DE Attachments

Design Examples

- Attachment DE1: SDC A Design Flow Chart
 - Flow chart for design of precast bent cap connections in SDC A
- Attachment DE2: SDC A Design Example—Grouted Duct Connection
 - o Design example for grouted duct connection in SDC A (minimum joint reinforcement)
- Attachment DE3: SDC A Design Example—Cap Pocket Connection
 - o Design example for cap pocket connection in SDC A (minimum joint reinforcement)
- Attachment DE4: SDCs B, C, and D Design Flow Chart
 - o Flow chart for design of precast bent cap connections in SDCs B, C, and D
- Attachment DE5: SDC B Design Example—Grouted Duct Connection
 - o Design example for grouted duct connection in SDC B (minimum joint reinforcement)
- <u>Attachment DE6</u>: SDC B Design Example—Cap Pocket Connection
 - o Design example for cap pocket connection in SDC B (minimum joint reinforcement)
- Attachment DE7: SDCs C and D Design Example—Grouted Duct Connection
 - o Design example for grouted duct connection in SDCs C and D (additional joint reinforcement)
- Attachment DE8: SDCs C and D Design Example—Cap Pocket Connection
 - o Design example for cap pocket connection in SDCs C and D (additional joint reinforcement)
- Attachment DE9: SDCs C and D Design Example—Hybrid Connection
 - Design example for hybrid connection in SDCs C and D
- Attachment DE10: SDCs C and D Design Example—Integral Connection
 - o Design example for integral connection in SDCs C and D

DESIGN FLOW CHART FOR CAST-IN-PLACE AND PRECAST BENT CAP JOINT DESIGN PER PROPOSED ARTICLE 8.13 (SDC A)

PROJECT	DESIGN EXAMPLES	SHEET NO	1	OF	5	
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009	
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009	
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUTED DUCT BENT CAP JOINT DESIGN EXAMPLE - SDC A						

Grouted Duct Joint Design Example For SDC A

AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS)

An SDC A grouted duct connection between a column and a precast bent cap is not expected to be subjected to significant seismic demand. Therefore, the joint stresses in the connection are not checked; however, limited joint shear reinforcement is required. This SDC A design example applies to a T-joint of a rectangular, nonintegral precast bent cap supported by circular columns. The applicable commentary sections in the AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) provide additional background.

AASHTO LRFD Construction Specifications (BCS)

Note: 1. The provisions of 8.13.1 apply to all levels within SDC A, but where S_{D1} is less than 0.10, the designer has the option of using alternative precast bent cap connections such as those detailed in Matsumoto et al., 2001.

Geometry and Design Parameters

 f_c = 4.0 ksi (specified compressive strength of bent cap)

 $f'_{ce} = 1.3f'_{c} = 5.2 \text{ ksi (expected } f'_{c} \text{ of bent cap)}$

 $f'_{cg} = 7.5$ ksi (specified compressive strength of grout)

Check: $f'_{cg} \ge max[1.25(f'_{ce}+0.5)=7 \text{ ksi, 6 ksi})]$ OK per BCS 8.13.8.3.2a

 $f_y = 60$ ksi (yield stress of column bars)

 $f_{yh} = 60 \text{ ksi}$ (yield stress of hoops)

Bent cap width = 5.25 ft (B_{cap})

Bent cap height = 5.00 ft (D_s)

Stirrup bar size: #6

Column diameter = 4.0 ft (D_c)

 $A_{st} = 25.4 \text{ in}^2 \quad (#10 \text{ Tot } 20)$

Hoop bar size: #6 Hoop spacing = 4.0 in

Typical cap section within D_c from face of column. **Note:** Bent cap reinforcement shown reflects that required by load combinations before application of joint shear design requirements.

Joint Performance

SGS 8.13.1

,

Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases. The bent cap section capacity is not investigated in this design example.

Joint Proportioning (Minimum Development Length)

8.13.2.2

SGS

Eq. 8.15.2.2.2-1

 $l_{ac} \ge \frac{2d_{bl} f_y}{f'_{cg}}$

(modified)

PROJECT	DESIGN EXAMPLES	SHEET NO	2	OF	5
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

$$\begin{array}{lll} d_{bl} = & 1.27 & in & (\#10 \ rebar) \\ f_y = & 60 & ksi & (Article 8.13.2.2 \ permits \ use \ of \ f_y \ instead \ of \ f_{ye}) \\ f'_{cg} = & 7.0 & ksi & = min \ (7.5 \ ksi, \ 7.0 \ ksi) \ per \ Article \ 8.15.2.2.2 \end{array}$$

$$l_{ac} = 21.8$$
 in (minimum)

Extend column reinforcement as far as practically possible; assume 3" clear from opposite face.

$$l_{ac} = D_s - 3'' = 5.0 \text{ ft x } 12''/\text{ft - 3''} = 57.0 \text{ in}$$

57.0 in \geq 21.8 in minimum OK Extend to top face of cap less 3 in cover.

Minimum Joint Reinforcing

8.13.3.2.1

SGS

Transverse reinforcement in the form of hoops will be placed to encompass the ducts and thereby satisfy the minimum joint reinforcement requirement. The size and spacing of this reinforcement is determined by applying the provisions of Article 8.13.3.2.1 and Eq. 8.15.3.1-1.

Calculate required volumetric ratio of transverse joint reinforcement:

$$\rho_s \ge 0.11 \, \sqrt{f'_c} \, / \, f_{yh} \ge 0.0037$$

Eq. 8.15.3.1-1

$$\rho_s \ge 0.004$$

Assume transverse reinforcement in the joint is the same size as the column plastic hinging region transverse reinforcement.

$$\begin{split} \rho_s &= \frac{4A_{sp}}{D'_{gd}\,s} \\ A_{sp} &= \quad 0.44 \quad \text{in}^2 \qquad \text{(\#6 hoop)} \\ D'_{gd} &= \quad 45.92 \quad \text{in} \qquad \text{(confined diameter of column between centroids of \#6 hoop)} \\ s &= \quad 10.0 \quad \text{in} \qquad \text{(trial spacing of transverse reinforcement hoops, } 12" \text{ or } 0.3D_s \\ &= \quad \text{maximum per Art. } 8.13.3.2.1) \end{split}$$

D'_{gd} = Column diameter - clear cover x 2 - hoop diameter - long. column reinf diameter + grouted duct inside diameter + corrugation amplitude x 2.

$$D'_{gd} = 48.0" - 2" \times 2 - 0.88" - 1.44" + 4" + 0.12" \times 2 = 45.92$$
 in (deformed diameters are used for clearance calculations)

 ρ_s = 0.0038 \geq 0.0037 minimum OK 10" spacing is adequate (Note: Common practice is to carry hoop spacing from column into cap, or s=4" in this case.)

Actual even spacing is 9.37 inches, total 6 hoops.

PROJECT	DESIGN EXAMPLES	SHEET NO	3	OF	5
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Nonintegral Bent Cap Joint Shear Design Vertical Stirrups Inside the Joint Region SGS 8.13.4 SGS 8.13.4.2.2a

$$A_s^{jvi} \ge 0.08 A_{st}$$
 Eq. 8.13.4.2.2a-1

$$A_{st} = 25.40 \text{ in}^2$$

$$A_s^{jvi} \ge 2.03 \text{ in}^2$$

Use #6 single U stirrups Tot 3 patterns placed evenly through joint

$$A_s^{jvi}$$
 = 3 patterns x 2 legs / pattern x 0.44 in² / leg = 2.64 in² \geq 2.03 in² OK

Note: Three patterns are required and used. The minimum number of stirrups is two, per Article 8.13.4.2.2a, and the bar size is no smaller than what is used in the bent cap shear stirrups. If only two stirrups were required, three may be used to reduce the spacing between stirrups to satisfy temperature and shrinkage requirements for side faces of the bent cap per AASHTO LRFD Article 5.10.8.

Bedding Layer Reinforcement

SGS 8.13.4.2.1

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below, and resulting center to center spacing of transverse reinforcement is 4" throughout, in accordance with Article 8.8.14.

Figures Showing Final Design

Elevation View at Column Connection

PROJECT	DESIGN EXAMPLES	SHEET NO	4	OF	5
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Typical Section through Joint

Simplified Section at Column Edge

PROJECT	DESIGN EXAMPLES	SHEET NO	5	OF	5		
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009		
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009		
SUBJECT AASHTO SEISMIC CHIDE SDECIEICATIONS NONINTEGRAL GROUTED DUCT BENT CAD JOINT DESIGN EVANDLE SDCA							

Plan View at Column Connection

For additional details, see Figures 8.13.4.2.2-1, 8.13.4.2.2-2, and 8.13.4.2.2-3 in the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

PROJECT	DESIGN EXAMPLES	SHEET NO	1	OF	6
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Cap Pocket Joint Design Example For SDC A

An SDC A cap pocket connection between a column and a precast bent cap is not expected to be subjected to significant seismic demand. Therefore, the joint stresses in the connection are not checked; however, limited joint shear reinforcement is required. This SDC A design example applies to a T-joint of a rectangular, nonintegral precast bent cap supported by circular columns. The applicable commentary sections in the AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) provide additional background.

Note: 1. The provisions of 8.13.1 apply to all levels within SDC A, but where SD1 is less than 0.10, the designer has the option of using alternative precast bent cap connections such as those detailed in Matsumoto et al., 2001.

AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS)

AASHTO LRFD Construction Specifications (BCS)

Geometry and Design Parameters

 $f_c = 4.0$ ksi (specified compressive strength of bent cap)

 $f'_{ce} = 1.3f'_{c} = 5.2$ ksi (expected f'_{c} of bent cap)

 $f^{\prime}_{\text{c_pocket}}\!\!:$ (specified compressive strength of pocket fill)

Select cap pocket strength to satisfy BCS.

 $f_{c_pocket} = 1.3 f_c + 0.5 ksi = 5.7 ksi (BCS 8.13.8.3.3a)$

 f_{yh} (yield strength of equivalent hoop) f_{yp} (nominal yield stress of steel pipe)

θ (angle between horizontal axis of cap and pipe helical corrugation

or lock seam)

 $f_y = 60 \text{ ksi}$ (yield stress of column bars)

Bent cap width = 5.25 ft (B_{cap})

Bent cap height = 5.00 ft (D_s)

Stirrup bar size: #6

Column diameter = 4.0 ft (D_c)

 $A_{st} = 25.4 \text{ in}^2$ (#10 Tot 20)

Hoop bar size: #6 Hoop spacing = 4.0 in

Typical cap section within D_c from face of column. **Note:** Bent cap reinforcement shown reflects that required by load combinations before application of joint shear design requirements.

Joint Performance

SGS

8.13.1

Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases. The bent cap section capacity is not investigated in this design example.

PROJECT DESIGN	N EXAMPLES		SHEET NO	2	OF	6
PROJECT NO NCHRP	12-74		DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT SACRA	MENTO STATE L	NIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009
SUBJECT AASHTO SEISMIC	GUIDE SPECIFIC	CATIONS NONINTEGRAL CAP	POCKET BENT CAP JOINT DE	SIGN EXAMPLE - SD	C A	
Joint Proportioning (Minimum De	velopment Length)				SGS 8.13.2.2
$l_{ac} \ge \frac{2.3d_{bl} f_y}{f'_{c}}$						
$\mathbf{f'}_{\mathbf{c}}$					Eq.	8.15.2.2.2-2
$d_{bl} = 1.27$ $f_{y} = 60$ $f'_{c} = 5.7$	ksi (A ksi (ca		ee of f _y instead of f _{ye}) min (5.7 ksi, 7.0 ksi) per	· Article 8.15.2.2.2	2	(modified)
$l_{ac} = 30.7$ i	n (minin	ium)				
Extend column	n reinforceme	nt as far as practically po	ssible, assume 3" clear f	rom opposite fac	e.	
$l_{ac} = D_s - 3'' = 5$.0 ft x 12"/ft -	3" = 57.0 in				
57.0 in	≥ 30.7 in	minimum OK	Extend to top face of	cap less 3 in cove	r.	
Minimum Joint Reinfo	orcina					SGS
8.15.3.2.2-1 and Ed	q. 8.15.3.2.2-2	l corrugated steel pipe co This more involved cald les a more conservative v	culation can be replaced	-	-1,	8.13.3.2.2
Calculate required	volumetric ra	tio of transverse joint re	inforcement:			
$ \rho_s \ge 0.11 \sqrt{f_c} $	f_{yh}				Eq.	8.15.3.1-1
$\rho_s \ge 0.004$						
	ed steel pipe. column reinfo	io to calculate the requir Use a unit length of 1 foo rcement pattern.				SGS 8.15.3.2.2
$A_{sp} = D'_{cp} = \Delta$	0.44 in ²	•	atch column transverse of column between correstatio)	-	walls)	
		D' _{cp}	Corrugated s	teel pipe		

 ${\rm D'_{cp}}$ = Nominal inside diameter of corrugated pipe + average wall corrugation width.

 $s = 9.9 \quad \text{in max spacing} \\ Therefore, the number of equivalent hoops per foot is 12" / s = 1.216 \quad hoops/ft$

PROJECT	DESIGN EXAMPLES	SHEET NO	3	OF	6
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Calculate the nominal confining hoop force of the equivalent hoops.

$$F_{H} = n_{h} A_{sp} f_{yh}$$
 Eq. 8.15.3.2.2-2
$$n_{h} = 1.216 \text{ ea} \qquad \text{(number of equivalent hoops per unit length)}$$

$$A_{sp} = 0.44 \text{ in}^{2} \qquad \text{(area of \#6 equivalent hoop)}$$

$$f_{yh} = 60.0 \text{ ksi} \qquad \text{(yield strength of equivalent hoop)}$$

$$F_H = 32.11 \text{ kips/ft}$$

Calculate the thickness of the corrugated steel pipe that provides the same nominal confinement as standard hoop reinforcement.

$$t_{pipe} \ge \max \left\{ \frac{F_H}{H_p f_{yp} \cos \theta} \right.$$
 Eq. 8.15.3.2.2-1

$$\begin{array}{lll} F_{H} = & 32.1 & kips/ft \\ H_{p} = & 12.0 & in/ft & (specified unit length) \\ f_{yp} = & 30.0 & ksi & (manufacturer specified) \\ \theta = & 20.0 & deg & (manufacturer specified) \end{array}$$

$$t_{pipe} \ge 0.0949$$
 in

Use a 12 gage corrugated steel pipe, 48" nominal inside diameter. $t_{pipe} = 0.105$ in

As a check, compare t_{pipe} from the simplified Eq. C8.13.3.2.2-1 to that from Eq. 8.15.3.2.2-1:

$$t_{pipe} \ge 0.04 \frac{D'_{cp} \sqrt{f'_{c}}}{f_{vp} \cos \theta} = 0.1381 \text{ in } \text{ and } \ge 0.06 \text{ in}$$
 (Note: f'_{c} refers to cap pocket) Eq. C8.13.3.2.2-1

If the refined equation (Eq. 8.15.3.2.2-1) is not used, the simplified equation may be used because it provides a more conservative value. Note that the thickness of 0.1381" from Eq. 8.13.3.2.2-1 is considerably larger than the 0.0949" calculated from the refined equation. Use of the refined equation reduces the required pipe thickness, especially for larger diameter pipes.

		011555 110	4		6
	DESIGN EXAMPLES	SHEET NO	4	OF	6
	NO NCHRP 12-74	_ DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIE	NT SACRAMENTO STATE UNIV.	_ CHECKED BY	E. MATSUMOTO	DATE	11/9/2009
BJECT AAS	HTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL CAP P	OCKET BENT CAP JOINT D	ESIGN EXAMPLE - SD	OC A	
Nonintegra	l Bent Cap Joint Shear Design				SGS
Voution	I Ctiumung Ingida tha Iaint Dagian				8.13.4 SGS
vertica	l Stirrups Inside the Joint Region				8.13.4.2.3a
A_{-}^{jv}	$\geq 0.08 \; A_{st}$			Ea	8.13.4.2.3a-1
11 _S	= 0.00 Tist			Eq.	0.13.1.2.34 1
	$A_{\rm st} = 25.40 \text{im}^2$				
A_s^{jv}	\geq 2.03 in ²				
Use #6	double U stirrups, Tot 3 patterns placed evenly thre	ough joint.			
	A_s^{jvi} = 3 patterns x 2 legs/ pattern x 0.44 in ² / leg =	$= 2.64 \text{ in}^2 \ge 2.$	03 in ² OK		
Note:	Three patterns are required and used. The minim 8.13.4.2.2a, and the bar size is no smaller than wh two stirrups were required, three may be used to temperature and shrinkage requirements for side 5.10.8.	at is used in the bent or reduce the spacing be	cap shear stirrups tween stirrups to	. If only satisfy	
Beddin	g Layer Reinforcement				SGS
					8.13.4.2.1

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below and resulting center to center spacing of transverse reinforcement is 4" throughout, in accordance with Article 8.8.14.

Figures Showing Final Design

PROJECT	DESIGN EXAMPLES	SHEET NO	5	OF	6
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Typical Section through

Simplified Section at Column Edge

PROJECT	DESIGN EXAMPLES	SHEET NO	6	OF	6
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Plan View at Column Connection

For additional details, see Figures 8.13.4.2.3-1, 8.13.4.2.3-2, and 8.13.4.2.3-3 in the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

DESIGN FLOW CHART FOR CAST-IN-PLACE AND PRECAST BENT CAP JOINT DESIGN PER PROPOSED ARTICLE 8.15 (SDCs C AND D) AND ARTICLE 8.14 (SDC B)*

^{*}Articles referenced in flow chart are for SDCs C and D; alternate article references for SDC B are shown italicized following the related SDCs C and D reference as applicable.

PROJECT	DESIGN EXAMPLES	SHEET NO	1	OF	7		
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009		
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009		
LIBIECT AASHTO SEISMIC GLIDE SPECIFICATIONS NONINTEGRAL GROUTED DUCT BENT CAP JOINT DESIGN EXAMPLE - SDC B							

Grouted Duct Joint Design Example For SDC B

An SDC B grouted duct connection between a column and a precast bent cap is designed to produce performance similar to an SDC B cast-in-place connection; however, it is required that the principal stress in the connection be checked. This SDC B design example applies to a T-joint of a rectangular, nonintegral precast bent cap supported by circular columns for which the principal tensile stress in the connection does not exceed $0.11\sqrt{f}c$. The applicable commentary sections in the AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) provide additional background.

Notes: 1. When the principal tensile stress exceeds the specified limit, the joint design follows the procedure found in the corresponding SDC C and D design example. 2. Knee joints such as that represented in C8.15.1 are not addressed in the current SGS, and special design provisions should be identified by the designer.

