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APPENDIX  D 
 

POTENTIAL PROCESSES TO DEVELOP AND CALIBRATE VEHICULAR 
DESIGN LOADS. 

 
Background 
 
Task 2 of this research project was focused on existing and potential processes to develop and 
calibrate vehicular loads for superstructure design, fatigue design, deck design, and overload 
permitting. WIM data should be used to obtain accurate nationwide statistics on truck headway 
(multiple presences) and overload (above legal levels) occurrences. Characterization of the live 
load effect requires the quantification of the expected or mean maximum value, uncertainty 
expressed by the standard deviation (or coefficient of variation equal to standard deviation 
divided by mean) and the determination of the probability distribution type (Normal, Lognormal, 
Gumbel etc.). Depending on the application, the live loading must be characterized as the 
maximum lifetime event (strength) or in terms of a histogram of repetitive loads (fatigue). 
Maximum live loading depends on the weights of the individual trucks on the span.  Typically 
traffic conditions cause a large number of vehicle multiple- presences on the span, especially 
those due to side by side moving trucks. These multiple presence events will often control the 
distribution of the maximum loading event. With multiple-presence, the maximum bridge loading 
depends on the weight and axle configuration of each truck on the span and their relative spacing 
or headway (nose-to-nose separation of trucks). 

This data is analyzed using processes discussed herein to project a maximum bridge-
loading event (Lmax) defined over a period of 75 years for design. One simplified calibration 
approach recommended for this project is to focus on the expected or mean maximum live load 
variable, Lmax but update the load model or the load factor for current traffic conditions in a 
manner consistent with the LRFD calibration approach. The most direct way of using the new 
WIM data reflecting current truck loads in the various jurisdictions is to focus on Lmax and 
compare it to the value utilized during the calibration of the existing LRFD code, as described in 
NCHRP Report 368. This assumes that the overall LRFD calibration and safety indices are 
adequate for the strength and load data then available. Another key assumption in this regard is 
that the site-to-site variability in Lmax as measured by the COV is the same as that used during the 
AASHTO LRFD calibration. In AASHTO LRFD calibration, the overall live load COV was 
taken as 20%.    

The maximum loading, Lmax, is defined for a suite of representative bridge configurations 
and should be normalized by the maximum allowed loading in the jurisdiction where the WIM 
data is taken. Lmax reflects both the multiple presence, which is input to any load model and the 
degree of weight overloading for various types of truck classifications and jurisdictions.  The HL-
93, and in fact all bridge loading models, are driven by the degree that truck weights exceed their 
allowable legal limits. In LRFD, a load model has been used in which 8% of trucks are 
overweight and the average of the top 20% of trucks is 95% of the legal limiting value with a 
25% COV. This overweight value has a very important influence on the live load factors selected 
for bridge designs. With additional WIM data now available and consistent examination of the 
tails of these distributions the research team will expand the basis for truck weight modeling. 

The availability of new WIM data should be used to check the fatigue truck developed in 
the 1980’s and determine if the stress ranges under newer truck configuration and current traffic 
conditions typically exceed the ranges found from the 1980’s WIM data.  Fatigue is an averaging 
process, so small numbers of extreme loads are not relatively significant.  Rather, the average 
fatigue “damage” per truck determines the design and assessment criteria.  In this case, data from 
many WIM sites should be combined and compared to the data from the 1980’s to determine the 
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adequacy of the present AASHTO fatigue truck configuration and weight for current applications. 
The increasing presence of multi-axle trucks in the traffic stream, investigated in NCHRP 12-63, 
must also be accounted for in the fatigue load model. Also, the live load modeling in LRFD did 
not specifically address the increasing load effects on bridge decks from the heavier and more 
complex axle configurations of current truck traffic. Recent WIM data should be analyzed to 
ascertain overweight statistics specific to axle loads, just as it was done for truckloads. It is likely 
that axle overload probabilities may be significantly higher than the overload probabilities for 
truck gross weights. 

