The appendices herein are supplemental to *NCHRP Research Report 972: Development of Safety Performance-Based Guidelines for the* Roadside Design Guide (NCHRP Project 15-65).

Appendix A: Roadside Risk Workbook Appendix B: Derivations Appendix C: Serious and Fatal Injury Crash Tables Appendix D: Research Needs and Knowledge Gaps

The National Cooperative Highway Research Program (NCHRP) is sponsored by the individual state departments of transportation of the American Association of State Highway and Transportation Officials. NCHRP is administered by the Transportation Research Board (TRB), part of the National Academies of Sciences, Engineering, and Medicine, under a cooperative agreement with the Federal Highway Administration (FHWA). Any opinions and conclusions expressed or implied in resulting research products are those of the individuals and organizations who performed the research and are not necessarily those of TRB; the National Academies of Sciences, Engineering, and Medicine; the FHWA; or NCHRP sponsors.

APPENDIX A: ROADSIDE RISK WORKBOOK

A.1 INTRODUCTION

The following sections present, in a concise format, the tables, figures, charts, and nomographs needed for a performance-based risk assessment of roadside designs. The purpose of this document is not to provide all the background research for the risk assessment method but to simply present step-by-step instructions for performing the risk assessment and the necessary look-up tables.

A.2 PROCEDURE

The roadside risk assessment procedure is defined by the following two equations and the associated definitions provided below:

$$OUTCOME_{S} = \sum_{j=1}^{N} \left[OUTCOME_{j} \prod_{i=1}^{j-1} THR_{i} \right]$$
1

$$OUTCOME_{j} = \left[\frac{BEF_{S} \cdot EAF_{S} \cdot L_{S}}{5280}\right] \cdot \left[P_{c_{j}} \cdot \prod_{i=1}^{j-1} THR_{i}\right] \cdot \left[P_{SEV_{j}} \cdot (1 - THR_{j} \cdot \delta_{j}) \left(\frac{PSL_{s}^{3}}{65^{3}}\right)\right]$$

$$OUTCOME_{j} = ENCR_{j} CRASH_{j} SEV_{j}$$

$$2$$

where:

where.		
OUTCOMEs	=	The total number of crashes with the specified outcome on segment S involving all roadside features on the segment.
OUTCOME _j	=	The number of crashes with the specified outcome involving feature j (e.g., the number of serious injury or fatal crashes involving impacts with a tree) per edge mile per year.
j	=	Feature number from 1 to N where N is the total number of features evaluated on the segment.
BEFs	=	The expected annual number of encroachments expected on a segment in edge encroachments/mi/yr assuming base conditions as a function of traffic volume (AADT).
EAFs	=	Highway and traffic characteristic encroachment adjustment factors for the highway segment of interest, S.
Ls	=	Segment length in feet.
P _{cj}	=	The conditional probability of a vehicle interacting with a roadside feature given an encroachment occurs. The length ratios are the probability of leaving the roadway in the given proportion of the roadway under the assumption that encroachments are equally likely anywhere on the segment. The form of P_{cj} depends on the type of object as shown below:

Continuous Features (e.g., guardrails, median barriers, terrain, etc.)

$$P_{cj} = \left[\frac{L_j}{L_S}\right] \cdot P_y(W_{Fj})$$

Discreet Features (e.g., trees, poles, bridge piers, water bodies, etc.)

$$P_{cj} = \left[\frac{L_j}{L_S}\right] \cdot P_y(W_{Fj}) + \left[\frac{L_{TMax}}{L_S}\right] \left[P_x(L_{TMax})(P_y(W_{Fj}) - P_y(W_{Bj}))\right]$$

P_{SEVi}

δi

= The conditional probability of observing the severity of interest given that there is an interaction with roadside feature j. THR_i

- = The conditional probability of passing through, over, or under feature j given the vehicle interacts with feature j.
- = 1 if only interactions with the feature that do not pass through the feature lead to an increase in harm (e.g., terrain).
 - = 0 if all interactions with the feature lead to an increase in harm regardless of whether the feature is passed through (e.g., longitudinal barriers).
- **PSL**_s = Posted speed limit on the segment in mi/hr.

= The effective length of an individual feature j along the segment in feet. L

Continuous Features (e.g., longitudinal barriers, terrain, medians, etc) The length of a continuous feature measured parallel to the roadway in feet where $L_i \leq L_s$.

Single Discreet Features

For single discreet features such as trees or utility poles, this is equal to the dimension of the feature parallel to the road or the diameter measured in feet. Add $W_V \sin \theta_{85}$ to the length or diameter for fixed objects.

Multiple Discreet Features

For features like a line of poles or series of bridge piers, the effective length is the length in feet from the upstream traffic face of the first feature to the downstream face of the last feature plus $W_V \sin \theta_{85}$ as long as the spacing between features is less than W_B/tan θ_{15} and $L_j \le L_s$. If the spacing between features is less than $\frac{W_{BFO}+W_V \cos \theta_{15}}{\tan \theta_{15}}$ then treat multiple features as single isolated features.

- = Cumulative probability density function of the lateral extent of encroachment $P_v(Y_i)$ when lateral offset y = Y.
- = Sum of the cumulative probability density function of the maximum $P_x(X_i)$ longitudinal extent of encroachment.
- W_{Bi} = The distance in feet from the edge of the traveled way measured laterally to the farthest point of feature j plus $W_V \cos(\theta_{15})$ for discreet features.
- = The distance in feet from the edge of the traveled way to the closest face W_{Fi} (i.e., traffic side) of feature j. For foreslopes, the distance is measured to the bottom of the foreslope.
- Wv = Typical passenger vehicle width in feet (e.g., 6.5 ft).
- L_{TMax} = The length in feet of the longest trajectory in the data base of trajectories used to calculate $P_x(X_i)$ and $P_v(Y_i)$ (i.e., 1,000 ft (Gabler 2022 Expected-a)).

θ_{15}	= The 15 th percentile encroachment angle in degrees (e.g., 5 degrees (Gabler
	2022 Expected-a)).

 θ_{85}

The 85th percentile encroachment angle in degrees (e.g., 22 degrees (Gabler 2022 Expected-a)).

The roadside risk assessment procedure is outlined in Table 53. The objective of the procedures is to calculate the expected average annual frequency of serious injury and fatal crashes (KA ROR crashes) on a roadway segment edge for a variety of alternatives and compare the results to the safety performance goal (i.e., $OUTCOME_{GOAL}$). The procedure requires information about the highway type and traffic as well as the characteristics of each alternative.

The procedure is most easily implemented using the form shown in Table 54. Table 55 shows the same form with instructions about where to find the necessary values for the computations.

Table 53. Risk-based safety performance design procedure.

- **Find:** The expected average annual frequency of serious injury and fatal crashes on a roadway segment edge for the existing conditions and proposed alternatives (i.e., OUTCOME_S) and compare them to the safety performance goal (i.e., OUTCOME_{GOAL}).
- **Given**: The traffic and site characteristics for each edge of the roadway where a vehicle might encroach:
- Segment the roadway of interest into homogeneous sections and determine each segment length (L_s) where S is the segment number. A homogeneous section is one where all the roadway characteristics (e.g., lane width, curvature, grade, etc.) are the same.
- 2) Determine the total number of roadside or median features (N) as well as their location, lateral offset, size and type.
- Calculate expected average annual frequency of serious injury and fatal collisions for feature j (OUTCOME_j) on each segment edge.
 - a. Find the total base encroachment frequency (BEF_s) given the highway type (i.e., divided or undivided) and AADT from Table 56.
 - b. Find the segment encroachment adjustment factors (EAF_s) from Table 56. Note that for horizontal curves and grade the adjustment will be different for each direction of travel.
 - c. Find the conditional probability of a vehicle striking feature j based on its type (i.e., continuous or discreet) and lateral offset from the travelled way (i.e., $P_y(W_{Fj})$ and $P_y(W_{Bj})$) from Table 58. <u>Continuous Features</u> (e.g., guardrails, median barriers, terrain, etc.)

$$P_{cj} = \left[\frac{L_j}{L_S}\right] \cdot P_y(W_{Fj})$$

Discreet Features (e.g., trees, poles, bridge piers, water bodies, etc.)

$$P_{cj} = \left[\frac{L_j}{L_S}\right] \cdot P_{y(W_{Fj})} + \left[\frac{1,000}{L_S}\right] \left[0.3508 \cdot (P_y(W_{Fj}) - P_y(W_{Bj}))\right]$$

- d. Find the conditional probability of the outcome of interest (P_{SEVj}, e.g., a KA crash) given an interaction with feature j from Table 62.
- e. Find the proportion of interactions that pass through feature j from Table 59 through Table 61 (THR_j).
- f. Let:
 - $\delta_j = 1$ For all terrain features and other geometric features where the harm is only associated with those vehicles that do not make it through the feature.
 - $\delta_j = 0$ For all longitudinal barriers, breakaway devices, crash cushions and guardrail terminals where the harm will be the same whether the vehicle passes through it or not.
- g. Calculate the feature risk from:

$$OUTCOME_{j} = \left[\frac{BEF_{S} \cdot EAF_{S} \cdot L_{S}}{5280}\right] \cdot \left[P_{c_{j}} \cdot \prod_{i=1}^{j-1} THR_{i}\right] \cdot \left[P_{SEV_{j}} \cdot (1 - THR_{j} \cdot \delta_{j}) \left(\frac{PSL_{s}^{3}}{65^{3}}\right)\right]$$

IF j < N,

THEN Go to the next feature by returning to Step 3a with j = j+1

ELSE Continue to Step 4.

4) Calculate the risk for the entire segment from: $OUTCOME_S = \sum_{i=1}^{N} OUTCOME_i$

- 5) IF $OUTCOME_S \leq OUTCOME_{GOAL}$
- THEN The safety performance of the evaluated design for segment S meets the safety performance goal.

Title								Roadway			Risk Goal:	
Analyst								Jurisdiction			Analysis Year	
Agency								MilePost			Analysis Date	
Input Data			Value	Input Data		Value		Input Data		Ba	ase Condition	Value
Outcome of Int	erest			Ditch Type				Grade (%)			Flat	
Highway Type				Foreslope 1	(H:V)			Horizontal Cu	rve Radius (ft)		Tangent	Tangent
Functional Cla	ss			Foreslope 2	(H:V)			Degree of Cu	vature (deg/10	0 ft)	0	
Two-Way Tota	al AADT (vel	n./day)		Backslope 1	(H:V)			Encroachment	Side		R	
Percent Trucks	(%)			Backslope 2	(H:V)			Total Number	of Lanes		1	
Segment Lengt	h (miles)			Right Shoulder	Width (ft)			Post Speed Li	mit (mi/hr)		65	
				Left Shoulder V	Width (ft)			Major Access	Points (pts/mi)	0	
								Lane width (f	t)		12	
Vorksheet B - E	ncroachment	t Adjustment	Factors									
Horizontal	Grade	Side	Number of	Posted Speed	Access							
$\mathrm{EAF}_{\mathrm{HC}}$	EAF_{G}	EAF _{LR}	$EAF_{LN} \\$	EAF _{PSL}	$\mathrm{EAF}_{\mathrm{AC}}$							EAFs
Worksheet C - In	nteractions w	ith Roadside	Features									
Feature j			W _{F j}	W _{B j}	Lj	BEFs	EAFs	Pcj	P_{SEVj}	δ_j	THR _j	OUTCOME
0 Cross Edge int	o Median or l	Roadside	0	0	-				0.0000	1	1.0000	

Table 54.Blank roadside risk assessment worksheet.

Total Outcomes/yr:

Worksheet A - General Information									
Title						Roadway	Information	Risk Goal:	Information
Analyst	Informati	on provided	by designe	r		Jurisdiction	provided by	Analysis Year	Provided by
Agency						MilePost	designer	Analysis Date	designer
Input Data	Value	Input Data		Value		Input Data		Base Condition	Value
Outcome of Interest	E	Ditch Type		E	uo	Grade (%)		Flat	<i>و</i> ۲
Highway Type	e from plans ïcation	Foreslope 1	(H:V)	from	plans îicatio	Horizontal Cu	rve Radius (ft)	Tangent	from is and ion
Functional Class	5 D (0	Foreslope 2	(H:V)			Degree of Cur	vature (deg/100 ft)	0	ns tio
Two-Way Total AADT (veh./day)	nin ct sci	Backslope 1	(H:V)	nin	ct	Encroachment	Side	R	ne ola ca
Percent Trucks (%)	erh spie	Backslope 2	(H:V)	L'	spe	Total Number	of Lanes	1	t l
Segment Length (miles)	Determine project p and specifi	Right Shoulder	r Width (ft)	Determine	project and specit	Post Speed Lin	mit (mi/hr)	65	stermine fro vject plans a specification
	D	Left Shoulder	Width (ft)	A	ar	Major Access	Points (pts/mi)	0	Determine fi project plans specificatio
						Lane width (ft))	12	· Ø
Worksheet B - Encroachment Adjustn	ent Factors								
Horizontal Grade Side		Posted Speed	Access						
EAF _{HC} EAF _G EAF		EAF _{PSL}	EAFAC	•					EAFs
Determine from Table 57		ues in Works	sheet A						Calculate row
Worksheet C - Interactions with Road			_						
j Feature _j	W _{F j}	W _{B j}	Lj	BEFs	EAFs	P _{cj}	P_{SEVj} δ_j	THR _j	OUTCOME _j
0 Determine from pro	oject plans and	l specificatio	on	Look up in Table 56 based on AADT, highway	Enter value calculated in	See Table 58 and use equation	Look up value in Table 62 for each	Look up value for feature j in Tables 59	Calculate row
				type, and land use	Worksheet B	matching feature j	feature j	through 61	

Table 55. Roadside risk assessment worksheet with instructions.

A.3 LOOK UP TABLES

All the lookup tables needed to perform the risk assessment calculations are presented in this section. The look up tables have already been referenced in Table 53 and Table 55.

Undivided Two	Lane F	For AADT $< 5,0$	00 vehicles/day	:						
(PR Encr/mi/yr))	$BEF_{UNDIV PR} = $	$\left[\frac{AADT}{4.343}\right] \cdot e^{\left[0.499\right]}$	$7 - \left(\frac{0.2092 \cdot \text{AADT}}{1,000}\right)$						
		for AADT $\geq 5,0$	- , –		1					
		$BEF_{UNDIV PR} = 1.1911 PR encr/mi/yr$								
Divided Four L	ane F	For AADT < 24 ,								
(PR Encr/mi/yr))	$BEF_{DIV PR} = \left[\frac{AADT}{3,650}\right] \cdot e^{\left[-0.2104 - \frac{0.0413 \cdot AADT}{1,000}\right]}$								
		For AADT ≥ 24 ,		У	2					
		BEFDIV PI	R = 1.9773 PR e	ncr/mi/yr						
	2-Lane	4-Lane		2-Lane	4-Lane					
2-Way AADT	Undivided	Divided	2-Way AADT	Undivided	Divided					
(vehicles/day)	(PR encr/mi/yr)	(PR encr/mi/yr)	(vehicles/day)	(PR encr/mi/yr)	(PR encr/mi/yr)					
100	0.0664	0.0221	9,000	1.1911	1.3777					
200	0.1301	0.0440	10,000	1.1911	1.4688					
300	0.1910	0.0658	11,000	1.1911	1.5503					
400	0.2494	0.0873	12,000	1.1911	1.6228					
500	0.3054	0.1087	13,000	1.1911	1.6870					
600	0.3588	0.1299	14,000	1.1911	1.7432					
700	0.4100	0.1510	15,000	1.1911	1.7922					
800	0.4588	0.1718	16,000	1.1911	1.8343					
900	0.5055	0.1925	17,000	1.1911	1.8701					
1,000	0.5501	0.2130	18,000	1.1911	1.9000					
2,000	0.8924	0.4088	19,000	1.1911	1.9244					
3,000	1.0860	0.5884	20,000	1.1911	1.9437					
4,000	1.1746	0.7527	21,000	1.1911	1.9583					
5,000	1.1911	0.9029	22,000	1.1911	1.9686					
6,000	1.1911	1.0396	23,000	1.1911	1.9748					
7,000	1.1911	1.1638	24,000	1.1911	1.9773					
8,000	1.1911	1.2762	>25,000	1.1911	1.9773					

Table 56. Base encroachment frequency,

	Gra	de: EA			Horizo		ⁿ		R		oachmen	t Side: I	EAF _{LR}								
	Ru	ral	Url	ban	ıre	Ru	ral	Ur	ban	le											
Percent Grade (%)	Undivided	Divided	Undivided	Divided	Degree of Curvature	Undivided	Divided	Undivided	Divided	Encroachment Side	AADT	Rural Divided	Urban Divided								
-10	1.15	1.52	0.84	0.37	-25	3.11	1.00	2.07	1.00	L	1,000	0.48	0.73								
-9	1.12	1.43	0.86	0.42	-20	2.13	1.00	1.63	1.00	L	5,000	0.67	0.85								
-8	1.10	1.35	0.88	0.49	-15	1.46	1.00	1.28	1.00	L	10,000	0.77	0.90								
-7	1.08	1.27	0.91	0.56	-10	1.00	1.00	1.00	1.00	L	20,000	0.89	0.96								
-6	1.06	1.20	0.93	0.65	-5	1.00	1.00	1.00	1.00	L	30,000	0.97	0.99								
-5	1.04	1.13	0.95	0.75	0	1.00	1.00	1.00	1.00	L	40,000	1.03	1.02								
-4	1.02	1.06	0.98	0.87	5	1.00	1.00	1.00	1.00	L	50,000	1.07	1.04								
-3	1.00	1.00	1.00	1.00	10	1.00	1.00	1.00	1.00	L	60,000	1.11	1.06								
0	1.00	1.00	1.00	1.00	15	1.11	1.00	1.03	1.00	L	67,000	1.14	1.07								
3	1.00	1.00	1.00	1.00	20	1.23	1.00	1.07	1.00	L	80,000	1.14	1.08								
4	1.01	1.05	0.97	0.85	25	1.36	1.00	1.10	1.00	L	90,000	1.14	1.10								
5	1.02	1.10	0.94	0.72						L	100,000	1.14	1.11								
6	1.03	1.16	0.91	0.61						R	All	1.00	1.00								
7	1.04	1.22	0.89	0.51																	
8	1.05	1.28	0.86	0.43																	
9	1.06	1.34	0.83	0.37																	
10	1.08	1.41	0.81	0.31						1											
Γ	fotal L		1		Α		-	EAFA		Poste	ed Speed I										
	Ru	ral	Url	ban		Ru	ral	Ur	ban	it		Rural	Urban								
Total Number of Lanes	Undivided	Divided	Undivided	Divided	Major Access Points/mi	Undivided	Divided	Undivided	Divided	Post Speed Limit (mi/hr)	All Undivided	Divided	Divided								
≤2	1.00	0.83	1.00	0.89	0	1.00	1.00	1.00	1.00	≤ 55	1.00	1.16	1.18								
4	0.91	1.00	1.11	1.00	0.5	1.67	2.51	1.00	1.00	60	1.00	1.08	1.09								
6	-	1.20	-	1.13	1.0	2.80	6.31	1.00	1.00	65	1.00	1.00	1.00								
≥ 8	-	1.45	-	1.27	≥1.5	4.68	6.31	1.00	1.00	\geq 70	1.00	0.93	0.92								
		EA	$F_{S} = \prod_{i}$	$\int_{=1}^{N} EA$	$F_i = EAF$	_{нс} · еа	∖F _G · EA	AF _{lr} • E	EAF _{LN} · 1	EAF _{PSL}	• EAF _{AD}										

Table 57. Encroachment adjustment factors (EAF_j).

Lateral Extent (ft)	P _y (Y _j)	Lateral Extent (ft)	P _y (Y _j)	Lateral Extent (ft)	$\mathbf{P}_{\mathbf{y}}(\mathbf{Y}_{\mathbf{j}})$
1	0.9761	13	0.7376	45	0.4063
2	0.9431	14	0.7277	50	0.3622
3	0.9090	15	0.7191	55	0.3254
4	0.8844	16	0.7105	60	0.2887
5	0.8650	17	0.7008	65	0.2531
6	0.8394	18	0.6910	70	0.2307
7	0.8267	19	0.6825	75	0.2115
8	0.8089	20	0.6741	80	0.1918
9	0.7912	25	0.6238	85	0.1752
10	0.7737	30	0.5699	90	0.1624
11	0.7612	35	0.5082	95	0.1515
12	0.7488	40	0.4603	100	0.1416
$Probability of Lateral Extent Y, P_Y(Y_j)$ $Probability of Probability of P_Y(Y_j)$ $Probability of P_Y(Y_j)$	$y = 0.9888e^{-0.023}$ R ² = 0.9953				
0.0 +	10 20	30 40 Offset fror	50 60 n Travelway, Y	70 80 (ft)	90 100

Table 58. Probability of encroachment reaching a feature at lateral offset Y(Py(Yj)).

Table 59.Encroachments passing through, over or under barriers (THR_{BAR}) as a function of
percent trucks. (Carrigan 2020)

				P	Percent T	rucks (%)					
Test Level	Coefficient	0	5	10	15	20	25	30	50			
	A 1.00	0.00	0.05	0.10	0.15	0.20	0.25	0.20	0.50			
2	1.00	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.50			
3	1.00	$0 \qquad 0.00 \qquad 0.05 \qquad 0.10 \qquad 0.15 \qquad 0.20 \qquad 0.25 \qquad 0.30 \qquad 0.50 \qquad 0.5$										
4	0.75	0.75 0.00 0.04 0.08 0.11 0.15 0.19 0.23 0.38										
5	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	$\text{THR}_{\text{BAR}} = \left[\frac{\mathbf{A} \cdot \mathbf{PT}}{100}\right]$											

Table 60. Encroachments passing all the way through a foreslope (THR_{FORESLOPE}).

Lateral			THRFO	RESLOPE		
Extent (ft)	-12:1 or					-2:1 or
(11)	flatter	-10:1	-6:1	-4:1	-3:1	steeper
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995
15	0.9996	0.9992	0.9993	0.9998	0.9997	0.9985
20	0.9981	0.9963	0.9962	0.9957	0.9966	0.9948
25	0.9961	0.9921	0.9911	0.9885	0.9887	0.9835
30	0.9938	0.9876	0.9851	0.9811	0.9782	0.9659
35	0.9902	0.9804	0.9784	0.9712	0.9643	0.9356
40	0.9877	0.9755	0.9731	0.9640	0.9516	0.9092
45	0.9843	0.9687	0.9639	0.9557	0.9381	0.8813
50	0.9819	0.9638	0.9567	0.9446	0.9252	0.8577
55	0.9790	0.9579	0.9507	0.9382	0.9139	0.8320
60	0.9772	0.9543	0.9451	0.9298	0.9018	0.8073
65	0.9743	0.9487	0.9384	0.9181	0.8852	0.7832
70	0.9714	0.9428	0.9330	0.9113	0.8757	0.7670
75	0.9708	0.9416	0.9296	0.9058	0.8638	0.7514
80	0.9697	0.9393	0.9264	0.8976	0.8550	0.7392
85	0.9670	0.9340	0.9227	0.8903	0.8453	0.7267
90	0.9654	0.9307	0.9168	0.8846	0.8377	0.7186
95	0.9648	0.9295	0.9139	0.8805	0.8323	0.7068
100	0.9633	0.9266	0.9104	0.8756	0.8275	0.7001

Table 61.Proportion of vehicles passing across the opposing lanes without striking an
opposing vehicle given that the vehicle enters the opposing lanes (THR_{EOL}).

AADT	THREOL	AADT	THREOL	AADT	THREOL	AADT	THREOL
1,000	0.9302	13,000	0.8797	25,000	0.8006	37,000	0.6878
2,000	0.9269	14,000	0.8744	26,000	0.7925	38,000	0.6770
3,000	0.9234	15,000	0.8688	27,000	0.7841	39,000	0.6660
4,000	0.9198	16,000	0.8629	28,000	0.7756	40,000	0.6548
5,000	0.9161	17,000	0.8569	29,000	0.7667	41,000	0.6434
6,000	0.9121	18,000	0.8507	30,000	0.7577	42,000	0.6318
7,000	0.9080	19,000	0.8442	31,000	0.7484	43,000	0.6201
8,000	0.9038	20,000	0.8375	32,000	0.7389	44,000	0.6083
9,000	0.8993	21,000	0.8306	33,000	0.7291	45,000	0.5963
10,000	0.8947	22,000	0.8235	34,000	0.7191	>46,000	0.6000
11,000	0.8899	23,000	0.8161	35,000	0.7089		
12,000	0.8849	24,000	0.8085	36,000	0.6985		

Table 62. Outcomes for selected roadside and median features ($P_{SEV}j$).