Geometry and Design Parameters

 f_c = 4.0 ksi (specified compressive strength of bent cap)

 $f_{ce} = 1.3f_{c} = 5.2 \text{ ksi (expected } f_{c} \text{ of bent cap)}$

 $f_{cg} = 7.5$ ksi (specified compressive strength of grout)

Check: f'_{cg} (ksi) $\geq \max[1.25(f'_{ce}+0.5)=7.0, 6.0)]$

OK per BCS 8.13.8.3.2a

 $f_y = 60 \text{ ksi}$ (yield stress of column bars)

 $f_{ye} = 68 \text{ ksi}$ (expected yield stress)

 $f_{yh} = 60 \text{ ksi}$ (yield stress of hoops)

Bent cap width = 5.25 ft (B_{cap})

Bent cap height = 5.00 ft (D_s)

Stirrup bar size: #6

Column diameter = 4.0 ft (D_c)

 $A_{st} = 25.4 \text{ in}^2$ (#10 Tot 20)

Hoop bar size: #6 Hoop spacing = 4.0 in

Typical cap section within D_c from face of column. **Note:** Bent cap reinforcement shown reflects that required by load combinations before application of joint shear design requirements.

Joint Performance

SGS 8.14.1

Column sections (possibly governed by load cases other than Extreme Event (seismic) load case for SDC B) are analyzed to determine the idealized plastic moment capacity, M_p . Connections are designed for the lesser of two forces: 1) those produced by the column plastic hinging overstrength moment capacity, M_{po} , or 2) unreduced elastic seismic moment in a column (i.e., the ultimate moment demand for seismic load combination, M_u). In the case where M_u exceeds M_p but not M_{po} , M_{po} is conservatively used for design because significant plastic hinging may develop. See Article 8.5 and C8.14.1 for further discussion.

Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases and capacity protection during Extreme Event load cases. The bent cap section capacity is not investigated in this design example.

AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS)

AASHTO LRFD Construction Specifications (BCS)

PROJECT	DESIGN EXAMPLES	SHEET NO	2	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Determine the idealized plastic moment capacity of the column, M_p , using section analysis program such as xSECTION, and compare to the ultimate seismic moment demand, M_p .

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUTED DUCT BENT CAP JOINT DESIGN EXAMPLE - SDC B

Axial load acting on column per extreme event load case = 820.0 kips (P_c) f'_{ce} (expected concrete compressive strength) = $1.3 \text{ x } f'_c$ 5.2 ksi f_{ye} (expected steel yield stress) = 68 ksi

 $M_p = 3769 \text{ kip-ft}$ SGS 8.5

Ultimate moment demand in column under seismic load combination, M_u = 2411 kip-ft (given)

3769 kip-ft ≥ 2411 kip-ft

Design moment for joint proportioning = 2411 kip-ft

Note: This case shows the ultimate seismic moment demand, M_u , to be less than M_p ; therefore, M_u is used for design. If M_u had been greater than M_p , the plastic overstrength moment capacity, M_{po} , would be determined per Eq. 8.5-1 and used for design.

Joint Proportioning

Joint proportioning for SDC B follows the provisions of Article 8.15.2 for SDCs C and D.

Principal stresses in the joint are limited by the following equations:

Principal compression, p_c : $p_c \le 0.25 f_c$ = 1.00 ksi maximum Principal tension, p_t : $p_t \le 0.38 \sqrt{f_c}$ = 0.76 ksi maximum

$B_{cap} =$	63.0	in	(7.0 ft x 12"/ft)
$D_c =$	48.0	in	(5.0 ft x 12"/ft)
$D_s =$	60.0	in	(6.25 ft x 12"/ft)
$l_{ac} =$	57.0	in	Note 1
$P_c =$	820.0	kips	
$P_b =$	0	kips	Note 2
h =	4.66	ft	Note 3
$M_{po} =$	2411	kip-ft	Note 3

SGS

8.4.4

SGS

8.14.2

Notes:

- 1) Length of column longitudinal rebar extended into cap. See calculations on Sheet 3.
- 2) No prestressing in section.
- 3) Not necessarily $M_{\rm po}$, but that determined from 8.14.1. Tension in column longitudinal rebar may also be derived from sectional analysis.

PROJECT DESIGN EXAMPLES	SHEET NO		3	OF	7
PROJECT NO NCHRP 12-74	DESIGNED BY	M.	STILLER	DATE	11/6/2009
CLIENT SACRAMENTO STATE UNIV.	CHECKED BY	E. MA	TSUMOT	o DATE	11/9/2009
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GR	OUTED DUCT BENT CAP JOIN	T DESIG	GN EXAMI	PLE - SDC B	
$p_{t} = \left \left(\frac{f_{h} + f_{v}}{2} \right) - \sqrt{\left(\frac{f_{h} - f_{v}}{2} \right)^{2} + v^{2}_{jv}} \right = \left \left(\frac{0.0 + 0.121}{2} \right) - \sqrt{\frac{f_{h} - f_{v}}{2}} \right $		= (0.096 k	si Eq.	8.15.2.1-3
$p_{c} = \left(\frac{f_{h} + f_{v}}{2}\right) + \sqrt{\left(\frac{f_{h} - f_{v}}{2}\right)^{2} + v^{2}_{jv}} = \left(\frac{0.0 + 0.121}{2}\right) + \sqrt{\frac{f_{h} - f_{v}}{2}} + \sqrt{\frac{f_{h} - f_{$	$\left(\frac{0.0 - 0.121}{2}\right)^2 + 0.144^2$	= (0.216 k	si Eq.	8.15.2.1-4
$v_{jv} = T_c / A_{jv}$ = 517 k / 3591.0 in	2	= (0.144 k	si Eq.	8.15.2.1-5
$A_{jv} = l_{ac}B_{cap}$ = 57.0 in x 63.0 in		= 3	591.0 ir	n ² Eq.	8.15.2.1-6
$f_v = P_c / A_{jh}$ = 820 k / 6804 in ²		= (0.121 k	si Eq.	8.15.2.1-7
$A_{jh} = (D_c + D_s) B_{cap}$ = (48.0 in + 60.0 in)	x 63.0 in	= 6	804.0 ir	n ² Eq.	8.15.2.1-8
$f_h = \frac{P_b}{B_{cap}D_s}$ = 0.0k/(63.0 in x 6)	0.0 in)	=	0.0 k	si Eq.	8.15.2.1-9
$T_c = M_{po} / h$ = 2411 kip-ft / 4.66	ft	=	517 k	ips Eq.	8.15.2.1-10
p_c = 0.216 ksi \leq 1.00 ksi maximum OK p_t = 0.096 ksi \leq 0.76 ksi maximum OK	Joint proportions are on principal stress re	_		sed	
Minimum Development Length of Column Longitudin	nal Reinforcement				SGS 8.15.2.2
$l_{ac} \ge \frac{2d_{bl} f_{ye}}{f'_{cg}}$				Eq.	8.15.2.2.2-1
$d_{bl} = 1.27$ in (#10 rebar)					

 $l_{ac} = 24.7$ in (minimum)

ksi

ksi

Extend column reinforcement as far as practically possible, assume 3" clear from opposite face.

= min (7.5 ksi, 7.0 ksi) per Article 8.15.2.2.2

 $l_{ac} = D_s - 3'' = 5 \text{ ft x } 12''/\text{ft - 3''}$ 57.0 in

57.0 in \geq 24.7 in minimum OK Extend to top face of cap less 3 in cover.

SGS 8.14.3

Minimum Joint Shear Reinforcing for Precast Bent Cap Connections

Where the principal tension in the joint is less than $0.11\sqrt{f_c}$ and joint proportioning is acceptable per Article 8.14.2 (8.15.2), the provisions of Article 8.14.5.2.2a for A_s^{jvi} and should reference Eq. 8.15.3.1-1 for ρ_s are to be satisfied. However, other joint reinforcing (A_s^{jvo} , A_s^{jl} , and horizontal J-bars) is not required.

PROJECT	DESIGN EXAMPLES	SHEET NO	4	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Check if principal tension, p_t , is $\ge 0.11\sqrt{f_c}$ (condition for likely joint cracking)

Calculated tension =
$$0.096$$
 ksi
Limit, $0.11\sqrt{f'_c}$ = 0.220 ksi

$$p_t = 0.096$$
 ksi ≤ 0.220 ksi limit A_s^{jvi} joint reinf. provisions of Article 8.14.5.2.2a apply.

Calculate required volumetric ratio of transverse joint reinforcement:

$$\rho_{\rm s} \ge 0.11 \sqrt{f_{\rm c}} / f_{\rm yh}$$
 Eq. 8.15.3.1-1

$$\rho_s \ge 0.0037$$

Assume transverse reinforcement in the joint is the same size as the column plastic hinging region transverse reinforcement.

$$\rho_{\rm s} = \frac{4A_{\rm sp}}{D'_{\rm gd}\,\rm s}$$

 $A_{sp} = 0.44 \text{ in}^2$ $D'_{gd} = 45.92 \text{ in}$ s = 10.0 in

(#6 hoop)

(confined diameter of column between centroids of #6 hoop) (trial spacing of transverse reinforcement hoops; spacing not to exceed 12" or $0.3D_s$ per Art. 8.15.3.2.1)

 D'_{gd} = Column diameter - clear cover x 2 - hoop diameter - long. column reinf diameter + grouted duct inside diameter + corrugation amplitude x 2.

$$D'_{gd} = 48.0" - 2" \times 2 - 0.88" - 1.44" + 4" + 0.12" \times 2 = 45.92 \quad in$$
 (deformed diameters are used for clearance calculations)

 $\rho_s = 0.0038 \ge 0.0037 \text{ minimum}$

OK 10" spacing is adequate (Note: Common practice is to carry hoop spacing from column into cap, or s=4" in this case.)

Actual even spacing is 9.37 inches, total 6 hoops.

Nonintegral Bent Cap Joint Shear Design

SGS 8.14.5

The depth of the cap with respect to the column diameter determines the method of joint shear design. When the following equation is satisfied, the joint shear design provisions of 8.14.5.2 apply. If the equation below is not satisfied, Strut-and-Tie model provisions of AASHTO LRFD Bridge Design Specifications apply.

$$D_c \le d \le 1.25D_c$$

$$D_c = 48.0 \text{ in}$$

 $d = 60.0 \text{ in}$

48.0 in \leq 60.0 in \leq 60.0 in OK Provisions of 8.14.5.2 apply

PROJECT	DESIGN EXAMPLES	SHEET NO	5	OF	7	
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009	
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009	
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUTED DUICT BENT CAP JOINT DESIGN EXAMPLE - SDC B						

Vertical Stirrups Inside the Joint Region

SGS

8.14.5.2.2a

$$A_s^{jvi} \ge 0.10 A_{st}$$

Eq. 8.14.5.2.2a-1

 $A_{st} = 25.40 \text{ in}^2$

$$A_s^{jvi} \ge 2.54 \text{ in}^2$$

Use #6 double U stirrups, Tot 3 patterns placed evenly through joint. Note that spacing may vary slightly to avoid conflict with grouted ducts.

$$A_s^{jvi}$$
 = 3 patterns x 2 legs / pattern x 0.44 in²/ leg = 2.64 in² \geq 2.54 in² OK

Note: The minimum number of stirrups is two, per Article 8.14.5.2.2a with a bar size no smaller than that used for bent cap stirrups.

Bedding Layer Reinforcement

SGS

8.14.5.2.1

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below, and resulting center to center spacing of transverse reinforcement is 4" throughout, in accordance with Article 8.8.14.

Figures Showing Final Design

Elevation View at Column Connection

PROJECT	DESIGN EXAMPLES	SHEET NO	6	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Simplified Section at Column Edge

PROJECT	DESIGN EXAMPLES	SHEET NO	7	OF	7	
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009	
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009	
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUTED DUCT BENT CAP JOINT DESIGN EXAMPLE - SDC B						

Plan View at Column Connection

For additional details, see Figures 8.14.5.2.2-1, 8.14.5.2.2-2, and 8.14.5.2.2-3 in the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

PROJECT	DESIGN EXAMPLES	SHEET NO	1	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Cap Pocket Joint Design Example For SDC B

An SDC B cap pocket connection between a column and a precast bent cap reinforces the joint by means of a helical lock-seam, corrugated steel pipe, eliminating conventional hoops and J-bars. This SDC B design example applies to a T-joint of a rectangular, nonintegral precast bent cap supported by circular columns for which the principal tensile stress in the connection does not exceed $0.11\sqrt{f}$ c. The applicable commentary sections in the AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) provide additional background.

Notes: 1. When the principal tensile stress exceeds the specified limit, the joint design follows the procedure found in the corresponding SDC C and D design example. 2. Knee joints such as that represented in C8.15.1 are not addressed in the current SGS, and special design provisions should be identified by the designer.

AASHTO
Guide
Specifications
for LRFD
Seismic
Bridge Design
(SGS)

AASHTO LRFD Construction Specifications (BCS)

Geometry and Design Parameters

f'c = 4.0 ksi (specified compressive strength of bent cap)

 $f_{ce} = 1.3f_{c} = 5.2$ ksi (expected f_{c} of bent cap)

 f'_{c_pocket} : (specified compressive strength of pocket fill)

Select cap pocket strength to satisfy BCS.

$$f'_{c_pocket} = 1.3 f'_{ce} + 0.5 ksi = 5.7 ksi (BCS 8.13.8.3.3a)$$

 f_{yh} (yield stress of equivalent hoop)

 f_{yp} (nominal yield stress of steel pipe)

θ (angle between horizontal axis of cap and pipe helical corrugation or lock seam)

 $f_y = 60 \text{ ksi}$ (yield stress of column bars)

 $f_{ye} = 68 \text{ ksi}$ (expected yield stress of column bars)

Bent cap width = 5.25 ft (B_{cap}) Bent cap height = 5.00 ft (D_s)

Stirrup bar size: #6

Column diameter = 4.0 ft (D_c)

 $A_{st} = 25.4 \text{ in}^2$ (#10 Tot 20)

Hoop bar size: #6 Hoop spacing = 4.0 in

Typical cap section within D_c from face of column. **Note:** Bent cap reinforcement shown reflects that required by load combinations before application of joint shear design requirements.

Joint Performance

SGS 8.14.1

Column sections (possibly governed by load cases other than Extreme Event (seismic) load case for SDC B) are analyzed to determine the idealized plastic moment capacity, M_p . Connections are designed for the lesser of two forces: 1) those produced by the column plastic hinging overstrength moment capacity, M_{po} , or 2) unreduced elastic seismic moment in a column (i.e., the ultimate moment demand for seismic load combination, M_u). In the case where M_u exceeds M_p but not M_{po} , M_{po} is conservatively used for design because significant plastic hinging may develop. See Article 8.5 and C8.14.1 for further discussion.

Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases and capacity protection during Extreme Event load cases. The bent cap section capacity is not investigated in this design example.

PROJECT	DESIGN EXAMPLES	SHEET NO	2	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Determine the idealized plastic moment capacity of the column, M_p , using section analysis program such as xSECTION, and compare to the ultimate seismic moment demand, M_p .

Axial load acting on column per extreme event load case =
$$820.0$$
 kips (P_c) f'_{ce} (expected concrete compressive strength) = $1.3 \times f'_c$ 5.2 ksi f_{ye} (expected steel yield stress) = 68 ksi

$$M_p = 3769 \text{ kip-ft}$$

Maximum moment in column under seismic load application, M_u = 2411 kip-ft

Design moment for joint proportioning = 2411 kip-ft

Note: This case shows the ultimate seismic moment demand, M_u , to be less than M_p ; therefore, M_u is used for design. If M_u had been greater than M_p , the plastic overstrength moment capacity, M_{po} , would be determined per Eq. 8.5-1 and used for design.

Joint Proportioning

SGS 8.14.2

SGS

8.4.4

SGS 8.5

Joint proportioning for SDC B follows the provisions of Article 8.15.2 for SDCs C and D.

Principal stresses in the joint are limited by the following equations:

Principal compression, p_c : $p_c \le 0.25 f_c' = 1.00 \text{ ksi maximum}$ Principal tension, p_t : $p_t \le 0.38 \sqrt{f_c} = 0.76 \text{ ksi maximum}$

63.0 in	(7.0 ft x 12"/ft)
48.0 in	(5.0 ft x 12"/ft)
60.0 in	(6.25 ft x 12"/ft)
57.0 in	Note 1
820.0 kips	
0 kips	Note 2
4.66 ft	Note 3
2411 kip-ft	Note 3
	48.0 in 60.0 in 57.0 in 820.0 kips 0 kips 4.66 ft

Notes:

- 1) Length of column longitudinal rebar extended into cap. See calculations on Sheet 3.
- 2) No prestressing in section.
- 3) Not necessarily M_{po} , but that determined from 8.14.1. Tension in column longitudinal rebar may also be derived from sectional analysis.

PROJECT	DESIGN EXAMPLES	SHEET NO	3	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

$p_{t} = \left[\frac{f_{h} + f_{v}}{2} - \sqrt{\left(\frac{f_{h} - f_{v}}{2} \right)^{2} + v^{2}} \right]$	$ \left \frac{1}{2} \right = \left \frac{0.0 + 0.12}{2} \right $	$\left(\frac{21}{2}\right) - \sqrt{\left(\frac{0.0 - 0.121}{2}\right)^2 + 0.144^2}$	=	0.096	ksi Eq	8.15.2.1-3
$p_c = \left(\frac{f_h + f_v}{2}\right) + \sqrt{\left(\frac{f_h - f_v}{2}\right)^2 + v_j^2}$	$v = \frac{0.0 + 0.12}{2}$	$\frac{1}{2} + \sqrt{\left(\frac{0.0 - 0.121}{2}\right)^2 + 0.144^2}$	=	0.216	ksi Eq	8.15.2.1-4
$v_{jv} = T_c / A_{jv}$	= 517 k / 359	91.0 in ²	=	0.144	ksi Eq	8.15.2.1-5
$A_{jv} = l_{ac}B_{cap}$	= 57.0 in x 63	3.0 in	=	3591.0	in ² Eq	8.15.2.1-6
$f_v = P_c / A_{jh}$	= 820 k / 680	04 in ²	=	0.121	ksi Eq	8.15.2.1-7
$A_{jh} = (D_c + D_s) B_{cap}$	= (48.0 in + 6)	60.0 in) x 63.0 in	=	6804.0	in ² Eq	8.15.2.1-8
$f_h = \frac{P_b}{B_{cap}D_s}$	= 0.0k / (63.0) in x 60.0 in)	=	0.0	ksi Eq	8.15.2.1-9
$T_c = M_{po} / h$	= 2411 kip-ft	: / 4.66 ft	=	517	kips Eq	8.15.2.1-10
• •	ksi maximum ksi maximum	OK Joint proportions ar OK on principal stress r		•	oased	

Minimum Development Length for Column Longitudinal Reinforcement

Eq. 8.15.2.2.2-2

SGS 8.15.2.2

SGS 8.14.3

 $\begin{array}{lll} d_{bl} = & 1.27 & in & (\#10 \ rebar) \\ f_{ye} = & 68 & ksi \\ f_{c}^{\prime} = & 5.7 & ksi & (cap \ pocket \ concrete) & = min \ (5.7 \ ksi, 7.0 \ ksi) \ per \ Article \ 8.15.2.2.2 \end{array}$

 $l_{ac} = 34.8$ in (minimum)

 $l_{ac} \ge \frac{2.3d_{bl} f_{ye}}{f'_{c}}$

Extend column reinforcement as far as practically possible, assume 3" clear from opposite face.