Several procedures exist to estimate the maximum expected load effect on a highway 
bridge.  These procedures, of various levels of complexity, explain how site-specific truck weight 
and traffic data can be used to obtain estimates of the maximum live load for the design life of a 
bridge, specified to be 75 years as per the AASHTO LRFD code, or the two-year return period to 
be used for the load capacity evaluation of existing bridges.  The models require as input the 
WIM data collected at a site after being “scrubbed” and processed for quality assurance as 
described in the following chapter.  The models described in this section include: 1) a probability 
convolution approach, 2) a Monte Carlo simulation approach, and 3) simplified methods. The 
convolution method uses numerical integrations of the collected WIM data histograms to obtain 
projections of the expected maximum load effect within a given return period (e.g. 2-years or 75-
years).  The Monte Carlo simulation uses random sampling from the collected data to obtain the 
maximum load effect.   
 
Potential Processes for Estimating Maximum Lifetime Loading Lmax from 
Traffic Statistics 
 
Convolution Approach 
 
This section presents a convolution (numerical integration) procedure for modeling the maximum 
live load effect on a highway bridge.   
 
1. Assemble histogram for truck load effect 

 
In this step, using the WIM data files, the moment effect of each truck in the WIM record is 
calculated by passing the trucks through the proper influence line.   The moment of each 
truck is then normalized by dividing the calculated value by the moment of the HL-93 load 
model. The data is collected into a percent frequency histogram.  This histogram will provide 
a discretized form of the probability density function (pdf) of the moment effects for the site.  
The histogram is designated as Hx(X) while the pdf is designated as fx(X).   The relation 
between Hx(X) and fx(X) is given by: 
 

∫=
uX

lX
xx dx)x(f)X(H      (D-1) 

where Xl and Xu give the upper and lower bounds of the bin within which X lies.  If the bin 
size is small, then fx(X) can be assumed to be constant within the range of Xl to Xu and 
Equation D-1 becomes: 
 

( )luxxx XX)X(fX)X(f)X(H −=∆=    (D-2) 
 

where ∆X is the bin size.  
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Assemble histogram for the moment effects of side-by-side trucks. 
 

The total moment effect when two side-by-side trucks are on a bridge is obtained from 
xs=x1+x2 where x1 is the effect of the truck in the drive lane and x2 is the effect of the truck in 
the passing lane.  Assuming independence between truck moments, the probability density 
function of the effect of side-by-side trucks fs(S) can be calculated using a convolution 
approach.  The convolution equation is presented as: 

( ) ( ) ( )∫
+∞

∞−

−= 111x1s2xssx dxxfxXfXf                  (D-3) 

 
where: fxs  (…) is the probability distribution of the side-by-side effects  
            fx1(…) is the probability distribution of the effects of trucks in lane 1 
            fx2(…) is the probability distribution of the effects of trucks in lane 2   

  
Equation D-3 can be interpreted as follows: Given that the effect of the truck in lane 1 is 
equal to x1, then the probability that the effects of two side-by-side trucks will take a value 
Xs, is equal to the probability that the effect of the truck in lane 1 is x1, times the probability 
that the effect of the truck in lane 2 is equal to X2=XS-x1.  This will lead to the following 
expression: ( ) ( )11x1s2x xfxXf − .  The integration is executed to cover all possible values of 
x1. Equation D-3 gives the probability density function (pdf) for one particular value of Xs.  
Thus, Equation D-3 must be repeated for each possible value of Xs.  Equation D-2 is used to 
convert the pdf’s into equivalent histograms.  
 

2. Assemble cumulative distribution functions. 
 

Use the histograms and the probability density functions fx1(…), fx2(…), fxs(…) and fz(…) 
assembled above to obtain the cumulative distributions for the moment effects of single 
trucks in the drive lane and moment effects of two trucks side-by-side.   Note, that the 
moment effect for the passing lane is not considered independently since it does not govern 
for the data collected at this site.   
 
The cumulative distribution is assembled from the pdf using the equation: 

( ) ∫
∞−

=
Z

zz dy)y(fZF                    (D-4) 

In essence, Equation D-4 assembles all the bins of the histogram below a certain value Z into 
a single bin at Z.  This is repeated for all possible values of Z. Thus, Fz(Z) will give the 
probability that a loading event will produce a load effect less or equal to Z.   