Feature	K65	KA ₆₅	KAB ₆₅	KABC ₆₅	δ	Ref.
Longitudinal Barriers			00			
Cable Barrier	0.0009	0.0050	0.0297	0.0849	0	
Strong-Post W-Beam Barrier	0.0015	0.0094	0.0422	0.0977	0	(Carrigan 2020)
Weak-Post W-Beam Barrier	0.0006	0.0091	0.0321	0.1187	0	
Closed Faced Concrete Barriers	0.0021	0.0159	0.0810	0.1667	0	
Guardrail Terminals	RN	0.0500	RN	RN	0	(Ray 2018a)
Crash Cushions	RN	RN	RN	RN	0	
Terrain Features					1	
Foreslope Rollover	0.0142	0.0589	0.3138	0.4836	1	(Carrigan 2020)
Backslope Rollover	0.0142	0.0589	0.3138	0.4836	1	(Calligali 2020)
Ditch Bottom Rollover	0.0142	0.0589	0.3138	0.4836	1	
Fixed Objects						
Trees and Utility Poles	0.0142	0.0589	0.3138	0.4836	0	(Carrigan 2020)
Bridge Piers	0.0278	0.0656	0.1729	0.2444	0	(Ray 2018b)
Other Users						
Crash in Opposing Lanes	0.0098	0.0451	0.1290	0.1938	1	(Carrigan 2020)
Crash in Work Zone	RN	RN	RN	RN	1	
Crash with Pedestrian/Cyclist	RN	RN	RN	RN	1	
Enter the following from above:					1	
Waterbody	0.0049	0.0343	0.1421	0.2254	1	(Carrigan 2020)
Minor Transportation Facility	RN	RN	RN	RN	1	
Major Transportation Facility	RN	RN	RN	RN	1	
Low Risk Environment	RN	0.0589	RN	RN	1	(Ray 2014b)
Medium Risk Environment	RN	0.4737	RN	RN	1	(Ray 2014b)
High Risk Environment	RN	1.0000	RN	RN	1	(Ray 2014b)

A.4 EXAMPLE

The following example will help to illustrate how the roadside risk assessment procedure is used to evaluate the decision of whether or not to install a cable median barrier. Equation 2, the governing equation, is shown below for convenience. Equations 1 and 2 and the required input data for the example problem are summarized by the forms shown in Table 63 through Table 65. The entries shown in the red hand-written font in Table 63 through Table 65 represent information that the designer would supply. The values entered in the green hand-written font would be looked up by the designer in the tables listed. The blue font represents values that must be calculated either by the designer or by a self-calculating worksheet or computer program.

$$OUTCOME_{j} = \left[\frac{BEF_{S} \cdot EAF_{S} \cdot L_{S}}{5280}\right] \cdot \left[P_{c_{j}} \cdot \prod_{i=1}^{j-1} THR_{i}\right] \cdot \left[P_{SEV_{j}} \cdot (1 - THR_{j} \cdot \delta_{j}) \left(\frac{PSL_{S}^{3}}{65^{3}}\right)\right]$$

: 4

The layout for this example is shown in Figure 46. Example site layout and the usersupplied input information is shown in the top portions of Table 63 through Table 65. This example is a rural four-lane divided highway with a depressed, 60-ft wide median and a hightension cable median barrier located 6-ft from the northbound lanes (primary direction).

The two-way total AADT at this location for the design year being evaluated is 36,000 vehicles/day including 5 percent trucks (PT). The posted speed limit is 70 mi/hr and the road is on a straight tangent section with a negative 5 percent grade in the northbound direction (primary direction). The roadway cross-section, shown in Figure 47, features a -4:1 slope with a -12:1 ditch bottom. In this example, the user wishes to compare a cable median barrier alternative with a no median barrier alternative, so the focus is on left edge encroachments from each direction only. Additional calculations would be required to determine the risk for right edge encroachments.

In Table 63 through Table 65, Worksheet A (i.e., the top of the form) contains basic identifying information that is generally not used in the analysis. The one exception is that a risk goal can be included at the upper right. A value of 0.0325 KA ROR crashes/edge-mi/yr is recommended as the default but the engineer can change this value to any suitable value for the highway agency. Worksheet B – Encroachment Adjustment Factors (i.e., the upper middle part of the form) is completed by looking up values in Table 57 based on the specific roadway geometrics and features. The product of all the values is calculated as:

$$EAF_{S} = \prod_{i=1}^{N} EAF_{i} = EAF_{HC} \cdot EAF_{G} \cdot EAF_{LR} \cdot EAF_{LN} \cdot EAF_{PSL} \cdot EAF_{AD}$$

and entered into the cell at the far-right side.

The values in Worksheet C - Interactions with Roadside Features are selected from a variety of tables as discussed below and as listed in Table 55. The lateral offset distances to the face (W_{Fj}) and back (W_{Bj}) and the length (L_j) of each feature along the road are taken from the plans or specifications for the alternative being analyzed. The value for BEFs is found in Table 56 based on the AADT (36,000) listed in Worksheet A, in this case 1.9773. The value calculated in Worksheet B for the EAFs is entered into the appropriate column in Worksheet C. The probability of a collision given an encroachment is found from one of the following:

Continuous Features (e.g., guardrails, median barriers, terrain, etc.)

$$P_{cj} = \left[\frac{L_j}{L_S}\right] \cdot P_y(W_{Fj})$$

Discreet Features (e.g., trees, poles, bridge piers, water bodies, etc.)

$$P_{cj} = \left[\frac{L_j}{L_s}\right] \cdot P_y(W_{Fj}) + \left[\frac{1,000}{L_s}\right] \left[0.3508 \cdot (P_y(W_{Fj}) - P_y(W_{Bj}))\right]$$

In this example, all the features are continuous features so the probability of a lateral extent for each offset ($P_Y(W_{Fj})$) is found from Table 58 and entered into the appropriate cell in Worksheet C. The crash severity for each type of feature (P_{SEVj}) is found in Table 62 based on the type of feature list at the left side of Worksheet C. THR_j is determined separately for each feature of interest; for hardware use Table 59, and for foreslopes use Table 60. Values for THR_{BACKSLOPE} do not exist yet so for the sake of the example, foreslope values are used (i.e., the probability of rolling over on a particular foreslope is the same as the backslope).

As shown in Table 63, with no median barrier present 0.0103 KA crashes/mi/yr could be expected from the left edge of the primary direction of travel. The opposing direction is symmetric except the grade would be positive 5 percent changing the EAF_G value from 1.13 to 1.10 and the resulting outcome frequency to 0.0101 KA crashes/mi/yr on the opposing left edge. Adding the KA crashes for both directions results in 0.0204 KA crashes/mi/yr combined. Just over 94 percent of the KA crashes are expected to be cross-median crashes and the remaining 6 percent are rollovers on either the fore- or backslopes.

As shown in Table 64 and Table 65, when a high-tension median barrier is installed on the northbound side, the total number of KA crashes increases slightly to 0.0110 (Table 64) in the primary direction and 0.0051 in the opposing directing (Table 65) for a total of 0.0161 KA crashes/yr, a 21 percent reduction in KA crashes/mi/yr. Cross-median crashes account for 6 precent of the KA crashes/mi/yr, median barrier crashes 90 percent, and terrain related rollover account for the remaining 4 percent. Adding the median barrier reduced the cross-median KA crashes from 0.0192 to 0.0010 KA crashes/mi/yr, a reduction of almost 88 percent. The median barrier was, therefore, highly effective in reducing the number of cross-median KA crashes. The median barrier alternative also reduced the terrain related rollover in the primary direction since more vehicles were kept off the sloping terrain. The relative risk of the median barrier alternative to the no median barrier alternative was 0.0161/0.0204 = 0.79. The median barrier would be effective in reducing the overall KA crash risk of the road segment by more than 20 percent and reducing the cross-median crash risk by almost 88 percent; a magnitude supported by some previous crash studies in the literature. (Ray 2009)

The foregoing analysis showed that adding a median barrier in this specific circumstance was risk beneficial, but the analysis did not answer the question of whether the median barrier alternative was cost beneficial. If so desired, the next step might be for the engineer to examine the economic benefits of the median barrier is so desired by the highway agency.

Figure 46. Example site layout.

Figure 47. Highway cross-section for example. (NTSB 2013)

Vorksheet A -	General Info	ormation									
Title Analyst Agency	Primary MHR Roadsafe		No Median	Barrier				Roadway Jurisdiction MilePost	l-999 Z DOT 61·5	Risk Goal: Analysis Year Analysis Date	0·032 202 11/25/202
Input Data			Value	Input Data		Value		Input Data		Base Condition	Value
Outcome of I	nterest		KA	Ditch Type				Grade (%)		Flat	-5
Highway Typ	e		D	Foreslope 1 ((H:V)	4:1		Horizontal Cu	rve Radius (ft)	Tangent	Tangent
Functional C	ass		RA	Foreslope 2 ((H:V)	12:1		Degree of Cu	rvature (deg/100	t) 0	Õ
Two-Way To	tal AADT (v	eh./day)	36,000		(H:V)	12:1		Encroachmen	t Side	R	L
Percent Truc	ks (%)		5	Backslope 2 ((H:V)	4:1		Total Number	of Lanes	4	4
Segment Leng	gth (miles)		1	Right Shoulder		10		Post Speed Li	imit (mi/hr)	65	70
				Left Shoulder V	Width (ft)	6		Major Access	s Points (pts/mi)	0	0
								Lane width (f	t)	12	12
Vorksheet B -	Encroachme	nt Adjustmen	t Factors								
Horizontal	Grade	Side	Number of	Posted Speed	Access						
EAF_{HC}	EAF _G	EAF_{LR}	EAF _{LN}	EAF _{PSL}	EAFAC						EAFs
1.00	1.13	0.97	1.00	0.93	1.00						1.01
Vorksheet C -	Interactions	with Roadside	e Features								
Feature j			W _{F j}	W _{B j}	Lj	BEFs	EAFs	P _{cj}	P _{SEVj}	δ _j THR _j	OUTCOME _j
0 Cross Edge i	nto Median o	r Roadside	0	0	5,280	1.9773	1.01	1.0000	0.0000	1 1.0000	0.0000
1 Foreslope	1		6	26	5,280	1·9773	1.01	0.6120	0·0589	1 0.9957	0.0004
2 Foreslope	2		26	30	5,280	1.9773	1.01	0.5699	0.0589	1 1.0000	0.0000
3 Backslope	1		30	34	5,280	1.9773	1.01	0.5206	0.0589	1 1.0000	0.0000
4 Backslope	2		34	54	5,280	1.9773	1.01	0.3325	0.0589	1 0.9957	0.0002
5 Enter Opp	osing Lan	es	60	60	5,280	1.9773	1.01	0.2887	0.0451	1 0.6985	0.0097

Table 63. Example input data and calculation form for primary direction – no median barrier alternative.

Total KA Outcomes/yr: 0.0103

Norksheet A -	General Infor	mation										
Title	· · · · · · · · · · · · · · · · · · ·	irection /	Median Bar	rier				Roadway	1-999		Risk Goal:	0.0325
Analyst	MHR							Jurisdiction	Z DOT		Analysis Year	2022
Agency	Roadsafe							MilePost	61.5		Analysis Date	11/25/2020
Input Data			Value	Input Data		Value		Input Data		Ba	ase Condition	Value
Outcome of I	nterest		КА	Ditch Type				Grade (%)			Flat	-5
Highway Typ	e		D	Foreslope 1 (H:V)	4:1		Horizontal Cu	rve Radius (ft)		Tangent	Tangent
Functional Cl	ass		RA	Foreslope 2 (H:V)	12:1		Degree of Cu	rvature (deg/100	ft)	0	0
Two-Way To	tal AADT (veh	ı./day)	36,000	Backslope 1 (H:V)	12:1		Encroachmen	t Side		R	L
Percent Truck	cs (%)		5	Backslope 2 (H:V)	4:1		Total Number	of Lanes		4	4
Segment Leng	gth (miles)		1	Right Shoulder	Width (ft)	10		Post Speed Li	imit (mi/hr)		65	70
				Left Shoulder V	Vidth (ft)	6		Major Access	s Points (pts/mi)		0	0
								Lane width (f	t)		12	12
Worksheet B -	Encroachment	Adjustment l	Factors									
Horizontal	Grade	Side	Number of	Posted Speed	Access							
EAF _{HC}	EAF_{G}	EAFLR	EAF_{LN}	EAF _{PSL}	EAFAC							EAFs
1.00	1.13	0.97	1.00	0.93	1.00							1.01
Worksheet C -	Interactions w	ith Roadside										
Feature _j			W _{F j}	W _{B j}	Lj	BEFs	EAFs	Pcj	P _{SEVj}	δj	THR _j	OUTCOME _j
0 Cross Edge in			0	0	5,280	1.9773	1.01	1.0000	0.0000	1	1.0000	0.0000
1 TL3 High-	Tension Cal	ble Barrier	6	6	5,280	1.9773	1.01	0.8394	0.0050	0	0.0500	0.0105
2 Foreslope	1		6	26	5,280	1.9773	1.01	0.6120	0.0589	1	<i>0</i> •9957	0.0000
3 Foreslope	2		26	30	5,280	1.9773	1.01	0.5699	0.0589	1	1.0000	0.0000
4 Backslope	7		30	34	5,280	1.9773	1.01	0.5206	0.0589	1	1.0000	0.0000
5 Backslope	2		34	54	5,280	1.9773	1.01	0.3325	0.0589	1	<i>0</i> ·9957	0.0000
6 Enter Opp	osing Lanes		60	60	5,280	1.9773	1.01	0.2887	0.0451	7	0.6985	0.0005
									T. 4	1 17 4	Outcomes/yr:	0.0110

Table 64. Example input data and calculation form for primary direction – median barrier alternative.

Worksheet A -	General Info	rmation									
Title Analyst	Opposing MHR	Direction	Median Ba	rrier				Roadway Jurisdiction	1-999 Z DOT	Risk Goal: Analysis Yea	0·0325 2022
Agency	Roadsafe							MilePost	61.5	Analysis Date	-
Input Data			Value	Input Data		Value		Input Data		Base Condition	value
Outcome of I	nterest		KA	Ditch Type				Grade (%)		Flat	5
Highway Ty	be		D	Foreslope 1	(H:V)	4:1		Horizontal Cu	rve Radius (ft)	Tangent	Tangent
Functional C	lass		RA	Foreslope 2	(H:V)	12:1		Degree of Cu	vature (deg/100	ft) 0	Ō
Two-Way Te	otal AADT (ve	eh./day)	36,000	Backslope 1	(H:V)	12:1		Encroachment	Side	R	L
Percent Truc	ks (%)	• /	5	Backslope 2	(H:V)	4:1		Total Number	of Lanes	4	4
Segment Len	gth (miles)		1	Right Shoulder	Width (ft)	10		Post Speed Li	mit (mi/hr)	65	70
e				Left Shoulder V		6			Points (pts/mi)	0	0
								Lane width (ft		12	12
Worksheet B -	Encroachmen	nt Adjustment	Factors								
Horizontal	Grade	Side	Number of	Posted Speed	Access						
EAF _{HC}	EAF_G	EAFLR	EAF _{LN}	EAF _{PSL}	EAFAC						EAFs
1.00	1.10	0.97	1.00	0.93	1.00						0.99
Worksheet C -	Interactions	with Roadside	Features								
j Feature _j			W _{F j}	W _{B j}	L_j	BEFs	EAFs	P _{cj}	P _{SEVj}	δ_j THR _j	OUTCOME _j
0 Cross Edge i	nto Median or	Roadside	0	0	5,280	1.9773	0.99	1.0000	0.0000	1 1.0000	0.0000
1 Foreslope	7		6	26	5,280	1.9773	0.99	0.6120	0.0589	1 <i>0</i> .9957	0.0004
2 Foreslope	2		26	30	5,280	1.9773	0.99	0.5699	0.0589	1 1.0000	0.0000
3 Backslope	7		30	34	5,280	1.9773	0.99	0.5206	0.0589	1 1.0000	0.0000
4 Backslope	2		34	54	5,280	1.9773	0.99	0.3325	0.0589	1 0.9957	0.0002
5 TL3 High	-Tension Ca	able Barrier	54	54	5,280	1.9773	0.99	0.3325	0.0050	0 0.0500	0.0040
6 Enter Op	oosing Lane	:5	60	60	5,280	1.9773	0.99	0.2887	0.0451	1 0·6985	0.0005
	-								Tet	1 KA Outcomos/vr	0.0051

Table 65. Example input data and calculation form for opposing direction – median barrier alternative.

ALTERNATIVE: Median Barrier Alternative

Total KA Outcomes/yr: 0.0051

APPENDIX B: DERIVATIONS

B.1 SHIELDING WITH MEDIAN BARRIER

$$\begin{aligned} & \text{OUTCOME}_{\text{CMC}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \cdot \left(\frac{\text{PSL}_{\text{S}}^3}{65^3}\right) \cdot \left[P_{\text{c} \text{ CMC}} \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}} \cdot \delta_{\text{CMC}})\right] \\ & \text{OUTCOME}_{\text{CMC}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \left(\frac{\text{PSL}_{\text{S}}^3}{65^3}\right) \cdot \left[\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right] \\ & \text{OUTCOME}_{\text{BAR}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \cdot \left(\frac{\text{PSL}_{\text{S}}^3}{65^3}\right) \cdot \left[(P_{\text{c} \text{ BAR}} \cdot P_{\text{SEV}_{\text{BAR}}}) + (P_{\text{c} \text{ CMC}} \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}} \cdot \delta_{\text{CMC}}) \cdot \text{THR}_{\text{BAR}}\right) \right] \\ & \text{OUTCOME}_{\text{BAR}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \cdot \left(\frac{\text{PSL}_{\text{S}}^3}{65^3}\right) \cdot \left[\frac{\text{L}_{\text{BAR}} \cdot P_{\text{Y}}(\text{MW}/2) \cdot P_{\text{SEV}_{\text{BAR}}}}{\text{L}_{\text{S}}}\right] \\ & \text{RR}_{\text{CMC}+\text{BAR/CMC}} = 1 > \frac{\text{OUTCOME}_{\text{BAR}+\text{CMC}}}{\text{OUTCOME}_{\text{CMC}}} = \frac{\text{OUTCOME}_{\text{BAR}} + \text{OUTCOME}_{\text{CMC}} \cdot (1 - \text{THR}_{\text{BAR}})}{\text{OUTCOME}_{\text{CMC}}} \\ & \left[\left(\frac{\text{L}_{\text{BAR}} \cdot P_{\text{Y}}\left(\frac{\text{MW}}{2}\right) \cdot P_{\text{SEV}_{\text{BAR}}}}{\text{L}_{\text{S}}}\right) + \left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) \cdot \text{THR}_{\text{BAR}}\right] \\ & \text{RR}_{\text{CMC}+\text{BAR/CMC}} = 1 > \frac{\left[\left(\frac{\text{L}_{\text{BAR}} \cdot P_{\text{Y}}\left(\frac{\text{MW}}{2}\right) \cdot P_{\text{SEV}_{\text{BAR}}}{\text{L}_{\text{S}}}\right) + \left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) + \frac{\left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) + \frac{\left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) + \frac{\left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) + \frac{\left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) + \frac{\left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CMC}}} \cdot (1 - \text{THR}_{\text{EOL}})}{\text{L}_{\text{S}}}\right) + \frac{\left(\frac{\text{L}_{\text{CMC}} \cdot P_{\text{Y}}(\text{MW}) \cdot P_{\text{SEV}_{\text{CM}}}$$

Recognizing that the median barrier is continuous along the whole segment, therefore, $L_S = L_{CMC} = L_{BAR.}$

$$RR_{CMC+BAR/CMC} = 1 > \frac{\left[(P_{Y}(MW/2) \cdot P_{SEV BAR}) + (P_{Y}(MW) \cdot P_{SEV CMC} \cdot (1 - THR_{EOL}) \cdot THR_{BAR})\right]}{\left[P_{Y}(MW) \cdot P_{SEV CMC} \cdot (1 - THR_{EOL})\right]}$$

where MW = The median width in feet.

B.2 RELOCATING NARROW FIXED OBJECTS

Assume the terrain in front of the fixed object is flatter than -10:1.

$$\begin{aligned} & \mathsf{OUTCOME}_{FO} = \left[\frac{\mathsf{BEF}_{\mathsf{S}} \cdot \mathsf{EAF}_{\mathsf{S}} \cdot \mathsf{L}_{\mathsf{S}}}{5,280}\right] \cdot \left(\frac{\mathsf{PSL}_{\mathsf{S}}^3}{65^3}\right) \cdot \left[\mathsf{P}_{\mathsf{c}\ \mathsf{FO}} \cdot \mathsf{P}_{\mathsf{SEV}\ \mathsf{FO}} \cdot (1 - \mathsf{THR}_{\mathsf{FO}} \cdot \delta_{\mathsf{FO}})\right] \\ & \mathsf{Letting}\ \partial_{\mathsf{FO}} = 0 \ \text{and}\ \mathsf{recognizing}\ \mathsf{that}\ \mathsf{P}_{\mathsf{SEV}\ \mathsf{FO}} = 0.0589\ \mathsf{yields}: \\ & \mathsf{OUTCOME}_{\mathsf{FO}} = \left[\frac{\mathsf{BEF}_{\mathsf{S}} \cdot \mathsf{EAF}_{\mathsf{S}} \cdot \mathsf{L}_{\mathsf{S}}}{5,280}\right] \cdot \left(\frac{\mathsf{PSL}_{\mathsf{S}}^3}{65^3}\right) \left[\mathsf{P}_{\mathsf{c}\ \mathsf{FO}} \cdot 0.0589\right] \\ & \mathsf{Let}\ \mathsf{L}_{\mathsf{S}} = 1,000,\ \mathsf{L}_{\mathsf{TMax}} = 1,000\ \mathsf{ft},\ \mathsf{L}_{\mathsf{FO}} = 1\ \mathsf{ft},\ \mathsf{and}\ \mathsf{recall}: \\ & \mathsf{P}_{\mathsf{cj}} = \left[\frac{\mathsf{L}_{\mathsf{FO}}}{\mathsf{L}_{\mathsf{S}}}\right] \mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{F}\ \mathsf{FO}}) + \left[\frac{\mathsf{L}_{\mathsf{TMax}}}{\mathsf{L}_{\mathsf{S}}}\right] \left[\mathsf{P}_{\mathsf{x}}(\mathsf{L}_{\mathsf{TMax}}) \big(\mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{F}\ \mathsf{FO}}) - \mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{B}\ \mathsf{FO}})\big)\right] \\ & = \left[\frac{\mathsf{L}_{\mathsf{FO}}}{\mathsf{L}_{\mathsf{S}}}\right] \mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{F}\ \mathsf{FO}}) + \left[\frac{1,000}{\mathsf{L}_{\mathsf{S}}}\right] \left[0.3508(\mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{F}\ \mathsf{FO}}) - \mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{B}\ \mathsf{FO}}))\right] \\ & = \left[\frac{1}{1,000}}\right] \mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{F}\ \mathsf{FO}}) + \left[\frac{1,000}{\mathsf{1},000}\right] \left[0.3508(\mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{F}\ \mathsf{FO}}) - \mathsf{P}_{\mathsf{y}}(\mathsf{W}_{\mathsf{B}\ \mathsf{FO}}))\right] \end{aligned}$$

Let $W_{F FO}$ - $W_{B FO}$ = 1 ft yields:

$$OUTCOME_{FO} = \left[\frac{BEF_{S} \cdot EAF_{S}}{5.280}\right] \cdot \left(\frac{PSL_{S}^{3}}{65^{3}}\right) \cdot 0.0589 \left[\left[\frac{P_{y}(W_{FFO})}{1,000}\right] + \left[0.3508(P_{y}(W_{FFO}) - P_{y}(W_{BFO}))\right]\right]$$

B.3 SHIELDING OBJECT-FREE SLOPED TERRAIN

$$\begin{aligned} & \text{OUTCOME}_{\text{TER}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \cdot \left(\frac{\text{PSL}_{\text{s}}^{3}}{65^{3}}\right) \cdot \left[\text{P}_{\text{c} \text{ TER}} \cdot \text{P}_{\text{SEV TER}} \cdot (1 - \text{THR}_{\text{TER}} \cdot \delta_{\text{TER}})\right] \\ & \text{Letting } \delta_{\text{TER}} = 1, \text{ and } \text{P}_{\text{c} \text{ FO}} = \frac{\text{L}_{\text{TER}} \cdot \text{P}_{\text{Y}}(\text{W}_{\text{TER}})}{\text{L}_{\text{S}}} \text{ yields:} \\ & \text{OUTCOME}_{\text{TER}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \left(\frac{\text{PSL}_{\text{s}}^{3}}{65^{3}}\right) \cdot \left[\frac{\text{L}_{\text{TER}} \cdot \text{P}_{\text{Y}}(\text{W}_{\text{TER}}) \cdot \text{P}_{\text{SEV TER}} \cdot (1 - \text{THR}_{\text{TER}})}{\text{L}_{\text{S}}}\right] \\ & \text{OUTCOME}_{\text{TER}+\text{BAR}} = \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5,280}\right] \cdot \left(\frac{\text{PSL}_{\text{s}}^{3}}{65^{3}}\right) \cdot \left[(\text{P}_{\text{c} \text{ BAR}} \cdot \text{P}_{\text{SEV}\text{BAR}}) + (\text{P}_{\text{c} \text{ TER}} \cdot \text{P}_{\text{SEV}\text{ TER}} \cdot (1 - \text{THR}_{\text{TER}} \cdot \delta_{\text{TER}})) \cdot \text{THR}_{\text{BAR}})\right] \\ & \text{Letting } \delta_{\text{TER}} = 1, \text{P}_{\text{c} \text{ TER}} = \frac{\text{L}_{\text{TER}} \cdot \text{P}_{\text{Y}}(\text{W}_{\text{TER}})}{\text{L}_{\text{S}}} \text{ and } \text{P}_{\text{c} \text{ BAR}} = \frac{\text{L}_{\text{BAR}} \cdot \text{P}_{\text{Y}}(\text{W}_{\text{BAR}})}{\text{L}_{\text{S}}} \text{ yeilds:} \end{aligned}$$

$$= [BEF_{S} \cdot EAF_{S} \cdot L_{S} \cdot 5280] \cdot \left(\frac{PSL_{S}^{3}}{65^{3}}\right)$$

$$\cdot \left[\left(\frac{L_{BAR} \cdot P_{Y}(W_{BAR}) \cdot P_{SEV BAR}}{L_{S}}\right) + \left(\frac{L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER} \cdot \delta_{TER})) \cdot THR_{BAR}}{L_{S}}\right)$$

$$RR_{TER+BAR+TER} = 1 > \frac{OUTCOME_{TER+BAR}}{OUTCOME_{TER}} = \frac{OUTCOME_{BAR} + OUTCOME_{TER} \cdot THR_{BAR}}{OUTCOME_{TER}}$$

$$RR_{TER+B} /_{TER} = 1 > \frac{\left(\frac{L_{BAR} \cdot P_{Y}(W_{BAR}) \cdot P_{SEV BAR}}{L_{S}}\right) + \left(\frac{L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER})) \cdot THR_{BAR}}{L_{S}}\right)}{\left(\frac{L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV CMC} \cdot (1 - THR_{TER})}{L_{S}}\right)}$$
Recognizing that the barrier is continuous along the whole segment, therefore, $L_{S} = L_{TER} = L_{BAR}$:
$$RR_{TER+BAR/TER} = 1 > \frac{\left[(P_{Y}(W_{BAR}) \cdot P_{SEV BAR}) + (P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER})) \cdot THR_{BAR}\right]}{\left[P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER})\right]}$$