 $l_{ac} = D_s - 3'' = 5.0 \text{ ft x } 12''/\text{ft - } 3'' = 57.0 \text{ in}$

57.0 in \geq 34.8 in minimum OK Extend to top face of cap less 3 in cover.

Minimum Joint Reinforcing for Precast Bent Cap Connections

Where the principal tension in the joint is less than $0.11\sqrt[]{f}_c$ and joint proportioning is acceptable per Article 8.14.2 (8.15.2), the provisions of Article 8.14.5.2.3 for A_s^{jvi} . Eq. 8.15.3.1-1 for joint transverse reinforcement (i.e., pipe thickness) is to be satisfied. However, other joint reinforcing (A_s^{jvo}, A_s^{jl}) is not required.

Check if principal tension, p_t , is $\ge 0.11\sqrt{f_c}$ (condition for likely joint cracking)

Calculated tension = 0.096 ksi Limit, $0.11\sqrt{f'_c}$ = 0.220 ksi

 $p_t = 0.096$ ksi ≤ 0.220 ksi limit A_s^{jvi} joint reinf. provisions of Article 8.14.5.2.3b apply.

Calculate required volumetric ratio of transverse joint reinforcement:

$$\rho_{\rm s} \ge 0.11 \sqrt{f_{\rm c}/f_{\rm vh}}$$
 Eq. 8.15.3.1-1

SGS

8.15.3.2.2

 $\rho_s \ge 0.004$

Use the minimum volumetric ratio to calculate the required number of equivalent #6 hoops per unit length of corrugated steel pipe. Use a unit length of 1 foot. Use a 48" ID corrugated pipe based on the outer diameter of column reinforcement pattern.

$$\rho_s = \frac{4A_{sp}}{D'_{cp} s} \qquad s = \frac{4A_{sp}}{D'_{cp} \rho_s}$$

$$A_{sp} = \qquad 0.44 \quad \text{in}^2 \qquad \text{(assume \#6 hoop to match column transverse reinforcement)}$$

 $D'_{cp} = 48.65$ in (average confined dia. of column between corrugated steel pipe walls) $\rho_s = 0.0037$ (minimum volumetric ratio)

D'_{cp} = Nominal inside diameter of corrugated pipe + average wall corrugation width.

s = 9.9 in max spacing

Therefore, the number of equivalent hoops per foot is 12'' / s = 1.216 hoops/ft

Calculate the nominal confining hoop force of the equivalent hoops.

$$F_{H} = n_{h} A_{sp} f_{vh}$$
 Eq. 8.15.3.2.2-2

 n_h = 1.216 ea (number of equivalent hoops per unit length)

 $A_{sp} = 0.44 \text{ in}^2$ (area of #6 equivalent hoop)

 f_{yh} = 60.0 ksi (yield stress of equivalent hoop)

 $F_H = 32.11 \text{ kips/ft}$

Calculate the thickness of the corrugated steel pipe that provides the same nominal confinement as standard hoop reinforcement.

$$t_{pipe} \ge max - \frac{F_H}{H_p f_{yp} \cos \theta}$$
 Eq. 8.15.3.2.2-1

PROJECT	DESIGN EXAMPLES	SHEET NO	5	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIEN	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL CAP POCKET BENT CAP JOINT DESIGN EXAMPLE - SDC B					
				1	

$F_H =$	32.1	kips/ft	
$H_p =$	12.0	in/ft	(specified unit length)
$f_{yp} =$	30.0	ksi	(manufacturer specified)
θ =	20.0	deg	(manufacturer specified)

$$t_{pipe} \ge 0.0949$$
 in

Use a 12 gage corrugated steel pipe, 48" nominal inside diameter. $t_{pipe} = 0.105$ in

As a check, compare minimum t_{pipe} from Eq. 8.15.3.2.2-1 to simplified equation in the commentary:

$$t_{pipe} \ge 0.04 \frac{D'_{cp} \sqrt{f'_{c}}}{f_{vn} \cos \theta} = 0.1381 \text{ in } \text{ and } \ge 0.06 \text{ in}$$
 (Note: f'_{c} refers to cap pocket) Eq. (C8.15.3.2.2-1)

SGS 8.14.5

SGS

If the refined equation (Eq. 8.15.3.2.2-1) is not used, the maximum of these two simplified equations may be used because they provide a more conservative value. Note that the controlling thickness of 0.1381" from commentary equations is considerably larger than the 0.0949" calculated from the refined specification equation. Use of the refined equation reduces the required pipe thickness, especially for larger diameter pipes.

Nonintegral Bent Cap Joint Shear Design

Depth of the cap with respect to the column diameter determines the method of joint shear design. When the following equation is satisfied, the joint shear design provisions of Article 8.14.5.2 apply. If the equation below is not satisfied, Strut-and-Tie model provisions of AASHTO LRFD Bridge Design Specifications apply.

$$D_c \le d \le 1.25D_c$$

$$D_c = 48.0 \text{ in}$$

 $d = 60.0 \text{ in}$

48.0 in
$$\leq$$
 60.0 in \leq 60.0 in OK Provisions of 8.14.5.2 apply

Vertical Stirrups Inside the Joint Region

 $A_s^{jvi} \ge 0.10 A_{st}$

$$A_{st} = 25.40 \text{ in}^2$$

$$A_s^{jvi} \ge 2.54 \text{ in}^2$$

Use #6 double U stirrups, Tot 3 patterns placed evenly through joint.

$$A_s^{jvi}$$
 = 3 patterns x 2 legs/ pattern x 0.44 in²/ leg = 2.64 in² \geq 2.54 in² OK

Note the minimum number of stirrups is two per Article 8.15.5.2.3a with a bar size no smaller than that used for bent cap stirrups.

PROJECT	DESIGN EXAMPLES	SHEET NO	6	OF	7
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Bedding Layer Reinforcement

SGS

8.14.5.2.1

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below and resulting center to center spacing of transverse reinforcement is 4" throughout, in accordance with Article 8.8.14.

Supplementary Hoops

SGS

8.14.5.2.3.b

A supplementary hoop may be optionally placed one inch from each end of the corrugated steel pipe. The area of this bar is to be no less than that provided in the column plastic region (use #6

Figures Showing Final Design

Elevation View at Column Connection

Plan View at Column Connection

PROJECT	DESIGN EXAMPLES	SHEET NO	/	OF	/	
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009	
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009	

Simplified section at column edge

PROJECT	DESIGN EXAMPLES	SHEET NO	1	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Grouted Duct Joint Design Example For SDCs C and D

Grouted duct connection between a column and a precast bent cap in SDC's C and D is designed to produce performance similar to a cast-in-place connection in SDC's C and D. This SDCs C and D design example applies | Seismic to a T-joint of a rectangular, nonintegral precast bent cap supported by circular columns for which the principal tension stress in the connection exceeds $0.11\sqrt{f}$ c. In this case, the connection requires additional joint reinforcement. The applicable commentary sections in the AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) provide additional background.

Notes: 1. The SDC B design example illustrates the procedure to be followed when the $0.11\sqrt{f}$ c limit is not exceeded. 2. Knee joints such as that represented in C8.15.1 are not addressed in the current SGS, and special design provisions should be identified by the designer.

AASHTO Guide Specifications for LRFD Bridge Design (SGS)

AASHTO LRFD Bridge Construction Specifications (BCS)

Geometry and Design Parameters

 $f_c = 4.0$ ksi (specified compressive strength of bent cap concrete)

 $f'_{ce} = 1.3f'_{c} = 5.2 \text{ ksi (expected } f'_{c} \text{ of bent cap)}$

 $f'_{cg} = 7.5$ ksi (specified compressive strength of grout)

Check: f'_{cg} (ksi) $\geq \max[1.25(f'_{ce}+0.5)=7.1, 6.0)]$

OK per BCS 8.13.8.3.2a

 $f_{ve} = 68 \text{ ksi (column bars)}$ $f_v = 60 \text{ ksi}$

Bent cap width = 7.0 ft (B_{cap})

Bent cap height = 6.25 ft (D_s)

Stirrup bar size: #6

Requirements for Extreme I load case in cap:

Top cap reinf, $A_s^{cap}_{top} = 16.77$

Bot cap reinf, $A_s^{cap}_{bot} =$

Shear reinf, $A_v = 4.12 \text{ in}^2/\text{ft}$

Column diameter = 5.0 ft (D_c)

 $A_{st} = 31.2 \text{ in}^2$ (#11, Tot 20)

Hoop bar size:

Hoop spacing = 4.0 in

 $f_{vh} = 60 \text{ ksi}$ (yield stress of hoops) **Note:** Bent cap reinforcement shown reflects that required by Extreme Event I load combination before

Typical cap section within D_c from face of column. application of joint shear design requirements.

Joint Performance

SGS 8.15.1

Moment resisting connections are designed to transmit the maximum forces produced when the column reaches its overstrength moment capacity, M_{po} .

Bedding Layer

Note: Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases and capacity protection during Extreme Event load cases. The bent cap section capacity is not investigated in this design example.

Determine the idealized plastic moment capacity of the column, M_D, using section analysis program such as xSECTION, and calculate the overstrength moment capacity, M_{DO}, per Article 8.5.

Axial load acting on column per extreme event load case = 820.0 kips (P_c)

 f'_{ce} (expected concrete compressive strength) = 1.3 x f'_{c} 5.2 ksi

 f_{ve} (expected steel yield stress) = 68 ksi (column bars)

SGS

8.4.4

PROJECT	DESIGN EXAMPLES	SHEET NO	2	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009
UBJECT AASHTO	SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUT	TED DUCT BENT CAP JOIN	T DESIGN EXAMPLE	- SDCs C a	and D

SU

$$\begin{array}{lll} M_p = & 5970 & \text{kip-ft} \\ M_{po} = \lambda_{mo} \, M_p & & 8.5 \\ \lambda_{mo} = & 1.2 & \text{(ASTM A706)} \\ M_{po} = & & 7164 & \text{kip-ft} \end{array}$$

Joint Proportioning

SGS 8.15.2

Principal Stresses

Principal stresses in the joint are limited by the following equations:

Principal compression, p_c: $p_c \le 0.25 \, f'_c$ 1.00 ksi maximum $p_t \le 0.38 \sqrt{f_c}$ 0.76 ksi maximum Principal tension, p_t:

$B_{cap} =$	84.0	in	(7.0 ft x 12"/ft)
$D_c =$	60.0	in	(5.0 ft x 12"/ft)
$D_s =$	75.0	in	(6.25 ft x 12"/ft)
$l_{ac} =$	72.0	in	Note 1
$P_c =$	820	kips	
$P_b =$	0	kips	Note 2
h =	3.79	ft	Note 3
$M_{po} =$	7164	kip-ft	Note 3

Notes:

- 1) Length of column longitudinal rebar extended into cap. See calculations below.
- 2) No prestressing in section.
- 3) Determined from sectional analysis. Tension in column longitudinal rebar may also be derived from sectional analysis.

PROJECT DESIGN EXAMPLES SHEET NO	3		OF	8
PROJECT NO NCHRP 12-74 DESIGNED BY	M. STILLE	R	DATE	11/6/2009
CLIENT SACRAMENTO STATE UNIV. CHECKED BY	E. MATSUM	ОТО	DATE	11/9/2009
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUTED DUCT BENT CAP JOINT	DESIGN EXA	MPLE	- SDCs C	and D
$A_{jh} = (D_c + D_s) B_{cap}$ = (60.0 in + 75.0 in) x 84.0 in	= 11340	in ²	Eq.	8.15.2.1-8
$f_h = \frac{P_b}{B_{cap}D_s}$ = 0.0k / (84.0 in x 75.0 in)	= 0.0	ksi	Eq.	8.15.2.1-9
$T_c = M_{po} / h$ = 7164 kip-ft / 3.79 ft	= 1890	kips	Eq.	8.15.2.1-10
p_c = 0.351 ksi \leq 1.00 ksi maximum OK Joint proportions are p_t = 0.278 ksi \leq 0.76 ksi maximum OK on principal stress red	•			
Minimum Development Length of Column Longitudinal Reinforcement				SGS 8.15.2.2
$l_{ac} \ge 2 \frac{d_{bl} f_{ye}}{f_{cg}}$ $d_{bl} = 1.41 \text{in} \qquad \text{(#11 rebar)}$			Eq.	8.15.2.2.2-1
$f_{vg} = 68 ksi \\ f_{cg} = 7.0 ksi = min (7.5 \text{ ksi, } 7.0 \text{ ksi}) \text{ per Article } 8.15.$ $l_{ac} = 27.4 in (minimum)$ Extend column reinforcement as far as practically possible; assume 3" clear f per Article $8.15.2.2.2.$ $l_{ac} = D_s - 3" = 6.25 \text{ ft x } 12"/\text{ft - 3"} = 72.0 in$ $72.0 in \geq 27.4 in (minimum) OK \text{Extend to top face of } c$ $ \frac{\text{Minimum Joint Shear Reinforcing for Precast Bent Cap Connections} $ Where principal tension in the joint is greater than or equal to $0.11\sqrt{f_c}$ and joint p acceptable per Article $8.15.2$, additional transverse joint reinforcement for cap poper Article $8.15.5.2.3$ is to be added, and Eqs. $8.15.3.1-1$ and $8.15.3.1-2$ are to be sa Check if principal tension, p_{tr} is $\geq 0.11\sqrt{f_c}$ (condition for likely joint cracking) $ \text{Calculated tension} = 0.278 \text{ksi} $ $ \text{Limit, } 0.11\sqrt{f_c} = 0.220 \text{ksi} $ $ \text{pt} = 0.278 \text{ksi} \geq 0.220 \text{ksi} $ Additional joint reinforcement (A_s horizontal J bars) is required. Calculate required volumetric ratio of transverse joint reinforcement:	rom oppositioning the connection of the connecti	ng is	r.	SGS 8.15.3
Maximum of: $\rho_s \ge 0.11 \sqrt{f_c} / f_{yh}$ $\rho_s \ge 0.40 A_{st} / l_{ac}^2$			-	8.15.3.1-1 8.15.3.1-2

31.2 in² 72.0 in

PROJECT	DESIGN EXAMPLES	SHEET NO	4	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Maximum of: $0.11 \sqrt{f'_c} / f_{yh} = 0.0037$ governs Eq. 8.15.3.1-1 $0.40 A_{st} / l^2_{ac} = 0.0024$ Eq. 8.15.3.1-2

Use $\rho_s \ge 0.0037$

Assume transverse reinforcement in the joint is the same size as the column plastic hinging region transverse reinforcement.

$$\rho_{\rm s} = \frac{4A_{\rm sp}}{D'_{\rm gd}\,\rm s}$$

 $A_{sp} = 0.44 \text{ in}^2$ $D'_{gd} = 57.92 \text{ in}$ s = 8.0 in

(#6 hoop)

(confined diameter of column between centroids of #6 hoop) (trial spacing of transverse reinforcement hoops; spacing not to exceed 12" or $0.3D_s$ per Art. 8.15.3.2.1)

 D'_{gd} = Column diameter - clear cover x 2 - hoop diameter - long. column reinf diameter + grouted duct inside diameter + corrugation amplitude x 2.

 D'_{gd} = 60.0" - 2" x 2 - 0.88" - 1.44" + 4" + 0.12" x 2 = 57.92 in (deformed diameters are used for clearance calculations)

 $\rho_{\rm s} = 0.0038$

 $\rho_s = 0.0038 \ge 0.0037 \text{ minimum}$

OK 8" spacing is adequate (Note: Common practice is to carry hoop spacing from column into cap, or s=4" in this case.)

Actual even spacing is 7.89 inches, total 9 hoops.

Nonintegral Bent Cap Joint Shear Design

SGS 8.15.5

The depth of the cap with respect to the column diameter determines the method of joint shear design. When the following equation is satisfied, the joint shear design provisions of Article 8.15.5.2 apply. If the equation below is not satisfied, Strut-and-Tie model provisions of AASHTO LRFD Bridge Design Specifications apply.

 $D_c \le d \le 1.25D_c$

$$D_c = 60.0$$
 in $d = 75.0$ in

60.0 in \leq 75.0 in \leq 75.0 in OK Provisions of 8.15.5.2 apply

Additional Joint Shear Reinforcement

SGS

8.15.5.2.2

Grouted duct connections follow essentially the same joint reinforcing requirements as for cast-inplace connections specified in Art. 8.15.5.1, when additional reinforcement is required per Art. 8.15.3.2.1

PROJECT	DESIGN EXAMPLES	SHEET NO	5	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Eq. 8.15.5.1.1-1

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL GROUTED DUCT BENT CAP JOINT DESIGN EXAMPLE - SDCs C and D

Vertical Stirrups Outside the Joint Region:

$$A_s^{\text{jvo}} \ge 0.175 A_{\text{st}}$$

$$A_{\text{st}} = 31.20 \text{ in}^2$$

$$A_s^{\text{jvo}} \ge 5.46 \text{ in}^2$$

 $A_s^{\;\;jvo}$ is placed transversely within a distance D_c extending from each face of the column. This is in addition to the A_v of 4.12 in² provided for Extreme I load case analysis per Article 8.15.5.1.1.

$$A_s^{\text{jvo}} \ge 5.46 \text{ in}^2 / D_c = 1.092 \text{ in}^2 / \text{ft}$$

$$A_v^{\text{total}} = A_v + A_s^{\text{jvo}}$$

$$A_v^{\text{total}} = 4.12 \text{ in}^2 / \text{ft} + 1.09 \text{ in}^2 / \text{ft} = 5.21 \text{ in}^2 / \text{ft}$$

Find the spacing of the #6 stirrups within the distance D_c on both sides of the column with the assumption of #6 stirrups having four vertical legs in each pattern.

Area of one stirrup pattern = $4 \log x \cdot 0.44 \text{ in}^2 / \log = 1.76 \text{ in}^2$

Number of stirrup patterns required per foot = $A_v^{total}/1.76 \text{ in}^2 = 2.96 \text{ stirrups / ft}$ $A_{v}^{\text{total}} = 5.28 \text{ in}^2/\text{ft} \ge 5.21 \text{ in}^2/\text{ft}$ Use 3 stirrups per foot, 4" spacing. OK

Vertical Stirrups Inside the Joint Region:

$$A_s^{jvi} \ge 0.135 A_{st}$$
 Eq. 8.15.5.1.2-1
$$A_{st} = -31.2 \text{ in}^2$$

$$A_s^{jvi} \ge -4.21 \text{ in}^2$$

Use #6 double U stirrups, Tot 4 patterns placed evenly through joint. Note that spacing may vary slightly to avoid conflict with grouted ducts. The minimum number of stirrups is two, per Article 8.15.5.2.2, with a bar size no smaller than that used for bent cap stirrups.

$$A_s^{jvi}$$
 = 4 patterns x 4 legs / pattern x 0.44 in² / leg = 7.04 in² \geq 4.21 in² OK

4 patterns instead of 3 are conservatively used for symmetry.