 
3. Calculate the cumulative probability function for the maximum load effect over 

a return period of time, treturn. 
 

A bridge structure should be designed to withstand the maximum load effect expected over 
the design life of the bridge.  The AASHTO LRFD code specifies a design life of 75 years.  
The LRFR bridge load rating also requires checking the capacity to resist the maximum load 
effects for a two-year return period. It is simply impossible to get enough data to determine 
the maximum load effect expected over 75 years of loading. Even getting sufficient data for 
the two-year return period would require several cycles of two-year data.  Therefore, some 
form of statistical projection should be performed.  The proposed calculation procedure 
calculates the cumulative distribution function for the loading event over a short return period 
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typically less than 75 years (in some cases even less than two years) and then using statistical 
projections to obtain the information required for the longer two-year and 75-year return 
periods. 

To find the cumulative distribution for the maximum loading event in a period of time t 
we have to start by assuming that N loading events occur during this period of time t.  These 
events are designated as S1, S2, … SN.  The maximum of these N events, call it smax,N, is 
defined as: 

 
smax,N = max (s1, s2, … sN)                  (D-5)  

 
We are interested in finding the cumulative probability distribution of Smax,N. This cumulative 
probability distribution, Fs max N(S), gives the probability that smax,N is less than or equal to a 
value S.  If smax,N is less than S, this implies that s1 is less than s, and s2 is less than s, … and 
SN is less than s.  Hence, assuming that the loading events are independent, the probability 
that smax,N≤S can be calculated from: 

   
( ) )S(F)...S(F).S(FSF

Ns2s1sNmaxs =                  (D-6) 
 

If s1, s2, ... sN are independent random variables but they are drawn from the same probability 
distribution, then: 
 

)S(F)S(F...)S(F)S(F sNs2s1s
====                     (D-7) 

 
and Equation (D-6) reduces to 
 
  ( ) [ ]NsNmaxs )S(FSF =                     (D-8) 
 
Note that Equation D-8 assumes that the number of events is a deterministic value.  
Sensitivity analysis, however, demonstrates that the results of Equation D-8 will not be highly 
sensitive to variations in N as N becomes large.  
 One way to project the results is by using the Normal fit of the tail of the histogram and 
substitute the Normal distribution into Equation D-8 rather than the WIM data cumulative 
distribution.   

 
4. Determine the probability density function of maximum load effect in a return 

period treturn. 
 

The probability density function and the histogram for the load effect of the 
maximum loading in different return periods can be calculated from: 
 

( ) ( )
S

Nmaxs
NmaxS |

ds
sdF

Sf =                    (D-9) 
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5. Statistical projection of maximum load effects using Extreme Value probability 
principles. 
 
Since it is not possible to collect enough data to estimate the maximum load effect for long 
return periods, statistical methods need to be used to obtain such estimates. Although 
statistical projections are based on some basic assumptions that should be justified by 
physical evidence and mathematical reasoning, there is no guarantee that the projections will 
exactly forecast the future.  Statistical estimates of the confidence limits can only give some 
assurance that the projections are reasonable within the constraints of the assumptions.   In 
the previous section, the statistical projection was executed assuming that the tail of the WIM 
data histogram approaches that of a Normal distribution whose mean and standard deviation 
are obtained from the regression fit of the data plotted on Normal curves. Another method 
described in this section, executes the statistical projection based on the principles of extreme 
value theory.   The advantage of the approach described in this section lies in the fact that it 
would be valid even if the tail of the WIM histogram does not approach that of a Normal 
distribution.   