B.4 SHIELDING FIXED OBJECTS WITH LONGITUDINAL BARRIERS

OUTCOME_{BAR} is the same as in Section B.1 and OUTCOME_{TER} is the same as in Section B.3.

$$\begin{aligned} & \text{OUTCOME}_{FO} = \left[\frac{\text{BEF}_{S} \cdot \text{EAF}_{S} \cdot \text{L}_{S}}{5,280}\right] \cdot \left(\frac{\text{PSL}_{S}^{3}}{65^{3}}\right) \cdot \left[\text{P}_{c \ FO} \cdot \text{P}_{\text{SEV FO}} \cdot (1 - \text{THR}_{FO} \cdot \delta_{FO})\right] \\ & \text{Letting } \delta_{FO} = 1, \text{THR}_{FO} = 0, \text{and } \text{P}_{c \ FO} = \frac{\text{L}_{FO} \cdot \text{P}_{y}(\text{W}_{F \ FO})}{\text{L}_{S}} + \frac{\text{L}_{\text{TMax}} \cdot \left[\text{P}_{x}(\text{L}_{\text{TMax}})(\text{P}_{y}(\text{W}_{F \ FO}) - \text{P}_{y}(\text{W}_{B \ FO})\right]}{\text{L}_{S}} \text{ yeilds:} \\ & \text{OUTCOME}_{FO} = \left[\frac{\text{BEF}_{S} \cdot \text{EAF}_{S} \cdot \text{L}_{S}}{5,280}\right] \left(\frac{\text{PSL}_{S}^{3}}{65^{3}}\right) \cdot \left[\left(\frac{\text{L}_{FO} \cdot \text{P}_{y}(\text{W}_{F \ FO})}{\text{L}_{S}} + \frac{(\text{L}_{\text{TMax}} \cdot \text{P}_{x}(\text{L}_{\text{TMax}})(\text{P}_{y}(\text{W}_{F \ FO}) - \text{P}_{Y}(\text{W}_{B \ FO})\right]}{\text{L}_{S}}\right) \cdot \text{P}_{\text{SEV \ FO}}\right] \\ & \text{RR}_{FO+\text{TER+BAR/TER+BAR}} = 1 > \frac{\text{OUTCOME}_{FO+\text{TER+BAR}}}{\text{OUTCOME}_{FO+\text{T}}} \\ & \text{RR}_{FO+\text{TER+BAR/TER+BAR}} = 1 > \frac{\text{OUTCOME}_{BAR} + \text{OUTCOME}_{\text{TER}} \cdot \text{THR}_{BAR} + \text{OUTCOME}_{FO} \cdot \text{THR}_{BAR} \cdot \text{THRU}_{\text{TER}}}}{\text{OUTCOME}_{\text{TER}} + \text{OUTCOME}_{FO} \cdot \text{THR}_{\text{TER}}} \end{aligned}$$

 $RR_{FO+TER+BAR/TER+BAR} = 1$

$$= \frac{\left[\left(\frac{L_{BAR} \cdot P_{Y}(W_{BAR}) \cdot P_{SEV BAR}}{L_{S}}\right) + \left(\frac{L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER})}{L_{S}}\right) \cdot THR_{BAR}\right]}{\left[\left(\frac{L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER})}{L_{S}}\right) + \left(\frac{L_{FO} \cdot P_{y}(W_{FO})}{L_{S}} + \frac{\left[L_{TMAX} \cdot P_{x}(L_{TMax})(P_{y}(W_{FO}) - P_{Y}(W_{BFO})\right]}{L_{S}}\right) \cdot P_{SEV FO} \cdot THR_{TER}\right]} + \frac{\left(\frac{L_{FO} \cdot P_{y}(W_{FO})}{L_{S}} + \frac{\left[L_{TMAX} \cdot P_{x}(L_{TMax})(P_{y}(W_{FO}) - P_{Y}(W_{BFO})\right]}{L_{S}}\right) \cdot P_{SEV FO} \cdot THR_{TER}}\right]}{\left[\left(\frac{L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER})}{L_{S}}\right) + \left(\frac{L_{FO} \cdot P_{y}(W_{FO})}{L_{S}} + \frac{\left[L_{TMAX} \cdot P_{x}(L_{TMax})(P_{y}(W_{FO}) - P_{Y}(W_{BFO})\right]}{L_{S}}\right) \cdot P_{SEV FO} \cdot THR_{TER}}\right]}$$

$$RR_{FO+TER+BAR/TER+BAR} = 1$$

$$> \frac{\left[\left(L_{BAR} \cdot P_{Y}(W_{BAR}) \cdot P_{SEV BAR}\right) + \left(L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER} \cdot \delta_{TER})\right) \cdot THR_{BAR}}{\left[\left(L_{BAR} \cdot P_{Y}(W_{BAR}) \cdot P_{SEV BAR}\right) + \left(L_{TER} \cdot P_{Y}(W_{TER}) \cdot P_{SEV TER} \cdot (1 - THR_{TER} \cdot \delta_{TER})\right) \cdot THR_{BAR}} + \left(L_{FO} \cdot P_{y}(W_{FO})\right]\right]$$

$$[L_{\text{TER}} \cdot P_{\text{Y}}(W_{\text{TER}}) \cdot P_{\text{SEV TER}} \cdot (1 - \text{THR}_{\text{TER}})] + [L_{\text{FO}} \cdot P_{\text{y}}(W_{\text{FO}}) + (L_{\text{TMAX}} \cdot P_{\text{x}}(L_{\text{TMAx}})(P_{\text{y}}(W_{\text{FO}}) - P_{\text{Y}}(W_{\text{BFO}}))] \cdot P_{\text{SEV FO}} \cdot \text{THR}_{\text{TER}} + \frac{L_{\text{TMAX}} \cdot P_{\text{x}}(L_{\text{TMAX}})(P_{\text{y}}(W_{\text{FO}}) - P_{\text{Y}}(W_{\text{BFO}})) \cdot \text{THR}_{\text{TER}} \cdot \text{THR}_{\text{BAR}}}{L_{\text{TMAX}} \cdot P_{\text{x}}(L_{\text{TMAX}})(P_{\text{y}}(W_{\text{FO}}) - P_{\text{Y}}(W_{\text{BFO}})) \cdot \text{THR}_{\text{TER}} \cdot \text{THR}_{\text{BAR}}}$$

 $[L_{\text{TER}} \cdot P_{\text{Y}}(W_{\text{TER}}) \cdot P_{\text{SEV TER}} \cdot (1 - \text{THR}_{\text{TER}})] + [L_{\text{FO}} \cdot P_{\text{y}}(W_{\text{FFO}}) + (L_{\text{TMAX}} \cdot P_{\text{x}}(L_{\text{TMAx}}) \left(P_{\text{y}}(W_{\text{FFO}}) - P_{\text{Y}}(W_{\text{BFO}})\right)] \cdot P_{\text{SEV FO}} \cdot \text{THR}_{\text{TER}}$

B.5 BRIDGE RAIL SELECTION

$$OUTCOME_{BAR} = \left[\frac{BEF_{S} \cdot EAF_{S} \cdot L_{S}}{5280}\right] \cdot \left[P_{c BAR} \cdot \prod_{i=1}^{j-1} THR_{i}\right] \cdot \left[P_{SEV BAR} \cdot (1 - THR_{BAR} \cdot \delta_{BAR}) \left(\frac{PSL_{s}^{3}}{65^{3}}\right)\right]$$
$$OUTCOME_{PEN} = \left[\frac{BEF_{S} \cdot EAF_{S} \cdot L_{S}}{5280}\right] \cdot \left[P_{c PEN} \cdot \prod_{i=1}^{j-1} THR_{i}\right] \cdot \left[P_{SEV PEN} \cdot (1 - THR_{PEN} \cdot \delta_{PEN}) \left(\frac{PSL_{s}^{3}}{65^{3}}\right)\right]$$

 $\begin{aligned} &\text{Recognizing that } \partial_{\text{BAR}} = 0, \ \partial_{\text{PEN}} = 0, \\ &\text{GOAL} \geq \text{OUTCOME}_{\text{BR}} + \text{OUTCOME}_{\text{PEN}} \cdot \text{THR}_{\text{BR}} \\ &\text{GOAL} \geq \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5280}\right] \cdot \left(\frac{\text{PSL}_{\text{s}}^3}{65^3}\right) \cdot \left[\left[P_{\text{Y}}(W_{\text{F}\text{ BAR}}) \cdot P_{\text{SEV BAR}}\right] + \left[P_{\text{Y}}(W_{\text{F}\text{ PEN}}) \cdot P_{\text{SEV BAR}} \cdot \text{THR}_{\text{BR}}\right]\right] \\ &\text{Assume the bridge railing has a 4-ft wide shoulder } (W_{\text{F}\text{ BAR}} = 4 \text{ ft}) \text{ and the bridge railing is 2-ft wide}(W_{\text{F}\text{ PEN}} = 6 \text{ ft}). \\ &\text{GOAL} \geq \left[\frac{\text{BEF}_{\text{S}} \cdot \text{EAF}_{\text{S}} \cdot \text{L}_{\text{S}}}{5280}\right] \cdot \left(\frac{\text{PSL}_{\text{s}}^3}{65^3}\right) \cdot \left[\left[P_{\text{Y}}(4) \cdot P_{\text{SEV BAR}}\right] + \left[P_{\text{Y}}(6) \cdot P_{\text{SEV BAR}} \cdot \text{THR}_{\text{BR}}\right]\right] \end{aligned}$

APPENDIX C: SERIOUS AND FATAL INJURY CRASH TABLES

Illinois

Complete data from Illinois was not available but Piper reports that there were 2,483 fatal and 19,279 serious injury roadway departure crashes in Illinois in 2010 through 2014 (see below). (Piper 2014) According to FHWA statistics, there were 296,084 edge miles of public roadway in Illinois that carry 2,260 100-million vehicle edge-miles travelled (HMVEMT) 2012.(FHWA 2020b)

Year	Number of KA Crashes	HMVEM	KA Crashes/HMVEM	Miles	KA Crashes/edge mile/yr
2010-2014	21,762	2,260	1.93	296,084	0.0073

Fatal and Serious Run-Off-Road Crash Rates in Illinois, 2010-2014.

Maine

Run-off-road crashes have long been the leading cause of roadway crash fatalities in the State of Maine due to the rural nature and mountainous topography of the State. Run-off-road fatalities account for 40 percent of all fatal crashes in the State of Maine. There are 23,400 miles of roadway in the State of Maine, most of which are rural two-lane roadways (i.e., there are only 367 miles of interstate in Maine). Highway Corridor Priority (HCP) mileages are from https://www.maine.gov/mdot/about/assets/hwy/#undefined1 and are assumed to be the same for all years. These 23,400 miles of roadway represent about 47,500 edge-miles of roadside. Between 2010 and 2018 there were 389 fatal and serious injury crashes in the State. (MDOT 2019) The expected frequency of fatal and incapacitating injury (KA) run-off-road crashes on the average mile of roadway in Maine in a year was 0.0083 KA ROR crashes/edge-mi/yr. The Statewide average KA ROR crash rate on a traffic volume basis was 1.33 KA crashes/HMVEM.

Maine uses an HCP value which is similar but not identical to the usual FHWA functional classifications. The KA ROR crash rate is always less than 0.025 KA ROR crashes/edge-mi/yr with the highest rate on undivided principal arterials (0.0247 KA ROR crashes/edge-mi/yr) and the lowest rate is on local roads and streets (0.0037 KA ROR crashes/edge-mi/yr.

The situation is quite different when viewed on a volume. The highest KA ROR crash rate on a volume basis are the local roads where the average rate was 2.89 KA ROR crashes/HMVEM. The lowest KA ROR crash rate on a volume basis were the Interstates and Principal Arterials where the rate was five times lower at 0.52 KA ROR crashes/HMVEM.

North Carolina

The 2010 to 2015 North Carolina HSIS data were used for this analysis. Run-off-road

crashes were identified using *RD_CONF, RODWYCLS, EVENT1, 2, 3, 4*, and *SEVERITY* fields. All crashes were categorized according to whether they occurred on a divided (coded 3, or 4 in *RD_CONF* field) or undivided (coded 1, or 2 in *RD_CONF* field) road. The crashes which occurred on divided roads were then further divided into urban (coded 01, 02, 03, 04, or 05 in *RODWYCLS* field) and rural (coded 06, 07, 08, 09, or 10 in *RODWYCLS* field). The same further division was performed for crashes that occurred on undivided roads. This division of roadway type and location resulted in four categories: (1) divided urban, (2) divided rural, (3) undivided urban and (4) undivided rural. The vehicle file *EVENT* codes (*EVENT1, EVENT2, EVENT3, EVENT4*) for <u>all</u> vehicles involved a crash were aggregated into a single list. For each road type/location category the number of run-off-road crashes was tallied using the EVENT codes listed below. Finally, the crashes which had a fatality (coded 1 in *SEVERITY* field) or an A injury (coded 2 in *SEVERITY* field) were tallied. The mileage amounts for each type/location of roadway was collected from the HSIS roadway mileage by roadway category (2012 data) table of the North Carolina HSIS Guidebook. (Nujjetty 2014) HMVM traveled was collected for each year from the FHWA Highway Statistics Table VM-2.

Face'
nd'
ace'
derpass'
of Underpass'
Underpass'
erpass'
b or Median'
lvert on Shoulder'
lvert on Median'
ce or Fence Post'
ier'
ct')
L r

North (Carolina	HSIS	EVENT	Field	Codes.

Ohio

The 2010 through 2015 Ohio HSIS data were used for this analysis. Run-off-road crashes were identified using *DIV_CODE*, *RODWYCLS*, *EVENT1*, 2, 3, 4, and *SEVERITY* fields. All crashes were categorized according to whether they occurred on a divided (coded D in *DIV_CODE* field) or undivided (coded U in *DIV_CODE* field) road. The crashes which occurred on divided roads were then further divided into urban (coded 01, 02, 03, 04, or 05 in *RODWYCLS* field) and rural (coded 06, 07, 08, 09, or 10 in *RODWYCLS* field). The same further division was performed for crashes that occurred on undivided roads. This division of roadway type and location resulted in four categories: (1) divided urban, (2) divided rural, (3) undivided urban and (4) undivided rural. The vehicle file *EVENT* codes (*EVENT1*, *EVENT2*, *EVENT3*, *EVENT4*) for <u>all</u> vehicles involved a crash were aggregated into a single list. For each road

type/location category the number of run-off-road crashes was tallied using the EVENT codes listed below. Finally, the crashes which had a fatality (coded 1 in *SEVERITY* field) or an A injury (coded 2 in *SEVERITY* field) were tallied. The mileage amounts for each type/location of roadway was collected from the HSIS roadway mileage by roadway category (2011 data) table of the Ohio HSIS Guidebook. (Nujjetty 2015) HMVM traveled was collected for each year from the FHWA Highway Statistics Table VM-2.

Code	Event	Code	Event
01	'Overturn/Rollover'	33	'Highway Traffic Sign Post'
03	'Immersion'	34	'Overhead Sign Post'
08	'Ran Off Road Right'	35	'Light/Luminaries Support'
09	'Ran Off Road Left'	36	'Utility Pole'
10	'Cross Median/Centerline'	37	'Other Post, Pole or Support'
11	'Downhill Runaway'	38	'Culvert'
21	'Parked Motor Vehicle'	39	'Curb'
22	'Work Zone Maintenance Equipment'	40	'Ditch'
25	'Impact Attenuator/Crash Cushion'	41	'Embankment'
27	'Bridge Pier or Abutment'	42	'Fence'
28	'Bridge Parapet'	43	'Mailbox'
29	'Bridge Rail'	44	'Tree'
30	'Guardrail Face'	45	'Other Fixed Object'
31	'Guardrail End'	46	'Work Zone Maintenance Equip.'
32	'Median Barrier'	47	'Unknown Fixed Object'

Ohio HSIS EVENT Field Codes.

Washington State

The 2010 through 2017 State of Washington HSIS data were used for this analysis. Run-off-road crashes were identified using RUR URB, RODWYCLS, OBJECT1, OBJECT2, and SEVERITY fields. All crashes were categorized according to whether they occurred on a divided (coded 01, 02, 04, 06, 07, or 09 in *RODWYCLS* field) or undivided (coded 03, 05, 08, or 10 in *RODWYCLS* field) road. The crashes which occurred on divided roads were then further divided into urban (coded U in RUR URB field) and rural (coded R in RUR URB field). The same further division was performed for crashes that occurred on undivided roads. This division of roadway type and location resulted in four categories: (1) divided urban, (2) divided rural, (3) undivided urban and (4) undivided rural. The accident file OBJECT codes (OBJECT1, OBJECT2) for all vehicles involved in a crash were aggregated into a single list. For each road type/location category the number of run-off-road crashes was tallied using the OBJECT codes listed in the table above. Finally, the crashes which had a fatality (coded 2, 3, or 4 in SEVERITY field) or an A injury (coded 5 in SEVERITY field) were tallied. The mileage amounts for each type/location of roadway was collected from the HSIS roadway mileage by roadway category (2014 data) table of the Ohio HSIS Guidebook. (Nujjetty 2015) HMVM traveled was collected for each year from the FHWA Highway Statistics Table VM-2.

Code	Event	Code	Event
			Concrete Barrier, Face Of (Did Not
01	Beam Guardrail, Leading End	35	Go Thru, Over, or Under)
	Beam Guardrail, Face Of (Did Not	• -	Concrete Barrier, Face Of (Did Go
02	Go Thru, Over, or Under)	36	Thru, Over, or Under)
	Beam Guardrail, Face Of (Did Go	25	
03	Thru, Over, or Under	37	Bridge Rail, Leading End
07	Connecto Martine Dannia e Wall	20	Bridge Rail, Face Of (Did Not Go
07	Concrete Median Barrier Wall	38	Thru, Over, or Under)
08	Retaining Wall (Concrete, Rock,	39	Bridge Rail, Face Of (Did Go Thru,
08	Brick, Etc.)	39	Over, or Under)
09	Curb or Raised Traffic Island, Raised	50	Temporary Traffic Sign or Barricade
0)	Median Curb		Temporary Traine Sign of Dameade
11	Bridge Abutment	51	Road or Construction Machinery
12	Bridge Column, Pier or Pillar	52	Construction Materials
13	Wood Sign Post	56	Tree or Stump (Stationary)
14	Metal Sign Post	57	Boulder (Stationary)
15	Guide Post	58	Rock Bank or Ledge
16	Luminaire Pole or Base	59	Earth Bank or Ledge
17	Railway Signal or Pole	61	Snowbank
18	Utility Pole (Telephone, Power, Etc.)	63	Building
19	Traffic Signal Pole and/or Control	64	Fire Plug
_	Equipment		6
20	Culvert End or Other Appurtenance	65	Parking Meter
21	in Ditch		
21	Roadway Ditch	66	Fence
74	Roadway Ditch	67	Domestic Animal (Ridden) Animal Drawn Vehicle
22	Overhead Sign Support	68	
30	Crash Cushion or Drums	69	Over Embankment/No Guardrail Present
31	Guardrail, Leading End	70	Into River, Lake, Swamp, Etc.
	Guardrail, Leading End Guardrail, Face Of (Did Not Go Thru,		
32	Over, or Under)	71	Other Object
	Guardrail, Face Of (Did Go Thru,		
33	Over, or Under)	73	Mailbox
34	Concrete Barrier, Leading End		
57	Concrete Darrier, Leading End	I	

State of Washington HSIS OBJECT Field Codes.

Fatal and Serious Injury Run-Off-Road Crashes in the State of Maine, 2010-2018.	
---	--

		Numbe	er of k	(A Cr	ashes				HN	ΛVM				KA C	rashe	s/HM	VEM				Miles					KA (Crashes/	edge mil	e/yr	
Year	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	TOTAL	Interstates	Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total
2010	89	37	72	76	106	380	59.76	17.40	25.16	24.83	18.34	145	0.62	1.06	1.43	1.53	2.89	1.31	1,760	1,335	2,211	3,731	14,363	23,400	0.0209	0.0139	0.0163	0.0102	0.0037	0.0081
2011	81	48	63	71	124	387	59.14	16.80	24.12	24.67	18.25	143	0.57	1.43	1.31	1.44	3.40	1.35	1,760	1,335	2,211	3,731	14,363	23,400	0.0190	0.0180	0.0142	0.0095	0.0043	0.0083
2012	82	66	79	100	144	471	59.97	16.80	24.02	24.56	18.34	144	0.57	1.96	1.64	2.04	3.93	1.64	1,760	1,335	2,211	3,731	14,363	23,400	0.0193	0.0247	0.0179	0.0134	0.0050	0.0101
2013	79	56	72	92	146	445	59.85	16.81	24.25	24.49	18.58	144	0.55	1.67	1.48	1.88	3.93	1.55	1,760	1,335	2,211	3,731	14,363	23,400	0.0186	0.0210	0.0163	0.0123	0.0051	0.0095
2014	64	65	61	79	88	357	59.61	17.33	23.33	24.59	18.57	143	0.44	1.88	1.31	1.61	2.37	1.24	1,760	1,335	2,211	3,731	14,363	23,400	0.0150	0.0243	0.0138	0.0106	0.0031	0.0076
2015	73	63	67	75	103	381	61.76	17.81	24.05	25.47	19.20	148	0.49	1.77	1.39	1.47	2.68	1.28	1,760	1,335	2,211	3,731	14,363	23,400	0.0172	0.0236	0.0152	0.0101	0.0036	0.0081
2016	79	58	76	86	82	381	63.13	18.03	24.08	25.56	19.05	150	0.52	1.61	1.58	1.68	2.15	1.27	1,760	1,335	2,211	3,731	14,363	23,400	0.0186	0.0217	0.0172	0.0115	0.0029	0.0081
2017	80	35	81	76	83	355	63.58	25.95	23.38	17.71	18.80	149	0.52	0.67	1.73	2.15	2.21	1.19	1,760	1,335	2,211	3,731	14,363	23,400	0.0188	0.0131	0.0183	0.0102	0.0029	0.0076
2018	69	34	71	67	92	333	64.29	25.89	23.39	17.63	18.93	150	0.44	0.66	1.52	1.90	2.43	1.11	1,760	1,335	2,211	3,731	14,363	23,400	0.0162	0.0127	0.0161	0.0090	0.0032	0.0071
Avg Annual	76	53	71	81	108	389							0.52	1.41	1.49	1.74	2.89	1.33				•			0.0182	0.0192	0.0161	0.0108	0.0037	0.0083
											Fatal I	Run-Off	Road	Cras	hes i	n the	State	of M	laine 20	010-201	18.									

Fatal Run-Off-Road Crashes in the State of Maine, 2010-2018.

Year		Numbe	r of Fa	atal Ci	rashe	s			HMVM					Fatal	Crash	es/HN	IVEM				Miles					Fatal	Crashes,	/edge mi	ile/yr	
	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	TOTAL	Interstates	Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total
2010	17	10	23	11	22	83	59.76	17.40	25.16	24.83	18.34	145	0.12	0.29	0.46	0.22	0.60	0.29	1,760	1,335	2,211	3,731	14,363	23,400	0.0040	0.0075	0.0104	0.0029	0.0015	0.0018
2011	7	11	14	17	22	71	59.14	16.80	24.12	24.67	18.25	143	0.05	0.33	0.29	0.34	0.60	0.25	1,760	1,335	2,211	3,731	14,363	23,400	0.0016	0.0082	0.0063	0.0046	0.0015	0.0015
2012	12	12	15	20	24	83	59.97	16.80	24.02	24.56	18.34	144	0.08	0.36	0.31	0.41	0.65	0.29	1,760	1,335	2,211	3,731	14,363	23,400	0.0028	0.0090	0.0068	0.0054	0.0017	0.0018
2013	10	7	9	17	24	67	59.85	16.81	24.25	24.49	18.58	144	0.07	0.21	0.19	0.35	0.65	0.23	1,760	1,335	2,211	3,731	14,363	23,400	0.0024	0.0052	0.0041	0.0046	0.0017	0.0014
2014	6	13	7	9	15	50	59.61	17.33	23.33	24.59	18.57	143	0.04	0.38	0.15	0.18	0.40	0.17	1,760	1,335	2,211	3,731	14,363	23,400	0.0014	0.0097	0.0032	0.0024	0.0010	0.0011
2015	13	11	13	16	22	75	61.76	17.81	24.05	25.47	19.20	148	0.09	0.31	0.27	0.31	0.57	0.25	1,760	1,335	2,211	3,731	14,363	23,400	0.0031	0.0082	0.0059	0.0043	0.0015	0.0016
2016	15	10	16	16	17	74	63.13	18.03	24.08	25.56	19.05	150	0.10	0.28	0.33	0.31	0.45	0.25	1,760	1,335	2,211	3,731	14,363	23,400	0.0035	0.0075	0.0072	0.0043	0.0012	0.0016
2017	8	7	12	16	13	56	63.58	25.95	23.38	17.71	18.80	149	0.05	0.13	0.26	0.45	0.35	0.19	1,760	1,335	2,211	3,731	14,363	23,400	0.0019	0.0052	0.0054	0.0043	0.0009	0.0012
2018	12	9	19	15	21	76	64.29	25.89	23.39	17.63	18.93	150	0.08	0.17	0.41	0.43	0.55	0.25	1,760	1,335	2,211	3,731	14,363	23,400	0.0028	0.0067	0.0086	0.0040	0.0015	0.0016
Avg Annual	10	10	13	16	20	69							0.07	0.27	0.30	0.33	0.54	0.24							0.0026	0.0075	0.0064	0.0041	0.0014	0.0015

Serious Injury Run-Off-Road Crashes in the State of Maine, 2010-2018.