Additional Longitudinal Cap Beam Reinforcement

$$A_s^{jl} \ge 0.245 A_{st}$$
 Eq. 8.15.5.1.3-1
$$A_{st} = 31.2 \text{ in}^2$$

$$A_s^{jl} \ge 7.64 \text{ in}^2$$
 (individual amount applied to top and bottom faces of cap)

(individual amount applied to top and bottom faces of cap)

PROJECT	DESIGN EXAMPLES	SHEET NO	6	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Top cap reinf,
$$A_s^{cap}_{top} = 16.77 \text{ in}^2$$

Bot cap reinf, $A_s^{cap}_{bot} = 11.40 \text{ in}^2$ Per design requirements of Extreme I load case.

Total top cap reinf,
$$A_s^{total}_{top} = A_s^{cap}_{top} + A_s^{jl} = 16.77 \text{ in}^2 + 7.64 \text{ in}^2 = 24.41 \text{ in}^2$$

Total bot cap reinf, $A_s^{total}_{bot} = A_s^{cap}_{bot} + A_s^{jl} = 11.40 \text{ in}^2 + 7.64 \text{ in}^2 = 19.04 \text{ in}^2$

Use #11 Tot 16 on top and bottom of bent cap, $A_s = 24.96 \text{ in}^2$

Note: $A_s^{\ jl}$ is added to the $A_s^{\ cap}$ of the bent cap required under the seismic extreme event load case only. These $A_s^{\ total}_{\ top}$ and $A_s^{\ total}_{\ bot}$ values are to be compared to the respective requirements of the applicable Strength load cases, and the larger value governs. Thus, the value shown above may not necessarily govern required bent cap flexural reinforcement.

Horizontal J-Bars
SGS
8.15.5.1.4

Provide horizontal J-bars hooked around every other vertical-to-longitudinal side face bar intersection within the joint as shown in the figure below. Bar size to be #4 minimum. #6 bar is used.

Bedding Layer Reinforcement

SGS 8.15.5.2.1

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below, and resulting center-to-center spacing of transverse reinforcement is 4" throughout, in accordance with

Figures Showing Final Design

PROJECT	DESIGN EXAMPLES	SHEET NO	7	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Simplified Section at Column Edge

PROJECT	DESIGN EXAMPLES	SHEET NO	8	OF	8
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Plan View at Column Connection

For additional details, see Figures 8.15.5.2.2-1, 8.15.5.2.2-2, and 8.15.5.2.2-3 in the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

PROJECT	DESIGN EXAMPLES	SHEET NO	1	OF	9
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Cap Pocket Joint Design Example For SDCs C and D

Cap pocket connection between a column and a precast bent cap in SDCs C and D reinforces the bent cap joint by means of a helical lock-seam, corrugated steel pipe, eliminating conventional hoops and J-bars. This SDC C/D design example applies to a T-joint of a rectangular, nonintegral precast bent cap supported by circular columns for which the principal tensile stress in the connection exceeds $0.11\sqrt{f}_c$. In this case, the connection requires additional joint reinforcement. The applicable commentary sections in the AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) provide additional background.

Notes: 1. The SDC B design example illustrates the procedure to be followed when the $0.11\sqrt{f}$ c limit is not exceeded. 2. Knee joints such as that represented in C8.15.1 are not addressed in the current SGS, and special design provisions should be identified by the designer.

Specifications for LRFD Seismic Bridge Design (SGS)

AASHTO Guide

AASHTO LRFD Bridge Construction Specifications (BCS)

SGS

8.15.1

Geometry and Design Parameters

 $f_c = 4.0$ ksi (specified compressive strength of bent cap) $f_{ce} = 1.3f_c = 5.2$ ksi (expected f_c of bent cap)

 $f'_{c,pocket}$ (specified compressive strength of pocket fill) Select cap pocket strength to satisfy BCS. $f'_{c,pocket} = f'_{ce} + 0.5 \text{ ksi} = 5.7 \text{ ksi}$ (BCS 8.13.8.3.3a)

f_{vh} (yield stress of equivalent hoop)

 $f_{yh} = 60 \text{ ksi}$

 f_{ve} (expected yield stress of column bars)

 $f_{ve} = 68 \text{ ksi}$

 f_{yp} (nominal yield stress of steel pipe)

Bent cap width = 7.0 ft (B_{cap})

Bent cap height = 6.25 ft (D_s)

Stirrup bar size: #6

Requirements for Extreme I load case in cap:

Top cap reinf, $A_s^{cap}_{top} = 16.77 \text{ in}^2$

Bot cap reinf, $A_s^{cap}_{bot} = 11.40$ in

Shear reinf, $A_v = 4.12 \text{ in}^2/\text{ft}$

Column diameter = 5.0 ft (D_c)

 $A_{st} = 31.2 \text{ in}^2$ (#11 Tot 20)

Hoop bar size: #6 Hoop spacing = 4.0 in

Typical cap section within D_c from face of column. **Note:** Bent cap reinforcement shown reflects that required by Extreme Event I load combination before application of joint shear design requirements.

Joint Performance

Moment resisting connections are designed to transmit the maximum forces produced when the column reaches its overstrength moment capacity, $M_{\rm no}$.

Note: Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases and capacity protection during Extreme Event load cases. The bent cap section capacity is not investigated in this design example.

PROJECT	DESIGN EXAMPLES	SHEET NO	2	OF	9
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Determine the idealized plastic moment capacity of the column, M_p , using section analysis program such as xSECTION, and calculate the overstrength moment capacity, M_{po} , per Article 8.5.

Axial load acting on column per extreme event load case =
$$820.0$$
 kips (P_c) f'_{ce} (expected concrete compressive strength) = $1.3 \times f'_{c} = 5.2$ ksi f_{ve} (expected steel yield stress) = 68 ksi

$$M_{p} = 5970 \text{ kip-ft}$$
 SGS $M_{po} = \lambda_{mo} M_{p}$ 8.5 $\lambda_{mo} = 1.2 \text{ (ASTM A706)}$ Eq. $M_{po} = 7164 \text{ kip-ft}$

Joint Proportioning

SGS 8.15.2

SGS

8.4.4

Principal Stresses

Principal stresses in the joint are limited by the following equations:

Principal compression, p_c : $p_c \le 0.25 f'_c = 1.00 \text{ ksi maximum}$ Principal tension, p_t : $p_t \le 0.38 \sqrt{f'_c} = 0.76 \text{ ksi maximum}$

$B_{cap} =$	84.0	in	(7.0 ft x 12"/ft)
$D_c =$	60.0	in	(5.0 ft x 12"/ft)
$D_s =$	75.0	in	(6.25 ft x 12"/ft)
$l_{ac} =$	72.0	in	Note 1
$P_c =$	820	kips	
$P_b =$	0	kips	Note 2
h =	3.79	ft	Note 3
$M_{po} =$	7164	kip-ft	Note 3

Notes:

- 1) Length of column longitudinal rebar extended into cap. See calculations below.
- 2) No prestressing in section.
- Determined from sectional analysis. Tension in column longitudinal rebar may also be derived from sectional analysis.

$$p_{t} = \left[\frac{f_{h} + f_{v}}{2} - \sqrt{\left(\frac{f_{h} - f_{v}}{2}\right)^{2} + v^{2}_{jv}} \right] = \left[\frac{0.0 + 0.072}{2} - \sqrt{\left(\frac{0.0 - 0.072}{2}\right)^{2} + 0.313^{2}} \right] = 0.278 \text{ ksi} \qquad Eq. \quad 8.15.2.1-3$$

$$p_{c} = \left(\frac{f_{h} + f_{v}}{2}\right) + \sqrt{\left(\frac{f_{h} - f_{v}}{2}\right)^{2} + v^{2}_{jv}} = \left(\frac{0.0 + 0.072}{2}\right) + \sqrt{\left(\frac{0.0 - 0.072}{2}\right)^{2} + 0.313^{2}} = 0.351 \text{ ksi} \qquad Eq. \quad 8.15.2.1-4$$

PROJECT	T DESIGN E	EXAMPLES	i		SHEET NO		3		OF	9
PROJECT NO					DESIGNED BY		M. STILLE	R	DATE	11/6/2009
	SACRAM				CHECKED BY		MATSUM		DATE	11/9/2009
SUBJECT AASHTO	O SEISMIC G	GUIDE SPE	CIFICATIONS NO	ONINTEGRAL CAP	POCKET BENT CAP JOINT D	ESIG	N EXAMP	LE - SC	Cs C and	D
$v_{jv} = T$	_c / A _{jv}		= 189	00 k / 6048.0 ir	n^2	=	0.313	ksi	Eq.	8.15.2.1-5
A_j	$_{\rm v} = l_{\rm ac} B_{\rm cap}$		= 72.0	0 in x 84.0 in		=	6048.0	in ²	Eq.	8.15.2.1-6
$f_v = P_c$	/ A _{jh}		= 820	k / 11340 in ²		=	0.0723	ksi	Eq.	8.15.2.1-7
A_{j}	$_{\rm h} = (D_{\rm c} + D_{\rm c})$	O _s) B _{cap}	= (60.	.0 in + 75.0 in)	x 84.0 in	=	11340	in ²	Eq.	8.15.2.1-8
$f_h = \overline{B}$	$\frac{P_b}{C_{cap}D_s}$		= 0.01	x / (84.0 in x 7	5.0 in)	=	0.0	ksi	Eq.	8.15.2.1-9
T_c	$_{c} = M_{po} / h$		= 716	64 kip-ft / 3.79	ft	=	1890	kips	Eq.	8.15.2.1-10
$p_c = 0.351$ $p_t = 0.278$			ksi maximur ksi maximur		Joint proportions are on principal stress re		-		l	
Minimum	Developi	ment Lei	ngth of Colur	nn Longitudir	nal Reinforcement					SGS 8.15.2.2
$l_{ac} \ge \frac{2}{f'}$	3d _{bl} f _{ye} c_pocket								Eq.	8.15.2.2.2-2
$egin{aligned} \mathbf{d_{bl}} \ \mathbf{f_{ye}} \end{aligned}$	= 1.41 = 68	in ksi	(#11 rebar)							
	= 5.7	ksi	(cap pocket	concrete) =	: min (5.7 ksi, 7.0 ksi) pe	er Ar	ticle 8.1	5.2.2.	2	
$l_{ac} = $	38.7 in	(mi	nimum)							
	d column i ticle 8.15.		ment as far a	s practically po	ossible, assume 3" clear	fror	n opposi	te fac	e,	
$l_{ac} = D_s$	_s - 3" = 6.2	5 ft x 12'	'/ft - 3" = 72	2.0 in						
72.0	in ≥	38.7	in (minimu	m) OK	Extend to top face of	cap	less 3 in	cove	r.	
Minimum Join	t Shear R	einforci	ng for Preca	st Bent Cap Co	onnections					SGS 8.15.3
acceptable	per Articl	le 8.15.2,	additional tra	ansverse joint	ual to $0.11\sqrt{f'_c}$ and joint reinforcement for cap p and $8.15.3.1-2$ are to be s	ocke	et connec	_		0.13.0
Check if pr	incipal ter	nsion, p _t ,	is $\geq 0.11\sqrt{f'_c}$ ((condition for l	ikely joint cracking)					
Calcul	ated tensi	on = 0.3	278 ksi							

Additional joint reinforcement (A_s^{jvo} , A_s^{jvi} , and A_s^{jl}) is

Limit, $0.11\sqrt{f_c}$ =

 p_t = 0.278 ksi \geq 0.220 ksi limit

0.220 ksi

required.

PROJECT DESIGN EXAMPLES	SHEET NO	4	OF	9
PROJECT NO NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS NONINTEGRAL CAP POCK	-			
71.371.0 32.371.0 32.371.0 33.37.2 37.1 201.1 37.1 1 201.1 2	21 22111 6.11 30111 22	51014 270 11411 22 - 51	203 0 4114	<u> </u>
Calculate required volumetric ratio of transverse joint reinforce	cement:			
Maximum of: $\rho_s \ge 0.11 \sqrt{f_c} / f_{yh}$			Eq.	8.15.3.1-1
$\rho_{\rm s} \ge 0.40 \; {\rm A_{st}} / {\rm l^2}_{\rm ac}$			Eq.	8.15.3.1-2
$A_{st} = 31.20 \text{ in}^2$				
$l_{ac} = 72.0$ in				
Maximum of: $0.11 \sqrt{f_c} / f_{yh} = 0.0037$ governs			Fa	8.15.3.1-1
$0.40 A_{st} / I_{ac}^2 = 0.0024$			-	8.15.3.1-2
St. / at St. /			-1	
Use $\rho_s \ge 0.0037$				
Use the minimum volumetric ratio to calculate the required nulength of corrugated steel pipe. Use a unit length of 1 foot. Use outer diameter of column reinforcement pattern.	-			SGS 8.15.3.2.2
$\rho_s = \frac{4A_{sp}}{D'_{cp} s} \qquad s = \frac{4A_{sp}}{D'_{cp} \rho_s}$				
$A_{sp} = 0.44 \text{ in}^2$ (assume #6 hoop to match of	rolumn transverse r	einforcement)		
$D'_{cp} = 54.75$ in (average confined dia. of col			walls)	
$\rho_s = 0.0037$ (minimum volumetric ratio		.g		
D' _{cp}	← Corrugated st	eel pipe		
D' _{cp} = Nominal inside diameter of corrugated pipe -	+ average wall corru	gation width.		
		8.1.1		
s=8.8 in max spacing Therefore, the number of equivalent hoops per foot is	12" / s = 1.369 l	noops/ft		
Calculate the nominal confining hoop force of the equivalent h	oops.			
$F_{H} = n_{h} A_{sp} f_{yh}$			Eq.	8.15.3.2.2-2
$n_h = 1.369$ ea (number of equivalent hoop	s per unit length)			
$A_{sp} = 0.44 ext{ in}^2$ (area of #6 equivalent hoop $f_{yh} = 60.0 ext{ ksi}$ (yield stress of equivalent h)			
f_{yh} = 60.0 ksi (yield stress of equivalent h	oop)			
$F_H = 36.14 \text{ kips/ft}$				
Calculate the thickness of the corrugated steel pipe that provides standard hoop reinforcement. $t_{pipe} \geq max = \begin{cases} \frac{F_H}{H_p f_{yp} cos\theta} \\ 0.060 in \end{cases}$	les the same nomina	al confinement a		8.15.3.2.2-1
-				1

Р	ROJECT DES	SIGN EXAMPLES		SHEET NO	5	OF	9
PROJ	IECT NO NC	HRP 12-74		DESIGNED BY	M. STILLER	DATE	11/6/2009
	CLIENT SAC	CRAMENTO STATE L	JNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009
SUBJECT	AASHTO SEIS	MIC GUIDE SPECIFIC	CATIONS NONINTEGRAL CAP	POCKET BENT CAP JOINT D	ESIGN EXAMPLE - SI	DCs C and	D
As	Use a 12 ga a check, com	pare minimum t _r	(specified unit length) (manufacturer specifie (manufacturer specifie eel pipe, 54" nominal inst	ed)			C8.15.3.2.2-1
		71	= 0.0982 in and≥				C8.15.3.2.2-2
be fro spe lar	used because om commenta ecification eq ger diameter	e they provide a r ry equations is c uation. Use of th	3.2.2-1) is not used, the nore conservative value. onsiderably larger than terefined equation reduc	Note that the controllinche calculated 0.1068" fr	ng thickness of 0.5 com the more acc	1554" urate	SGS
De the equ	pth of the cap	o with respect to quation is satisfie is not satisfied, S pply.	the column diameter det d, the joint shear design Strut-and-Tie model prov	provisions of Article 8.1	5.5.2 apply. If the Bridge Design		8.15.5
Ad	ditional Join	t Shear Reinfor	cement				SGS
	Vertical St	irrups Outside (the Joint Region:				8.15.5.2.3
	$A_s^{jvo} \ge 0$	0.175 A _{st}				Eq.	8.15.5.1.1-1
	A _{st} =	= 31.20 in ²					
	$A_s^{jvo} \ge$	5.46 in ²					

PROJECT	DESIGN EXAMPLES	SHEET NO	6	OF	9
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

 A_s^{jvo} is placed transversely within a distance D_c extending from each face of the column. This is in addition to the A_v of 4.12 in provided for Extreme I load case analysis per Article 8.15.5.1.1.

$$A_s^{jvo} \ge 5.46 \text{ in}^2 / D_c = 1.092 \text{ in}^2 / \text{ft}$$

$$A_v^{\text{total}} = A_v + A_s^{\text{jvo}}$$

 $A_v^{\text{total}} = 4.12 \text{ in}^2/\text{ft} + 1.09 \text{ in}^2/\text{ft} = 5.21 \text{ in}^2/\text{ft}$

Find the spacing of the #6 stirrups within the distance D_c on both sides of the column with the assumption of #6 stirrups having four vertical legs in each pattern.

Area of one stirrup pattern = $4 \log x 0.44 \text{ in}^2 / \log = 1.76 \text{ in}^2$

Number of stirrup patterns required per foot = $A_v^{total}/1.76 \text{ in}^2 = 2.96 \text{ stirrups / ft}$

Use 3 stirrups per foot, 4" spacing.
$$A_{sv}^{total} = 5.28 \text{ in}^2/\text{ft} \ge 5.21 \text{ in}^2/\text{ft}$$
 OK

Vertical Stirrups Inside the Joint Region:

$$A_s^{\text{jvi}} \ge 0.12 A_{\text{st}}$$
 Eq. 8.15.5.2.3a-1
$$A_{\text{st}} = 31.2 \text{ in}^2$$

$$A_s^{jvi} \ge 3.74 \text{ in}^2$$

Use #6 single U stirrups, Tot 5 patterns placed evenly through joint.

$$A_s^{jvi}$$
 = 5 patterns x 2 legs/ pattern x 0.44 in²/ leg = 4.40 in² \geq 3.74 in² OK

There must be a minimum of 2 stirrups per Article 8.15.5.2.3c with a bar size no smaller than that used for bent cap stirrups.

Additional Longitudinal Cap Beam Reinforcement

$$A_s^{jl} \ge 0.245 A_{st}$$
 Eq. $8.15.5.1.3-1$

$$A_{st} = = 31.2 \text{ in}^2$$

$$A_s^{jl} \ge 7.64 \text{ in}^2$$
 (individual amount applied to top and bottom faces of cap)

Top cap reinf,
$$A_s^{cap}_{top} = 16.77 \text{ in}^2$$
Bot cap reinf, $A_s^{cap}_{bot} = 11.40 \text{ in}^2$
Per design requirements of Extreme I load case.