The largest value for N loading repetitions approaches the double exponential distribution 
as the value of N increases (Ang & Tang (2007)).  The double exponential distribution, also 
known as the Extreme Value Type I distribution or the Gumbel distribution, is the asymptotic 
distribution for the largest value if the original distribution, Fs (S), has an exponentially 
decaying tail.  Thus, this approach is valid if the tail of the WIM histogram can be fitted by a 
Normal distribution but would also be valid if the tail can be fitted by any other exponentially 
decaying distribution.  If the tail end of the WIM histogram can be fitted by a Lognormal 
distribution, then the Frechet Type II extreme value distribution can be used for the statistical 
projection.  If the tail end of the WIM histogram has an upper limit, then the Type III Weibull 
distribution may be used.  In this section, the process of using Extreme value distributions is 
illustrated using the Gumbel Type I distribution although the process is applicable for the 
other types as well.  It should be noted that the Normal fit of the tail end of the WIM 
histogram is consistent with the extreme value fit of the projected data but the extreme value 
fit of the projected data is more general as it applies for non-normal distributions as well.   
 
The cumulative Gumbel distribution has the form: 
 

( ) ( )kuSke
kmax,s eSF

−α−−=         (D-10) 
 
where Fsmax k (S) is the cumulative distribution of the maximum of k events, uk is the most 
probable value of Smax, k and αk is an inverse measure of the dispersion in smax, k.  The 
corresponding probability density function of the Gumbel distribution is then: 
 
    ( ) ( ) ( )kuSkekuSk

kkmax,s eeSf
−α−−−α−α=      (D-11) 

 
The mean value for smax k can be calculated as: 
 

 
k

ksk u
α
γ

+=µ         (D-12) 

in which γ is the Euler number γ=0.577216.  The standard deviation, σs,k of smax k can be 
calculated from: 
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To verify that the distribution of the maximum load effect for a return period treturn approaches 
the Gumbel distribution, one can use some form of probability plot.  In this case, the plot is 
executed by taking the double natural logarithm of both sides of Equation D-10 so that: 
 

( )( ) kkkkmax,s usFnlognlog α+α−=−       (D-14) 
 
which has the linear form: 

 
   y = m s + n        (D-15) 
 

This indicates that if Fsmax,k follows a Gumbel distribution, the plot of the double log should 
follows a straight line with a slope = -αk and an intercept at αkuk       
 

6. Projection of results to longer return periods 
 

The design and safety evaluation of bridges requires the estimation of the maximum load 
effect over periods of 75 years and 2 years respectively.  However, it is clear that the WIM 
data collected cannot reasonably be accurate enough in the tail of the distributions to obtain 
good estimates of the parameters for such extend return periods.  Hence, the only possible 
means to obtain the parameters of the distributions of the maximum two-year and 75-year 
maximum load effect is by using statistical projections.  As mentioned earlier, the probability 
distribution of the maximum value of a random variable will asymptotically approach an 
extreme value distribution as the number of repetition increases.   

Although the Gumbel fit was executed on the tail of the one-week maximum, the 
properties of the Gumbel distribution allows for the projection of the results for any return 
period.  For example, given the mean and standard deviation of the one week maximum for 
which the number of events is k=19x7 for the side-by-side events, we can calculate the mean 
and standard deviation for any return period during which a total of N events take place using 
the relationships: 

σN=σk         (D-16) 







σ

π
+µ=µ

k
Nnlog6

kkN       (D-17) 

 
Equation D-16 indicates that the standard deviation of the Gumbel distribution is independent 
of the return period or the number of repetitions, while the mean value of the Gumbel is a 
linear function of the natural logarithm of the number of repetitions.   
 

7. Summary of convolution approach 
 

The convolution approach presented in this section shows a procedure that can be used to 
obtain the maximum load effect over different return periods.  When the approach was 
applied using the original raw data, it was found to be insufficient for projecting the 
maximum load for the drive lane for large return periods.  Hence, two statistical projections 
techniques were compared.  The first statistical projection fitted a Normal distribution to the 
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tail end of the raw WIM data histogram while the second approach fitted an extreme value 
distribution to the tail end of the projected one-week maximum load effect.  The assumptions 
made in this section are: 
 

• The WIM data can be used to generate histograms for the load effects of the trucks 
that are in the drive and passing lanes with good accuracy in the tail end of the 
histograms.  Since it is not possible to gather sufficient data to have exact results for 
the maximum 2-year and 75-year return periods, statistical projection techniques 
must be used. 