	Num	ber of S	Seriou	us Cra	shes				HMVM				9	Seriou	s Cras	hes/H	MVEN	1			Miles					Seriou	s Crashe	s/edge n	nile/yr	
Year	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	TOTAL	Interstates	Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total	Interstates/Arterials	Other Principal Arterials	Collector	Minor Collector	Local	Total
2010	72	27	49	65	84	297	59.76	17.40	25.16	24.83	18.34	145.49	0.50	0.78	0.97	1.31	2.29	1.02	1760	1335	2211	3731	14363	23,400	0.0169	0.0202	0.0222	0.0174	0.0058	0.0063
2011	74	37	49	54	102	316	59.14	16.80	24.12	24.67	18.25	142.98	0.52	1.10	1.02	1.09	2.79	1.11	1760	1335	2211	3731	14363	23,400	0.0174	0.0277	0.0222	0.0145	0.0071	0.0068
2012	70	54	64	80	120	388	59.97	16.80	24.02	24.56	18.34	143.70	0.48	1.61	1.33	1.63	3.27	1.35	1760	1335	2211	3731	14363	23,400	0.0165	0.0404	0.0289	0.0214	0.0084	0.0083
2013	69	49	63	75	122	378	59.85	16.81	24.25	24.49	18.58	143.98	0.48	1.46	1.30	1.53	3.28	1.31	1760	1335	2211	3731	14363	23,400	0.0162	0.0367	0.0285	0.0201	0.0085	0.0081
2014	58	52	54	70	73	307	59.61	17.33	23.33	24.59	18.57	143.44	0.40	1.50	1.16	1.42	1.97	1.07	1760	1335	2211	3731	14363	23,400	0.0136	0.0390	0.0244	0.0188	0.0051	0.0066
2015	60	52	54	59	81	306	61.76	17.81	24.05	25.47	19.20	148.29	0.40	1.46	1.12	1.16	2.11	1.03	1760	1335	2211	3731	14363	23,400	0.0141	0.0390	0.0244	0.0158	0.0056	0.0065
2016	64	48	60	70	65	307	63.13	18.03	24.08	25.56	19.05	149.85	0.42	1.33	1.25	1.37	1.71	1.02	1760	1335	2211	3731	14363	23,400	0.0150	0.0360	0.0271	0.0188	0.0045	0.0066
2017	72	28	69	60	70	299	63.58	25.95	23.38	17.71	18.80	149.43	0.47	0.54	1.48	1.69	1.86	1.00	1760	1335	2211	3731	14363	23,400	0.0169	0.0210	0.0312	0.0161	0.0049	0.0064
2018	57	25	52	52	71	257	64.29	25.89	23.39	17.63	18.93	150.13	0.37	0.48	1.11	1.47	1.88	0.86	1760	1335	2211	3731	14363	23,400	0.0134	0.0187	0.0235	0.0139	0.0049	0.0055
Avg Annual	66	43	58	65	88	320							0.45	1.14	1.19	1.41	2.35	1.09							0.0156	0.0310	0.0258	0.0174	0.0061	0.0068

							• •														
Year	1	Number	of K	A			HM	VM		KA	Crashes	/HM\	/EM		Edge l	Miles		KA	Crashes/	edge mil	le/yr
	Urban Divided	Urban Undivided	ural Divided Rural Undivided TOTAL Urban Divided Urban Undivided Rural Divided					ural Divide	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	210	328	132	1037	1707	447.51	176.27	187.45	212.61	0.12	0.93	0.18	2.44	10,109	28,762	8,226	111,384	0.0208	0.0114	0.0160	0.0093
2011	186	351	137	994	1668	456.25	178.81	190.31	212.36	0.10	0.98	0.18	2.34	10,109	28,762	8,226	111,384	0.0184	0.0122	0.0167	0.0089

1.03 0.14 2.27

0.94 0.15 2.24

0.92 0.16 2.41

1.01 0.06 2.78

0.97 0.14 2.41

10,109

10,109

10,109

10,109

28,762

28,762

28,762

28,762

8,226

8,226

8,226

984 1653 457.91 181.77 193.47 216.35 0.10

344 113 953 1588 462.55 183.47 192.99 213.11 0.10

382 123 853 1587 506.92 207.57 188.69 176.95 0.11

47 1007 1757 524.64 217.81 195.53 180.80 0.13

2012

2013

2014

2015

Avg Annual

185

178

229

264

209

374 110

439

370 110 971 1660

111,384 0.0183 0.0130 0.0134 0.0088

111,384 0.0176 0.0120 0.0137 0.0086

111,384 0.0227 0.0133 0.0150 0.0077

0.0206 0.0129 0.0134 0.0087

8,226 111,384 0.0261 0.0153 0.0057 0.0090

Fatal and Serious Injury Run-Off-Road Crashes in the State of North Carolina, 2010-2015.

Fatal Run-Off-Road Crashes in the State of North Carolina, 2010-2015.

0.11

Year	Nı	umber o	f Fata	ıl Cras	hes		HM	VM		Fatal	Crashes	s/HM	VEM		Edge	Miles		Fatal	Crashes	/edge m	ile/yr
	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	83	138	56	454	731	447.51	176.27	187.45	212.61	0.05	0.39	0.07	1.07	10,109	28,762	8,226	111,384	0.0082	0.0048	0.0068	0.0041
2011	79	135	47	410	671	456.25	178.81	190.31	212.36	0.04	0.38	0.06	0.97	10,109	28,762	8,226	111,384	0.0078	0.0047	0.0057	0.0037
2012	76	155	50	416	697	457.91	181.77	193.47	216.35	0.04	0.43	0.06	0.96	10,109	28,762	8,226	111,384	0.0075	0.0054	0.0061	0.0037
2013	94	145	58	429	726	462.55	183.47	192.99	213.11	0.05	0.40	0.08	1.01	10,109	28,762	8,226	111,384	0.0093	0.0050	0.0071	0.0039
2014	109	148	73	381	711	506.92	207.57	188.69	176.95	0.05	0.36	0.10	1.08	10,109	28,762	8,226	111,384	0.0108	0.0051	0.0089	0.0034
2015	119	181	21	453	774	524.64	217.81	195.53	180.80	0.06	0.42	0.03	1.25	10,109	28,762	8,226	111,384	0.0118	0.0063	0.0026	0.0041
Avg Annual	93	150	51	424	718					0.05	0.39	0.07	1.06					0.0092	0.0052	0.0062	0.0038

Serious Injury Run-Off-Road Crashes in the State of North Carolina, 2010-2015.

	Nu	mber of	f Seri	ous Inj	jury		HM	VM			Serious	Injury	, , ,		Edge	Miles		Seriou	s Crashe	es/edge r	nile/yr
Year	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	127	190	76	583	976	447.51	176.27	187.45	212.61	0.07	0.54	0.10	1.37	10109	28762	8226	111384	0.0126	0.0066	0.0092	0.0052
2011	107	216	90	584	997	456.25	178.81	190.31	212.36	0.06	0.60	0.12	1.38	10109	28762	8226	111384	0.0106	0.0075	0.0109	0.0052
2012	109	219	60	568	956	457.91	181.77	193.47	216.35	0.06	0.60	0.08	1.31	10109	28762	8226	111384	0.0108	0.0076	0.0073	0.0051
2013	84	199	55	524	862	462.55	183.47	192.99	213.11	0.05	0.54	0.07	1.23	10109	28762	8226	111384	0.0083	0.0069	0.0067	0.0047
2014	120	234	50	472	876	506.92	207.57	188.69	176.95	0.06	0.56	0.07	1.33	10109	28762	8226	111384	0.0119	0.0081	0.0061	0.0042
2015	145	258	26	554	983	524.64	217.81	195.53	180.80	0.07	0.59	0.03	1.53	10109	28762	8226	111384	0.0143	0.0090	0.0032	0.0050
Avg Annual	115	219	60	548	942					0.06	0.57	0.08	1.36					0.0114	0.0076	0.0072	0.0049

Year	N	Jumbe	r of KA	A Crashe	es		HM	VM		KA	Crashes	s/HMV]	EM		Edge	Miles		KA	Crashes/	edge mile/	yr
	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	672	483	246	1209	2610	542.90	213.87	200.77	160.82	0.31	1.13	0.31	3.76	7,234	6,548	7,005	25,319	0.0929	0.0738	0.0351	0.0478
2011	718	613	250	1206	2787	533.50	222.93	198.73	164.73	0.34	1.37	0.31	3.66	7,234	6,548	7,005	25,319	0.0992	0.0936	0.0357	0.0476
2012	672	559	250	1274	2755	542.47	219.84	201.80	163.04	0.31	1.27	0.31	3.91	7,234	6,548	7,005	25,319	0.0929	0.0854	0.0357	0.0503
2013	603	536	275	1167	2581	562.80	232.52	181.24	151.11	0.27	1.15	0.38	3.86	7,234	6,548	7,005	25,319	0.0834	0.0819	0.0393	0.0461
2014	712	579	228	1084	2603	564.93	229.68	184.67	148.38	0.32	1.26	0.31	3.65	7,234	6,548	7,005	25,319	0.0984	0.0884	0.0325	0.0428
2015	542	456	213	920	2131	564.42	234.48	186.18	151.65	0.24	0.97	0.29	3.03	7,234	6,548	7,005	25,319	0.0749	0.0696	0.0304	0.0363
vg Annu	653	538	244	1143	2578					0.30	1.19	0.32	3.65					0.0903	0.0821	0.0348	0.0452
								Fatal Run	-Off-Road	Crashe	s in the	State o	of Ohio,	2010-2015	5.						

Year						HM	VM		Fata	l Crashe	s/HMV	EM		Edge	Miles		Fata	l Crashes	/edge mile	e/yr	
	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	78	64	43	172	357	542.90	213.87	200.77	160.82	0.04	0.15	0.05	0.53	7,234	6,548	7,005	25,319	0.0108	0.0098	0.0061	0.0068
2011	97	73	46	186	402	533.50	222.93	198.73	164.73	0.05	0.16	0.06	0.56	7,234	6,548	7,005	25,319	0.0134	0.0111	0.0066	0.0073
2012	95	82	36	215	428	542.47	219.84	201.80	163.04	0.04	0.19	0.04	0.66	7,234	6,548	7,005	25,319	0.0131	0.0125	0.0051	0.0085
2013	61	66	43	208	378	562.80	232.52	181.24	151.11	0.03	0.14	0.06	0.69	7,234	6,548	7,005	25,319	0.0084	0.0101	0.0061	0.0082
2014	74	79	29	194	376	564.93	229.68	184.67	148.38	0.03	0.17	0.04	0.65	7,234	6,548	7,005	25,319	0.0102	0.0121	0.0041	0.0077
2015	74	62	25	159	320	564.42	234.48	186.18	151.65	0.03	0.13	0.03	0.52	7,234	6,548	7,005	25,319	0.0102	0.0095	0.0036	0.0063
vg Annu	80	71	37	189	377					0.04	0.16	0.05	0.60					0.0110	0.0108	0.0053	0.0075

Serious Injury Run-Off-Road Crashes in the State of Ohio, 2010-2015.

	N	umber	of Seri	ious Inju	ıry		HMV	/M			Serious	Injury	_		Edge	Miles		Serio	us Crashe	s/edge mi	le/yr
Year	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	594	419	203	1037	2253	542.90	213.87	200.77	160.82	0.27	0.98	0.25	3.22	7234	6548	7005	25319	0.0821	0.0640	0.0290	0.0410
2011	621	540	204	1020	2385	533.50	222.93	198.73	164.73	0.29	1.21	0.26	3.10	7234	6548	7005	25319	0.0858	0.0825	0.0291	0.0403
2012	577	477	214	1059	2327	542.47	219.84	201.80	163.04	0.27	1.08	0.27	3.25	7234	6548	7005	25319	0.0798	0.0728	0.0305	0.0418
2013	542	470	232	959	2203	562.80	232.52	181.24	151.11	0.24	1.01	0.32	3.17	7234	6548	7005	25319	0.0749	0.0718	0.0331	0.0379
2014	638	500	199	890	2227	564.93	229.68	184.67	148.38	0.28	1.09	0.27	3.00	7234	6548	7005	25319	0.0882	0.0764	0.0284	0.0352
2015	468	394	188	761	1811	564.42	234.48	186.18	151.65	0.21	0.84	0.25	2.51	7234	6548	7005	25319	0.0647	0.0602	0.0268	0.0301
vg Annu	573	467	207	954	2201					0.26	1.04	0.27	3.04					0.0793	0.0713	0.0295	0.0377

Year	N	umber o	of KA	A Cras	shes		HM	-		KA (s/HM			Edge 1	-			Crashes/	edge mil	e/yr
	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	68	44	31	153	296	326.39	73.75	108.89	62.88	0.05	0.30	0.07	1.22	2,895	1,115	4,515	9,070	0.0235	0.0395	0.0069	0.0169
2011	69	33	42	162	306	324.94	74.59	107.47	62.54	0.05	0.22	0.10	1.30	2,895	1,115	4,515	9,070	0.0238	0.0296	0.0093	0.0179
2012	60	41	41	100	242	323.63	74.51	107.14	62.34	0.05	0.28	0.10	0.80	2,895	1,115	4,515	9,070	0.0207	0.0368	0.0091	0.0110
2013	81	34	36	98	249	334.57	81.27	100.29	55.98	0.06	0.21	0.09	0.88	2,895	1,115	4,515	9,070	0.0280	0.0305	0.0080	0.0108
2014	75	46	44	124	289	339.92	81.75	103.38	55.55	0.06	0.28	0.11	1.12	2,895	1,115	4,515	9,070	0.0259	0.0413	0.0097	0.0137
2015	91	44	50	111	296	348.23	83.16	107.76	57.38	0.07	0.26	0.12	0.97	2,895	1,115	4,515	9,070	0.0314	0.0395	0.0111	0.0122
2016	75	46	44	124	289	355.75	84.59	111.71	58.12	0.05	0.27	0.10	1.07	2,895	1,115	4,515	9,070	0.0259	0.0413	0.0097	0.0137
2017	91	44	50	111	296	358.44	84.78	112.70	58.28	0.06	0.26	0.11	0.95	2,895	1,115	4,515	9,070	0.0314	0.0395	0.0111	0.0122
Avg Annual	76	42	42	123	283					0.06	0.26	0.10	1.04					0.0263	0.0372	0.0094	0.0135
						Fatal			l Cras	hes in			of W	ashting	otn, 201						
Year	Nu	mber of	f Fata	al Cra	shes	Fatal	Run-O HM		l Cras	hes in	the S Fa		of W	ashting	o tn, 201 Edge			Fata	l Crashes	/edge mi	le/yr
Year	Urban Divided Z	Urban Undivided to Lagu	Divided	Rural Cra Undivided		Fatal Urban Divided	ded HH			Urban Divided		tal Divided	vided	Urban Divided				Urban Divided	ded	Rural Divided agpa/	
Year 2010		ded	Divided	rided			HM	VM	l Crasl Rural 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000		Fa	tal Divided			Edge de	Miles	ided			0	Rural Undivided
	Urban Divided	Urban Undivided	Rural Divided	Rural & Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided _B A	Rural Divided [1]	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	H Urban Divided	Urban ∞ Undivided	11 Rural Divided	Rural 43 32	TOTAL 23	Urban Divided	HM Urban 22.22 23.22	MV Rural Divided 68.801	25 Rural 88 Undivided	00 Urban Divided	Landright Fa	tal Divided 0.03	0 Rural 60 Undivided	Urban Divided	Edge D Duppinged 1,115	Miles Pivided 4,515	6 Rural 020 Undivided	0.00 80000 80000	Urban Undivided	0.0024	Rural 0.0041 0.0041
2010 2011	11 17 18 22	Urban 11 ∞ Undivided	1113	Kural 43 37 29 28	TV 73 78 64 70	рэрілі Спина 326.39 324.94 323.63 334.57	HM pupped 73.75 74.59 74.51 81.27	VM popiai Ingrand 108.89 107.47 107.14 100.29	Panta Rural 62.88 62.54 62.34 55.98	10.0 Urban Divided	Fa Urban 0.02 0.02	tal 0.03 0.03	Rural 0.34 0.23 0.25	Piviqed 2,895 2,895 2,895 2,895	Edge Dupper Dupper Dupper Laboration Laborat	Miles popioided 4,515 4,515	Rural 6,000 6,000 7,000 7,000 7,000 7,000 7,000 8,000 8,000 8,000 9,000 8,000 9,000 9,000 9,000 8,000 9,000 9,000 9,000 1,0000 1,000 1,000 1,0000 1,0000 1,0000 1,00000000	0.0038 0.0059 0.0076	0.0072 0.00072 0.0045	0.0029	0.0047 0.0041 0.0032 0.0031
2010 2011 2012	11 17 18 22 14	Urban 8 Undivided 11 22	Rural Divided 11 13 12 10	Rural 43 37 29 28 41	TOTAL 73 78 64	Peppini Gunar 326.39 324.94 323.63 334.57 339.92	HM populari 1000000000000000000000000000000000000	VM pppi IOP 108.89 107.47 107.47 100.29 103.38	Pundivided 0.101 0.100000000	10.0 10.0 10.0 10.0	Fa 0.05 0.07 0.03	tal 0.03 0.03 0.03	Pundivided 0.30 0.23 0.37	Pinided 2,895 2,895 2,895 2,895 2,895	Edge Urban 1,115 1,115 1,115	Miles Miles 4,515 4,515 4,515	Rural 0,006 0,000 0,000 0,000 0,000 0,000	Popision Divided Divid	0.0072 0.00072 0.0045	0.0024 0.0027	paping pa
2010 2011 2012 2013 2014 2015	11 Urban Divided	Urban 8 Undivided 8 8	11 13 12 10 13	Rural 43 37 29 28 41 38	TEAC 73 78 64 70 82 88	Peppixi Queen 326.39 324.94 323.63 334.57 339.92 348.23	HM upp 173.75 74.59 74.51 81.27 81.75 83.16	VM pppi iC Imm 108.89 107.47 107.14 100.29 103.38 107.76	Pepping Band Strain Pepping Pe	0.01 10.0 10.0 10.0 10.0	Fa undru 0.05 0.07 0.03 0.05 0.10 0.06	tal 0.03 0.03 0.03 0.03 0.03 0.03 0.03	Rural 0.30 0.25 0.37 0.33	Pining 2,895 2,895 2,895 2,895 2,895 2,895	Edge ueq:D 1,115 1,115 1,115 1,115 1,115 1,115	Miles Viles 4,515 4,515 4,515 4,515 4,515 4,515 4,515 4,515 4,515	Rural 070,6 070,6 070,6 070,6 070,6 070,6 070,7 00,7 000,7 00000000	pppixiQ uuqu 0.00038 0.00059 0.00062 0.00062 0.00048 0.0093	pppung upplication ppplication	0.0024 0.0027 0.0027 0.0022 0.0022	Paper
2010 2011 2012 2013 2014 2015 2016	11 177 18 14 27 13	Urban 0 Urdan 8 111 5 8 8 101 10 0 0 0	Image: Number of the second	Image: Constraint of the second system 43 43 37 29 28 41 38 41	Texa 73 78 64 70 82 88 80	Ppppi iQ ured 326.39 324.94 323.63 334.57 339.92 348.23 355.75	HM uuquinique 73.75 74.59 74.51 81.27 83.16 83.16 84.59	VM pppi iC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Page 2014 Page 2	0.01 10.0 10.0 10.0 10.0 10.0 10.0	Fa uppund 0.05 0.07 0.03 0.05 0.00 0.00 0.00 0.00 0.00	tal 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0	0.34 0.30 0.23 0.25 0.37 0.33 0.35	2,895 2,895 2,895 2,895 2,895 2,895 2,895 2,895	Edge uequinity 1,115 1,115 1,115 1,115 1,115 1,115 1,115 1,115	Popping Image: August of the second secon	Rural 070,6 070,6 070,6 070,6 070,7 070,7 070,7 070,7 0,070	pppi, U urd 0.0038 0.0059 0.0062 0.0076 0.0048 0.0093 0.0045	upp upp 0.0072 0.0099 0.0045 0.0072 0.0054	0.0024 0.0027 0.0027 0.0027 0.0022 0.0022 0.0029	Papina Papina
2010 2011 2012 2013 2014 2015	11 Urban Divided	0 Orban 0 Orban 0 Ordivided 0 0 0 0 0 0	Image: With a constraint of the second sec	рурна али страна али страна	TEXANDED TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXTURE TEXT	Peppixi Queen 326.39 324.94 323.63 334.57 339.92 348.23	HM upp 173.75 74.59 74.51 81.27 81.75 83.16	VM pppi iC Imm 108.89 107.47 107.14 100.29 103.38 107.76	Page 2014 Page 2	0.01 10.0 10.0 10.0 10.0	Fa undru 0.05 0.07 0.03 0.05 0.10 0.06	tal 0.03 0.03 0.03 0.03 0.03 0.04	Rural 0.30 0.25 0.37 0.33	Pining 2,895 2,895 2,895 2,895 2,895 2,895	Edge ueq:D 1,115 1,115 1,115 1,115 1,115 1,115	Miles Viles 4,515 4,515 4,515 4,515 4,515 4,515 4,515 4,515 4,515	Rural 070,6 070,6 070,6 070,6 070,6 070,6 070,7 00,7 000,7 00000000	pppixiQ uuqu 0.00038 0.00059 0.00062 0.00062 0.00048 0.0093	pppung upplication ppplication	0.0024 0.0027 0.0027 0.0022 0.0022	0.0041 0.0032

Fatal and Serious Injury Run-Off-Road Crashes in the State of Washtington, 2010-2017.

Year	Nu	mber of Cı	'Seri		ijury		HM	VM			shes/l		·		Edge	Miles		Seriou	ıs Crashe	s/edge m	ile/yr
	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	TOTAL	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided	Urban Divided	Urban Undivided	Rural Divided	Rural Undivided
2010	57	36	20	110	223	326.39	73.75	108.89	62.88	0.04	0.24	0.05	0.87	2895	1115	4515	9070	0.0197	0.0323	0.0044	0.0121
2011	52	22	29	125	228	324.94	74.59	107.47	62.54	0.04	0.15	0.07	1.00	2895	1115	4515	9070	0.0180	0.0197	0.0064	0.0138
2012	42	36	29	71	178	323.63	74.51	107.14	62.34	0.03	0.24	0.07	0.57	2895	1115	4515	9070	0.0145	0.0323	0.0064	0.0078
2013	59	26	24	70	179	334.57	81.27	100.29	55.98	0.04	0.16	0.06	0.63	2895	1115	4515	9070	0.0204	0.0233	0.0053	0.0077
2014	59	31	23	59	172	339.92	81.75	103.38	55.55	0.04	0.19	0.06	0.53	2895	1115	4515	9070	0.0204	0.0278	0.0051	0.0065
2015	60	27	30	73	190	348.23	83.16	107.76	57.38	0.04	0.16	0.07	0.64	2895	1115	4515	9070	0.0207	0.0242	0.0066	0.0080
2016	62	40	24	83	209	355.75	84.59	111.71	58.12	0.04	0.24	0.05	0.71	2895	1115	4515	9070	0.0214	0.0359	0.0053	0.0092
2017	62	35	30	82	209	358.44	84.78	112.70	58.28	0.04	0.21	0.07	0.70	2895	1115	4515	9070	0.0214	0.0314	0.0066	0.0090
Avg Annual	57	32	26	84	199					0.04	0.20	0.06	0.71					0.0196	0.0284	0.0058	0.0093

Serious Injury Run-Off-Road Crashes in the State of Washtington, 2010-2017.

APPENDIX D: RESEARCH NEEDS AND KNOWLEDGE GAPS

D.1 INTRODUCTION

The RDG is an evolving document that must periodically be updated to account for changes in roadside conditions, advances in technology and results of new research. There are always areas in such a document where additional research is needed or where there are gaps in knowledge that need to be filled. Research needs and knowledge gaps in the 2011 RDG were identified by examining the 2011 RDG in detail and examining other projects where research needs and objectives were outlined in order to develop a comprehensive list. The research needs and knowledge gaps identified in this section were obtained from:

- The research team's detailed review of the guidance provided in each chapter of the 2011 RDG.
- The recommendations from NCHRP Project 20-07(360) (Strategic Plan for AASHTO TCRS).
- Needs and gaps identified by NCHRP Project 20-07(383) (Update of the AASHTO Roadside Design Guide).

The first step was to perform a section-by-section review of the 2011 RDG and compile a list of all the specific guidance recommendations. There were 256 specific items of guidance identified in the 2011 RDG as a result of this process. Each item of guidance was categorized as one of the following: design, placement, how-to, maintenance or installation, manufacturing, or operational. In the process of listing the recommendations, research needs and gaps were also identified and noted. Sometimes the RDG itself points out the need for additional research or an insufficient basis for the current recommendations. Other times, the gap or need was apparent based on the source or age of the guidance. In addition to the 256 items of guidance, 42 knowledge gaps and 19 research needs were identified in the 2011 RDG. The complete database of guidance, knowledge gaps and research needs is included at the end of this appendix.

D.2 GUIDANCE

The source of the guidance (e.g., engineering judgement, crash data, computer modeling, etc.) was also determined and included in the table. In many cases the guidance is based on multiple sources (e.g., grading for terminals is based on two FHWA memos (FHWA 2004a; FHWA 2005) and observations of crash tests). A tally of the basis for all 256 items of guidance is shown in Table 66 (note: the sum of all the values is much more than 256 because some guidance use multiple bases). Guidance sources are categorized as was explained above (i.e., engineering judgment, experimental studies, and observational studies) based on references or discussion around the guidance in the RDG. There are times when the basis of some guidance is not explicitly stated, in these cases the research team made a best guess on the basis, usually identifying it as engineering judgement. Additionally, when the RDG references guidance documents such as the MUTCD or AASHTO Green Book, it is categorized as "Other Guidance."