Total top cap reinf,
$$A_s^{total}_{top} = A_s^{cap}_{top} + A_s^{jl} = 16.77 \text{ in}^2 + 7.64 \text{ in}^2 = 24.41 \text{ in}^2$$

Total bot cap reinf, $A_s^{total}_{bot} = A_s^{cap}_{bot} + A_s^{jl} = 11.40 \text{ in}^2 + 7.64 \text{ in}^2 = 19.04 \text{ in}^2$

Use #11 Tot 16 on top and bottom of bent cap,
$$A_s = 24.96 \text{ in}^2$$

PROJECT	DESIGN EXAMPLES	SHEET NO	/	OF	9
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Note: $A_s^{\ jl}$ is added to the $A_s^{\ cap}$ of the bent cap required under the seismic extreme event load case only. These $A_s^{\ total}_{\ top}$ and $A_s^{\ total}_{\ bot}$ values are to be compared to the respective requirements of the applicable Strength load cases, and the larger value governs. Thus, the value shown above may not necessarily govern required bent cap flexural reinforcement.

Note: Horizontal J-bars are not required in the joint region, as confirmed by research.

SGS

8.15.5.2.1

SGS 8.15.5.2.3a

Bedding Layer Reinforcement

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below, and resulting center-to-center spacing of transverse reinforcement is 4" throughout, in accordance with Article 8.8.14.

Supplementary Hoops

8.15.5.2.3b

SGS

Provide a supplementary #6 hoop placed one inch from each end of the corrugated steel pipe. The area of this bar is to be no less than that provided in the column plastic region (#6 bar).

Figures Showing Final Design

 D_c = column dia. Elevation View at Column Connection

PROJECT	DESIGN EXAMPLES	SHEET NO	8	OF	9
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Simplified section at column edge

PROJECT	DESIGN EXAMPLES	SHEET NO	9	OF	9
PROJECT NO	NCHRP 12-74	DESIGNED BY	M. STILLER	DATE	11/6/2009
CLIENT	SACRAMENTO STATE UNIV.	CHECKED BY	E. MATSUMOTO	DATE	11/9/2009

Plan View at Column Connection

For additional details, see Figures 8.15.5.2.3-1, 8.15.5.2.3-2, and 8.15.5.2.3-3 in the AASHTO Guide Specifications for LRFD Seismic Bridge Design.

PR	OJECT	DESIGN EXAMPLES		SHEET NO	1	OF	12
PROJE	CT NO	NCHRP 12-74		DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
С	LIENT	UNIVERSITY OF CALI	FORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009
SUBJECT	AASHTO :	SEISMIC GUIDE SPECI	FICATIONS HYBRID BENT CAI	P JOINT DESIGN EXAMPLE - SDC	s C and D	•	
_							AASHTO
Hybrid Bent	System	Design Example	For SDCs C and D				Guide
precast by are prese response, states tha A lateral of developed developm AASHTO a	ridge conted. The protect can be demand demand lateral are usec	lumn system. Com his includes the est ocedure presented easily accomodat analysis is conduct properties are us ateral seismic dem I to account for po	aplete development of sir imatation of the effective I requires itteration of the ed with modern compute cted for a bridge located ed to determing the effect ands. The short-period of tential amplification of d	in a region of high seismic o tive initial strucutural peri lisplacement modification f isplacement demands at lo	cement predictive point for late at both limit demand. The od for the factor from w periods.	ions ral	Specifications for LRFD Seismic Bridge Design (SGS) AASHTO LRFD Bridge Design Specifications (LRFD) AASHTO LRFD Bridge Construction
cap. Dema region.	ands on			ired seismic design required nine the required detailing w	•	pent	Specifications (BCS)
Conc	rete Ma	terials (Unconfin	ed)			SGS §	8.4.4
	$f'_c = 4$		-	npressive strength of concr	ete	SGS Eq.	8.4.4-1
]	$E_c = 43$	$f'_c = 5.2$ ksi 72 ksi	Expected concrete co	•	L	RFD Eq.	5.4.2.4-1
	-	49 ksi	Shear modulus	1.6.4		I DED C	·
	$3_1 = 0.$	79	Equivalent stress blo	ock factor		LRFD §	5.7.2.2
Grou	t Mater	ials				BCS §	8.13.8.3.2
1	f' _{cg} = 8 Che			ve strength of bedding layer Limit = 7.1 ksi ().K.	BCS Eq.	8.13.8.3.2a
J	oint gro	out shall have a <u>3 l</u>	b per cy fraction of polyp	propylene fibers for joint in	tegrity	BCS §	8.13.8.3.5a
Mild	Reinfor	cing Steel				SGS §	8.4.2
1	$f_y = 6$	0 ksi	Specified yield stress	3		SGS Tbl.	8.4.2-1
t	$f_{ye} = 6$	8 ksi	Expected yield stress			SGS Tbl.	8.4.2-1
1	$f_{ue} = 9$	5 ksi	Expected ultimate te	nsile strength		SGS Tbl.	8.4.2-1
]	$E_{\rm s} = 290$	000 ksi	Modulus of elasticity			SGS Tbl.	8.4.2-1
:	$\varepsilon_{y}=$	0.002	Effective yield strain			SGS Tbl.	8.4.2-1
	$\varepsilon_{\rm su}$ =	0.12	Ultimate tensile strai	n		SGS Tbl.	8.4.2-1
	$\varepsilon_{\text{su}}^{\text{R}} = 6$	0.06 0 ksi		nsile strain accounting for brield stress of confining hoo	_	SGS §	8.4.2
Post-	Tensio	ning Steel				SGS §	8.4.3
]	E _{ps} = 28!	500 ksi	Modulus of elasticity	,		SGS Eq.	8.4.3-3
		70 ksi	Specified ultimate te			SGS §	
:	ε _{ps,EE} =	0.009	Essentially elastic pr	estress strain		SGS §	8.4.3

P	ROJECT DESIGN EXAMPLES		SHEET NO	2	OF	12
	ECT NO NCHRP 12-74		DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
	CLIENT UNIVERSITY OF CALIFO	RNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009
SUBJECT	AASHTO SEISMIC GUIDE SPECIFIC		- NT DESIGN EXAMPLE - SDO	Cs C and D	_	
	$f_{ps,EE}$ = 245 ksi	Essentially elastic prestr	ess stress			
	$\varepsilon_{\text{ps,u}}^{\text{R}} = 0.03$	Reduced ultimate prestre			SGS §	843
	o ps,u olos	nedded drilliate prestr			5053	0.1.5
Geome	tric Input Parameters					ı
Col	umn Dimensions					ı
	D_c = 4.0 ft	Gross column diameter				
	d_{ps} = 24.0 in	Distance from edge of co	lumn to tendon centerl	ine		
	c_c = 2.0 in	Clear cover to hoop reinf	orcement			
	$A_g = 12.57 \text{ ft}^2$	Gross column section are	ea			
	$A_e = 10.05 \text{ ft}^2$	Effective column shear a	rea		SGS Eq.	8.6.2-2
	$I_g = 12.57 \text{ ft}^4$	Gross column moment of	finertia		•	
	·					
	$H_{clr} = 19.0 \text{ ft}$	Clear height of column				
	H= 24.0 ft	Height from centerline be	-	undation		
	$n_j = 2$	= 1 if fixed-pinned; = 2 if				
	H_{inf} = 9.5 ft L_{ns} = 26.5 ft	Distance to point of infle		ما م س		
	L _{ps} = 26.5 ft N= 565 kip	Total length (unbonded) Total gravity force acting			arturning])
	$N / f_{ce}^{\prime} A_{g} = 6.00 \%$	Gravity load axial load ra	-	g (illeludilig ov	er tur ming)
Ber	nt Cap Dimension	·				
	$B_{cap} = 5.0$ ft	Bent cap width				
	D_s = 4.5 ft	Bent cap height				
Col	umn Transverse Reinforcem	ent Specified				
<u>cor</u>	-					·
	Size of bars: No. 6 d_{har} = 0.75 in	Butt-welded hoop reinfo				
	2	Diameter of reinforcing b	Jai			
	•	Area of reinforcing bar	of hoons			
	s _{hoop} = 4 in D'= 3.60 ft	Center-to-center spacing Diameter of confined con	-			
	A_{cc} = 10.20 ft ²	Area of confined concrete				
		Volumetric ratio of confi			SGS Eq.	8.6.2-6
D : 6		, 0.00.00.00.00.00.00.00.00.00.00.00.00.0			1	0.0.2
Keinfoi	rcement Input Parameters					
Col	umn Mild Reinforcement Spe	cified				
	Number of bars: 16	Size of bars: No. 7				
	$d_{bar} = 0.88$ in	Diameter of reinforcing b	oar			
	$A_{\rm bar}$ 0.60 in ²	Area of reinforcing bar				
	$A_s = 9.6 in^2$	Total area of mild reinfor	rcement			
	ρ_s = 0.53 %	Volumetric ratio of mild	reinforcement			
	$D_{bars} = 3.47$ ft	Diameter about which ba	ers are distributed			
	$s_b = 8.17$ in	Clear spacing of reinforci	ing bars			
	Recommended: sb < 8.0	0 inches: 8.17 < 8.00, O.K.			SGS §	8.6.3

PROJECT DESIGN EXAMPLES
SHEET NO 3 OF 12

PROJECT NO NCHRP 12-74
DESIGNED BY Tobolski, MJ DATE 12/31/2009

CLIENT UNIVERSITY OF CALIFORNIA SAN DIEGO
CHECKED BY Restrepo, JI DATE 12/31/2009

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS HYBRID BENT CAP JOINT DESIGN EXAMPLE - SDCs C and D

Column Post-Tensioning Specified

Number of tendons: 1 Number of strands per tendon: 12

Diamter of strands: 0.6 in Area of single strand 0.217 in²

 $A_{ps} = 2.60 \text{ in}^2$

 f_{pse} / f_{pu} = 0.60 Effective post-tensioning stress ratio

 $A_{ps} f_{pse} / f'_{ce} A_{g} = 4.48 \%$

Confined Concrete Properties (based on specified reinforcement)

 ρ_{cc} = A_s / A_{cc} = 0.65 % Volumetric ratio of mild reinforcement with respect to core

 ρ_s = 4 $A_v/[D's]$ = 1.02 % Volumetric ratio of confinement reinforcement SGS Eq. [8.6.2-6]

 $k_e = [1-0.5s/D']^2/[1-\rho_{cc}] = 0.916$ Confinement effectiveness coefficient

 $f_{lp} = k_e \rho_s f_{vh} / 2 =$ 0.28 ksi Effective confining stress

f'_{cce}= 6.92 ksi Expected confined concrete compressive strength

 ϵ_{cc} = 0.005 Compressive strain at peak stress

 ϵ_{cu} = 0.019 Ultimate confined concrete compressive strain

 ε_{cu} / ε_{cc} = 3.55 $K = f'_{cce}$ / f'_{ce} = 1.33

from Park and
Paulay
Figure 3.8

 $\beta_c = 0.98$ Confined concrete equivalent stress block depth factor $\alpha_{cc}\beta_{cc} = 0.89$

 α_{cc} = 0.91 Confined concrete equivalent stress block stress factor

PROJECTDESIGN EXAMPLESSHEET NO4OF12PROJECT NONCHRP 12-74DESIGNED BYTobolski, MJDATE12/31/2009CLIENTUNIVERSITY OF CALIFORNIA SAN DIEGOCHECKED BYRestrepo, JIDATE12/31/2009

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS HYBRID BENT CAP JOINT DESIGN EXAMPLE - SDCs C and D

Reference Yield Point

elerence fleid Pollit	
$c = 12.78$ in Neutral axis d $c / D_c = 26.6$ %	lepth (determined via numerical solver)
, ,	= 0.9529 rad = 1.0014 rad Use radians for all equations
$T_{ps,y} = A_{ps} f_{pse}$	Tension force in post-tensioning
$T_{s,y} = A_s f_y \{ [\pi - \theta_{steel}] / \pi \}$	Resultant tension force in mild reinforcement
$C_{s,y} = A_s f_y \theta_{steel} / \pi$	Resultant compression force in mild reinforcement
$C_{c,y} = 0.85 f_{ce}^2 D^2 [\theta_{conc} - \sin(\theta_{conc}) \cos(\theta_{conc})]/4$	Resultant compression force in concrete
Tension / Axial Force Summation	Compression Force Summation
$T_{ps,y}$ = 422 kip Post-tensioning	
$T_{s,y}$ = 445 kip Mild reinforcement	$C_{s,y}$ = 208 kip Mild reinforcement
N= 565 kip Axial load	$C_{c,y}$ = 1224 kip Concrete ΣC = 1431 kip
ΣT= 1431 kip	ΣC= 1431 kip
$\Sigma T = \Sigma C$ 1431 = 1431 Equilibrium	um satisfied
$y_{st} = 0.5D_{bars}sin(\pi - \theta_{steel})/[\pi - \theta_{steel}] =$	8.19 in Resultant steel tension eccentricity
y_{sc} = 0.5 D_{bars} sin(π - θ_{steel})/[π - θ_{steel}] =	17.50 in Resultant steel compression eccentricity
$y_c = Dsin(\theta_{conc})^3 / \{3[\theta_{conc} - sin(\theta_{conc})cos(\theta_{conc})]\} =$	18.03 in Resultant concrete compression eccentricity
$M_y = C_{c,y}y_c + C_{s,y}y_{sc} + T_{s,y}y_{st} = 2445$ kip-ft	Reference yield moment
$V_y = M_y / H_{inf} = 257 \text{ kip}$	Reference yield base shear
$\theta_{b,y} = 2\epsilon_y L_{ub} / [D-D_{bars}-2c] = 0.09 \%$	Fixed end rotation at joint due to opening
$\Delta_f = V_v H_{clr}^3 / [3n_i^2 E_c I_g] = 0.22$ in	Deformation due to elastic bending of column
$\Delta_{\rm v} = V_{\rm y} H_{\rm clr} / [G_{\rm c} A_{\rm cs}] = 0.02 \text{in} $	Deformation due to shear deformations of column
•	Deformation due to fixed end rotation due to opening
, ,	Total Deformation
DR= 0.20 % Drift ratio	

PROJECT
PROJECT NODESIGN EXAMPLESSHEET NO5OF12PROJECT NO
CLIENTNCHRP 12-74DESIGNED BY
CHECKED BYTobolski, MJ
Restrepo, JIDATE12/31/2009

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS HYBRID BENT CAP JOINT DESIGN EXAMPLE - SDCs C and D

c = 9.80 in	Neutral ax	kis depth (determined via numerical solver)
$c / D_c = 20.4 \%$		
$c / D_c < 25\%$	20.41 < 25.0	0 O.K. SGS Eq. 8.
$\theta_{conc} = cos^{-1} \{ [0.5D' - \beta_{cc}c] / [0.5D' - \beta_{cc}c] \}$.5D']} = 57.4 d	eg = 1.0019 rad
$\alpha_{\rm ut}$ = 0.8 - 0.35 c/D _{bars} =	0.72 Shape	e factor for ultimate tension force in mild reinforcement
α_{uc} = 0.05 + 0.4 c/D _{bars} =	0.14 Shape	e factor for ultimate compression force in mild reinforcement
ψ_{ut} = 0.1 + 0.24 c/D _{bars} =	0.16 Shape	e factor for location of resultant tension force
ψ_{uc} = 0.5 - 0.16 c/D _{bars} =	0.46 Shape	e factor for location of resultant compression force
$T_{ps,u} = A_{ps}[f_{pse} + \theta_{b,u}E_{ps}]d_{ps} - c_{e}$	c-c]/L _{ps}	Tension force in post-tensioning
$T_{s,u} = A_s f_u \alpha_{ut}$	-	Resultant tension force in mild reinforcement
$C_{s,y} = A_s f_u \alpha_{uc}$		Resultant compression force in mild reinforcement
$C_{c,v} = \alpha_{cc} f'_{cc} D'^2 [\theta_{conc} - \sin(\theta_{con})]$	$(\cos(\theta_{\rm conc}))/4$	Resultant compression force in concrete
Tension / Axial Ford	ce Summation	Compression Force Summation
$T_{ps,u}$ = 529 kip	Post-tensioning	
$T_{s,u}$ = 654 kip	Mild reinforcemen	-
N= 565 kip	Mild reinforcemen Axial load	·
N= 565 kip		
N= 565 kip ΣT= 1748 kip	Axial load	$\frac{C_{c,u}= 1611 \text{ kip} Concrete}{\Sigma C= 1742 \text{ kip}}$
N= 565 kip ΣT= 1748 kip	Axial load	·
N = 565 kip $ΣT = 1748 kip$ $ΣT = ΣC 1748 /=$	Axial load	$\frac{C_{c,u}= 1611 \text{ kip } Concrete}{\Sigma C= 1742 \text{ kip}}$ imbalance, adjust c
N= 565 kip ΣT= 1748 kip ΣT = ΣC 1748 /= $y_{st} = \psi_{ut} D_{bars} =$	Axial load	$\frac{C_{c,u}= 1611 \text{ kip Concrete}}{\Sigma C= 1742 \text{ kip}}$ imbalance, adjust c $6.51 \text{ in Resultant steel tension eccentricity}$
N= 565 kip ΣT= 1748 kip ΣT = ΣC 1748 /= $y_{st} = \psi_{ut}D_{bars} = y_{sc} = \psi_{uc}D_{bars} =$	Axial load 1742 Force	$\frac{C_{c,u}\text{=}}{\Sigma\text{C}\text{=}}\frac{1611 \text{ kip} \text{Concrete}}{1742 \text{ kip}}$ $\text{imbalance, adjust c}$ $6.51 \text{in} \text{Resultant steel tension eccentricity}$ $19.24 \text{in} \text{Resultant steel compression eccentricity}$
N= 565 kip ΣT= 1748 kip $ΣT = ΣC$ 1748 /= $y_{st} = \psi_{ut}D_{bars} = y_{sc} = \psi_{uc}D_{bars} = y_{sc}$	Axial load 1742 Force	$\frac{C_{c,u}= 1611 \text{ kip Concrete}}{\Sigma C= 1742 \text{ kip}}$ imbalance, adjust c $6.51 \text{ in Resultant steel tension eccentricity}$
N= 565 kip ΣT= 1748 kip $ΣT = ΣC$ 1748 /= $y_{st} = \psi_{ut}D_{bars} = y_{sc} = \psi_{uc}D_{bars} = y_{c} = D'\sin(\theta_{conc})^3/\{3[\theta_{conc}-s]^3/(3(\theta_{conc}-s)^3/(3$	Axial load $$1742$$ Force $$\inf(\theta_{conc})\cos(\theta_{conc})$$	$\frac{C_{c,u} = 1611 \text{ kip Concrete}}{\Sigma C = 1742 \text{ kip}}$ imbalance, adjust c $6.51 \text{ in Resultant steel tension eccentricity}$ $19.24 \text{ in Resultant steel compression eccentricity}$ $\{ = 15.73 \text{ in Resultant concrete compression eccentricity} \}$
N= 565 kip ΣT= 1748 kip ΣT = ΣC 1748 /= $y_{st} = \psi_{ut}D_{bars} = y_{sc} = \psi_{uc}D_{bars} = y_{c} = D'sin(\theta_{conc})^3/\{3[\theta_{conc}-s]\}$ $M_u = C_{c,u}y_c + C_{s,u}y_{sc} + T_{s,u}y_{st} = y_{c}$	Axial load $$1742$$ Force $$\inf(\theta_{conc})\cos(\theta_{conc})$$	$\frac{C_{c,u}\text{=}}{\Sigma\text{C}\text{=}}\frac{1611 \text{ kip} \text{Concrete}}{1742 \text{ kip}}$ $\text{imbalance, adjust c}$ $6.51 \text{in} \text{Resultant steel tension eccentricity}$ $19.24 \text{in} \text{Resultant steel compression eccentricity}$
N= 565 kip ΣT= 1748 kip ΣT = ΣC 1748 /= $y_{st} = \psi_{ut}D_{bars} = y_{sc} = \psi_{uc}D_{bars} = y_{c} = D'\sin(\theta_{conc})^3/\{3[\theta_{conc}-s]\}$ $M_u = C_{c,u}y_c + C_{s,u}y_{sc} + T_{s,u}y_{st} = V_u = M_u / H_{inf} = V_u$	Axial load 1742 Force $in(\theta_{conc})cos(\theta_{conc})$ 2677 kip-ft	$\frac{C_{c,u} = 1611 \text{ kip Concrete}}{\Sigma C = 1742 \text{ kip}}$ imbalance, adjust c $6.51 \text{ in Resultant steel tension eccentricity}$ $19.24 \text{ in Resultant steel compression eccentricity}$ $\{ 15.73 \text{ in Resultant concrete compression eccentricity}$ Ultimate moment strength
	Axial load 1742 Force $in(\theta_{conc})cos(\theta_{conc})$ 2677 kip-ft 282 kip	$\frac{C_{c,u}\text{=}}{\Sigma\text{C}\text{=}} \frac{1611 \text{ kip}}{1742 \text{ kip}}$ $\frac{C_{c,u}\text{=}}{\Sigma\text{C}\text{=}} \frac{1742 \text{ kip}}{1742 \text{ kip}}$ $\frac{6.51 \text{ in Resultant steel tension eccentricity}}{19.24 \text{ in Resultant steel compression eccentricity}}$ $\text{=} 15.73 \text{ in Resultant concrete compression eccentricity}$ $\text{Ultimate moment strength}$ $\text{Ultimate shear strength}$
N= 565 kip ΣT= 1748 kip ΣT = ΣC 1748 /= $y_{st} = \psi_{ut}D_{bars} = y_{sc} = \psi_{uc}D_{bars} =$	Axial load 1742 Force $in(\theta_{conc})cos(\theta_{conc})$ 2677 kip-ft 282 kip 1.88 %	$\frac{C_{c,u} = 1611 \text{ kip Concrete}}{\Sigma C = 1742 \text{ kip}}$ imbalance, adjust c $6.51 \text{ in Resultant steel tension eccentricity}$ $19.24 \text{ in Resultant steel compression eccentricity}$ $\{ = 15.73 \text{ in Resultant concrete compression eccentricity} \}$ Ultimate moment strength Ultimate shear strength Fixed end rotation at joint due to opening
	Axial load 1742 Force $in(\theta_{conc})cos(\theta_{conc})$ 2677 kip-ft 282 kip 1.88 % 0.24 in	C _{c,u} = 1611 kip Concrete ΣC= 1742 kip imbalance, adjust c 6.51 in Resultant steel tension eccentricity 19.24 in Resultant steel compression eccentricity }= 15.73 in Resultant concrete compression eccentricity Ultimate moment strength Ultimate shear strength Fixed end rotation at joint due to opening Deformation due to elastic bending of column

