

[^0]: * Based on an example prepared as part of "Training Classes on AASHTO LRFD Bridge Specifications," ODOT, R.A. Miller

[^1]: *Based on an example from "LRFD Design of Cast-in-Place Concrete Bridges," ${ }^{\text {st }}$ Ed., Schneider, E.F. and Bhide, S.B. Portland Cement Association, Skokie, IL, 2006, 156 pages.

 K-5