As can be seen using the data Section D.5 (Source Data), the RDG is heavily reliant on engineering judgement since 199 of the 256 guidance recommendations (78 percent) involve at least some degree of engineering judgement. While it is sometimes unavoidable to incorporate engineering judgement, it is preferable to base guidance in the RDG on more quantitative data-

driven research. Guidance that is solely based on engineering judgement should probably be considered a future research need.

	-	eering ment	0	Exper Stu	·imen udies	ıtal		ervati Studie		ce
Intuition	Consensus	Experience	Site History	Lab Studies	Crash Test	FEA	Crash Data	Observation	GM Proving	Other Guidan Document
144	34	98	4	4	36	20	21	9	3	25

Table 66. Tally of basis of guidance in the 2011 RDG.

Table 67was organized to identify the primary guidance for each section or feature (e.g., RDG Figures 3-6 and 3-7 for roadsides slopes and ditches). These particular recommendations generally involve making design decisions about the selection or use of roadside hardware and are therefore most applicable to development of a performance-based design procedure. The 15 primary guidance recommendations are shown in Table 67. These items represent the primary guidance that is most suitable for developing performance based quantitative procedures as described in this projects objectives.

Section	Table or Figure	Description of Guidance	Type of Guidance	Date	Engineering	Experimental Studies s	ll Studies
3.1	Tab. 3-1	Table of recommended clear zone by speed, ADT, & fore/back slope severity	Design	1966			~
	-	Preferred foreslopes and backslopes for basic ditch configurations	Design	1975		~	
3.4.2.1	¶ 1	Matching the inlet to the foreslope is desirable because it results in a much smaller target for the errant vehicles to hit, reduces erosion problems, simplifies mowing operations and minimizes snagging potential.	Design	1969	~		
4.3.3	¶ 7	Multi-directional breakaway supports should be used in medians, traffic islands, etc. where impacts from more than one direction are likely	Placement	1969	~		
4.8	19h /I_I	Objectives and strategies for reducing utility pole crashes	Design	Various	~	~	~
4.9	$19n \Delta_{-}/$	Objectives and strategies for reducing crashes with trees	Design	Various	✓	~	~

Table 67. Primary guidance in the 2011 RDG.

Section	Table or Figure	Description of Guidance	Type of Guidance	Date	Engineering	Experimental Studies	l Studies
5.6.4	Tab. 5-10	Table of Suggested Runout Lengths for Barrier Design.	Design	2009			~
6.2	¶ 3, 4, 5 & Fig. 6-1	Figure of Guidelines for Median Barriers on High-Speed, fully controlled-access roadways. 2 paragraphs describing guidance provided in the figure.	Design	2003			~
6.6.1	¶ All & Fig. 6-18	Figure and text describe guidance for placing median barriers in non-level medians.	Design	1977	~		
8.3.3.2	¶ 1 & Fig. 8-2 & Fig. 8-3	Grading in the vicinity of a terminal or anchorage.	Design	2002	~	✓	
8.4.3	Eq. 8-1, 8-2 & 8-3	Conservation of momentum equations applied to a vehicle impacting a series of containers.	Design	1987	~		
8.4.5.1	¶1& Tab. 8-11	Table with recommendation of the area that should be made available for CC installation.	Design	1970	~		
9.1.1	Tab. 9-1	Table of example clear zone widths in work- zones by speed.	Design	NA	~		
9.3.2	Tab. 9-4	Table of suggested priorities for application of protective vehicles & TMAs.	Design	NA	~		
11.2.3	Tab. 11-1	Table of shoulder or turnout widths suitable to safely accommodate vehicles stopped at a mailbox.	Design	1984	~		

Table 67. Primary guidance in the 2011 RDG.

D.3 KNOWLEDGE GAPS

Knowledge gaps are topics or issues that are not addressed by the RDG although they probably should be. Table 68 displays research needs identified during the research team's examination of the 2011 RDG as well as knowledge gaps identified in NCHRP 20-07(360) and NCHRP 20-07(383). Each source is provided in column 3, while column 2 provides the 2011 RDG chapter number and column 4 provides a brief description of the need. As an example of a knowledge gap, several of the knowledge gaps in Table 68 note that the selection of roadside and median barrier hardware does not address the test levels available in Report 350 or MASH. There is sometimes some overlap between a gap and a need as in this case where the RDG does mention test levels but since it only provides general guidance it is considered here to be a gap rather than a need. Other topics like the performance of roadside hardware for motorcycles or

motor coaches are completely unaddressed in the RDG and are, therefore, treated as gaps. At least six of the 47 gaps that were identified in the 2011 RDG are being or have been addressed by ongoing or recently completed NCHRP research. Several have been noted in NTSB recommendations, TRB AKD20 breakout session and a few have had research needs statements (RNS) developed as noted in Table 68. The AASHTO Technical Committee on Roadside Safety (TCRS) submits the RNS to the AASHTO Subcommittee on Design annually for consideration in developing the NCHRP research program. The descriptions of the knowledge gaps were generally taken directly from the source document (i.e., NCHRP 20-07(360) or NCHRP 20-07(383)) with only minor editorial revision so some of these gaps overlap.

	RDG			Related
Gap	Section	Source	Description of Knowledge Gap	Work
1	5	20-07(360)	Gap: Work recently completed but not implemented - Guardrail test level selection guidelines.	NCHRP
1	5	20-07(300)	Guardrail test level selection guidelines.	R638
			Gap: Work recently completed but not implemented -	NCHRP
2	5		Criteria for the Restoration of Longitudinal Barriers,	22-28
			Phase II.	22 20
			Gap: Work recently completed but not implemented -	
3	5	20-07(360)	Design Guidelines for TL3-TL5 Roadside Barrier Systems	NCHRP
	5	20 07(300)	Placed on Mechanically Stabilized Earth (MSE) Retaining	22-20(02)
			wans.	
			Gap: On-going research - Identification of Factors related	NCHRP
4	5	20-07(360)	to Serious Injury and Fatal Motorcycle Crashes into	22-26
			Traffic Barriers.	22 20
			Gap: On-going research - Determine if shielding with	
5	5		longitudinal barriers is needed for a variety of roadside	NCHRP
	C C		obstacles and terrain features. Determine when the barrier	15-65
			does more harm than good.	
			Gap with no Currently Planned Research - Evaluate the	
6	5		adequacy of barrier systems currently approved through	NTSB
	-		NCHRP 350 or MASH for safely redirecting commercial	H-12-26
			passenger vehicles and develop guidelines.	
			Gap which could be satisfied with existing or pending	
	_		work and reorganization of RDG - Establish guidelines in	NTSB
7	5	20-07(360)	the RDG regarding the selection and use of high-	H-05-31
			performance barriers, including 42" and 50" concrete	
			barriers that are capable of redirecting heavy trucks.	
			Gap which could be satisfied with existing or pending	
			work and reorganization of RDG - Work with FHWA to	NECD
8	5	1/11_11/136111	establish performance and selection guidelines for state	NTSB
			transportation agencies to use in developing objective	H-12-25
			guidelines for high-performance barriers applicable to new	
			construction and rehabilitation projects.	NITOD
9	5	20-07(360)	Gap which could be satisfied with existing or pending	NTSB
			work and reorganization of RDG - Once barrier testing has	H-12-27

Table 68. Knowledge gaps in the 2011 RDG.

	RDG			Related
Gap	Section	Source	Description of Knowledge Gap	Work
			been completed and selection guidelines have been	
			developed, revise Ch. 5 of the RDG to incorporate	
			guidance for the selection of high-performance barriers in	
			new construction and rehabilitation projects.	
			Gap - Since most agencies are turning their focus to	
			maintenance, rather than new construction, pavement	
10	_		elevations rise with resurfacing. This decreases the	
10	5	20-07(383)	relative elevation of the rail, often outside tolerances. The	
			RDG is silent on method to raise the effective height of	
			low guardrails.	
			Gap - Address problems resulting from agencies managing	
	5 0 1		antiquated systems built to lower standard than todays.	
11	5.2.1	·///_/// ***	Provide guidance to help address how to bridge these	
			differences in standards.	
			Gap - There should be guidance relating to what to do	
10	5 0 1		when you contringtall handware the way it was anoth	
12	5.2.1		tested. Provide guidance or discussion on how to arrive at	
			the best scenario available.	
12	524		Gap - Additional research is being conducted regarding	
13	5.2.4		motorcycle interaction with barriers.	
			Gap - Roadside hardware and motorcycles. We can report	
14	524		on the state of the practice as we know it based on	
14	5.2.4	1 / I I_I I / I A X A I	European standards, but we don't know how the systems	
			perform w/ MASH hardware.	
			Gap - How do you take all of the dynamic characteristics	
15	551		of a barrier into account when you are shielding an	
15	5.5.1		obstacle? There should be a definition or diagram	
			comparing dynamic deflection and working width.	
16	5.6		Gap - Guidance on how to measure guardrail height.	
17	5 () 1		Gap - The performance of guardrail terminals behind	
17	5.6.2.1		curbs has not been tested.	
10	5 ()	20.07(292)	Gap - Need an agreed upon method to calculate the length	
18	5.6.4	20-07(383)	Gap - Need an agreed upon method to calculate the length of need on the inside of curves.	
10	5.6.6		Gap - Significant R&D has been undertaken to obtain a	
19	5.6.6		NCHRP Report 350 system for [short radius guardrail].	
20	5 ((Gap - On-going research - How to accommodate	NCHRP
20	5.6.6	20-07(383)	crossroads or driveways in close proximity to bridges?	15-53
	E 7 1	DDC	Gap - Additional research on this topic is needed	
21	5.7.1	RDG	(inadequate and damaged/neglected systems).	
				NTOD
22	6			
			FHWA testing of standard and high-performance portable	H-05-32
22	6	20-07(360)	Gap which could be satisfied with existing or pending work and reorganization of RDG - Upon completion of	NTSB H-05-32

Table 68. Knowledge gaps in the 2011 RDG.

	RDG			Related
Gap	Section	Source	Description of Knowledge Gap	Work
			concrete median barriers on unpaved surfaces, provide	
			clear guidance in the RDG on the placement of portable	
			concrete barriers on unpaved surfaces.	
23	7	20.07(260)	Gap: Work recently completed but not implemented -	NCHRP
23	/	20-07(360)	LIANIES FOR SELECTION OF MEANE LEVEL 7-5 DRIGGE RAUS	22-12(03)
24	8	20-07(360)	Gap with no Currently Planned Research - Classification of Crash Cushions.	2013 RNS
25	8	20-07(383)	<u>Gap</u> - Possible new category relating to tension (restrained) terminals.	
26	8.3.6.1		Gan - Discuss how to calculate I ON for a huried-in-	
27	8.3.6.2	20-07(383)	Gap - Layout of terminals at the end of flared standard systems. (in-line with the flare, measured off the flare, for flared- or parallel-type terminals, etc.).	
28	8.4.5.6		<u>Gap</u> - There is limited information of actual repair times and costs for crash cushions.	
29	9	20-07(360)	Gap with no Currently Planned Research - Risk-Based Criteria and Selection Guidelines for Positive Protection in Work Zones.	2013 RNS
30	9		Gap with no Currently Planned Research - Guidelines for anchoring portable barriers in work zones.	2010 RNS
31	9.2.1	20-07(383)	Gap - Do we use crash-tested working widths, or a risk- based approach based on the products exposure (e.g., PCB on a bridge deck a car could not develop a 25 deg. Trajectory.	
32	9.2.3	20-07(383)	Gap - the application of water-filled barriers, particularly as it relates to interfacing stiffer barriers. Same applies to water-filled terminals as well.	
33	9.4	RDG	<u>Gap</u> - Large trailer-mounted devices (arrow panels, variable message signs, and temporary traffic signals): Crash-worthiness criteria have not been established for devices in this category.	
34		20-07(360)	Gap with no Currently Planned Research - Development of plan/guidelines to improve roadway and roadsides for motorcyclists.	2010 RNS
350		20-07(360)	Gap with no Currently Planned Research - Guidelines for Design of Roadway and Roadside Features to Accommodate Automated Vehicles.	2013 RNS
36		20-07(360)	Gap which could be satisfied with existing or pending work and reorganization of RDG - Work with FHWA to develop and implement criteria based on traffic patterns passenger volume and bus types that can be used to assess	NTSB H-09-08

Table 68. Knowledge gaps in th	he 2011 RDG.
--------------------------------	--------------

	DDC			D 1 / 1
	RDG			Related
Gap	Section	Source	Description of Knowledge Gap	Work
			the risks of rural travel by large busses.	
37		20-07(360)	offered for applying the judgement. If we cannot install	Breakout Sessions
			the ideal solution, should we quantify	
38		20-07(360)	Gap which could be satisfied with existing or pending work and reorganization of RDG - Low cost/low volume roadways, objective criteria for urban roadsides, and new technologies.	Breakout Sessions
39	9.2.1.2.16	RDG	Gap - Anchoring PCB to the traveled way; Although these installations are in common use, only limited crash testing of these have been done.	
40		20-07(383)	Gap - RSAP chapter in the RDG.	
41		20-07(383)	Gap - More guidance on TL-2 hardware.	
42	5.1	RDG	Gap - Develop specific guidelines for when highway agencies should upgrade existing barriers as part of new or reconstruction projects, 3R projects or when a system is damaged beyond repair.	
43	5.6	20-07(383)	Gap - Placing tangent designed hardware on curves.	

Table 68. Knowledge gaps in t	the 2011 RDG.
-------------------------------	---------------

Some of the knowledge gaps listed in Table 68 would be directly and almost immediately addressed by the methodology developed in this research including:

- Decision to use longitudinal barrier for shielding particular obstacles (Gap 5).
- Test level selection criteria for guardrails (Gap 1, 7, 8, 9, 23, and 41).
- Barriers for low volume roads and urban areas (Gap 38).
- Instructions for using RSAP in RDG (Gap 40).

Other knowledge gaps could be address with the methodology in this research, but additional data would be required to develop the guidance. These gaps include:

- Criteria for repair or upgrading barrier (Gap 2, 10, 11, 21, and 42).
- Barriers to accommodate motorcycles (Gap 4, 13, 14, and 34).
- Barriers accommodate commercial vehicles and motor coaches (Gap 6 and 36).
- Use and placement of barriers in non-ideal situations (Gap 12 and 37).
- Use and placement of barriers in work zones (Gap 29 and 31).

As this list illustrates, a safety-performance based design methodology would help to structure future research and implementation of research into the RDG.

D.4 RESEARCH NEEDS

Research needs are topics and issues that are addressed in the RDG but need to be reassessed either due to the age of the original research, changes in vehicle or barrier technology or the availability of need research methods to address the need. Like the descriptions of the knowledge gaps, the research needs descriptions were generally taken directly from the source documents (i.e., NCHRP 20-07(360) or NCHRP 20-07(383)) with only minor editorial revision so some of these gaps overlap. The list of 19 research needs identified in this project are presented in Table 69.

	~ .	~		Related
Need	Section	Source	Description of Research Need	Work
1	2	20-	Need: Work recently completed but not implemented	NCHRP
1	2	07(360)	- The Roadside Safety Analysis Program (RSAPv3)	22-27
		. ,	Update.	NCUDD
2	3	20-	<u>Need: On-going research</u> - Guidelines for Cost-	NCHRP
		07(360)	effective Safety Treatment of Roadside Ditches.	16-05 NCHRP
3	3	20-	<u>Need: On-going research</u> - Development of Clear Recovery Area Guidelines.	NСПКР 17-
5	5	07(360)	Recovery Area Guidennes.	11(02)
		20-	Need: On-going research - Guidelines for Slope	NCHRP
4	3	07(360)	Traversability.	17-55
		· · · · ·	<u>Need</u> - Push the forgiving roadside concept more.	17-55
5	3.1	20-	Show RSAP example of improved safety when	
	5.1	07(383)	removing specific roadside features.	
			Need: Work recently completed but not implemented	NCHRP
6	5	20-	- Selection, Use, and Maintenance of Cable Barrier	R711
		07(360)	Systems.	
	(20-	Need: Covered by recently initiated research - Median	NCHRP
7	6	07(360)	barrier selection and placement guidelines.	22-31
8	6.6.1.3	RDG	Need - Placement criteria for median barriers on this	NCHRP
8	0.0.1.3	KDG	cross-section are not clearly defined.	22-31
9	6.6.1.3	RDG	Need - Figure and text describe guidance for placing	NCHRP
9	0.0.1.5	KDU	median barriers in non-level medians.	22-31
		20-	<u>Need</u> - Better design guidance on pier shielding height	NCHRP
10	5.5.1	07(383)	for LRFD. ZOI and potential damage that can occur to	12-90
		07(303)	piers when tall vehicles impact the barrier.	
			<u>Need</u> - Significant research is needed to develop more	NCHRP
11	5.5.2	RDG	specific criteria for the use of this tall barrier for pier	12-90
			protection.	
			<u>Need</u> - Guidance is based on very old, very limited	
12	5.6.1		research. Shy-line offsets at different design speeds	
			should be reassessed with new data.	
13	5.6.2	RDG	<u>Need</u> - Limited studies and computer simulations have	
15	5.0.2		provided some information on the dynamic behavior	

Table 69. Research needs in the 2011 RDG.

				Related
Need	Section	Source	Description of Research Need	Work
			and trajectories of vehicles traversing curbs or slopes.	
			<u>Need</u> - Guidance is based on very old, very limited	
14	5.6.3		research. Table of Suggested Flare Rates for Barrier	
			Design should be re-examined with new data.	
			<u>Need</u> - Guidance is based on very old, very limited	
15	5.6.4		research. Table of Suggested Runout Lengths for	
15	5.0.4		Barrier Design should be re-examined with new data	
			and methods.	
16	6.2	20-	Need - Optimizing median width and hardware in	
10	0.2	07(383)	medians. Discussion of ADT vs crash experience.	
17	6.6.1.1	RDG	Need - Maximum redirection can be achieved if the	
1/	0.0.1.1	KDG	area 1'-8' from ditch line on 1V:6H is avoided.	
			<u>Need</u> - Quantify possible placement concerns when a	
18	6.6.1.1	RDG	rigid or semi-rigid barrier is located on one side of a	
			traversable, sloped median.	
		20-	Need: Work recently completed but not implemented	NCHRP
19	2		- The Roadside Safety Analysis Program (RSAPv3)	22-27
		07(360)	Update.	

Table 69. Research needs in the 2011 RDG.

Some of the research needs listed in Table 69 would be directly and almost immediately used in the methodology developed in this research including:

- Guidelines for ditches (Need 2 and 17).
- Clear zone guidelines (Need 3 and 5).
- Guidelines for slope traversability (Need 4).
- Selection and placement guidelines for median barriers (Need 6, 7, 8, 9, 16, and 18).
- Guidelines for shielding bridge pier shielding (Need 10 and 11).
- Include RSAP in the RDG (Need 1 and 19).

Other research needs provide much needed updated information that could be used in the use of the safety-performance guidelines, including:

- New research to verify and update shy line offset table (Need 12).
- Placement of curbs in conjunction with barriers and slopes (Need 13).
- New research to verify and update flare rates table (Need 14).
- New research to verify and update run-out-length table (Need 15).

As this list illustrates, many of the already-identified research needs can be readily incorporated into the safety-performance based methodology developed in this research project. Five specific research needs statements shown in the following sections were developed in this project and forwarded to AASHTO Technical Committee on Roadside Safety and the TRB AKD20 Roadside Design Committee.

1. Problem Title

Development of a Self-Calculating Workbook for Assessing Roadside and Median Risk

2. Background

NCHRP 15-65 (Development of Safety Performance Based Design Guidelines for the Roadside Design Guide) established a new approach to roadside design which provides a consistent means to estimate the risk of a fatal or serious injury crash for roadside and median designs. The method is an encroachment-based model similar to that currently programed in RSAPv3 but instead of plotting and evaluating thousands of trajectories, a group of trajectories is treated as a statistical entity such that calculations can be based on the cumulative probability density functions of the lateral and longitudinal extents of encroachment. New models have also been developed to represent vehicles rolling over on terrain using the statistical properties of the trajectories. Incorporating these new models into a self-calculating workbook would make risk assessment of roadside and median design much quicker and result in more engineers implementing performance-based roadside designs.

3. Literature Search Summary

The Roadside Safety Analysis Program (RSAP) was updated in 2012 in NCHRP 22-27. A risk-based module was added to RSAPv3 in NCHRP 22-12(03) (Recommended Guidelines for the Selection of test Levels 2 through 5 Bridge Railings) in 2014. One of the limitations of all previous versions of RSAP was the way the trajectories of encroaching vehicles were used. RSAP 2.0.3 assumed all trajectories were straight line extensions of the encroachment conditions and used a Monte Carlo simulation method to plot tens of thousands of trajectories. RSAPv3 improved on this by using almost 900 trajectories obtained from real-world crashes to account for driver input. Both approaches, however, relied on plotting tens of thousands of trajectories on the hypothetical roadside and looking for intersections with roadside features. Plotting and evaluating all these trajectories made RSAP slow and cumbersome to use since it required significant computational time especially for more complicated roadside or median designs. NCHRP 15-65 (Development of Safety Performance Based Design Guidelines for the Roadside Design Guide) replaced this computationally intensive method with a much more efficient method where a group of trajectories is considered as a statistical quantity. This means the statistics of the trajectory group are used rather than plotting and evaluating each individual trajectory. The resulting method is much faster and more easily used in computations.

4. Research Objectives

The objective of this proposed research will be to develop self-calculating workbook that can be used by highway agency engineers and their consultants to assess the risk of and benefit-cost of alternative roadside and median designs. The alternative resulting in the lowest risk and/or highest benefit-cost can then be selected for implementation.

5. Urgency and Potential Benefits

NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a new risk-based safety performance design method for

evaluating roadside designs. Providing design tools that engineers can use to adopt performance-based design approaches will help to identify the designs with the least risk and highest potential to improve roadside safety.

6. Implementation Considerations and Supporters

Having a self-calculating workbook for assessing roadside and median designs would provide a valuable design tool for engineers seeking to minimize the risk of fatal and serious injury run-off-road crashes. The resulting workbook could be incorporated into updates of the Roadside Design Guide in much the same way that RSAP was included formerly as Appendix A. Design guidance has already been developed for the Roadside Design Guide using the roadside risk assessment method. A stand-alone tool would allow engineers to examine more detailed designs using the same method used to develop general guidance in the Roadside Design Guide.

7. Recommended Research Funding and Research Period

Research Funding:	\$300,000	
Implementation Funding:	\$50,000 (training)	
Research Period:	24 months	

8. Problem Statement Authors

Malcolm H. Ray, P.E., Ph.D.

<u>mac@roadsafellc.com</u> 207-514-5474 <u>christine@roadsafellc.com</u> 207-513-6057

Christine E. Carrigan, P.E., Ph.D.9. Potential Sponsoring Committees

TRB AKD20 (Roadside Safety Design)

AASHTO TCRS (Technical Committee on Roadside Safety)

10. Index Terms

Roadside design, Roadside Safety Analysis Program, RSAP, guardrail, bridge railing, median barrier, heavy vehicles, run off road crashes, crash testing.

1. Problem Title

Modelling the Probability of Longitudinal Barrier Breach

2. Background

While longitudinal barriers like guardrails and bridge railings are generally very effective in containing and redirecting vehicles there is always a small probability of a vehicle breaching the barrier. A barrier can be breached by penetrating through it, vaulting, or rolling over it, or under riding it. Sometimes the breach is a result of a larger vehicle exceeding the structural capacity of the barrier or rolling over the barrier as is the case for truck impacts with test level three barriers. In other cases, even the design vehicle may occasionally breach the barrier due to extreme impact conditions. Sometimes passenger vehicles may underride cable median barriers or w-beam barriers especially when the vehicle is not tracking. Another example of breaching with a design vehicle is when passenger vehicles vault over rigid concrete barriers at small impact angles. Quantifying these breach events is important because when the barrier is breached the vehicle will be exposed to the hazardous situation that the barrier was shielding the vehicle from. For example, breaching a bridge rail results in falling off the bridge endangering those in the area below and penetrating a median barrier may allow a vehicle to enter the opposing lanes of traffic and become involved in a cross-median crash. A better understanding of how often vehicles breach longitudinal barriers and the nature of those breaches will allow designers to better quantify the risks of serious and fatal crashes involving longitudinal barriers.

3. Literature Search Summary

There is relatively little prior research on establishing the probability of barrier breach. Mak examined the issue with respect to bridge railings using crash statistics over 40 years ago but bridge railing design and testing standards have changed dramatically since that time. Ray and others examined cable barrier breach events involving passenger vehicles in 11 States and found that 10 percent or less of passenger vehicle crashes with cable median barrier resulted in penetrations. Gabler performed a study on metal beam median barriers in New Jersey and Ray examined concrete median breaches on the New Jersey Turnpike. Each of these studies examined a particular barrier being struck by a particular class of vehicles. What is needed, however, is a comprehensive assessment of the probability of breaching all barrier types and test levels of barrier when struck for all vehicle types, even those vehicles outside the design parameters of the barrier.

4. Research Objectives

The objective of this proposed research will be to develop statistical models of the probability of breaching test level two through five longitudinal barriers as a function of barrier and vehicle type as well as test level. These models will be used to enhance risk-based roadside design procedures developed in NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide).

5. Urgency and Potential Benefits

NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a new risk-based safety performance design method for

evaluating roadside designs. The results of this project can be directly implemented into the current method by updating the current simplified model. Updating the breach prediction will improve the accuracy and reliability of the design method.

6. Implementation Considerations and Supporters

Probability models of barrier breaching can be used to update, expand and improve the risk-based design evaluation procedures developed in NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide). One of the key parameters is the probability of a barrier breach as a function of barrier and vehicle types and test levels. Estimating this probability is a key aspect of test level selection for median barriers and bridge railings in particular. The NCHRP 15-65 risk-based design method was developed for inclusion in an update to the Roadside Design Guide.