DR= 2.00 % Drift ratio

PROJECT	DESIGN EXAMPLES	SHEET NO	6	OF	12
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

Performance Requirements 0.75 $f_{ps}/f_{pu}=$ Post-tensioning stress ratio at ultimate point $f_{ps}/f_{pu} < f_{ps,EE}/f_{pu}$ 0.K. 0.75 0.91 9.98 in Minimum required unbonded length of mild reinforcement $L_{ub.min} =$ $L_{ub} =$ 12.00 in Specified unbonded length of mild reinforcement SGS § 8.8.14 $0.5D_c > L_{ub} > L_{ub,min}$ 24.00 >= 12.00 >= 9.98 O.K. $\beta_{M,y}=$ 0.25 Contribution of mild reinforcement to reference moment strength $0.33 > \beta_{M,v} > 0.20$ 0.25 0.K. SGS Eq. 8.8.1-3 0.33 0.20 8.8.2-5 0.21 Contribution of mild reinforcement to ultimate moment strength $\beta_{M,u}=$ $\beta_{PT} =$ 1.42 Effective axial load divided by tensile steel force at ultimate point $\beta_{PT} = (0.9N + T_{ps,v})/T_{s,u} > 1$ 0.K. 1.42 1.00 SGS Eq. 8.8.1-2 **Response Summary** 0.45 in $\Delta_v =$ 3000 DR_v= 0.20 % $V_v =$ 257 kip 2500 $M_v =$ 2445 kip 2000 Moment, kip-ft $\Delta_{C}=$ 4.56 $DR_u =$ 2.00 % 1500 V.,= 282 kip $M_u =$ 2677 kip 1000 576 $k_i =$ kip/in 500 6 kip/in k_{ne}= α_{pe} = 1.03 10.2 $\mu_{\Delta,c}=$ 0.00 0.50 1.00 1.50 2.00 2.50 W = N =565 kip **Drift Ratio, %** T=0.32 sec **Seismic Demand Analysis** $S_S =$ 1.50 0.2 second spectral acceleration (MCE) g $S_1 =$ 1.0 second spectral acceleration (MCE) 0.55 Site Class: D Soil site class SGS § 3.4.2.1 $F_a =$ 1.00 Site coefficient for 0.2 second period spectral acceleration SGS § 3.4.2.3 $F_v =$ Site coefficient for 1.0 second period spectral acceleration SGS § 3.4.2.3 1.50

Design 0.2 second spectral acceleration

Design 1.0 second spectral acceleration

SGS Eq. 3.4.1-1 SGS Eq. 3.4.1-2

 $S_{DS}=$

 $S_{D1} =$

1.50

0.83

P	ROJEC	T DES	IGN E	XAMPI	_ES					SH	EET NO	7	OF	12
PRO.	PROJECT NO NCHRP 12-74					DESIG	NED BY	Tobolski, MJ	DATE	12/31/200				
	CLIEN	T UNI	VERSI	TY OF	CALIFORNI	A SAN I	DIEGO			CHEC	KED BY	Restrepo, JI	DATE	12/31/200
SUBJECT	AASHT	O SEISN	ИIC GI	UIDE S	PECIFICATION	ONS H	YBRID BEI	NT CAP JC	INT D	ESIGN EX	AMPLE - S	DCs C and D	_	
Sei	smic De	sign C	atego	ory I)								SGS §	4
T_S =	=	0.55	sec			-	-				ner perio		SGS Eq.	
$T_o=$		0.11	sec			•	•				ner perio	od	SGS Eq.	
T*=	=	0.69	sec		Cł	naract	eristic g	round n	notion	period			SGS Eq.	4.3.3-3
S _a =	:	1.50	g		De	esign :	spectral	accelera	ation				SGS §	3.4.1
	Tria	ıl 1	I		Trial 2			Trial 3			Trial 4			
Δ_{D} =		1.47	in	Δ _D =	2.67	in	Δ_{D} =	2.91	in	Δ_D =	2.93	in		
$\mu_{\Delta,\scriptscriptstyle m I}$		3.29		μ _{Δ,D} =	5.98		μ _{Δ,D} =	6.51		μ _{Δ,D} =	6.56		SGS Eq.	4.9-5
R_d =		1.82		R_d =	1.98		$R_d =$	1.99		R_d =	1.99	<- Converged	SGS Eq.	4.3.3-1/2
Δ_{D}	< Δ _C	2.	93	<	4.56	Der	mand les	ss than c	apaci	ty, O.K.			SGS Eq.	4.8-1
$\mu_{\Delta,\mathfrak{l}}$	o < 6	6.	56	>	6.00	Duo	ctility de	emand gr	reatei	than li	mit, NO G	600D	SGS §	4.9
M_{P}	- _{-Δ} = M _{P-Δ} <	138 0.25	-	ft			ment de 69	mand ba	ised u	n seism	ic dispal	cement demand	SGS Eq.	4.11.5-1
Joint P	erforma	ance											SGS §	8.15.1
		-	_		ons are de ength mor	_			e max	imum fo	orces pro	duced when the		
No	St	rengt	h loa	d case		acity	protecti	on durin	ig Ext	reme Ev		ations, including cases. The bent		
	$= M_{\rm u}H/H$ $_{\rm o} = \lambda_{\rm mo} M$	\mathbf{I}_{p}			cip-ft Ef	fectiv	e ultima	te mom	ent ca	pacity a	it CL ben	t cap	SGS §	
M_{p}		= 1.2 4058		-	M A706) O	verstr	ength m	oment d	lemar	nd acting	g on bent	cap	SGS Eq.	8.5-1

 $A_s^{cap}_{top} = 16.55 \text{ in}^2$ $A_s^{cap}_{bot} = 12.92 \text{ in}^2$ Required longitudinal reinforcement required per design requirements of Extreme I load case

PROJECT	DESIGN EXAMPLES	SHEET NO	8	OF	12
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	LINIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restreno II	DATE	12/21/2000

Joint ProportioningSGS §8.15.2

Principal Stresses

Principal stresses in the joint are limited by the following equations:

Principal compression, p_c : $p_c \le 0.25 \, f_{ce} = 1.30 \, \text{ksi maximum}$ SGS Eq. 8.15.2.1-1 Principal tension, p_t : $p_t \le 0.38 \, \sqrt{f_{ce}} = 0.87 \, \text{ksi maximum}$ SGS Eq. 8.15.2.1-2

$B_{cap} =$	60.0 in	
$D_c =$	48.0 in	
$D_s =$	54.0 in	
$l_{ac} =$	51.0 in	Note 1
$P_c =$	987 kips	Includes effective PT
$P_b =$	0 kips	Note 2
h =	2.18 ft	Note 3
$M_{po} =$	4058 kip-	t Note 3

Notes:

- 1) Length of column longitudinal rebar extended into cap. See calculations below.
- 2) No prestressing in section.
- 3) Determined from sectional analysis. Tension in column longitudinal rebar may also be derived from sectional analysis.

$$p_{t} = \left\lfloor \frac{f_{h} + f_{v}}{2} \right\rfloor - \sqrt{\left\lfloor \frac{f_{h} - f_{v}}{2} \right\rfloor + v^{2}_{jv}} = 0.148 \text{ ksi} \qquad \text{Principal tension stress in joint} \qquad \text{SGS Eq. } 8.15.2.1-3$$

$$p_{c} = \left(\frac{f_{h} + f_{v}}{2} \right) + \sqrt{\left(\frac{f_{h} - f_{v}}{2} \right)^{2} + v^{2}_{jv}} = 0.309 \text{ ksi} \qquad \text{Principal compression stress in joint} \qquad \text{SGS Eq. } 8.15.2.1-4$$

$T_c = T_{s,u} =$	654	kips	Column tensile force at ultimate (from analysis above)	SGS §	8.15.2
$A_{jv} = l_{ac} B_{cap} =$	3060.0	in ²	Vertical joint area	SGS Eq.	8.15.2.1-6
$v_{jv} = T_c / A_{jv} =$	0.214	ksi	Vertical joint shear stress	Eq.	8.15.2.1-5
$A_{jh} = (D_c + D_s) B_{cap} =$	6120	in ²	Horizontal joint area	SGS Eq.	8.15.2.1-8
$f_v = P_c / A_{jh} =$	0.1612	ksi	Vertical joint shear stress	SGS Eq.	8.15.2.1-7
$f_h = P_b / (B_{cap} D_s) =$	0.0	ksi	Horizontal joint stress	SGS Eq.	8.15.2.1-9

 p_c = 0.309 ksi \leq 1.30 ksi maximum OK Joint proportions are acceptable based p_t = 0.148 ksi \leq 0.87 ksi maximum OK on principal stress requirements.

PROJECT	DESIGN EXAMPLES	SHEET NO	9	OF	12
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

Minimum Development Length of Column Longitudinal Reinforcement

SGS § 8.15.2.2

$$l_{ac} = 17.1$$
 in (minimum)

Extend column reinforcement as far as practically possible; assume 3" clear from opposite face, per Article 8.15.2.2.2.

$$l_{ac} = D_s - 3'' = 51.0$$
 in

51.0 in
$$\geq$$
 17.1 in (minimum) OK Extend to top face of cap less 3 in cover.

Minimum Joint Shear Reinforcing for Precast Bent Cap Connections

SGS § 8.15.3

Where principal tension in the joint is greater than or equal to $0.11\sqrt{f'_c}$ and joint proportioning is acceptable per Article 8.15.2, additional transverse joint reinforcement for cap pocket connections per Article 8.15.5.2.3 is to be added, and Eqs. 8.15.3.1-1 and 8.15.3.1-2 are to be satisfied.

Check if principal tension, p_t is $\ge 0.11\sqrt{f'_{ce}}$ (condition for likely joint cracking)

Calculated tension =
$$0.148$$
 ksi
Limit, $0.11\sqrt{f'_{ce}}$ = 0.251 ksi

$$p_t$$
 = 0.148 ksi \leq 0.251 ksi limit Only transverse reinforcement per SGS Eq. 8.15.3.1-1 is required. No additional joint reinforcement is required

For this HYBRID DESIGN EXAMPLE, only minimum transverse reinforcement is required. Due to the use of a combination of both post-tensioning and mild reinforcement, it is common for the principal tensile stress in the joint to be below the condition for likely joint cracking. For an example calculation with full joint detailing, see GROUTED DUCT DESIGN EXAMPLE FOR SDC C and D.

Calculate required volumetric ratio of transverse joint reinforcement:

$$\rho_{s} \ge 0.11 \sqrt{f'_{ce} / f_{yh}} = 0.0037$$
 $A_{st} = 9.6 \text{ in}$
 $l_{ac} = 51.0 \text{ in}$

SGS Eq. 8.15.3.1-1

Assume transverse reinforcement in the joint is the same size as the column plastic hinging region transverse reinforcement.

$$\begin{array}{lll} \rho_s = & \frac{4A_{sp}}{D'_{gd}\,s} \\ & A_{sp} = & 0.44 & \text{in}^2 & \text{(\#6 hoop)} \\ & D' = & 43.25 & \text{in} & \text{(confined diameter of column between centroids of hoop)} \\ & s = & 8.0 & \text{in} & \text{(trial spacing of transverse reinforcement hoops; spacing not to exceed 12" or $0.3D_s$ per Art. $8.15.3.2.1$)} \\ \end{array}$$

PROJECT	DESIGN EXAMPLES	SHEET NO	10	OF	12
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

D'_{gd} = Column diameter - 2 x clear cover - hoop diameter - long. column reinf diameter + grouted duct inside diameter + corrugation amplitude x 2.

$$D'_{gd} = 46.61$$
 in (deformed diameters are used for clearance calculations)

$$\rho_s = 0.0047 \geq 0.0037 \ minimum$$

8" spacing is adequate (Note: The common practice for cast-in-place construction to carry hoop spacing from column into cap is not expected for precast bent caps as cages are built independently)

Note, must also check bursting requirements at post-tensioning anchorage per LRFD §5.10.9.6.3

Vertical Stirrups Inside the Joint Region

SGS § 8.15.3.2

 $A_s^{jvi} \ge 0.10 A_{st}$ Required area of vertical stirrups spaced evenly over a length equal to D_c

OK

SGS Eq. 8.14.5.2.2a-1

$$A_{st} = 9.6 \text{ in}^2$$

$$A_s^{jvi} \ge 0.96 \text{ in}^2 \text{ spaced over} \quad 4.0 \text{ ft}$$

Use (2) #6 double leg stirrups spaced evenly inside joint region.

$$A_s^{jvi} = 2$$
 locations x 2 legs / location x 0.44 $in^2 / leg = 1.76$ $in^2 >= 0.96$ in^2 0.K.

