CAP POCKET PIPE THICKNESS— DERIVATION AND INFLUENCE OF DESIGN PARAMETERS

Cap Pocket Pipe Thickness-Derivation and Influence of Design Parameters

The following provides the derivations of the thickness of the steel pipe, $t_{\text {pipe }}$, for cap pocket connections. All variables are defined under Notation in the Final Report.
I. Derivation of $t_{\text {pipe }}$ equations
A. Derivation of general equation for $t_{\text {pipe }}$
B. Derivation of simplified equation for $t_{\text {pipe }}$ when the principal tension stress, p_{t}, in the joint is less than $0.11 \sqrt{f_{c}^{\prime}}$
C. Derivation of simplified equation for $t_{\text {pipe }}$ when the principal tension stress, p_{t}, in the joint is greater than or equal to $0.11 \sqrt{f_{c}^{\prime}}$
II. Influence of Design Parameters

I. Derivation of $\boldsymbol{t}_{\text {pipe }}$ equations

A. Derivation of General Equation for $\boldsymbol{t}_{\text {pipe }}$

Setting the nominal confining hoop force in the cap pocket joint region, $F_{H_{C P}}$, greater than or equal to the nominal hoop force for a cast-in-place joint, F_{H}, solve for $t_{\text {pipe }}$:

$$
\begin{align*}
& F_{H_{C P}}=t_{\text {pipe }} H_{p} f_{y p} \cos \theta \\
& t_{\text {pipe }} H_{p} f_{y p} \cos \theta \geq F_{H} \\
& t_{\text {pipe }} \geq \frac{F_{H}}{H_{p} f_{y p} \cos \theta} \tag{8.15.3.2.2-1}
\end{align*}
$$

Per Equation A-1, $t_{\text {pipe }}$ is also required to be 0.060 in. (16 gauge) or greater. This provides a reasonable minimum thickness that also matches the size used in test specimens.

B. Derivation of Simplified Equation for $\boldsymbol{t}_{\text {pipe }}$ (principal tension stress, $\boldsymbol{p}_{\boldsymbol{t}}$, in the joint less than $0.11 \sqrt{f_{c}^{\prime}}$)

From Eq. A-1:

$$
t_{\text {pipe }} \geq \frac{F_{H}}{H_{p} f_{y p} \cos \theta}
$$

In which:

$$
\begin{equation*}
F_{H}=n_{h} A_{s p} f_{y h} \tag{8.15.3.2.2-2}
\end{equation*}
$$

Also:

$$
n_{h}=\frac{H_{p}}{s}+1
$$

But n_{h} can be taken as:

$$
n_{h}=\frac{H_{p}}{s} k
$$

Where:

$$
k=\text { equivalence factor }
$$

As shown in Figures A-1 through A-6, k can be conservatively taken as 1.40 as assumed. Note that $k=1.40$ for Eqs. C8.15.3.2.2-1 and C8.15.3.2.2-2, based on a range of hoop sizes (\#3 to \#8), column diameters (24 in to 60 in), and area of column longitudinal reinforcement, relative to column area, $A_{s t} / A_{\text {col }}(0.01$ to 0.02$)$. This k value is more conservative as the diameter of the column increases. The average increase in required pipe thickness over the general equation is approximately 14% but varies from 5% to 33\%.

Substituting Eq. A-2 and Eq. A-3 into Eq. A-1 gives:

$$
\begin{align*}
& t_{\text {pipe }} \geq \frac{F_{H}}{H_{p} f_{y p} \cos \theta}=\frac{n_{h} A_{s p} f_{y h}}{H_{p} f_{y p} \cos \theta}=\frac{\frac{H_{p}}{s} k A_{s p} f_{y h}}{H_{p} f_{y p} \cos \theta} \\
& t_{\text {pipe }} \geq \frac{\frac{A_{s p}}{s} k f_{y h}}{f_{y p} \cos \theta}
\end{align*}
$$

By definition:

$$
\rho_{s}=\frac{4 A_{s p}}{D^{\prime} s}
$$

For $p_{t}<0.11 \sqrt{f_{c}^{\prime}}$:

$$
\rho_{s} \geq \frac{0.11 \sqrt{f_{c}^{\prime}}}{f_{y h}}
$$

Solving Eq. A-5 and A-6 for $\frac{A_{s p}}{s}$, gives

$$
\frac{A_{s p}}{s}=\frac{0.11 \sqrt{f_{c^{\prime}} D^{\prime}}}{4 f_{y h}}
$$

Substituting $\frac{A_{s p}}{s}$ from Eq. A-7 into Eq. A-4 and using $k=1.40$ gives:

$$
\begin{align*}
& t_{\text {pipe }} \geq \frac{\frac{A_{s p}}{s} k f_{y h}}{f_{y p} \cos \theta}=\frac{\frac{0.11 \sqrt{f_{c}^{\prime} D^{\prime}}}{4 f_{y h}} k f_{y h}}{f_{y p} \cos \theta}=\frac{\frac{0.0385 \sqrt{f_{c} D^{\prime}} D^{\prime}}{f_{y h}} f_{y h}}{f_{y p} \cos \theta} \\
& t_{\text {pipe }} \geq \frac{0.04 \sqrt{f_{c} D^{\prime}}}{f_{y p} \cos \theta}
\end{align*}
$$