• The average number of loading events including single lane loadings and side-by-
side cases is reasonably well known from the WIM data or other headway data 
available for the site.  A sensitivity analysis to be performed in the next chapter will 
demonstrate that the results are not very sensitive to small errors in these values. 
However, a good estimate is still required.     

• The trucks in the passing lane are independent and uncorrelated from those in the 
drive lane.  This assumption has been verified by the analysis of the WIM data 
obtained for this project.    

• The probability distribution of the maximum load effect approximately approaches 
an extreme value distribution as the return period increases.  If the tail end of the 
original raw data has an exponential form (including a Normal distribution shape) 
then the Gumbel Type I extreme value distribution is adequate.  

• If the tail end of the raw WIM data approaches the tail end of a known probability 
distribution (e.g. a Normal distribution), this known distribution can be directly used 
to obtain the maximum load effect for any projection period.   

 
The next section of this chapter describes how Monte Carlo simulations can be executed to obtain 
the projections for the maximum load effect.  Another section describes a number of simplified 
approximate procedures that would lead to similar results as those obtained from the convolution 
method and the Monte Carlo simulations. 
 
Monte Carlo Simulation 
 
An alternative to the convolution approach described above consists of using a Monte Carlo 
simulation to obtain the maximum load effect. In this approach, results of WIM data observed 
over a short period can be used as a basis for projections over longer periods of time.  A Monte 
Carlo simulation requires the performance of an analysis a large number of times and then 
assembling the results of the analysis into a histogram that will describe the scatter in the final 
results. Each iteration is often referred to as a cycle.  The process can be executed for the single 
lane-loading situation or the side-by-side loading.  A step-by-step procedure for Monte Carlo 
Simulation is described in Step 12.3 of the Draft protocols, in the next chapter.  

Like the convolution approach, the Monte Carlo simulation will not be accurate for large 
projections periods because of the limitations in the originally collected data. Also, the Monte 
Carlo simulation will be extremely slow when the number of repetitions K is very high. 
Furthermore, one should make sure not to exceed the random number generation limits of the 
software used, otherwise the generated numbers will not be independent and the final results will 
be erroneous.  Hence, statistical projections must be made to estimate the maximum load effects 
for long return periods.  For example, the same steps 7 through 9 used in the convolution 
approach can be used to fit the one-week data into cumulative distribution functions that are 
plotted on Gumbel scales from which the dispersion coefficients are extracted and used to find 
the mean values and standard deviations for different return periods.  Alternatively, one can used 
a smoothed tail end of the WIM histogram by fitting the tail with a known probability distribution 
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function (such as the Normal distribution) and use that fitted distribution with the Monte Carlo 
simulation.  It should be emphasized however, that the Monte Carlo simulation would still be 
very inefficient for projections over long return periods.   
 
Simplified Procedures for Estimating Maximum Load Effects  
 

The advantages of accurate convolution and simulation approaches for Lmax is that it allows 
a more accurate calculation of failure probability in those applications where target risks should 
be known in quantitative form. For most applications, such as code calibration and comparative 
risk assessments, simplified models for Lmax may be acceptable. Several reasons support this 
approach: 
 

1. There may never be sufficient data to fully support an actuarial approach to risk 
calculation for a bridge structure. 

 
2. Specifications by their very nature represent simplification and compromises that allow 

designers to perform calculations in a deterministic manner which is transparent to the 
risk analysis process. 

 
3. There are many variables affecting risk which are beyond the control of designers for 

which accurate statistics are not available. These variables include growth in future 
traffic, human errors which are the cause of most structural failures and limitations in the 
data base of variables other than the external live load including structural analysis 
uncertainties, fabrication variabilities, costs of failure which affect the optimal target risk, 
future changes in truck types and horsepower which affect multiple presence 
probabilities, etc. 

 
Two simplified procedures are proposed for estimating the maximum load effect in a given return 
period.   The two approaches are based on the assumption that the tail end of the moment load 
effect for the original population of trucks as assembled from the WIM data approaches a Normal 
distribution.  The first method uses the properties of the extreme value distribution and the second 
is based on the properties of the Normal distribution. 
 