Bedding Layer Reinforcement

SGS 8.15.5.2.1

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 2" as shown in figures below, and resulting

center-to-center spacing of transverse reinforcement is 4" throughout, in accordance with

PROJECT	DESIGN EXAMPLES	SHEET NO _	11	OF	12
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009
SUBJECT AASHTO	SEISMIC GLIIDE SPECIFICATIONS HYRRID RENT CAP IOIN	– NT DESIGN EXAMPLE - SDO	`s C and D	='	

Figures Showing Final Design

- SECTION AT COLUMN CENTERLINE

12 OF 12 **PROJECT** DESIGN EXAMPLES SHEET NO PROJECT NO NCHRP 12-74 **DESIGNED BY** DATE 12/31/2009 Tobolski, MJ **CHECKED BY**

DATE 12/31/2009

Restrepo, JI

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS HYBRID BENT CAP JOINT DESIGN EXAMPLE - SDCs C and D

CLIENT UNIVERSITY OF CALIFORNIA SAN DIEGO

Simplified Section at Column Edge

PROJE	CT DESIGN EXAMPLES		SHEET NO	1	OF	15
PROJECT	NO NCHRP 12-74		DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIE	NT UNIVERSITY OF CALIF	ORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009
SUBJECT AASI	HTO SEISMIC GUIDE SPECIF	ICATIONS INTEGRAL BENT CAP DE	SIGN EXAMPLE - SDCs C	and D		
This design e required to d system is dev	esign the integral, prec	SDC C and D tioners with a comprehensive ast bent cap system presented seismic regions where the adv	l in NCHRP 12-74. T	his structural		AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS)
tensioned sp through the s	iced girders, which are	tion between the superstructure discontinuous at the bent capagh the bent cap using post-tenthrough experimental work u	o. Flexural continuity nsioning tendons. Th	vis provided nis structural typ		AASHTO LRFD Bridge Construction Specifications (BCS)
connection ty commentary additional ba	pe was validated for hi sections in the AASHT(ckground.	p and column is made through gh seismic regions under the O Guide Specifications for LRF	NCHRP 12-74 projec	ct. The applicable		AASHTO LRFD Bridge Design Specifications (LRFD)
<u>Material Inp</u>	ut Parameters					
Concrete	Materials (Unconfine	ed)			SGS §	8.4.4
f'_c=	4.0 ksi	Specified 28-day compress	sive strength of colur	nn concrete	SGS Eq.	8.4.4-1
•	$1.3 f_c = 5.2 \text{ksi}$	Expected column concrete	_		•	
f'cg=	6.0 ksi	Specified 28-day compress	ive strength of girde	er concrete		
Grout M	aterials				BCS 8	8.13.8.3.2
					DC3 8	0.13.0.3.2
U	= 8.0 ksi ck: f'_{cgb} (ksi) $\geq max[1.2]$ 8.0 ksi >= 7.0		ngth of grout beddir	ng layer	BCS Eq.	8.13.8.3.2a
f' _{cgv} Che	= 8.0 ksi ck: f _{cgv} (ksi) ≥ max[1.2; 8.0 ksi >= 8.0	0.	ngth of grout closur	e joint	BCS §	8.13.8.3.1
Clos	sure joint grout shall ha	ve a <u>3 lb per cy</u> fraction of pol	ypropylene fibers fo	or joint integrity	BCS §	8.13.8.3.6a
Mild Rei	nforcing Steel				SGS §	8.4.2
$f_v =$	60 ksi	Specified yield stress			SGS Tbl.	8.4.2-1
$f_{ye} =$	68 ksi	Expected yield stress			SGS Tbl.	8.4.2-1
f_{ue} =	95 ksi	Expected tensile strength			SGS Tbl.	8.4.2-1
E_s =	29000 ksi	Modulus of elasticity			SGS Tbl.	8.4.2-1
ϵ_y =	0.002	Effective yield strain			SGS Tbl.	8.4.2-1
ϵ^{R}_{su}	= 0.09	Reduced ultimate tensile s	train			
$f_{yh}=$	60 ksi	Specified yield stress of co	nfining hoops			

15 SHEET NO OF **PROJECT** DESIGN EXAMPLES PROJECT NO NCHRP 12-74 **DESIGNED BY** DATE Tobolski, MJ 12/31/2009 **CLIENT** UNIVERSITY OF CALIFORNIA SAN DIEGO **DATE** 12/31/2009 **CHECKED BY** Restrepo, JI

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP DESIGN EXAMPLE - SDCs C and D

Geometric Input Parameters

Column Dimensions

$D_c=$	5.0	ft	Gross column diameter
$H_{clr} =$	22.0	ft	Clear height of column
H=	11.0	ft	Clear height to point of contraflexure (fixed-fixed column)
$L_p=$	27.9	in	Idealized plastic hinge length
$L_p/D_c=$	0.465		Normalized plastic hinge length
L=	140	ft	Span length between centerline of bents

Column reinforcement

(20) No. 11 A706 Reinforcing Bars

$$A_{s,bar} = 1.56 \text{ in}^2$$

$$A_{st} = 31.2 \text{ in}^2$$

Superstructure Dimensions

Superstructure consists of 72 inch tall post-tensioned girders with local end blocks at bent

$D_{girder} =$	74.0	in	Depth of	Depth of post-tensioned girder						
$D_{haunch} =$	2.0	in	Thicknes	Thickness of girder haunch (specified)						
$D_{deck} =$	8.0	in	Thicknes	Thickness of reinforced concrete deck						
$D_s=$	7.00	ft	Total de	Total depth of superstructure (in longitudinal direction)						
s_g =	9.00	ft	Girder co	Girder center-to-center spacing						
$A_{ps}^{Top} =$	2.604	in^2	$f_{pe}^{Top} = 16$	52 ksi	Top tendon details (12-0.6" at 60% GUTS)					
$A_{ps}^{Mid} =$	2.604	in^2	$f_{pe}^{Mid} = 16$	2 ksi	Middle tendon details (12-0.6" at 60% GUTS)					
$A_{ps}^{Bot} =$	1.519	in^2	$f_{pe}^{Bot} = 0$	ksi	Bottom tendon details (7-0.6" unstressed)					

PROJECT	DESIGN EXAMPLES	SHEET NO _	3	OF	15
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

 w_{cj} = 2.0 in Specified closure joint dimension Check: $w_{cj} \le 3$ " for grout closure joints BCS § 8.13.8.3.6a 2.0 in <= 3.0 in O.K.

NOTE: For larger closure joints, concrete shall replace grout material and joint shall be reinforced to ensure the integrity of the concrete is maintained when the joint opens.

Bent Cap Dimension

$B_{cap}=$	7.0	ft	Bent cap v	vidth						
h _{extra} =	6.0	in	Additional	Additional depth of precast cap below girder (for splicing)						
$D_{P/C}=$	6.67	ft	Bent cap h	Bent cap height						
$D_{cap}=$	7.50	ft	Total dept	Total depth of bent cap including deck						
$A_s^{Top} =$	15.6	in^2	$f_{pe}^{Top} = 162$	ksi	(10) No. 11 reinforcing bars					
$A_s^{Bot} =$	12.48	in^2	$f_{pe}^{Mid} = 162$	ksi	(8) No. 11 reinforcing bars					
$A_{ps}^{BC} =$	9.11	in^2	$f_{pe}^{Mid} = 162$	ksi	Middle tendon details (12-0.6" at 60% GUTS)					

Seismic Demands

The focus of this design example is on detailing of the bent cap and superstructure. Traditional seismic displacement checks, etc. shall be carried out but are not included herein.

Moment resisting connections are designed to transmit the maximum forces produced when the column reaches its overstrength moment capacity, $M_{\rm po}$.

Note: Capacity of the bent cap section needs to satisfy applicable load combinations, including the Strength load cases and capacity protection during Extreme Event load cases. The bent cap section capacity is not investigated in this design example.

Determine the idealized plastic moment capacity of the column, M_p , using a sectional analysis program, and calculate the overstrength moment capacity, M_{po} , per Article 8.5.

Р	ROJECT	DESIGN I	EXAMPLE	S			SHEET NO	4	OF	15
PROJ	ECT NO	NCHRP 1	2-74				DESIGNED BY	Tobolski, MJ	DATE	12/31/200
	CLIENT	UNIVERS	ITY OF C	ALIFORNIA SAN D	IEGO		CHECKED BY	Restrepo, JI	DATE	12/31/200
SUBJECT	AASHTO S	EISMIC G	GUIDE SPE	CIFICATIONS IN	TEGRAL I	BENT CA	P DESIGN EXAMPLE - SDCs	C and D		
	Axial loa	d acting	g on colu	ımn per extrer	ne ever	it load (case = 825.0 kips	(P _c)		
		7	-	ompressive st			-			SGS
	f _{ye} (expe			strength) =						8.4.4
	$A_{st} =$	31.2	in ² To	tal area of colu	ımn rei	nforcer	nent			
M_p	= 65	50 kip	-ft	Idealize	d bendi	ng mor	nent capacity (from mo	ment-curvature)	SGS §	8.5
	$\lambda_{\rm mo} = \lambda_{\rm mo} M_{\rm p}$	•				Ü		,		
•	$\lambda_{\rm mo}$ =	1.2	(ASTM	A706)					SGS Eq.	8.5-1
M_{po}	, = 78	60 kip	-ft	Overstre	ength b	ending	moment capacity of col	umn (at critical s	ection)	
V_{no}	$= M_{po} / H$	=		715 kip-	ft	Overs	strength shear demand	from column plas	stic hinge	
1 -	r		5 D _{cap}] =	= 10540 kip-			strength bending mome			
•			•							
Supers	tructure (Capacit	y Desig	n for Longitud	dinal D	irectio	n for SDC C and D		SGS §	8.10
	-			-		-	ted member. Flexural c	apacity of the sec	tion	
sha	ll be deter	mined v	/ia mom	ent-curvature	analys	is per S	GS §8.5			
Seis	smic Mom	ent Cap	acity o	f Superstructi	ıre					
$ m B_{eff}$.0 ft				structu	re (open soffit, girder-d	eck system)	SGS Eq.	8.10-2
	B _{eff} will o	capture	(2) gird	er webs. Perfo	rm moi	ment-cı	urvature on superstruct	cure with (2) gird	lers	
							•			
100000						г	rom moment-curvature	e analysis:		
						Λ	ominal Bending Mom	ent Capacity		
						N	$I_{ne}^{+} = 8975 \text{ kip-ft}$			
						N	$I_{ne} = -13015 \text{ kip-ft}$			
						,	Iltim ata Cumatuna Car	a a situ		
San	nple sectio	nal ana	lucic inn	ut imago			Iltimate Curvature Cap $ ho_{ m u}^+$ = 6.641 E-03 1/f	-		
Sun	ipie sectio	nai ana	iysis iiip	ut image			$p_{\rm u}^{-} = -4.940 \text{E} \cdot 03 \text{ 1/f}$			
						4	nu = 1.910E 03 1/1	·		
NO'	TE: Detail:	s of mor	nent-cu	rvature not sh	own					
Ma	yimum Fy	tremo l	Event I l	Demands Acti	na on 🤈	Girde	rs from Plastic Hinging	1		
	sign action				ng un 2	an uci	s ji oni i iustic iiniyilig	•		
$\gamma_{D} N$			kip-ft		415	kip	Factored dead load	demand		
				$0.5 V_{LL,min} =$		kip	Factored live load fo			
0.5	$M_{LL,max} =$	414	kip-ft	$0.5 V_{LL,max} =$	-10	kip	Factored live load fo	r seismic design		

Horizontal peak ground acceleration

Vertical peak ground acceleration

Based on Bozorgnia and Campbell (2004)

Vertical to horizontal spectral acceleration ratio for zero period acceleration

 $PGA_h =$

V / H =

 $PGA_v =$

0.60 g

0.60 g

1.00

		SIGN EXAM				SHEET NO	5	OF	15
PROJECT						DESIGNED BY	Tobolski, MJ	DATE	12/31/200
CLIE	NT UN	IVERSITY C	F CALIFORNI	A SAN DIEGO		CHECKED BY Restrepo, JI DATE			12/31/200
SJECT AASI	HTO SEIS	MIC GUIDE	SPECIFICATI	ONS INTEGRAL	L BENT CAP DES	SIGN EXAMPLE - SDCs C	and D		
$M_{E,v} = [P]$ $V_{E,v} = PG$		/ L] L ² /	12 = 2324 199	kip-ft kip		oment demand fror near demand from v			
$M_{EEI,min} = M_{EEI,max} = M_{EEI,max}$				ne = -1301 ne = 8975		0.K. 0.K.			
Supersti	ructure	Rotation	Capacity						
$ \phi_{u} = L_{p,s} = D_{s}/2 $		E-03 1/f 3.5 ft		· .	rstructure cu e effective hi	rvature capacity fronge length	m moment-curv		4.11.6.2-1
$\theta_{\rm u}$ =	0.01			· .		tation capacity			
Che	ck: θ _u	>= 0.01 r	ad θ_u	= 0.017 ra	ad >= 0.010	0 O.K.		SGS §	8.10.3
$\Delta_{settle} = \theta_u$	L = 2	9.0 in	Pe	ermissible re	elative settlen	nent between bents			
shear rei equal to	inforcen	nent, not	to exceed 8	" spacing. Cl	osed hoops s	st girder spaced wit hall be placed withi d of the precast gird	n a distance	SGS §	8.10.5
hoops sh	all be o	f the sam		-	_	t within this distanc	ce (except		
_				rtical shear r	_	t within this distand	ce (except		
_			e size as ve	rtical shear r	_		ce (except		
Seismic .	Shear C	Capacity (e size as ve across Clos Maximum	rtical shear r ure Joint vertical shea	reinforcemen	ingle girder	e (except		
Seismic . V _{EEI} ⁺ =	390 844 0.6	<i>Capacity o</i>	e size as ve across Clos Maximum Effective b Shear frict	rtical shear rure Joint vertical shear sheam post-terion coefficie	ar acting on s	ingle girder	ce (except		
Seismic $V_{EEI}^+=$ $N_{PT}=$	Shear C 390 844	<i>Capacity o</i>	e size as ve across Clos Maximum Effective b Shear frict	rtical shear rure Joint vertical shear sheam post-terion coefficie	reinforcemen ar acting on s	ingle girder	e (except	LRFD §	5.5.4.2
Seismic $V_{EEI}^{+}=$ $N_{PT}=$ $\mu=$	390 844 0.6 0.9	<i>Capacity o</i>	e size as ve across Clos Maximum Effective b Shear frict Strength r	rtical shear rure Joint vertical shear sheam post-terion coefficie	ar acting on s	ingle girder	e (except	LRFD §	5.5.4.2
Seismic $V_{EEI}^+=$ $N_{PT}=$ $\mu =$ $\Phi =$	390 844 0.6 0.9 1 N _{PT} =	kip kip kip 456	e size as ve across Clos Maximum Effective b Shear frict Strength r	rtical shear rure Joint vertical shear sheam post-terion coefficie	ar acting on s nsioning force nt tor for shear	ingle girder	re (except	LRFD §	5.5.4.2
Seismic $V_{EEI}^{+}=V_{PT}=V$	390 844 0.6 0.9 1 N _{PT} =	kip kip kip 456	e size as ve across Clos Maximum Effective b Shear frict Strength r	rtical shear rure Joint vertical shear sheam post-terion coefficie eduction fact	ar acting on s nsioning force nt tor for shear	ingle girder	re (except	LRFD §	5.5.4.2
Seismic \cdot $V_{EEI}^{+} = \cdot$ $N_{PT} = \cdot$ $\psi = \cdot$ $\phi = \cdot$ V_{EEI} Seismic \cdot	390 844 0.6 0.9 1 N _{PT} =	kip kip kip 456 390 kip	e size as ve across Clos Maximum Effective b Shear frict Strength r kip <= $\phi V_n =$	rtical shear rure Joint vertical shear post-terion coefficie eduction fact	ar acting on s nsioning force tor for shear tip O.K.	ingle girder	re (except	LRFD §	5.5.4.2
Seismic \cdot $V_{EEI}^{+}=$ $N_{PT}=$ $\mu =$ $\Phi =$ $\Phi V_{n} = \Phi \mu$ V_{EEI} Seismic \cdot Investigation	390 844 0.6 0.9 1 N _{PT} =	kip kip 456 390 kip Capacity o	e size as veractors Clos Maximum Effective be Shear frict Strength r kip <= φV _n = at Girder Ender Capacity du	rtical shear rure Joint vertical shear ream post-terion coefficie eduction factors 456 kmd	ar acting on s nsioning force tor for shear cip O.K.	ingle girder e sign of hanger bars		LRFD §	5.5.4.2
Seismic \cdot $V_{EEI}^{+} = \cdot$ $N_{PT} = \cdot$ $\psi = \cdot$ $\phi = \cdot$ V_{EEI} Seismic \cdot	390 844 0.6 0.9 1 N _{PT} = 3 *= 3	kip kip 456 890 kip Capacity of the control of the	e size as veracross Clos Maximum Effective b Shear frict Strength r kip <= φV _n = at Girder En capacity du Vertical sh	rtical shear rure Joint vertical shear post-tertion coefficie eduction factors 456 kmd uring joint operating of the sear acting of the search acting of the search acting of the search acting the search acting the search acting of the search acting the search	ar acting on s nsioning force nt tor for shear cip O.K. pening for decent	ingle girder e	positive flexure		5.5.4.2
Seismic \cdot $V_{EEI}^{+}=$ $N_{PT}=$ $\mu =$ $\Phi =$ $\Phi V_{n} = \Phi \mu$ V_{EEI} Seismic \cdot Investigation $V_{EEI}^{+}=$ $V_{EEI}^{+}=$	390 844 0.6 0.9 1 N _{PT} =	kip kip 456 390 kip Capacity of the shear kip kip	e size as veractors Clos Maximum Effective be Shear frict Strength r kip <= φV _n = at Girder Ender Capacity du Vertical she	rtical shear rure Joint vertical shear report of the shear post-term of the shear post-term of the shear acting of the shear a	ar acting on s nsioning force tor for shear cip O.K. pening for decent	ingle girder e sign of hanger bars er during maximum	positive flexure negative flexure		5.5.4.2
Seismic V_{EEI}^{+} = V_{EEI}^{+} = V_{PT} = V_{PT} = V_{PT} = V_{EEI} = V_{EEI}^{+}	390 844 0.6 0.9 1 N _{PT} =	kip kip 456 890 kip Capacity of the control of the	e size as veracross Clos Maximum Effective h Shear frict Strength r kip <= φV _n = at Girder En capacity du Vertical sh the based on a	rtical shear rure Joint vertical shear post-terion coefficies eduction factors where the state of the state o	ar acting on s nsioning force int tor for shear cip O.K. pening for decent in single girde in single girde in single girde	sign of hanger bars or during maximum or during maximum ar depth equal to no	positive flexure negative flexure eutral axis depth		5.5.4.2
Seismic \cdot $V_{EEI}^{+}=$ $N_{PT}=$ $\mu =$ $\Phi =$ $\Phi V_{n} = \Phi \mu$ V_{EEI} Seismic \cdot Investigation $V_{EEI}^{+}=$ $V_{EEI}^{+}=$ Place she $c =$	Shear 6 390 844 0.6 0.9 1 N _{PT} =	kip kip 456 890 kip Capacity of the control of the	e size as veractors Clos Maximum Effective be Shear frict Strength relation with the strength relation of the strength of t	rtical shear rure Joint vertical shear repoint vertical shear report of the shear post-termion coefficient eduction factors at the shear acting of	ar acting on s nsioning force tor for shear cip O.K. pening for des n single girde n single girde n single girde nsidering she	sign of hanger bars or during maximum or during maximum	positive flexure negative flexure eutral axis depth		5.5.4.2
Seismic V_{EEI}^{+} = V_{EEI}^{+} = V_{PT} = V_{PT} = V_{PT} = V_{EEI} = V_{EEI}^{+}	390 844 0.6 0.9 1 N _{PT} =	kip kip 456 890 kip Capacity of the control of the	e size as veractors Clos Maximum Effective be Shear frict Strength relation with the strength relation of the strength of t	rtical shear rure Joint vertical shear repoint vertical shear report of the shear post-termion coefficient eduction factors at the shear acting of	ar acting on s nsioning force int tor for shear cip O.K. pening for decent in single girde in single girde in single girde	sign of hanger bars or during maximum or during maximum ar depth equal to no	positive flexure negative flexure eutral axis depth		5.5.4.2
Seismic \cdot $V_{EEI}^{+}=$ $N_{PT}=$ $\mu =$ $\Phi =$ $\Phi V_{n} = \Phi \mu$ V_{EEI} Seismic \cdot Investigation $V_{EEI}^{+}=$ $V_{EEI}^{+}=$ Place she $c =$	Shear 6 390 844 0.6 0.9 1 N _{PT} =	kip kip 456 890 kip Capacity of the control of the	e size as veracross Clos Maximum Effective b Shear frict Strength r kip <= φV _n = at Girder En capacity du Vertical sh the based on a Neutral ax Strength r	rtical shear rure Joint vertical shear repeated shear post-terion coefficient eduction factors where the shear acting on the same acting on the same acting of the sa	ar acting on s nsioning force tor for shear cip O.K. pening for des n single girde n single girde n single girde nsidering she	sign of hanger bars or during maximum or during maximum ar depth equal to no	positive flexure negative flexure eutral axis depth		5.5.4.2

PROJECT DESIGN EXAMPLES

SHEET NO

15 **OF**

DATE

PROJECT NO NCHRP 12-74

DESIGNED BY

Tobolski, MJ

12/31/2009

CLIENT UNIVERSITY OF CALIFORNIA SAN DIEGO

CHECKED BY

Restrepo, JI

DATE 12/31/2009

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP DESIGN EXAMPLE - SDCs C and D

USE: No. 8 headed reinforcing bars spaced at 7.5" (2) per location

NOTE: Maintain minimum 1" clear cover from face of head on bottom rebar

 $A_{s,prov} = 3.16 \text{ in}^2$ Minimum required area of shear reinforcement

$$A_{s,req} = 3.15 \text{ in}^2 \le A_{s,prov} = 3.16 \text{ in}^2 0.K.$$

Superstructure Capacity Design for Transverse Direction for SDC C and D

SGS § 8.11

The bent cap shall be designed as a capacity protected member. Bent caps are considered integral if they terminate outside of the exterior girder and respond monolithically with the girder system.