7. Recommended Research Funding and Research Period

Research Funding:	\$400,000
Implementation Funding:	\$50,000
Research Period:	54 months (36 months data collection)

8. Problem Statement Authors

Malcolm H. Ray, P.E., Ph.D.	mac@roadsafellc.com	207-514-5474
Christine E. Carrigan, P.E., Ph.D.	christine@roadsafellc.com	207-513-6057

9. Potential Sponsoring Committees

TRB AKD20 (Roadside Safety Design) AASHTO TCRS (Technical Committee on Roadside Safety)

10. Index Terms

Roadside design, guardrail, bridge railing, median barrier, heavy vehicles, run off road crashes, crash testing.

1. Problem Title

Risk-Based Assessment of Barrier Need for Terrain Features

2. Background

One of the most common reasons for installing guardrails is to shield vehicles from roadside slopes and ditches. The guidelines for shielding slopes and terrain features in the Roadside Design Guide are based on very old research and the need to update these recommendations has been apparent for many years. There is no recent research on shielding the various ditch combinations, however, NCHRP 22-31 recently completed an update for fill slopes free of other obstacles. Similarly, there has never been an assessment of the risk of traversing cut slopes. While rollovers on slopes and in roadside and median ditches are certainly hazardous, collisions with guardrails and guardrail terminals can also be hazardous. Guardrail should only be used to shield terrain features when the likelihood of a serious or fatal crash on the terrain feature is greater than that of striking the guardrail. Determining a realistic probability of a roll over crash on a terrain features is vital to determining whether shielding with a guardrail diminishes or increases the risk of a fatal or serious injury crash.

3. Literature Search Summary

There is a long history of crash statistics research and simulated vehicle trajectories research on slopes going back over 50 years. The RDG cites research conducted in 1971 by Michie and Bronstad and reported in NCHRP Report 118. A review of Report 118 indicates that the slope warrant dates further back to work performed in California in 1967. The commentary in Report 118 states that "the warrant curve for embankment slope versus height has not been revised, although many people have suggested that a revision is in order."

While the need to re-examine this curve was noted almost 50 years ago, it has remained an important but unexamined feature of the RDG to the present time. Even the original researchers have pointed out that the results are confounded by uncertain data, fixed objects placed on slopes and small samples sizes. Additionally, it is undeniable that the vehicle fleet has changed dramatically since 1975 when the original slope traversability research was performed. Zegeer *et al.* concluded in 1987 when studying the effect of using guardrail for various sideslopes that the presence of guardrail "had no discernible effect on … rollover accidents or on accident severity for various levels of sideslope or recovery distance."

Recent researchers like Glennon, Tamburri, Zegeer and Carrigan have independently noted that the Roadside Design Guide recommendations for slope shielding need to be reexamined. Several on-going or recently completed research projects examined vehicle trajectories on slopes and through ditches using the vehicle trajectory simulation program CarSim. NCHRP 16-05 (Guidelines for Cost-Effective Safety Treatments of Roadside Ditches) has explored vehicle traversing ditches and NCHRP 17-55 (Guidelines for Slope Traversability) has examined vehicle stability on slopes. These studies have resulted in simulations of tens of thousands of trajectories that could be used to develop statistical models of the probability of rollover for a wide range of terrain features. The simulated trajectories produce a far richer range of data than can ever be obtained by examining crash data alone. These computer simulations can be used to develop a model which can be incorporated into the NCHRP 15-65 risk-based method for roadside design to predict lateral extent of encroachment and rollover.

4. Research Objectives

The objective of this study is to use the results of existing vehicle trajectory simulations and crash data to develop statistical models of the probability of rolling over on a wide range of terrain features including roadside and median ditches and cut slopes. The resulting models will be used to update, expand, and improve the risk-based design evaluation procedures developed in NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide).

5. Urgency and Potential Benefits

Terrain features like ditches are some of the most common roadside features shielded by guardrail. Making better, more data-driven decisions about when to use guardrail in these situations is critical to minimizing the risk of fatal and serious injury crashes. This proposed research will help enable roadside designers to put guardrails where it is most needed and avoid putting it in places where it will do more harm than good.

6. Implementation Considerations and Supporters

NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a new risk-based safety performance design method for evaluating roadside designs which is being considered for inclusion in an update to the Roadside Design Guide. The researchers used simulated trajectories from NCHRP 17-55 (Guidelines for Slope Traversability) to model the probability of rollover on roadside slopes using survivability analysis. The same approach holds great promise for modeling other terrain features like ditches and cut slopes. The results of this project can be directly implemented into the current method thereby improving the accuracy and reliability of the design method.

7. Recommended Research Funding and Research Period

Research Funding:	\$35
Implementation Funding:	\$50
Research Period:	36

\$350,000 \$50,000 36 months

8. Problem Statement Authors

Malcolm H. Ray, P.E., Ph.D.	mac@roadsafellc.com	207-514-5474
Christine E. Carrigan, P.E., Ph.D.	<u>christine@roadsafellc.com</u>	207-513-6057

9. Potential Sponsoring Committees

TRB AKD20 (Roadside Safety Design)

AASHTO TCRS (Technical Committee on Roadside Safety)

10. Index Terms

Roadside design, guardrail, slopes, ditches, rollover, run off road crashes, crash data, computer simulation.

1. Problem Title

Risk-Based Roadside Barrier Layout Recommendations

2. Background

Guardrails are often used to shield vehicles from collisions with fixed roadside objects like poles, bridge piers, trees, and luminaires. The guardrail layout information used in the Roadside Design Guide dates back over 45 years to an informal approach developed for what would become the 1977 Barrier Guide. This approach introduced now-common layout variables like length of need, runout length, shy-line offset and flare rate to the roadside designer's vocabulary. The method was based on limited data that was available at the time, engineering judgement and broad assumptions. Today there is more information available to use in testing the assumptions and basis for the layout procedures. Several databases of real-world trajectories and the Naturalistic Driving Study are available and there is much more crash data available. The need for improving the guardrail layout procedures has been recognized by the roadside design community for some time and several recent research efforts have noted that the current procedures may not balance the risk of guardrail collisions to the risk of the unshielded collisions appropriately. The risk-based method developed in NCHRP 15-65 based the need for shielding fixed objects on tangent guardrail installations. This research would extend the method to account for flared installations and the whole range of layout parameters needed to design the guardrail installation for a particular site.

3. Literature Search Summary

In 1974 Hatton developed the barrier layout method that is still used to this day. Hatton documented his method in a never-published internal FHWA paper where Hatton himself stated "there is no intention to imply that this approach is necessarily the correct approach". The runout length aspects of Hatton's method were the subject of vigorous debate in the roadside safety community 20 years ago. More recently, Johnson and Gabler examined the runout length issue using real-world trajectory data and found that the Roadside Design Guide approach intercepted between 80 and 90 percent of errant vehicle trajectories. Some key variables like shy line offset have never been validated or verified for modern vehicles or traffic. Runout length has been debated often and the current recommendations are based on speed and traffic volume rather than the geometry of the site. NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a risk-based method for assessing the need for shielding fixed objects using longitudinal barrier. The same method should be used to develop improved barrier layout procedures.

4. Research Objectives

The objective of this research is to develop a risk-based guardrail layout method that balances the risk of fatal or serious injury crash involving a guardrail and terminal to the risk of a fatal or serious injury crash with the un-shielded features.

5. Urgency and Potential Benefits

Fixed objects like poles, trees, bridge piers, large sign supports, and luminaires are some of the most common roadside features shielded by guardrails. Making better, more data-

driven decisions about how to layout a longitudinal barrier to most effectively shield fixed objects is critical to minimizing the risk of fatal and serious injury crashes.

6. Implementation Considerations and Supporters

NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a new risk-based safety performance design method for evaluating roadside designs for inclusion in an update to the Roadside Design Guide. A method for assessing barrier need to shield fixed objects has already been developed using this method. The proposed research would enhance the design procedures and could be directly implemented in a future edition of the Roadside Design Guide.

7. Recommended Research Funding and Research Period

Research Funding:	\$100,000
Research Period:	12 months

8. Problem Statement Authors

Malcolm H. Ray, P.E., Ph.D.	mac@roadsafellc.com	207-514-5474
Christine E. Carrigan, P.E., Ph.D.	christine@roadsafellc.com	207-513-6057

9. Potential Sponsoring Committees

TRB AKD20 (Roadside Safety Design)

AASHTO TCRS (Technical Committee on Roadside Safety)

10. Index Terms

Roadside design, guardrail, terminal, fixed objects, run off road crashes.

1. Problem Title

Risk-Based Work Zone Clear Zone Recommendations

2. Background

The Roadside Design Guide integrates the clear zone concepts used for permanent roadside hardware installations into the design of work zones in Chapter 9. While the general clear zone concept is similar, it is largely based on engineering judgement, experience and intuition rather than a systematic assessment of risks. NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a new risk-based safety performance design method for evaluating roadside designs. The method can be extended to address work zone clear zone recommendations by modifying encroachment, trajectory, and crash severity models to account for the special circumstances of work zones. The currently ongoing NCHRP 17-88 (Roadside Encroachment Database Development and Analysis) project will produce data that can be used to develop guidelines for positive protection in work zones.

3. Literature Search Summary

Most of the literature cited in Chapter 9 of the Roadside Design Guide refers to crash testing of temporary barriers and work zone traffic control devices. There are no references to the risk to workers and vehicle occupants of different work zone layouts or designs. One of the few attempts to quantify risk associated with work zone designs was by Porter. Porter used RSAP to evaluate layout options using a benefit-cost approach. Porter has updated his work using the new RSAPv3 in a not-yet-published FHWA study.

4. Research Objectives

The objective of this proposed research is to develop risk based clear zone guidelines for work zones. The guidelines should account for the traffic conditions anticipated, the space required for work zone activities and possible shielding alternatives.

5. Urgency and Potential Benefits

NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) developed a new risk-based safety performance design method for evaluating roadside designs that should be extended to work zone. Doing so would make work zone clear zone recommendations more quantitative and data-driven and less subjective. Making better decisions about work zone layouts will help minimize deaths and serious injuries of both workers and vehicle occupants.

6. Implementation Considerations and Supporters

The results of this research can be directly implemented in a future edition of the Roadside Design Guide and used to improve and extend the NCHRP 15-65 (Development of Safety Performance Based Guidelines for the Roadside Design Guide) risk-based roadside design method.

7. Recommended Research Funding and Research Period

Research Funding:	\$300,000
Implementation Funding:	\$50,000
Research Period:	36 months

8. Problem Statement Authors

Malcolm H. Ray, P.E., Ph.D.	mac@roadsafellc.com	207-514-5474
Christine E. Carrigan, P.E., Ph.D.	christine@roadsafellc.com	207-513-6057

9. Potential Sponsoring Committees

TRB AKD20 (Roadside Safety Design)

AASHTO TCRS (Technical Committee on Roadside Safety)

10. Index Terms

Work zone safety, work zone traffic control plans, roadside design, work zone crashes

D.5 SOURCE DATA

The following table is the full listing of the results of the effort to identify and categorize guidance in the RDG. Column definitions are as follows:

Section in which the guidance is discussed in the 2011 RDG.
Identifies the figure, table or paragraph number of the section where
the guidance is presented in the 2011 RDG. The NCHRP project
where the research needs and knowledge gap were identified is also
listed in this column.
Title of the section in which the guidance is discussed.
Brief description of the figure or table that contains the guidance or a synopsis/transcription of the text.
Indicates if the guidance is supported by a reference to literature or
research.
Describes what kind of guidance it is or if it is a research need or knowledge gap.
Indicates when the research to support the guidance was performed.
Blanks indicate the date is unknown.
Indication of the basis for the guidance. In some cases (particularly when no research is referenced) the researchers have made assumption in this category.

Section	Table, Figure, or Paragraph	Source	Section Title	Description of Guidance	Reference or Related Work	Type of Guidance	Dates From	Engineering Judgement	Observational Studies	Experimental Studies
section	1 al agi apii	20-07(383)	Section The	Gap: RSAP chapter in the RDG.	Related Work	Gap		-	Ē	Ē
2		20-07(360)	Economic Evaluation of Roadside Safety	Naad Waak secondly completed by the timplemented. The Decidide Sector Analysis Decourse (DSAD:2) Undete	NCHRP 22-27	Need			<u> </u>	
3		20-07(360)	Roadside Topography and Drainage	Need: Work recently completed but not implemented - The Roadside Safety Analysis Program (RSAPv3) Update. Need: On-going research - Guidelines for Cost-effective Safety Treatment of Roadside Ditches.	NCHRP 16-05	Need			-	_
5		20 07(000)	Features		nomu ro os					
3		20-07(360)	Roadside Topography and Drainage Features	Need: On-going research - Development of Clear Recovery Area Guidelines.	NCHRP 17-11(02)	Need				
3		20-07(360)	Roadside Topography and Drainage	Need: On-going research - Guidelines for Slope Traversability.	NCHRP 17-55	Need				-
3.1	Tab. 3-1		Features The Clear-Zone Concept	Table of recommended clear zone by speed, ADT, and fore/back slope.	No	Design	1966		1	-
3.1		20-07(383)	The Clear-Zone Concept	Need: Push the forgiving roadside concept more. Show RSAP example of improved safety when removing specific hazards.		Need				
3.1	Tab. 3-2		The Clear-Zone Concept	Table of horizontal curve adjustment factor to clear-zone by radius and speed	No	Placement				
3.2.1	¶ 3		Foreslopes	If a foreslope steeper than 1V:3H begins closer to the edge of the traveled way than the suggested CZ distance for that specific roadway, a barrier might be recommended if the slope cannot be flattened.	No	Placement	NA	1	1	1
3.2.2	¶1		Backslopes	A steep rough-sided rock cut normally should begin outside the CZ or be shielded.	No	Placement	NA	1		+
3.2.3	¶ 2 &		Transverse Slopes	Transverse slopes of 1V:10H are desirable Transverse slopes of 1V:6H are suggested for high-speed roadways,	Y(7,3)	Design	1962	1	1	
3.2.4	Fig. 3-4 Fig. 3-6		Drainage Channels	particularly for the section of the transverse slope that is located immediately adjacent to traffic. Preferred foreslopes and backslopes for basic ditch configurations.	Y(14)	Design	1975			1
3.3.1	Fig. 3-7 ¶ 1		Recoverable Foreslopes	It is desirable to have the top of the slope rounded so an encroaching vehicle remains in contact w/ the ground.	Y(14)	Design	1975			1
3.3.2	¶1		Non-Recoverable Foreslopes	Clear-zone suggestions for partially non-recoverable foreslopes.	No	Design	NA	1	-	+
3.3.4	¶1 ¶1		Example of Clear-Zone Application on	Clear-zone suggestions for partially non-recoverable forestopes. Clear-zone distances for embankments w/variable forestopes ranging from essentially flat to 1V:4H may be averaged to	No	How-To	NA	1	-	+
			Variable Slopes	produce a composite clear-zone distance. Slopes that change from fore to backslopes cannot be averaged and should be treated as drainage channel sections.	-					
3.3.5	¶1		CZ Application for Drainage cha	Roadside hardware should not be located in or near ditch bottoms or on the backslope near the drainage channel.	Y(14)	Placement	1975			1
3.3.6	¶2		Clear Zone for Auxiliary Lanes and	Clear-zone distance for ramps and transition curves of 1000' or greater should be determined from Ch. 3 "ASHTO: A	Yes(4)	How-To	NA			
3.4.1	¶ 3		Freeway Ramps Curbs	Policy on Geometric Design for Highways and Streets." When obstructions exist behind curbs, a minimum lateral offset of 3' should be provided A minimum lateral offset of	Y(4)	Design	NA		-	-
5.4.1	15		Curbs	1.5' should be used elsewhere.	1(4)	Design				
3.4.1	¶2		Curbs	In general, curbs are not desirable along high-speed roadways.	Y(9)	Placement	1974			
3.4.1 3.4.2.1	¶ 3 ¶ 1		Curbs Traversable Designs	On new construction fixed objects should be located in no case closer than 1.5' from curb. Matching the inlet to the foreslope is desirable because it results in a much smaller target for the errant vehicles to hit,	Y(4) No	Placement Design	NA 1969	1	-	-
				reduces erosion problems and simplifies mowing operations.		-				
3.4.2.1 3.4.3.2	Fig. 3-8		Traversable Designs Traversable Designs	Specifies span length and pipe runner ID to make culverts traversable. Grates consisting of pipes set on 24 in centers will significantly reduce wheel snagging. It is also recommended that the	Y(12) No	Placement Maint/Install	2008 NA	1	-	1
5.4.5.2	Fig. 3-10		Traversable Designs	center of the bottom bar or pipe be set at 4-8" above culvert inlet.	NO	Manie Instan	INA	1		
3.4.3.2	¶2		Traversable Designs	Single pipes with diameters of 24" or less will not require a grate.	Y(11)	Maint/Install				
3.4.4 4.1	¶2 ¶4		Drop Inlets	No portion of the drop inlet should project more than 4 in above the ground line.	Y(10)	Design Herry To	1981 NA	1	<u> </u>	1
4.1	¶4 ¶3		Acceptance Criteria for Breakaway Supports Design & Location Criteria for	Pendulum tests results for impacts at 22 mph may be extrapolated to predict 62 mph impact behavior, providing the support breaks free with little or no bending in the support. (3) establishes a maximum stub height of 4* to lessen the possibility of snagging the undercarriage of a vehicle after a	No Y(3)	How-To Design	NA NA	1	<u> </u>	
			Breakaway & Non-Breakaway Supports	support has broken away from its base and minimize vehicle instability if a wheel hits the stub.		5				
4.2	¶ 5		Design & Location Criteria for	It is critical that breakaway supports not be located near ditches, on steep slopes or where a vehicle is likely to be partially	No	Placement	NA	1		
4.3.2	¶ 3		Large Roadside Sign Supports	Slotted plates may be used on both sides of the post if impacts are expected from either direction.	No	Maint/Install	NA	1		
4.3.2 4.3.2	¶4 ¶5		Large Roadside Sign Supports	The use of keeper plates is recommended to retain the clamping bolts even if the connection relaxes over time.	No No	Maint/Install Maint/Install	NA NA	1	<u> </u>	_
4.3.2	Bullet 1		Large Roadside Sign Supports	RE: perforated fuse plate: Because this design does not require its connections to be torqued to a specific value, it is relatively fail-safe and recommended for use in lieu of slotted fuse plates.	No	Manufacturer	NA	1	L	
4.3.2	Bullet 1		Large Roadside Sign Supports	The hinge should be $>7'$ above ground so that no portion of the sign or upper section of the support is likely to penetrate the windshield of an impacting vehicle.	NO	Manufacturer	INA	1		1
4.3.2	Bullet 2		Large Roadside Sign Supports	A post spaced with a clear distance of 7' from another post should have mass <44 lb/ft. The total mass below the hinge but above the shear plate of the breakaway base should not exceed 600 lbs. For 2 posts spaced <7', each post should have mass d^{-1} ,	No	Operational	NA	1		
4.3.3	¶2		Small Roadside Sign Supports	a mass <18 lb/ft. A steel plate measuring 4"x12"x.25" may be welded or bolted to the pipe support to prevent twisting from wind.	No	Maint/Install	NA	1	<u> </u>	_
4.3.3	¶ 2 ¶ 3		Small Roadside Sign Supports	Diagonal bracing of a sign support should be avoided.	No	Maint/Install	NA	1		-
4.3.3	¶ 4		Small Roadside Sign Supports	For single post w/ bending or yielding characteristics, the sign panels should be bolted w/ oversized washers to prevent the panel from separating on impact and penetrating a windshield.		Maint/Install	NA	1		
4.3.3 4.3.3	¶ 8 ¶ 7		Small Roadside Sign Supports Small Roadside Sign Supports	The use of keeper plates is recommended to prevent the clamping bolts from walking under wind loads Multi-directional breakaway supports should be used in medians, traffic islands, etc. where impacts from more than one	No No	Maint/Install Placement	NA 1969	1		_
4.3.3	¶ 6		Small Roadside Sign Supports	direction are likely. Neither horizontal or inclined slip base designs should be used in medians, traffic islands or where impacts from more	No	Placement	NA	1	_	_
				than one direction are possible.					L	_
4.4 4.5.1	¶ 1 ¶ 3		Multiple Post Support for Signs Breakaway Luminaire Supports	All breakaway supports having a clear distance of < 7' are considered to act together. The height of poles w/ breakaway features should not exceed 60'.	No No	How-To Manufacturer	NA NA	1	\vdash	
4.5.1	¶ 3		Breakaway Luminaire Supports	The mass of a breakaway luminaire support should not exceed 0.00 lbs.	No	Manufacturer	NA	1		-
4.5.1	¶ 6		Breakaway Luminaire Supports	The electricity in the support should disconnect as close to the foundation as possible.	No	Manufacturer	NA	1	F	
4.5.1	¶7		Breakaway Luminaire Supports	If the support (is) within the design deflection distance of the barrier, it should be a breakaway design or the railing should be stiffened locally to minimize the resultant deflection.		Placement	NA	1		
4.7.1	¶ 1		Railroad Crossing Warning Dev	A longitudinal barrier is not used because there is seldom sufficient space for an end treatment and a longer obstacle is created by installing a guardrail, and a vehicle striking a barrier when a train is occupying the crossing may be redirected into the train.	No	Placement	NA	1		
4.8	Tab. 4-1		Utility Poles	Objectives and strategies for reducing utility pole crashes.	Y(8)	Design	Various	1	1	1
4.9	Tab. 4-2		Trees	Objectives and strategies for reducing crashes with trees.	Y(8)	Design	Various	1	1	
4.9 4.9	¶2 ¶9		Trees Trees	Large trees should be removed from within the selected clear zone for new construction. Roadside barriers should only be used when the severity of striking the tree is > striking the barrier	No No	Design Placement	NA NA	1	-	+
5		20-07(360)	Roadside Barriers	Koatsude barners snould omy de used when me sevenity of surking the user is > surking the barner <u>Gap: Work recently completed but not implemented</u> - Guardrail test level selection guidelines.	NCHRP R638	Gap				t
5		20-07(360)	Roadside Barriers	Gap: Work recently completed but not implemented - Criteria for the Restoration of Longitudinal Barriers, Phase II.	NCHRP 22-28	Gap				
	1	20-07(360)	Roadside Barriers	Gap: Work recently completed but not implemented - Design Guidelines for TL3-TL5 Roadside Barrier Systems Placed	NCHRP 22-20(02)	Gap	1			+