(C8.15.3.2.2-1)

C. Derivation of Simplified Equation for $\boldsymbol{t}_{\text {pipe }}$ (principal tension stress, $\boldsymbol{p}_{\boldsymbol{t}}$, in the joint greater than or equal to $0.11 \sqrt{\boldsymbol{f}_{\boldsymbol{c}}^{\prime}}$)

From Eq. A-4:

$$
t_{\text {pipe }} \geq \frac{\frac{A_{s p}}{s} k f_{y h}}{f_{y p} \cos \theta}
$$

For $p_{t} \geq 0.11 \sqrt{f_{c}^{\prime}}$:

$$
\rho_{s} \geq \frac{0.40 A_{s t}}{l_{a c}{ }^{2}}
$$

Solving Eq. A-5 and A-9 for $\frac{A_{s p}}{s}$:

$$
\frac{A_{s p}}{s}=\frac{0.40 A_{s t} D^{\prime}}{4 l_{a c}{ }^{2}}
$$

Plugging in Eq. A-10 and $k=1.40$ into Eq. A-4 gives:

$$
\begin{align*}
& t_{\text {pipe }} \geq \frac{\frac{A_{s p}}{s} k f_{y h}}{f_{y p} \cos \theta}=\frac{0.1 A_{s t} D^{\prime} k f_{y h}}{l_{a c}{ }^{2} f_{y p} \cos \theta} \\
& t_{\text {pipe }} \geq \frac{0.14 A_{s t} D^{\prime} f_{y h}}{l_{a c}{ }^{2} f_{y p} \cos \theta}
\end{align*}
$$

Note: In practice, the larger pipe thickness based on Eq. A-8 and Eq. A-11 is used.

II. Influence of Design Parameters

Figures A-1, A-3, and A5 compare the pipe thickness required by Eq. 8.15.3.2.2-1, Eq. C8.15.3.2.2-1, and Eq. C8.15.3.2.2-2. Column diameters range from 24 in to 60 in, equivalent hoop sizes vary according to the column diameter, and the column is assumed to have a longitudinal steel ratio, $A_{s t} / A_{\text {col }}$, or 0.015 . These figures reveal: 1) using the general (more accurate) equation always results in the thinnest required pipe; 2) using the approximate equations (larger of the two) usually results in a pipe thickness one gage size larger than that required by the general equation, assuming gage sizes given in Table 3-2 of the Final Report; 3) a reasonable pipe thickness results in all cases; and 4) Eq. C8.15.3.2.2-1 governs over Eq. C8.15.3.2.2-2 for all but the largest column diameter (60 in).

Figures A-2, A-4, and A6 compare the pipe thickness for varying column longitudinal steel ratios, $A_{\text {st }} / A_{\text {col }}$, of $0.010,0.015$, and 0.020 . The figures show the significant impact of $A_{s t} / A_{\text {col }}$ on required pipe thickness. It also shows that Eq. C8.15.3.2.2-2 results in thick gage pipes for larger columns, indicating that the designer may prefer to use the general equation in such conditions to minimize the required pipe size.

Figures A-2, A-4 and A-6 also show the change in pipe thickness for f_{c}^{\prime} of 4000 psi , 6000 psi, and 8000 psi. The required pipe thickness increases approximately $10 \%-30 \%$ with f_{c}^{\prime} based on Eqs. C8.15.3.2.2-1 and C8.15.3.2.2-2. For example, for a 36-in diameter column with \#6 hoops ($A_{s t} / A_{\text {col }}=0.015$), the pipe thickness increases 18% as f_{c}^{\prime} increased from 4000 psi to 8000 psi. Eq. C8.15.3.2.2-1 results in a larger increase of 41% (proportional to $\sqrt{f_{c}^{\prime}}$).

Eq. C8.15.3.2.2-2 is not dependent on f_{c}^{\prime}.

Figure A-1. Pipe Thickness vs. Column Diameters and Equivalent CIP Hoop Size

Figure A-2. Pipe Thickness vs. Column Diameter and Column Flexural Reinforcement Ratio (\#6 Hoop, $f^{\prime}{ }_{c}=4000$ psi for bent cap)

Figure A-3. Pipe Thickness vs. Column Diameters and Equivalent CIP Hoop Size

Figure A-4. Pipe Thickness vs. Column Diameter and Column Flexural Reinforcement Ratio (\#6 Hoop, $f^{\prime}{ }_{c}=6000$ psi for bent cap)

Figure A-5. Pipe Thickness vs. Column Diameters and Equivalent CIP Hoop Size

Figure A-6. Pipe Thickness vs. Column Diameter and Column Flexural Reinforcement Ratio (\#6 Hoop, $f^{\prime}{ }_{c}=8000$ psi for bent cap)

Page 7 of 7