 $B_{eff} =$

15.0 ft

Effective width of bent cap flange

SGS Eq. 8.11-1

From moment-curvature analysis:

 $M_{ne}^{+} = 14125 \text{ kip-ft}$

 $M_{ne} = -13105 \text{ kip-ft}$

NOTE: Details of moment-curvature not shown

Sample sectional analysis input image

Maximum Extreme Event I Demands Acting on Bent Cap from Plastic Hinging

 $M_{EEI.min} =$

-12383 kip-ft $>= M_{ne}^{-} = -13105$ kip-ft

0.K.

11935 kip-ft $M_{EEI,max} =$

 $<= M_{ne}^{+} = 14125 \text{ kip-ft}$

0.K.

SGS § 8.15.1 **Joint Performance**

Moment resisting connections shall be designed to transmit the maximum forces produced when the column has reached its overstrength capacity, M_{po}

PROJECT	DESIGN EXAMPLES	SHEET NO	7	OF	15
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

Joint Proportioning	SGS § 8.15.2
---------------------	--------------

Principal Stresses

Principal stresses in the joint are limited by the following equations:

Principal compression, p_c : $p_c \le 0.25 \ f'_{ce} = 1.30 \ ksi maximum$ SGS Eq. 8.15.2.1-1 Principal tension, p_t : $p_t \le 0.38 \ \sqrt{f'_{ce}} = 0.867 \ ksi maximum$ SGS Eq. 8.15.2.1-2

$B_{cap} =$	84.0	in	
$D_c =$	60.0	in	
$D_s =$	84.0	in	
$l_{ac} =$	71.0	in	Note 1
$P_c =$	825	kips	
$P_b =$	0	kips	Note 2
h =	3.79	ft	Note 3
$M_{po,cap} =$	10540	kip-ft	Note 3

Notes:

- 1) Length of column longitudinal rebar extended into cap. See calculations below.
- 2) No prestressing in section.
- Determined from sectional analysis. Tension in column longitudinal rebar may also be derived from sectional analysis.

$$p_{t} = \left| \left(\frac{f_{h} + f_{v}}{2} \right) - \sqrt{\left(\frac{f_{h} - f_{v}}{2} \right)^{2} + v^{2}_{jv}} \right| = 0.433 \text{ ksi}$$

$$p_{c} = \left(\frac{f_{h} + f_{v}}{2} \right) + \sqrt{\left(\frac{f_{h} - f_{v}}{2} \right)^{2} + v^{2}_{jv}} = 0.502 \text{ ksi}$$

Principal tension stress in joint SGS Eq. 8.15.2.1-3

Principal compression stress in joint SGS Eq. 8.15.2.1-4

$T_c = M_{po} / h$	2781	kips	Column tensile force at ultimate (from analysis above)	SGS §	8.15.2
$A_{jv} = l_{ac} B_{cap} =$	5964.0	in ²	Vertical joint area	SGS Eq.	8.15.2.1-6
$v_{jv} = T_c / A_{jv} =$	0.466	ksi	Vertical joint shear stress	SGS Eq.	8.15.2.1-5
$A_{jh} = (D_c + D_s) B_{cap} =$	12096	in ²	Horizontal joint area	SGS Eq.	8.15.2.1-8
$f_v = P_c / A_{jh} =$	0.0682	ksi	Vertical joint shear stress	SGS Eq.	8.15.2.1-7
$f_h = P_b / (B_{cap} D_s) =$	0.0	ksi	Horizontal joint stress	SGS Eq.	8.15.2.1-9

 p_c = 0.502 ksi \leq 1.30 ksi maximum OK Joint proportions are acceptable based p_t = 0.433 ksi \leq 0.867 ksi maximum OK on principal stress requirements.

F	ROJECT	DESIGN EX	AMPLES					SHEET N	0	8	OF	15
PRO.	JECT NO	NCHRP 12-	-74					DESIGNED B	SY T	obolski, MJ	DATE	12/31/2009
	CLIENT	UNIVERSIT	Y OF CAI	LIFORN	IIA SAN	DIEGO		CHECKED B	BY R	lestrepo, JI	DATE	12/31/2009
SUBJECT	AASHTO	SEISMIC GL	JIDE SPEC	CIFICAT	TIONS IN	ITEGRA	L BENT CAP	DESIGN EXAMPLE - SDO	Cs C and	D		
Mi	nimum D	evelopme	nt Leng	th of	Colum	n Long	gitudinal	Reinforcement			SGS §	8.15.2.2
	$l_{ac} \ge 2 d$	obl fye	($d_{bl} = f_{ye} = f_{cg} = f_{cg}$	1.41 68	in ksi ksi	(#11 r	ebar) (7.5 ksi, 7.0 ksi) per	Antiala	015222	Eq.	8.15.2.2.2-1
Wl acc pe	3" clear $l_{ac} = D_{gir}$ 71.0 um Joint nere princ ceptable p r Article 8	column reference of from opposition of the column reference of the column ref	71.0 27.4 inforcia on in the 8.15.2, a	in in (m in for e joint additi	as far a precast ninimum inimum inimu	m) st Ben ater the ansver	OK at Cap Con an or equa rse joint re 5.3.1-1 an	essible into precast be ional cover provided Extend to top face $\frac{1}{100}$ and join inforcement for capid 8.15.3.1-2 are to be into the interval of the contraction	of cap	ess 3 in cove	k. er. SGS §	8.15.3
Ch	_	_				(condi	tion for lik	kely joint cracking)				
	Calcula	ted tension	n = 0.4									

Calculated tension =
$$0.433$$
 ksi
Limit, $0.11\sqrt{f'_{ce}}$ = 0.251 ksi

$$p_t$$
 = 0.433 ksi \geq 0.251 ksi limit Additional joint reinforcement is required.

Calculate required volumetric ratio of transverse joint reinforcement:

Maximum of:
$$\rho_s \ge 0.11 \sqrt{f'_c / f_{yh}}$$
 Eq. 8.15.3.1-1 $\rho_s \ge 0.40 A_{st} / l^2_{ac}$ Eq. 8.15.3.1-2

$$A_{st} = 31.20 \text{ in}^2$$

 $l_{ac} = 71.0 \text{ in}$

Maximum of:
$$0.11 \sqrt{f'_{ce}} / f_{yh} = 0.0042$$
 governs Eq. 8.15.3.1-1 $0.40 A_{st} / l^2_{ac} = 0.0025$ Eq. 8.15.3.1-2

Use $\rho_s \ge 0.0042$

Assume transverse reinforcement in the joint is the same size as the column plastic hinging region transverse reinforcement.

$$\begin{split} \rho_s &= \frac{4A_{sp}}{D'_{gd}\,s} \\ A_{sp} &= & 0.44 \quad in^2 \qquad \text{(\#6 hoop)} \\ D'_{gd} &= & 57.92 \quad in \qquad \text{(confined diameter of column between centroids of \#6 hoop)} \end{split}$$

 PROJECT
 DESIGN EXAMPLES
 SHEET NO
 9
 OF
 15

 PROJECT NO
 NCHRP 12-74
 DESIGNED BY
 Tobolski, MJ
 DATE
 12/31/2009

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP DESIGN EXAMPLE - SDCs C and D

CLIENT UNIVERSITY OF CALIFORNIA SAN DIEGO

(trial spacing of transverse reinforcement hoops; spacing not to exceed 12" or $0.3D_s$ per Art. 8.15.3.2.1)

D'_{gd} = Column diameter - 2 x clear cover - hoop diameter - long. column reinf diameter + grouted duct inside diameter + corrugation amplitude x 2.

CHECKED BY

Restrepo, JI

D'_{gd} = 58.05 in (deformed diameters are used for clearance calculations)

 $\rho_s = 0.0051 \ge 0.0042 \text{ minimum}$

OK 6" spacing is adequate (Note: The common practice for cast-in-place construction to carry hoop spacing from column into cap is not expected for precast bent caps as cages are built independently)

Integral Bent Cap Joint Description

SGS § 8.15.4.1

DATE 12/31/2009

The system considered is classified as a "T" joint for joint shear analysis because:

- Exterior column joints with adequate development length of bent cap longitudinal reinforcement.

Bent cap width is required to extend 12" past column on both sides

 $B_{cap} \ge D_c + 24$ " 84 in >= 84 in O.K., Bent cap width adequate for integral design SGS § 8.13.4.1

Joint Shear Reinforcement

SGS § 8.15.4.2

Vertical Stirrups SGS § 8.15.4.2.1

Vertical stirrups or ties shall be placed transversely within a distance equal to the column diameter, D_{cr} extending from either side of the column centerline.

$$A_s^{jv} \ge 0.20 \ A_{st}$$
 $A_{st} = 31.20 \ in^2$ $A_s^{jv} \ge 6.24 \ in^2$ Minimum required area of vertical reinforcement

SGS Eq. 8.15.4.2.1-1

A_s jvo required: in Regions 1 and 2

USE: No. 6 Stirrups, 4 legs per location

4 locations x 4 legs / location x $0.44 \text{ in}^2/\text{leg}$

 $A_s^{jvo} = 7.04 \text{ in}^2 >= 6.24 \text{ in}^2 \text{ O.K.}$

PROJECT	DESIGN EXAMPLES	SHEET NO	10	OF	15
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

SGS Figure 8.15.4.2.1-1

For multi-column bents, vertical stirrups shall additionally be provided in accordance with Article 8.15.5. Overlapping vertical stirrups from shall count towards meeting the requirements

$$A_s^{jvo} \ge 0.175 A_{st}$$
 $A_{st} = 31.20 in^2$

 $A_s^{jvo} \ge 5.46 \text{ in}^2$ Minimum required area of vertical reinforcement outside joint SGS Eq. 8.15.5.1.1-1

USE: No. 6 Stirrups, 4 legs per location $A_s^{jvo} = 7.04 \text{ in}^2 >= 5.46 \text{ in}^2 \text{ O.K.}$

Spacing outside of joint region: 10.0 in

$$A_s^{jvo} \ge 0.135 A_{st}$$
 $A_{st} = 31.20 in^2$

 $A_s^{jvo} \ge 4.21 \text{ in}^2$ Minimum required area of vertical reinforcement inside joint SGS Eq. 8.15.5.1.2-1

3 locations x 4 legs / location x 0.44 in
2
/leg A_s^{jvo} = 5.28 in 2 >= 4.21 in 2 0.K.

Horizontal Stirrups

SGS § 8.15.4.2.2

Horizontal stirrups or ties shall be placed transversely around the vertical stirrups or ties in two or more intermediate layers spaced verticallys at not more than 18 inches.

$$A_s^{jh} \ge 0.10 A_{st}$$
 $A_{st} = 31.20 in^2$

 $A_s^{jh} \ge 3.12 \text{ in}^2$ Minimum required area of horizontal reinforcement

SGS Eq. 8.15.4.2.1-1

$$D_{P/C}$$
= 80.00 in Depth of precast bent cap $N_{space,min} = D_{P/C} / 18in = 4.4$ Minimum number of spaces between cross ties

Minimum number of cross ties (excluding bottom of vertical stirrups) 5

Space at 12" and hook on side face reinforcement

USE: No. 4 cross ties
Place at each vertical stirrup

 $\begin{array}{cccc}
 & 5 & locations \\
 & x & 5 & ties / location \\
 & x & 0.2 & in^2/tie \\
\hline
 & A_s^{jh} = 5.00 & in^2 \\
 & >= 3.12 & in^2 O.K.
\end{array}$

horizontal stirrups shall be No. 4 reinforcement per SGS §8.15.4.2.2

SGS Figure 8.15.4.2.1-3

Р	ROJECT DESIGN EXAMPLES	SHEET NO	11	OF	15
PROJ	ECT NO NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
	CLIENT UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009
SUBJECT	AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP D	ESIGN EXAMPLE - SDCs C	and D	_	
	For multi-column bents, horizontal stirrups shall additi 8.15.5	ionally satisfy the requ	irements of Ar	ticle	
	From inspection, this provision is satisfied.				
Но	rizontal Side Reinforcement			SGS §	8.15.4.2.3
	The total longitudinal side face reinforcement in the begreater of the following two requirements with a maxim	-	-		
	$A_s^{sf} \ge \begin{cases} 0.10 A^{cap}_{top} = 1.56 in^2 \\ 0.10 A^{cap}_{bot} = 1.25 in^2 \end{cases}$	$A^{cap}_{top} = 15.60 \text{ i}$ $A^{cap}_{bot} = 12.48 \text{ i}$		SGS Eq.	8.15.4.2.3-1
	$A_s^{sf} \ge 1.56 \text{ in}^2$ Minimum horizontal side	face reinforcement re	quired		
	$D_{P/C}$ = 80.00 in Depth of pre	cast bent cap			
	7 -	imber of spaces betwe	en reinforceme	ent	
	Minimum number of locations of reinforcement per sid	e of bent cap 7			
	USE: No. 5 side face reinforcement throughout cap with A_s^{sf} = 7 locations x 0.31 in ² /location = 2.1				
J-B	ars			SGS §	8.15.4.2.4
	For integral cap of bents skewed greater than 20° vertice top deck steel are required.	cal J-bars hooked arou	nd the longitud	inal	
	Skew is less than 20° therefore no J-bars are required.				
Ad	litional Longitudinal Cap Beam Reinforcement			SGS §	8.15.4.2.5
	For multi-column bents, additional longitudinal cap bear requirements of Article 8.15.5	am reinforcement shal	l satisfy the		
	$A_s^{jl} \ge 0.245 A_{st}$ $A_{st} = 31.20 in^2$				
	$A_s^{jh} \ge 7.64 \text{ in}^2$ Additional longitudinal cap be	eam reinforcement		SGS Eq.	8.15.5.1.3-1
m ·	la Più Più			000.0	0.40 =

Torsional Shear-Friction Requirement

SGS § 8.10.5

For precast girder systems, there is no bottom soffit slab present to aide in the transfer of moment and shear demands from the superstructure to the column. Therefore, these demands are transferred through the bent cap by a torsional mechanism. The small distance between the face of the column and beams will not facilitate the development of traditional torsional spiral cracks, thus conventional torsional design provisions are not valid. Torsional capacity is calculated using a plastic torsional shear friction mechanism.

CHECKED BY

Restrepo, JI

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP DESIGN EXAMPLE - SDCs C and D

CLIENT UNIVERSITY OF CALIFORNIA SAN DIEGO

B _{cap} =	84.0 in		Bent cap wie	dth			
$D_{cap}=$	90.0 in		Total depth	Total depth of bent cap including deck			
$A_{cap}=$	7560 in	2	Total area of bent cap				
$A_{s,mild} = A_{ps} = A_{ps} = A_{s,total}^{cap} =$		2	9.19 in ²	Total area of mild reinforcement in bent cap (+ side face) Total area of post-tensioning in bent cap Total area of steel in bent cap (mild and post-tensioning)			
$f_{pe}=$	162 ks	i		Effective post-tensioning force including losses			
$P = A_{ps} f_{pe}$	+ A _{s,total} cap	E _s (0.0005) = 2045	kip Total compression force including steel force developed from dilation of section			
μ = 1.4	1			Shear friction coefficient (bent cap in continuous)			
$\tau = [\mu P] /$	$A_{cap} = $	54.5 kip,	/ft²	Shear friction stress			
$T = 0.5 M_{\rm p}$ $V_{\rm V} = 0.5 P_{\rm c}$ $V_{\rm L} = 0.5 V_{\rm c}$	c =	413 kip		Torsional demand on bent cap Vertical shear demand on bent cap Longitudinal shear demand on bent cap			
φ = 0.9	Ð			Strength reduction factor for shear L	LRFD § 5.5.4.2		
$T = \varphi \tau [A_{1}]$ $V_{V} = \varphi \tau [A_{2}]$ $V_{L} = \varphi \tau [A_{3}]$	A ₁ - A ₄]	$A_3x_3 + A_4x$	× ₄]	Torsional shear friction resistance Vertical shear friction resistance Longitudinal shear friction resistance			

Region	Area ft^2	Distance from Centroid, ft	First moment centroid, ft^3
1	17.44	1.95	34.0
2	17.35	2.10	36.4
3	8.81	2.72	23.9
4	8.90	2.90	25.8
Total	52.50		120.2
	Capacity	Required	Check
Т	5897	5270	OK
V_{V}	423	413	OK
V_L	415	357	OK

Bedding Layer Reinforcement

SGS

DATE 12/31/2009

Provide bedding layer transverse reinforcement to match the size and type used in the column plastic hinging region (#6 bar). Hoop will be placed at mid-height in the bedding layer; bedding layer to be 3" thick. Cover on top column hoop to be 1.5" as shown in figures below, and resulting center-to-center spacing of transverse reinforcement is 3" throughout, in accordance with Article 8.8.14.

8.15.5.2.1

PROJE	DESIGN EXAMPLES	_ SHEET NO _	13	OF	
PROJECT N	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIE	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009
SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP DESIGN EXAMPLE - SDCs C and D					

Figures Showing Final Design

Elevation View at Column Connection

Typical Section at Column Connection

PROJECT DESIGN EXAMPLES
SHEET NO
14
OF
15
PROJECT NO
NCHRP 12-74
DESIGNED BY
Tobolski, MJ
DATE
12/31/2009
CLIENT
UNIVERSITY OF CALIFORNIA SAN DIEGO
CHECKED BY
Restrepo, JI
DATE
12/31/2009

SUBJECT AASHTO SEISMIC GUIDE SPECIFICATIONS INTEGRAL BENT CAP DESIGN EXAMPLE - SDCs C and D

Closeup of Bedding Layer

Typical Section at Girder Connection

PROJECT	DESIGN EXAMPLES	SHEET NO	15	OF	15
PROJECT NO	NCHRP 12-74	DESIGNED BY	Tobolski, MJ	DATE	12/31/2009
CLIENT	UNIVERSITY OF CALIFORNIA SAN DIEGO	CHECKED BY	Restrepo, JI	DATE	12/31/2009

Plan View at Connections