Simplified Extreme Value Model 
 

Let us assume that the tail end of the parent moment effect histogram approaches a 
Normal distribution.  If this assumption is accepted, it will provide a powerful tool to use the 
results of the Normal probability fit to obtain projections of the maximum load effect for different 
return periods without the need to execute the convolution or the Monte Carlo simulation.  The 
approach is based on the following known concepts as provided by Ang and Tang (2006) and 
stated earlier in this section but repeated herein for emphasis: “if the parent distribution of the 
initial variable x has a general Normal distribution with mean µx and standard deviation σx, then 
the maximum value of x after K repetitions approaches asymptotically an Extreme Value Type I 
(Gumbel) distribution with a dispersion αK given by: 

( )
X

K

Kln2
σ

=α              (D-18)  

and a most probable value uK given by: 

 



 D-9 

( ) ( )( ) ( )
( ) 


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




 π+
−σ+µ=

Klog22
4logKloglogKln2u xxK      (D-19) 

These values for αK and uK can then be used in Equation D-10 and D-11 to find the 
probability density functions and the histogram for any return period with K load repetitions.  
Also, αK and uK can be used in Equations D-12 and D-13 to find the mean and standard deviation 
for the maximum load effect for any return period having K repetitions.   
 
Simplified Normal Distribution Model  
 

A final comparison is performed between the projected results obtained using the 
procedures described above and the simplified method used by Fred Moses in previous NCHRP 
projects on load modeling and LRFR code calibration.  This procedure starts by fitting a Normal 
distribution through the tail end of the moment histogram (Fig D-1).  The approach can be used 
for trucks in the drive lane and for side-by-side trucks.   
 
The expected maximum two-year side-by-side event can be estimated to be: 
 

 µ2year= µs’ + t σs’                  (D-20) 
 
where t = standard deviate corresponding to a probability of exceedance 
 

It is noted that the results of this simplified Normal approach and the simplified Gumbel 
approach are less than 7.5% for the worst case scenario.  The reason for the larger differences for 
short return periods is due to the fact that the maximum loading approaches the Gumbel 
distributions (i.e Equations D-18 and D-19) are exact only in an asymptotic sense i.e. only as the 
number of repetitions becomes very high (approaches infinity).  Unlike the simplified Gumbel 
approach and the Convolution and Monet Carlo simulation methods that provide the whole 
probability distribution of the maximum load effect as well as the mean values and the standard 
deviations, the simplified Normal approach only gives the expected value but cannot calculate the 
standard deviation of the maximum load effect.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D -1  Illustration of the Simplified Normal distribution approach 
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Summary  
 
This chapter presented several methods for projecting the data from load effect histograms to 
obtain the maximum load effect for different return periods.  The projections assume that the 
collected WIM data histogram extends beyond the largest value observed during the data 
collection period.  The methods are illustrated for two cases: 1) the tail end of the parent 
histogram follows a Normal distribution or 2) the tail of the maximum load effect for a short 
return period follows a Gumbel distribution. The two assumptions are not necessarily 
contradictory since assumption 1 leads to assumption 2. But, assumption 2 is more general 
because it is valid when the tail of the parent histogram follows any type of exponentially 
decaying distribution.  For whichever assumption is used, the results show that all the proposed 
methods asymptotically approach the same values as the number of loading repetitions increases.  
The convolution and Monte Carlo approaches are however valid even if the tail of the original 
WIM histogram was found to fit other than Normal distributions.  If the fitted distribution is not 
exponentially decaying, then the Gumbel may not be valid and other types of extreme value 
distributions such as the Frechet or the Weibull distributions may be more adequate.  In any case, 
the general steps for the analysis process remain the same.      
 
 


	The availability of new WIM data should be used to check the fatigue truck developed in the 1980’s and determine if the stress ranges under newer truck configuration and current traffic conditions typically exceed the ranges found from the 1980’s WIM ...
	Convolution Approach
	Monte Carlo Simulation
	Simplified Procedures for Estimating Maximum Load Effects