						Basis	of Gu	idanc	e	
Section	Table, Figure, or Paragraph	Source	Section Title	Description of Cuidonse	Reference or Related Work	Type of Guidance	Dates From	Engineering Judgement	Observational Studies	Fundimental Studios
5	raragrapn	Source 20-07(360)	Roadside Barriers	Description of Guidance <u>Gap: On-going research</u> - Identification of Factors related to Serious Injury and Fatal Motorcycle Crashes into Traffic	NCHRP 22-26	Gap		-		Ē
				Barriers.						
5		20-07(360)	Roadside Barriers	Gap with no Currently Planned Research - Evaluate the adequacy of barrier systems currently approved through NCHRP 350 or MASH for safely redirecting commercial passenger vehicles and develop warrants.	NTSB H-12-26	Gap			1	
5		20-07(360)	Roadside Barriers	Gaps which could be satisfied with existing or pending work and reorganization of RDG - Establish warrants in the RDG	NTSB	Gap			1	
				regarding the selection and use of high-performance barriers, including 42" and 50" concrete barriers that are capable of	H-05-31	~				
5		20-07(360)	Roadside Barriers	Gaps which could be satisfied with existing or pending work and reorganization of RDG - Work with FHWA to establish performance and selection guidelines for state transportation agencies to use in developing objective warrants for high- performance barriers applicable to new construction and rehabilitation projects	NTSB H-12-25	Gap				
5		20-07(360)	Roadside Barriers	Gaps which could be satisfied with existing or pending work and reorganization of RDG - Once barrier testing has been completed and selection guidelines have been developed, revise Ch. 5 of the RDG to incorporate guidance for the selection of high-performance barriers in new construction and rehabilitation projects.	NTSB H-12-27	Gap				
5		20-07(383)	Roadside Barriers	Gap: Since most agencies are turning their focus to maintenance, rather than new construction, pavement elevations rise with resurfacing. This decreases the relative elevation of the rail, often outside tolerances. The RDG is silent on method to raise the effective height of low guardrails.		Gap				
		20-07(383)		Gap: More guidance on TL-2 hardware.		Gap				-
						_			-	
5 5.1	¶3	20-07(360)	Roadside Barriers Performance Requirements	Need: Work recently completed but not implemented - Selection, Use, and Maintenance of Cable Barrier Systems. <u>Gap</u> : Develop specific guidelines for when highway agencies should upgrade existing barriers as part of new or reconstruction projects, 3R projects or when a system is damaged beyond repair.	NCHRP R711 No	Need Gap				
5.1	¶3		Performance Requirements	As of January 1, 2011, newly tested or revised systems should be evaluated using MASH.	No	How-To	2011	1		
5.1	¶3		Performance Requirements	Highway agencies are encouraged to upgrade existing barriers that have not been accepted under 350 or MASH as part of new or reconstruction projects, 3R projects or when a system is damaged beyond repair.	No	Operational	2008	1	1	
5.2.1	¶1&		Roadside Geometry and Terrain	Embankments with slope and height combinations on or bellow the curve do not require shielding unless they contain	Y(15)	Design	1971		1	F
5.2.1	Fig. 5-1	20.07(282)	Roadside Geometry and Terrain	obstacles within the clear zone. <u>Gap</u> : Address problems resulting from agencies managing antiquated systems built to lower standard than todays. Provide		Gap			<u> </u>	-
5.2.1		20-07(385)	Roadside Ocometry and Terrain	guidance to help address how to bridge these differences in standards.		Gap				
5.2.1		20-07(383)	Roadside Geometry and Terrain	Gap: There should be guidance relating to what to do when you can't install hardware the way it was crash-tested.		Gap				
5.2.1	¶1&		Roadside Geometry and Terrain	Provide guidance or discussion on how to arrive at the best scenario available. Barrier consideration for embankments with slope and height combinations by AADT.	Y(8)	Design	1967			-
	Fig. 5-2									
5.2.1	¶ 1 & Fig. 5-3		Roadside Geometry and Terrain	Barrier consideration for embankments with slope and height combinations by AADT.	No	Design				
5.2.2	Tab. 5.2		Roadside Obstacles	Table of barrier guidelines for non-traversable terrain and roadside obstacles that are normally shielded.	Y(16)	Placement				
5.2.3	¶ 3 ¶ 1		Bystanders, Pedestrians, and Bicyclists Motorcycles and Barrier Design	For streets with speeds over 25 mph, separating the sidewalk from the edge of the roadway with a buffer space is encouraged. Gag: Additional research is being conducted regarding motorcycle interaction with barriers.	No	Design Gap	NA	1		
5.2.4	1	20-07(383)	Motorcycles and Barrier Design	Gap: Roadside hardware and motorcycles. We can report on the state of the practice as we know it based on European		Gap			1	
		20.07(202)		standards but we don't know how the systems perform w/ MASH hardware.		6				_
5.5.1		20-07(383)	Barrier Deflection Characteristics	Gap: How do you take all of the dynamic characteristics of a barrier into account when you are shielding an obstacle? There should be a definition or diagram comparing dynamic deflection and working width.		Gap			1	
5.5.1	¶ 1		Barrier Performance Capability	TL-3 barriers are the most commonly used systems. TL-2 barriers have been developed primarily for passenger cars and	No	How-To	NA	1		
5.5.1		20-07(383)	Barrier Deflection Characteristics	light trucks for locations that are typically posted at <45 mph. <u>Need</u> : Better design guidance on pier shielding height for LRFD. ZOI and potential damage that can occur to piers when tall vehicles impact the barrier.	NCHRP 12-90	Need				
5.5.1	¶ 1		Barrier Performance Capability	Locations with poor geometrics, high traffic volumes and/or speed and a significant volume of heavy truck traffic may	No	Placement	NA	1		
5.5.2	¶ 2		Barrier Deflection Characteristics	justify a higher performance level or a stronger railing system (i.e. TL-4 or greater). Soil compaction is of primary importance because benefits of stiffening can be undermined by weak soil.	No	Maint/Install	NA	1		-
5.5.2	¶ 6		Barrier Deflection Characteristics	Need: Significant research is needed to develop more specific criteria to warrant the use of this tall barrier for pier	NCHRP 12-90	Need				Γ
5.5.2	¶ 1		Barrier Deflection Characteristics	protection. If the distance between the barrier and the object or terrain feature is relatively large, a flexible barrier that deflects (lower impact forces) may be utilized. Otherwise semi-rigid or rigid may be only choice.	No	Placement	NA	1		
5.5.2	¶ 3		Barrier Deflection Characteristics	Trucks may lean over the barrier upon impact which could require an increased offset to prevent contact with the shielded	No	Placement	NA	1		Γ
5.5.2	¶ 5		Barrier Deflection Characteristics	object. TL-3 barrier is typically sufficient to shield the motorist from a pier located within CZ, however structural issues with the bridge may call for the need for higher test level barriers no based on roadside safety criterion.	No	Placement	NA	1		
5.5.2	¶ 5 Bullets 1 & 2		Barrier Deflection Characteristics	Height guidelines based on offset from traveled way to face of the pier.	Y(14)	Placement	1980	1		
5.5.2 5.5.3	¶ 6 ¶ 1		Barrier Deflection Characteristics Site Conditions	Recommended that the tall wall be extended 10' in advance of the piers. If the barrier is to be placed on a slope steeper than 1V:10H, a flexible or semi-rigid type should be used.	Y(14) Y(10,14,19)	Placement	1980 1980	1		╞
5.5.3	¶ 1		Site Conditions	No barrier should be placed on any slope steeper than 1V:6H, unless it has been crash tested to 350 or MASH.	No	Placement	NA	1		
.5.6.2	¶ 3		Crash Maintenance	W-beam guardrail that is damaged or deformed should not be re-run through a roller to correct the shape.	No	Maint/Install	NA	1	-	
5.5.6.2	¶ 2 ¶ 2		Crash Maintenance Aesthetic and Environmental	In urban settings where rail repair in traffic is difficult for a crew to accomplish w/o interfering w/ the motorists use of the roadway use rigid traffic barrier such as the concrete safety shape. Considerations should be given to available sight distances as solid barriers can restrict sight distances.	No	Placement	NA NA	1		
		20.07/202	Considerations			Gra			—	
5.6 5.6			Placement Recommendations Placement Recommendations	Gap: Guidance on how to measure guardrail height. Gap: Placing tangent designed hardware on curves.		Gap Gap			<u> </u>	-
5.6.1	Tab. 5-7	20-07(303)	Barrier Offset	Table of suggested shy-line offsets at different design speeds.	No	Design	1963		1	F
5.6.1	¶ 2		Barrier Offset	It is generally desirable that there be uniform clearance between traffic and roadside features such as bridge railings,	No	Design	NA	1		
5.6.1	¶2		Barrier Offset	parapets, retaining walls and roadside barriers. A roadside barrier should be placed beyond the shy-line, particularly for relatively short, isolated installations. For long, continuous runs of barrier, this offset distance is not as critical, especially if the barrier is introduced beyond the shy line	No	Design	NA	1		F
5.6.1	¶ 5		Barrier Offset	The available space between the barrier and the object may not be adequate for design deflection so the barrier should be	No	Design	NA	1		F
5.6.1	Tab. 5-7		Barrier Offset	stiffened in advance of and alongside the fixed object. <u>Need:</u> Guidance is based on very old, very limited research. Shy-line offsets at different design speeds should be	No	Need				
5.6.1	¶ 1		Barrier Offset	reassessed with new data. Barrier should be placed as far from the traveled way as practical, while maintaining proper operation and performance of the system.	No	Placement	NA	1		F
5.6.1	¶ 3		Barrier Offset	Where a roadside barrier is needed to shield an isolated condition, adherence to the uniform clearance criteria is not as	No	Placement	NA	1		F
5.6.1	¶4		Barrier Offset	Obstruction being shielded is a rigid object, the barrier-to-object distance should be sufficient to avoid snagging by the vehicle on the rigid object.	No	Placement	NA	1		
5.6.1	Fig 5-33 & ¶ 6		Barrier Offset	RE: Shielding of slopes: 2' minimum distance is desirable for adequate post support but may vary depending on (site specific conditions).	No	Placement	NA	1		

							Basis	of Gu	idano	:e
Table, Figure, o Section Paragrap	Figure, or	Source	Section Title	Description of Guidance	Reference or Related Work	Type of Guidance	Dates From	Engineering Judgement	Observational Studies	Experimental Studies
5.6.2	¶ 2	Source	Terrain Effects	Need: Limited studies and computer simulations have provided some information on the dynamic behavior and trajectories	Kelateu work	Need	-	-		-
				of vehicles traversing curbs or slopes.						L.
5.6.2.1	¶ 2		Curbs	Guardrail/curb combinations where high-speed, high-angle impact are likely discouraged.	No	Design	2005			1
5.6.2.1	¶2		Curbs	Where there are not alternatives to guardrail/curb combination, sloping curbs no higher than 4"and stiffening guardrail to decrease deflection to be considered along with other measures.	No	Design	NA	1		
5.6.2.1	Fig. 5-35(b) &¶3		Curbs	Re: grade near terminal; Fig. 5-35(b) could be used for all speeds when barrier is required to be offset form the face of the rail or when a curb is required adjacent to a terminal.	No	Design	NA	1		
5.6.2.1	¶ 3		Curbs	Gap: The performance of guardrail terminals behind curbs has not been tested.	No	Gap		1	<u> </u>	_
.6.2.1	Fig. 5-35(a) &¶3		Curbs	Where the curb is offset or the barrier flares away from the edge of the roadway, the curb should be transitioned to a laydown curb, similar to Fig. 5-35a.	INO	How-To	NA	1		
.6.2.1	¶ 3		Curbs	Strong-post w-beam guardrail should not be located at an offset from a curb on roads w/ speeds >40mph.	No	Placement	NA	1		
.6.2.2	¶ 6		Slopes	A rounded slope reduces the chances of an errant vehicle becoming airborne and affords the driver more control over the vehicle. Typically 4-6 ft. is used for slope rounding.	No	Design	NA	1		
6.2.2	¶ 1		Slopes	When a barrier is placed on >1V:10H, for certain angles and speeds an errant vehicle may go over many standard roadside barriers or impact them too low.	Y(10)	How-To	1962		1	-
.6.2.2	Fig. 5-37		Slopes	Design parameters for vehicle encroachments on slopes, The primary area of concern is the zone of higher than normal	No	How-To	NA	1		1
.6.2.2	¶ 2 Tab.5-8		Slopes	bumper height. Example bumper trajectory data obtained from computer simulations (included to illustrate the problem rather than	No	How-To	NA	-	<u> </u>	1
	¶3			provide guidance).					L	Ľ
6.2.2	¶ 5		Slopes	Roadside barriers perform most effectively when they are installed on slopes of 1V:10H. Caution should be taken when considering installations on slopes as steep as 1V:6H; offset so that vehicle is at its normal attitude at the moment of immost.	No	Placement	NA	1		1
6.2.2	Fig. 5-38		Slopes	impact. RE: Strong-post W-beam and thrie-beam guardrails shielding slopes: Existing barrier systems may be retained (within the	Y(19)	Placement	1972		<u> </u>	1
.6.3	Tab. 5-9		Flare Rate	Table of Suggested Flare Rates for Barrier Design.	Y(21,22)	Design	2008		1	1
6.3	Tab. 5-9		Flare Rate	Need: Guidance is based on very old, very limited research. Table of Suggested Flare Rates for Barrier Design should be	No	Need				-
.6.3	¶ 3		Flare Rate	Flatter flare rates may be used, particularly where extensive grading would be required to obtain a flat approach to the	No	Placement	NA	1		
5.6.3	¶3		Flare Rate	barrier from the traveled way. Flatter flare rate is suggested when a barrier is located within the shy-line offset distance.	No	Placement	NA	1	<u> </u>	-
.6.4	Tab. 5-10		Length of Need	Table of Suggested Runout Lengths for Barrier Design.	Y(7,13,24)	Design	2009	-	1	-
5.6.4	¶ 10 &		Length of Need	Equation for calculating the required length-of-need in advance of the area of concern for straight or nearly straight	No	Design	1977	1		1
.6.4	¶ 15		Length of Need	If charts are used to address the LON then the designer will need to review the site plan.	No	Design	NA	1		
.6.4	Eq. 5-2		Length of Need	Flare rate equation for parallel installations (i.e. no flare rate) Eq. 5-1 reduces to this.	No	Design	1977	1		
5.6.4 5.6.4	Eq. 5-3	20.07(282)	Length of Need	Lateral offset from the edge of the traveled way to beginning of LON equation .	No	Design	1977	1	<u> </u>	_
.6.4	¶11	20-07(383)	Length of Need	Gap: Need an AASHTO blessed way to calculate the length of need on the inside of curves.	No	Gap Maint/Install	NA	1	<u> </u>	-
5.6.4	¶ 11 ¶ 13		Length of Need	The calculated LON should be adjusted upward to account for the industry's manufactured L of barrier sections. If the barrier ends near a cut section, it may be possible for the designer to consider anchoring in the backslope.	No	Maint/Install	NA	1		-
5.6.4	Tab. 5-10		Length of Need	Need: Guidance is based on very old, very limited research. Table of Suggested Runout Lengths for Barrier Design shojld be re-examined with new data and methods.	N	Need				
.6.4	¶ 17,		Length of Need	Description of the three ranges of clear zone width are outlined.	No	Placement	NA	1		
5.6.4	¶ 18		Length of Need	On divided or 1-way traffic, the L of guardrail to protect the downstream corner of the area of concern is determined by plotting a line at an agency-defined exit angle. The guardrail should have the end anchor assembly downstream of this exit angle line.	No	Placement	NA	1		
5.6.4	¶ 19		Length of Need	If the existing slope is steeper than 1V:10H, it is suggested that the slope be flattened.	No	Placement	NA	1		
5.6.4	Fig. 5-44		Id CNI I		N-	Discount	NA	1		1
.6.4	¶6 ¶7		Length of Need	The slopes between a barrier and the roadway should be 1V:10H or flatter, or the barrier should be far enough from the road that the vehicle is on the ground w/ suspension normal at the time of contact. Median barriers can be set closer to the edge of the driving lane w/o affecting vehicle placement. When the barrier is to	No	Placement	NA NA	1		
	",			the left the driver can clearly see how close the barrier is; however for a right shoulder installation, depth perception becomes more of a problem for many drivers.						
.6.4	¶8		Length of Need	If a semi-rigid railing is connected to a rigid barrier the tangent L should be at least as long as the transition section to reduce the possibility of pocketing at the transition and to increase chances of a smooth redirection.	No	Placement	NA	1		
5.6.5	¶2		Grading for Terminals	If the LON criteria results in a proposed terminal location where site conditions make appropriate terminal grading difficult, the designer should consider extending the barrier to such location where it can be appropriately terminated.	No	Placement	NA	1		
5.6.6	¶2		Guardrail Placed in Radius	Gap: Significant R&D has been undertaken to obtain a NCHRP Report 350 system for this application.		Gap				F
6.6.6	6 10	(,	Guardrail Placed in Radius	Gap: On-going research - How to accommodate crossroads or driveways in close proximity to bridges?	NCHRP 15-53	Gap Maint/Install	2002	$\left \right $	<u> </u>	1
6.7.1	¶ 1 & Fig. 5-51		Guardrail Posts in Rock Formations	Holes are drilled into the rock formation and a coarse aggregate (ASTM C33 size 57) used as backfill.	Y(9)	Maint/Install	2003	1	1	1
6.7.2	¶ 2		Guardrail posts in Mow Strips	The depth of mow strips vary from several inches up to 8 in. The preferred W of a mow strip should accommodate the tire path of a typical road maintenance tractor behind the guardrail post.	Y(6)	Maint/Install	2004	1		1
.6.7.2 .6.7.2	¶ 3 ¶ 3 &		Guardrail posts in Mow Strips Guardrail posts in Mow Strips	High tension cable barrier posts do not need a leave-out in the mow strip. The leave-out's critical measurement is from the back of the post to the edge of the mow strip and should be >7".	Y(6) Y(6)	Maint/Install Maint/Install	2004 2004	1		1
.7.1	Fig. 5-52		Structural Inadequacies	Gap: Additional research on this topic is needed (inadequate and damaged/neglected systems).		Gap		<u> </u>	<u> </u>	+
6	1	20-07(360)	Median Barriers	Gaps which could be satisfied with existing or pending work and reorganization of RDG - Upon completion of FHWA	NTSB	Gap	-			-
6		20-07(360)	Median Barriers	Need: Covered by recently initiated research - Median barrier selection and placement guidelines.	NCHRP 22-31	Need				
6.2	¶ 3, 4, 5 &		Guidelines for Median Barrier	Figure of Guidelines for Median Barriers on High-Speed, fully controlled-access roadways. Two paragraphs describing	Y(7,10)	Design	2003		1	+
6.2	¶7		Guidelines for Median Barrier	Use of Fig 6-1 guidelines on non-access controlled roadways should include engineering analyses and judgement that take into consideration such items as right-of-way, property access needs, # of intersections, etc		Design	2003		1	
6.2		20 07/2021	Length of Need	Need: Optimizing median width and hardware in medians. Discussion of ADT vs crash experience.		Need			<u> </u>	-
6.2 6.2	¶ 8		Guidelines for Median Barrier	Barriers separating roadways at different elevations, use clear-zone criteria as guidance.	No	Placement	NA	1		-
	¶ 2		Crashworthy Median Barrier Systems	Tolerances for rigid barriers is 3 in lower and indefinitely higher. Semi-rigid systems should vary by only ± 1 " than their	No	Maint/Install	NA	1		t
				specified nominal mounting height. Flexible systems should vary by only ±2". Breaks in median barrier can be flared in such a way that the upstream barrier shields the downstream if the minimum	No	Design	NA	1		-
6.4.1	¶2&		End Treatments					1 * '	1	1
5.4.1 5.4.2	¶ 2 & Fig.6-16		End Treatments	angle is 25 degrees.						L
.4.1			End Treatments End Treatments		No	Placement	NA	1		ł

							Basis	of Gu	idanc	ce
	Table, Figure, or				Reference or	Type of	Dates From	Engineering Judgement	Observational Studies	Exnerimental Studies
Section 6.5.2	Paragraph ¶ 1	Source	Section Title Barrier Deflection Characteristics	Description of Guidance Relatively wide, flat medians are suited for flexible or semi-rigid barriers, provided the design deflection distance is < 1/2	Related Work	Guidance Placement	NA	1	<u> </u>	Ē
0.5.2	11		Barrier Deneedon Characteristics	the median width.	110	1 meenene	101			
6.5.4	¶1		Costs	If a barrier can be placed in center of a median where less likely to be hit and repairs do not necessitate closing a lane, a flexible or semi-rigid barrier may be the best choice. However, if a barrier must be located adjacent to a high-speed, high-volume traffic lane, a rigid barrier requiring little maintenance is recommended.	No	Placement	NA	1		
6.5.5	¶ 1		Maintenance	A rigid barrier system is the barrier of choice in many locations particularly for high-volume urban freeways and	No	Placement	NA	1		
(()	5 4 11 0			expressways where the barrier must be located in close proximity to the traffic lane.	N7.	D :	1077	<u> </u>		_
6.6.1 6.6.1.1	¶ All & ¶ 1		Terrain Effects - Median Section I Terrain Effects - Median Section I	Figure and text describe guidance for placing median barriers in non-level medians. Evidence that a vehicle traveling up a slope steeper than 1V:6H before contacting the barrier may override it.	No No	Design How-To	1977 NA	1		_
6.6.1.1	12		Terrain Effects - Median Section I	Need: Maximum redirection can be achieved if the area 1'-8' from ditch line on 1V:6H is avoided.	No	Need	NA	1		
6.6.1.1	¶1		Terrain Effects - Median Section I	Need: Quantify possible placement concerns when a rigid or semi-rigid barrier is located on one side of a traversable, sloped median.		Need				
6.6.1.2	¶ All &		Terrain Effects - Median Section II	Figure and text describe guidance for placing median barriers in non-level medians.	No	Design	1977		ļ	
6.6.1.2 6.6.1.3	¶2 ¶1		Terrain Effects - Median Section II Terrain Effects - Median Section III	RE: retaining wall: Suggested that the base of the wall be contoured to the exterior shape of a concrete barrier. Need: Placement criteria for median barriers on this cross-section are not clearly defined.	No NCHRP 22-31	Manufacturer Need	NA	1		_
6.6.1.3	¶ All & Fig. 6-18		Terrain Effects - Median Section III	<u>Need</u> : Figure and text describe guidance for placing median barriers in non-level medians.	NCHRP 22-31	Need	_			
6.6.2	¶2		Fixed objects w/in the Median	The designer should investigate the possible use of a crash cushion to shield the object.	No	Design	NA	1		
6.6.2	¶2	20.07(260)	Fixed objects w/in the Median Bridge Railings and Transitions	Employ either a semi-rigid or rigid barriers w/ crash cushions or end treatments to shield the barrier ends.	No NCHPP 22 12(02)	Design	NA	1	-	+
7 7.2	¶ 1		Bridge Railings and Transitions Guidelines	Gap: Work recently completed but not implemented - Tables for selection of MASH level 2-5 bridge rails. A rigid railing requires approach guardrail and a transition section between barrier types.	NCHRP 22-12(03) No	Gap Design	NA	1	<u> </u>	+
7.2	¶ 4		Appropriate TL selection	A rigid railing requires approach guardrail and a transition section between barrier types. A safety-shaped railing can cause a large vehicle to roll up to 24° before it contacts the upper edge of the railing. Thus, a	No	Placement	NA	1	1	
				vertical face may be more desirable when heavy vehicle rollover is a primary concern.						
7.3	¶ 5		Appropriate TL selection	ZOI; Hardware attachments placed in these areas should be avoided when practical.	Y(11)	Placement	2003		1	
7.4 7.4	¶ 5 Tab. 7-1		Crash Tested Railing Crash Tested Railing	All newly developed bridge railings should be successfully crash tested in accordance w/ MASH. Table of MASH Test Matrix for Bridge Railings.	No Y(3)	How-To How-To	2011 2009	1	<u> </u>	+
7.5.1	¶ 1		Railing Performance	As a minimum, TL-3 bridge railings should be used on the NHS.	Y(9)	Placement	1996	1		-
7.5.2	¶ 1		Compatibility	When the approach roadside barrier significantly differs in strength, height & deflection characteristics from the bridge	No	Placement	NA	1		t
7.5.5	¶ 1		Aesthetics	railing, a crashworthy transition section is required.	Y(4)	Manufacturer	2006	1	-	+
7.5.6	Bullet 1-5		Aesthetics Protective Screening at Overpasses	Any non-standard bridge railing designed primarily for appearance should be crash tested before being used. List of guidelines analyzing overpass locations for installation of protective screening.	Y(4) No	Design	2006 NA	1	<u> </u>	+
7.6	¶1		Placement Recommendations	When the railing is located w/in the recommended shy-line offset the approach rail should have the appropriate flare rate.	No	Design	NA	1		
7.6	¶ 2		Placement Recommendations	Curb height is prescribed in LRFD as 6" preferred height, with a maximum of 8" on a sidewalk in front of the bridge rail.	Y(2)	Design	1994			
7.6	¶3		Placement Recommendations	A crash tested transition from the approach guardrail should be attached to the end of the bridge rail.	No	Design	NA	1		-
7.6	¶ 2		Placement Recommendations	Curbs in front of railings should be avoided unless the bridge rail was crash tested w/a curb.	No	Maint/Install	NA	1		
7.6.1	¶ 1			Bridges in urban or low-volume road that carry low traffic volumes, reduced speed, or both may not need bridge railings	No	Design	NA	1		
7.6.1	¶2		Roads Considerations for Urban & Low Volume Roads	designed to the same standard as bridge railings on high-speed, high-volume facilities. Bridge railings w/ adequate strength to prevent penetration from passenger vehicles and transitions that meet TL1 or TL2 bridge railings are generally acceptable for low-speed roadways 45 mph or less.	No	Design	NA	1		
7.6.1	¶3			When a bridge also serves pedestrians, 2 options for accommodating them typically are used: 1) raised curb w/ sidewalk in combination w/ an outer bridge barrier or 2) placing the barrier for maximum pedestrian protection.	No	Design	NA	1		
7.6.1	¶4		Considerations for Urban & Low Volume Roads	The use of a bridge railing may create a hazard unless the railing is terminated in an acceptable manner.	No	How-To	NA	1		
7.7.1	¶ 1		Identification of Potentially Obsolete	Bridge railings designed to AASHTO specifications prior to 1964 may not meet current specifications.	No	How-To	NA	1		
7.8	Bullet 3		Systems Transitions	The transition length should be 10-12x the difference in the lateral deflection of the 2 systems.	No	Design	NA	1		
7.8	Bullet 4		Transitions	The stiffness of the transition should increase smoothly and continuously from the less rigid to the more rigid.	No	Design	NA	1		
7.8	Bullet 5		Transitions	When drainage features are constructed in front of barriers they may initiate vehicle instability that can adversely affect	No	Design	NA	1		Τ
7.8	Bullet 5		Transitions	the crashworthiness of the transition. The slope between the edge of the traveled land and the barrier should be no steeper than 1V:10H.	No	Design	NA	1	<u> </u>	╉
7.8	¶ 1		Transitions	A transition section is needed where a semi-rigid approach barrier joins a rigid bridge railing.	No	How-To	NA	1		Ť
7.8	Bullet 1		Transitions	The approach-rail/bridge-rail splice must be as strong as the approach rail itself so that it wont fail when struck by pulling out and allowing a vehicle to strike the end of the bridge railing. The use of cast-in-place anchor or through-bolt connections is recommended.	No	Maint/Install	NA	1		
7.8	Bullet 2		Transitions	Connections is recommended. Tapering of the rigid bridge railing end behind the transition member at their connection point may be desirable, especially when the approach transition is recessed into the end of the bridge railing or other object.	No	Manufacturer	NA	1		
8			End Treatments	Gap with no Currently Planned Research - Classification of Crash Cushions.	2013 RNS	Gap				
8			End Treatments	Gap: Possible new category relating to tension (restrained) terminals.	N	Gap	NU:			Ţ
8.1	¶ 5 ¶ 6		Performance Requirements Performance Requirements	Crashworthy end treatments are required for all new longitudinal barrier installations on the NHS when those end treatments are located within the clear zone and exposed to possible vehicular impacts. Upgrade existing terminals and crash cushions that have not been accepted under 350 or MASH as part of 3R projects or	No Y(6)	Design Maint/Install	NA 2008	1		
8.2	¶ 1		Anchorage Design Concepts	Opgrate existing terminals and easin team of the new of each accepted under 50 of MPAST as part of 5K projects of when a system is damaged beyond repair. All flexible and semi-rigid barriers need to be terminated w/ an anchor system at both ends.	No	Manufacturer	NA	1		-
8.2	¶2		Anchorage Design Concepts	If the barrier end treatment is not required to be crashworthy a lower-cost anchorage system may be used.	No	Placement	NA	1		Ţ
8.3	¶ 1 ¶ 2		Terminal Design Concepts Energy-Absorbing vs. Non-Energy-	A terminal is considered essential if the end of a barrier is located win the CZ or in an area where it is likely to be struck by and errant motorist. Ut that areas in barrow the terminal and immediately bahind the barrier is not cofely transroble on anerow obsorbing.	No	Design	NA 2004	1	_	
	1 2		Absorbing Terminals	If the terrain beyond the terminal and immediately behind the barrier is not safely traversable an energy-absorbing terminal is recommended.		Design				
8.3.2.2 8.3.2.2	¶ 1 ¶ 1		Flared vs. Tangent Terminals Flared vs. Tangent Terminals	Tangent terminals may be installed w/ 1-2' offset from the line of barrier proper to minimize nuisance hits. Flared terminals generally require a 4' offset although some designs have been successfully tested w/ offsets less than 3'. Because the flared terminal is located further from the traveled way, head-on impacts are less likely.	No	Design Design	NA NA	1		
8.3.2.3 8.3.3.1	¶1 ¶1		Length of Need Point Advance Grading	Most W-beam terminals have a LON point located 12'6" from the impact head of the unit. For W-beam terminals, this area should have lateral slope of no steeper than 1V:10H to promote stability of a vehicle at the moment of contact and avoid its suspension from becoming extended or compressed.	No Y(4,5)	Design Design	NA 2005	1		
8.3.3.1	¶1		Advance Grading	When grading platforms are built, a smooth transition to existing side slopes should be provided so that the entire roadside approach to the barrier remains traversable.		Maint/Install	2005	1		
			Adjacent Grading	Grading in the vicinity of a terminal or anchorage.	No	Design	2002	1	<u> </u>	
	¶1& ¶1		Adjacent Grading	On projects where grading isn't involved the grad immediately behind the terminal should be similar in notice to the	No	Design	NA			
8.3.3.2 8.3.3.2	¶1& ¶1		Adjacent Grading	On projects where grading isn't involved the area immediately behind the terminal should be similar in nature to the roadside immediately upstream of the terminal.	No	Design	NA	1		

							Basis	of Gu	idanc	e
Section	Table, Figure, or				Reference or	Type of	Dates From	Engineering Judgement	Observational Studies	Experimental Studies
8.3.3.3	Paragraph ¶ 1	Source	Section Title Runout Distance Grading	Description of Guidance The lateral runout distance directly behind a terminal ideally should be at least as wide as the roadside clear distance	Related Work	Guidance Design	NA	1	<u> </u>	E
8.3.3.3	¶ 3		Runout Distance Grading	immediately upstream of the terminal. The minimum recovery area behind and beyond a terminal should be obstacle-free area 75' long and 20' wide.	No	Design	2002	1	-	
8.3.3.3	¶ 2		Runout Distance Grading	If the barrier LON is adequate, a vehicle traveling 250' behind a barrier will not likely reach the object being shielded.	No	Maint/Install	NA	1	1	1
8.3.6.1			Buried-in-Backslope Terminal	Gap: Discuss how to calculate LON for a buried-in-backslope terminal for backslopes steeper than 3:1.		Gap				
8.3.6.2	¶1	20-07(383)	Flared W-Beam Terminals Crash Cushion Design Concept	Gap: Layout of terminals at the end of flared standard systems. (in-line with the flare, measured off the flare, for flared- or parallel-type terminals, etc.). Crash Cushions are ideally suited for use at locations where fixed objects cannot be removed, relocated, or made to break	No	Gap How-To	NA	1		
8.4	¶2		Crash Cushion Design Concept	way, and where they cannot be adequately shielded by a longitudinal barrier. Crash Cushions commonly are applied at exit ramp gore on an elevated or depressed structure in which a bridge rail end	No	Нош-То	NA	1		
8.4.3	 Eq 8-1, 8-2,		Crash Cushions Based on Conservation of	or pier merits shielding. Crash cushions also are frequently used to shield the ends of median barriers. Conservation of momentum equations applied to a vehicle impacting a series of containers.	No	Design	1687	1		
8.4.3	8-3 ¶ 4		Momentum Principle Crash Cushions Based on Conservation of	It is usually adequate to design this type of crash cushion to reduce the vehicle velocity to about 10 mph after the last	No	Design	NA	1		
8.4.3	Fig. 8-38		Momentum Principle Crash Cushions Based on Conservation of	module has been impacted. Figure of Conservation of Momentum Principle.	No	Design	NA	1		
8.4.3	¶ 11		Momentum Principle Crash Cushions Based on Conservation of	Moisture content of the loose sand should be 3% or less and clean sand should be used to minimize caking.	No	Maint/Install	NA	1		
8.4.3	¶ 12		Momentum Principle Crash Cushions Based on Conservation of	Mixing 5-25% (by volume) of rock salt w/ the sand will prevent wet sand from freezing under most conditions.	No	Maint/Install	NA	1		
8.4.3	¶ 13		Momentum Principle Crash Cushions Based on Conservation of	The use of sacked sand is no longer considered acceptable.	No	Maint/Install	NA	1		$\left - \right $
8.4.3	¶ 10		Momentum Principle Crash Cushions Based on Conservation of	Recommend orienting sand barrel array at angles up to 15 toward approaching traffic as an alternative way to address the	No	Placement	NA	1		
8.4.3	¶ 10		Momentum Principle Crash Cushions Based on Conservation of	reverse direction impact concern. Space should be left behind the last row of modules so sand and debris will not be confined to produce a ramming effect.	No	Placement	NA	1		
8.4.3	" ¶9		Momentum Principle Crash Cushions Based on Conservation of	Approximately 1'6" is recommended minimum space needed. If space permits, extra rows of lighter modules may be placed alongside the array to make it softer for rear-corner angle	No	Placement	NA	1		
8.4.3	¶9		Momentum Principle Crash Cushions Based on Conservation of	inpacts. In locations where the heavier modules may be exposed to reverse direction impacts, some agencies place lighter modules	No	Placement	NA	1	——	
8.4.5.1	¶1&		Momentum Principle Site Characteristics	alongside the barrier. Table with recommendation of the area that should be made available for CC installation.	No	Design	1970	1		
8.4.5.1	Tab. 8-11		Site Characteristics		No	_	NA	1		
				Fixed objects such as rigid barrier ends that are <3 wide should be shielded by a narrow crash cushion. Similarly, wide obstacles (>16) can be effectively shielded by sand barrel arrays.		Design				
8.4.5.2	¶ 3		Crash Cushion Structural and Safety Characteristics	Additional lower mass sand barrel modules sometimes could be added to an array to reduce the expected deceleration forces to lower levels.	No	Placement	NA	1	L	
8.4.5.4	¶3		Maintenance Characteristics	Plastic sand barrels eventually will degrade from UV exposure; barrels older than 10 years should be inspected more frequently and replaced when necessary.	No	Maint/Install	NA	1		
8.4.5.5 8.4.5.6	Bullets 1-3		Selection Criteria Inclusion Area	List of guidelines for selecting crash cushion types. <u>Gap</u> : There is limited information of actual repair times and costs for crash cushions.	No	Design Gap	NA	1		-
8.4.6	¶2		Placement Recommendations	For new construction, curbs should not be built where crash cushions are to be installed. Existing crash cushion locations should be reviewed to determine if the presence of a curb or a slope is like to affect performance.	No	Design	NA	1	1	
8.5	¶ 1		Delineation of End Treatments	Improved signing, pavement markings, or delineation may result in fewer crashes.	No	Placement	NA	1		
9		20-07(360) 20-07(360)	Traffic Barriers, Traffic Control Devices, Traffic Barriers, Traffic Control Devices,	Gap with no Currently Planned Research - Risk-Based Criteria and Selection Guidelines for Positive Protection in Work Gap with no Currently Planned Research - Warrants for anchoring portable barriers in work zones.	2013 RNS 2010 RNS	Gap Gap				
			and Other Safety Features in Work Zones							
9.1.1	Tab. 9-1		Application of the CZ Concept in Work Zones	Table of example clear zone widths in work-zones by speed.	No	Design	NA	1		
9.1.1	¶3		Application of the CZ Concept in Work Zones	The width of commonly used work-zone clear zones range from 12-18'. The location of collateral hazards such as equipment and material storage can be controlled and should be subject to greater clear zone widths (30').	No	Design	NA	1		
9.1.1	¶ 1		Application of the CZ Concept in Work Zones	In work-zones, the clear zone requirements are less than those for the non-construction conditions.	No	How-To	NA	1		
9.2.1		20-07(383)	Temporary Longitudinal Barriers	Gap: Do we use crash-tested working widths or a risk based approach based on the products exposure (ex. PCB on a bridge deck a car couldn't develop a 25 deg. Trajectory.		Gap				
9.2.1 9.2.1	¶1 ¶1&		Temporary Longitudinal Barriers	Improper use of temporary traffic barriers can provide a false sense of security for both motorists and workers.	No V(20)	How-To	NA 1993	1	-	
9.2.1	¶7		Temporary Longitudinal Barriers Portable Concrete Barriers	Barriers are usually justified for bridge widening, shielding of roadside structures, roadway widening and separating 2- Benefit/cost analyses of temporary concrete barriers indicate that total crash costs appear to be minimized for flare rates ranging from 41 to 81.1 A flare rate of 511 or 61:1 may be slightly more favorable in urban settings. A minimum offset of	Y(20) Y(9)	Placement Design	1995	1		
9.2.1.2	¶4		Portable Concrete Barriers	2' from the traveled lane to the PCB is desirable. Each section should be properly connected to the adjacent section to provide barrier continuity and to resist movement,	No	Maint/Install	NA	1		
9.2.1.2	¶ 5		Portable Concrete Barriers	snagging, and the instability of impacting vehicles. When lateral displacement of the barrier cannot be tolerated, anchoring the portable concrete barrier to the underlying surface may be necessary to prevent lateral movement. This can be done w/ pins or bolts attached to the pavement or	No	Maint/Install	NA	1		
				bridge deck. The pins/bolts should not protrude beyond the face of the barrier.						
9.2.1.2 9.2.2	¶ 6 Bullets 1-6		Portable Concrete Barriers End Treatments	The designer should allow for adequate drainage through the barrier to minimize ponding against the barrier. List of candidate treatments for exposed ends of barriers.	No No	Manufacturer Design	NA NA	1		
9.2.2	Bullets 1-0	20-07(383)		Gap: the application of water-filled barriers, particularly as it relates to interfacing stiffer barriers. Same applies to water-		Gap	INA	1		
9.2.3	¶ 1		Transitions	filled terminals as well. Adequate transitions should be made between temporary barriers of differing flexibility or between temporary and	No	Placement	NA	1		
9.2.4	Bullet 1		Applications	permanent barriers. For a short section of barrier <100' a trade-off should be made as to which risk is greater the risk that the obstacle or barrier presents to the motoriet or the risk of leaving underse unprotected.	No	Design	NA	1		
9.2.4	Bullet 4		Applications	barrier presents to the motorist or the risk of leaving workers unprotected. Openings in barriers should be avoided if possible. When necessary, the barrier ends should have an acceptable end	No	Design	NA	1		$\left - \right $
9.2.4	Bullet 5		Applications	treatment or offset. For better night visibility, retroreflective devices or steady-burn warning lights may be mounted along the barrier.	No	Maint/Install	NA	1		\vdash
9.2.4	Bullet 5		Applications	A solid edge line may be placed on the pavement adjacent to the barrier to provide delineation.	No V(10.7)	Maint/Install	NA 2000	1		
9.2.4	Bullet 2		Applications	Barriers may be used to channelize traffic but they should not be the primary tapering device. Lane tapers should be made of more forgiving channelizing devices such as barricades, drums, cones, etc		Placement	2009			
9.2.4	Bullet 3		Applications	When temporary barriers are installed on both sides of traffic, the begining of the barriers should be staggered to minimize the tendency of drivers to shy away from suddenly introduced objects near the traveled way.		Placement	NA	1		
9.3.1	¶ 1	l	Stationary Crash Cushion	It should be emphasized that stationary crash cushions should be delineated to make them conspicuous at night.	No	Maint/Install	NA	1		

							Basis	of Gu	idanc	:e
	Table, Figure, or				Reference or	Type of	Dates From	Engineering Judgement	Observational Studies	Experimental Studies
Section 9.3.1.1	Paragraph	Source	Section Title Sand-Filled Plastic Barrels	Description of Guidance	Related Work	Guidance	na na	Ξ 1	ō	Ξ
9.3.1.1	¶1		Sand-Filled Plastic Barrels	Because the sand-filled barrel system has virtually no redirective capability, it should be 30" wider than the fixed object it is shielding.	No	Design	NA	1		
9.3.1.1	Bullet 2		Sand-Filled Plastic Barrels	The lateral offset between the back edge of a sand-filled barrel crash cushion and the edge of the obstacle may be reduced	No	Design	NA	1		
9.3.1.1	Bullet 3		Sand-Filled Plastic Barrels	to a minimum of 15" when a greater offset would cause unacceptable interference w/ traffic. For ease of moving, barrels may be installed on pallets or a skid 4" or less in height.	No	Maint/Install	NA	1	-	-
9.3.1.1	Bullet 3		Sand-Filled Plastic Barrels	Barrels should be regularly inspected because they are susceptible to nuisance hits & provide little or no safety reserve	No	Maint/Install	NA	1		
9.3.2	Tab 9-4		Truck & Trailer Mounted Attenuators	after being hit. Table of successful minimize for analisation of protoctive validae & TMAs	No	Design	NA	1		_
9.3.2	140 9-4		(TMAs)	Table of suggested priorities for application of protective vehicles & TMAs.	NO	Design	INA	1		
9.3.2	¶4		Truck & Trailer Mounted Attenuators	Shadow trucks and barrier vehicles may be equipped w/ TMA. Advance sign trucks may use TMA if they encroach on	No	Placement	NA	1		
9.4	# 4		(TMAs) Traffic Control Devices	the traveled way. Gap: Large trailer-mounted devices (arrow panels, variable message signs, and temporary traffic signals): Crash-		Gap	'		<u> </u>	-
			Thanke Conner Derivers	worthiness criteria have not been established for devices in this category.		Cup				
9.4.1	¶ 1		Channelizing Devices	These devices should adhere to the size and shape requirements in the latest edition of MUTCD.	Y(7)	Manufacturer	2009			
9.4.1 9.5.2	¶ 1 ¶ 2		Channelizing Devices Pavement Edge Drop Offs	When possible channelizing devices should be set 1-2' back from the edge of the traffic lane. No vert drop off greater than 2" should occur between adjacent lanes.	Y(4) No	Placement Design	1990 2009	1	<u> </u>	1
9.5.2	¶ 3		Pavement Edge Drop Offs	Pavement edge drop offs greater than 3" immediately adjacent to traffic should not be left overnight.	No	Maint/Install	NA	1		
9.5.2	¶ 4		Pavement Edge Drop Offs	Placing a temp wedge of material along the face of the drop off. The wedge should consist of stable material placed at a	No	Maint/Install	NA	1		
9.5.2	¶ 5		Pavement Edge Drop Offs	30-35 degree angle or flatter slope. Placing channelizing devices along the traffic side of the drop off and maintaining a 3' wide buffer.	No	Placement	NA	1	<u> </u>	\vdash
10	¶ 3		Overview	Where curb is used, the lateral offset is measured from the face of the curb. A minimum of 1.5' should be provided from	No	Design	NA	1		1
				the face of the curb with 3' at intersections.						
10 10	¶ 3 ¶ 8		Overview	Enhanced lateral offset of 4-6' to obstructions is a more appropriate guide for these environments	No No	Placement Placement	NA NA	1		
10	ηð		Overview	Appurtenances should be located as far away as practical but at least 4' from the face of the curb to minimize the probability of being hit by an errant vehicle.	110	riacement	19/4			
10	¶ 8		Overview	Breakaway designs should be used for poles and appurtenances located <6' to the face of the curb.	No	Placement	NA	1		
10.1	¶1		Evaluation of Critical Urban Roadside Locations	Give priority attention for improvements to critical locations that are more prone to crashes.	No	How-To	NA	1	1	
0.1.1	¶ 1		Evaluation of Individual Sites	Regardless of curbing, the designer should strive for a wider lateral offset that is more reflective of either the off-peak	No	How-To	NA	1		-
				operating speed (85th percentile) or design speed, whichever is greater.						
.1.3.1	¶ 2		Obstacles in Close Proximity to Curb Face or Lane Edge	W/o a vertical curb, lateral offsets of 12' on the outside of curves and 8' at tangent locations are reasonable goals when the clear zone widths cannot be achieved.	No	Design	2008		1	
.1.3.1	¶2&		Obstacles in Close Proximity to Curb	Recommended goal is to achieve at least 6' lateral offset from the face of the curb at these outside-of-curve locations while	No	Design	2008		1	-
1.2.4	Fig 10-1		Face or Lane Edge	maintaining at least 4' lateral offset elsewhere. Displayed in 10-1.		_	2000			
.1.3.1	¶ 3 & Fig. 10-1		Obstacles in Close Proximity to Curb Face or Lane Edge	A drivers line of sight that is suitable to provide the required stopping sight distance should be maintained.	No	How-To	2008			
1.3.1	¶ 4		Obstacles in Close Proximity to Curb	Lanes that function as higher speed lanes such as the extended-length turn lanes or bus lanes should be treated as travel	No	How-To	2008		1	
			Face or Lane Edge	lanes and clear-zone measurements then would begin at the right lane edge or curb face.	N.	ц т	2000			1
.1.3.1	¶4		Obstacles in Close Proximity to Curb Face or Lane Edge	Other auxiliary lanes such as bicycle lanes can be included in the clear zone and the clear-zone measurements start at the right-lane edge marking for the motor vehicle lane.	No	How-To	2008		1	
.1.3.2	¶2&		Lane Merge Locations	The suggested lateral offset in the immediate vicinity of the taper point is 12' from the lane merge curb face. Illustrated in	No	Design	2008		1	1
	Fig. 10-2			Fig 10-2.		71				
.1.3.2	¶ 2 ¶ 2		Lane Merge Locations Driveway Locations	Breakaway objects should have lateral offsets of at least 4-6' at these locations. Providing a lateral offset of 10-15' beyond the edge of driveway would reduce the potential for a fixed-object collision in	No No	Placement Design	2008 2008		1	
.1.5.5	12		Driveway Locations	this high-crash location.		Design	2008		1	
.1.3.3	¶2&		Driveway Locations	The resulting lateral offsets appropriate for driveway locations are displayed in Fig. 10-3. The drivers line of sight should	No	Design	2008		1	
.1.3.4	Fig. 10-3 Bullet 2		Intersection Locations	be based on the expected speed of approaching vehicles. A tangent lateral offset value for the intersection return should be 6' for curbed facilities w/ a minimum of 3'.	No	Design	2011			-
.1.3.4	Bullet 1		Intersection Locations	The island design should adhere to the criteria in AASHTO A Policy on Geometric Design of Highways	No	How-To	2011			-
.1.3.4	Bullet 3		Intersection Locations	Pedestrian buttons should be placed on a breakaway pedestal pole adjacent to the directional ramp rather than on a rigid	No	Placement	NA	1		
0.2.1.1	¶ 5		Curbs	traffic signal pole when possible. Guardrails behind curbs should either be placed in the immediate vicinity of the curb to shield critical roadside features, or	No	Design	2005	1	<u> </u>	1
2.1.1	د ا		0.003	they should be located w/ a minimum lateral offset of 8' to enable vehicles w/ speeds of greater than 40 mph to return to		Losign	2003			1
				their normal suspension state and minimize the likelihood that they cold vault the barrier.					L	
.2.1.1	¶ 3		Curbs	The min lateral offset of 1.5' should be provided beyond the face of curbs and any frangible obstructions.	No No	Placement Moint/Install	2008 2008		1	
.2.1.2	¶ 2 Bullet 2		Shoulders Placement of Landscaping, Trees and	It is desirable to maintain traversable conditions in the event an errant vehicle exits the road. A clear vision space from 3-10' above grade is desirable along all streets and at all intersections.	No	Maint/Install Design	2008			⊢
			Shrubs			-				
1.2.2	¶7		Mail Stop and Mailbox Location	Most vehicles stopped at a mailbox should be clear of the traveled way when the mailbox is place outside a 8' wide shoulder or turnout. Other widths are preferable up to 12' when it can be provided.	No	Design	1984	1	1	
1.2.2	¶ 2		Mail Stop and Mailbox Location	Mailboxes should be placed only on the right-hand side of the road in carrier's direction of travel.	No	Placement	1984	1		-
1.2.2	¶ 3		Mail Stop and Mailbox Location	Placing of mailboxes along both high-speed and high volume highways should be avoided if other practical locations are	No	Placement	1984	1		
				available. Mailboxes should not be located where access is from the lanes of an expressway or where access, stopping or parking is otherwise prohibited by law or regulation.					1	
1.2.2	¶ 5		Mail Stop and Mailbox Location	parking is otherwise prohibited by law or regulation. The least troublesome location for a mail stop at these intersections is adjacent to a crossroad lane leaving the intersection.	No	Placement	1984	1	-	-
			_							
1.2.2	¶ 5 & Fig. 11-4		Mail Stop and Mailbox Location	Figure 11-4 shows the suggested minimum clearance distance to the nearest mailbox for mail stops at intersections.	No	Placement	1994	1		
1.2.2	¶ 6		Mail Stop and Mailbox Location	Mailboxes should be located so that a vehicle stopped at it is clear of the adjacent traveled way. The higher the traffic	No	Placement	1984	1		
			-	volume or speed, the greater the clearance should be.					<u> </u>	
.2.2	¶7		Mail Stop and Mailbox Location	To provide space outside of the all-weather surface to open a mailbox door, it is recommended that the roadside face of a mailbox be set 6-8" outside the all-weather surface of the shoulder or turnout.	No	Placement	1994	1	1	
.2.2	¶ 7		Mail Stop and Mailbox Location	When a mailbox is installed in the vicinity of an existing guardrail, it should be placed behind the guardrail.	No	Placement	1984	1		\vdash
.2.3	Tab. 11-1		Mailbox Turnout Design	Table of shoulder or turnout widths suitable to safely accommodate vehicles stopped at mailbox.	No	Design	1984	1		
1.2.3	Fig. 11-5		Mailbox Turnout Design	Dimensioning of suggested mailbox turnout.	No	Design	1994 NA	1		-
2.3	¶2		Clear Zone	Even on low-volume roads, a clear area should be provided to permit a disabled vehicle to pull completely off the road whenever practical.	No	Design	NA	1		
12.8	¶4		Bridges	It is critical that the approach rail be physically attached to the bridge rail and that the approach rail be stiffened to match the deflection characteristics of the bridge rail itself. Reduced post spacing is the minimum treatment advisable.	No	How-To	NA	1		
		20-07(360)		Gap with no Currently Planned Research - Development of plan/guidelines to improve roadway and roadsides for	2010 RNS	Gap				
					1	1	1	1	1	
		20-07(360)		motorcyclists. Gap with no Currently Planned Research - Guidelines for Design of Roadway and Roadside Features to Accommodate	2013 RNS	Gap		-		-

						Basis	of Gu	idanc	e	
F	Table, Figure, or Paragraph	Source 20-07(360)	Section Title	Description of Guidance <u>Gaps which could be satisfied with existing or pending work and reorganization of RDG</u> - Work with FHWA to develop and implement criteria based on traffic patterns passenger volume and bus types that can be used to assess the risks of	Reference or Related Work NTSB H-09-08	Type of Guidance Gap	Dates From	Engineering Judgement	Observational Studies	Experimental Studies
		20-07(360)		rural travel by large busses. <u>Gaps which could be satisfied with existing or pending work and reorganization of RDG</u> - There are many instances within the RDG which indicate engineering judgement is necessary, but there is no specific guidance offered for applying the judgement. If we cannot install the ideal solution, should we quantify	Breakout Sessions	Gap				
		20-07(360)		Gaps which could be satisfied with existing or pending work and reorganization of RDG - Low cost/low volume roadways, objective criteria for urban roadsides, and new technologies.	Breakout Sessions	Gap				
5.6.2.1.1	¶1		Guardrail/Curb Combinations	A strong post w-beam guardrail can be used with any combination of a sloping-faced curb that is 6" or shorter if installed flush with the face of the guardrail on roads w/ speeds up to 50mph	No	Placement	NA	1		
5.6.2.1.1	¶3		Guardrail/Curb Combinations	Curb/Guardrail Combinations for Strong Post W-Beam Guardrail for roads <45mph.	Y(17)	Placement	2005		1	1
5.6.2.1.1	¶ 4		Guardrail/Curb Combinations	Curb/Guardrail Combinations for Strong Post W-Beam Guardrail for roads 45-50mph.	Y(17)	Placement	2005		1	1
5.6.2.1.1	¶ 5		Guardrail/Curb Combinations	Curb/Guardrail Combinations for Strong Post W-Beam Guardrail for roads >50mph.	Y(17)	Placement	2005		1	1
9.2.1.16	¶2		Minimizing Deflection	Gap: Anchoring PCB to the traveled way; Although these installations are in common use, only limited crash testing of these have been done.		Gap				
9.2.1.16	¶1		Minimizing Deflection	When minimal deflection distances are available, strengthened, stiffened or anchored barriers and connectors may be used. Candidate sites include bridge approaches, excavations, etc.	Y(18)	Placement				
9.2.1.17	¶ 1		Restricted Sites	Barriers at some sites may be exposed to impact angles substantially greater than the 25 degree design.	Y(19)	How-To	1994			
9.3.2.2.1	¶2		Buffer Distance	The truck's parking break should be set, the transmission placed in gear, and front wheels turned away from the work area.	No	How-To	NA	1		
9.3.2.2.1	¶1& Tab. 9-5		Buffer Distance	Buffer distances range from 50-200'. Buffer distances should be based on horizontal & vertical geometries, sight distance, average speed and type of operation. Example of guidelines in Table 9-5.	No	Placement	NA			1
9.3.2.2.1	¶ 2		Buffer Distance	A minimum distance of 30' between the truck and work zone is recommended.	No	Placement	NA			1
9.3.2.2.2	¶ 1		Mass of a Shadow Vehicle	The mass of the shadow vehicle should be similar to the mass of the vehicle w/ which the TMA was crash tested.	No	How-To	NA	1		
9.3.2.2.3	¶ 1		Delineation	Delineation should be used on TMAs to make them conspicuous at night.	No	Maint/Install	NA	1		
10.2.4.3.2	¶ 3		Crash Cushions	Curbs should be removed in front of crash cushions. When necessary for drainage, an existing curb no higher than 4" can be left in place unless it has contributed to poor performance in avoiding vaulting.	No	Placement	NA	1		
					Total =	316		199	28	47
					Gaps =	42				
					Needs =	18				
					Guidance =	256				