APPENDIX K. DESIGN EXAMPLES BASED ON DRAFT SPECIFICATION

Three connections were selected from different bridges referred to in Appendix A to demonstrate the application of the proposed rating specifications. These connections were rated using the existing LRFR checks from the FHWA Guide, as well as, the proposed LRFR and LFR specification for the MBE found in Appendix J. A summary of the rating factors for each joint are reflected in Table K1 through K3. The reader should be aware of three caveats when comparing all the rating factors from the tables below:

1. The checks focus on the gusset plate limit-states only, hence limit-states associated with fasteners were not performed.
2. No condition factors were used in any of the LRFR calculations.
3. When evaluating LRFR with the FHWA Guide, the system factor was not used. A system factor of 0.90 was assumed in the LRFR checks with the proposed specification because it is recommended this be mandatory. Therefore, a true comparison between the LRFR specifications should consider an additional 0.90 reduction on the values calculated with the FHWA Guide.

It is expected that there will be differences in rating factors calculated from the three methods, though these three example may shed some light on the magnitude of the differences. Overall, there is little change between the LRFR ratings attained from the FHWA Guide, the LRFR proposed specifications, and the LFR proposed specifications at the Inventory level. At the Operating level, the proposed LFR specifications consistently produced more favorable ratings than the two LRFR approaches.

Detailed rating calculations for each joint can be found on the pages following Table K3.

Table K1. Rating Factors for I-35W L1 Joint

	Inventory Level			Operating Level		
	FHWA Guidance (LRFR)	Proposed LRFR Specification	Proposed LFR Specification	FHWA Guidance (LRFR)	$\begin{gathered} \text { Proposed } \\ \text { LRFR } \\ \text { Specification } \end{gathered}$	Proposed LFR Specification
Member 1	$\begin{gathered} 1.25 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 2.85 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 2.40 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 1.62 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 3.69 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 4.01 \\ \text { buckling } \end{gathered}$
Member 2	$\begin{gathered} 3.26 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 3.35 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 2.69 \\ \text { buckling } \end{gathered}$	4.23 buckling	$\begin{gathered} 4.35 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 4.49 \\ \text { buckling } \end{gathered}$
Member 3	$\begin{gathered} 2.02 \\ \text { buckling } \end{gathered}$	$\begin{gathered} \hline 1.08 \\ \text { PPSY } \\ \hline \end{gathered}$	$\begin{gathered} 1.03 \\ \text { PPSY } \\ \hline \end{gathered}$	2.62 buckling	$\begin{gathered} 1.40 \\ \text { PPSY } \\ \hline \end{gathered}$	$\begin{gathered} 1.72 \\ \text { PPSY } \\ \hline \end{gathered}$
Member 4	$\begin{gathered} 3.70 \\ \text { buckling } \end{gathered}$	1.26 chord splice	1.46 chord splice	4.79 buckling	1.63 chord splice	2.43 chord splice
Vertical Shear 1	$\begin{gathered} 3.46 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 3.99 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 3.65 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 4.49 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 5.17 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 6.1 \\ \text { yielding } \\ \hline \end{gathered}$
Vertical Shear 2	$\begin{gathered} \hline 4.59 \\ \text { yielding } \\ \hline \hline \end{gathered}$	$\begin{gathered} 5.25 \\ \text { yielding } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 4.84 \\ \text { yielding } \\ \hline \hline \end{gathered}$	$\begin{gathered} 5.96 \\ \text { yielding } \\ \hline \hline \end{gathered}$	$\begin{gathered} 6.80 \\ \text { yielding } \\ \hline \hline \end{gathered}$	$\begin{gathered} 8.09 \\ \text { yielding } \\ \hline \hline \end{gathered}$
Controlling Rating Factor	1.25	1.08	1.03	1.62	1.40	1.72
PPSY = Partial Plane Shear Yield						

Table K2. Rating Factors for I-80 L3 Joint

		nventory Leve			Operating Leve	
	FHWA Guidance (LRFR)	Proposed LRFR Specification	$\begin{gathered} \text { Proposed } \\ \text { LFR } \\ \text { Specification } \end{gathered}$	FHWA Guidance (LRFR)	$\begin{aligned} & \text { Proposed } \\ & \text { LRFR } \\ & \text { Specification } \end{aligned}$	Proposed LFR Specification
Member 1	$\begin{gathered} 2.38 \\ \text { buckling } \end{gathered}$	NA	NA	$\begin{gathered} 3.09 \\ \text { buckling } \end{gathered}$	NA	NA
Member 2	7.25 block shear	$\begin{gathered} 6.71 \\ \text { yielding } \end{gathered}$	$\begin{gathered} 6.26 \\ \text { block shear } \end{gathered}$	$\begin{gathered} 9.40 \\ \text { block shear } \end{gathered}$	$\begin{gathered} 8.70 \\ \text { yielding } \end{gathered}$	10.45 block shear
Member 3	$\begin{gathered} 9.24 \\ \text { buckling } \end{gathered}$	10.14 buckling	$\begin{gathered} 8.32 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 11.98 \\ \text { buckling } \\ \hline \end{gathered}$	$\begin{gathered} 13.15 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 13.89 \\ \text { buckling } \end{gathered}$
Member 4	$\begin{gathered} 6.55 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 2.51 \\ \text { PPSY } \\ \hline \end{gathered}$	$\begin{gathered} 2.53 \\ \text { PPSY } \\ \hline \end{gathered}$	$\begin{gathered} 8.50 \\ \text { buckling } \end{gathered}$	$\begin{gathered} 3.26 \\ \text { PPSY } \end{gathered}$	$\begin{gathered} 4.22 \\ \text { PPSY } \end{gathered}$
Member 5	$\begin{gathered} 6.36 \\ \text { buckling } \end{gathered}$	NA	NA	$\begin{gathered} 8.25 \\ \text { buckling } \end{gathered}$	NA	NA
Chord Splice	NA	5.55	6.42	NA	7.19	10.72
Horizontal Shear	$\begin{gathered} 4.04 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 4.53 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 4.46 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 5.23 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 5.87 \\ \text { yielding } \\ \hline \end{gathered}$	$\begin{gathered} 7.44 \\ \text { yielding } \\ \hline \end{gathered}$
Controlling Rating Factor	2.38	2.51	2.53	3.09	3.26	4.22
N/A = Not Applicable PPSY = Partial Plane Shear Yield						

Table K3. Rating Factors for I-64 U5

	Inventory Level			Operating Level		
	FHWA Guidance (LRFR)	Proposed LRFR Specification	Proposed LFR Specification	FHWA Guidance (LRFR)	Proposed LRFR Specification	Proposed LFR Specification
Member 1	3.20 buckling	NA	NA	4.15 buckling	NA	NA
Member 2	12.77 buckling	14.23 buckling	11.8 buckling	16.56 buckling	18.44 buckling	19.7 buckling
Member 3	8.45 block shear	9.31 block shear	7.27 block shear	10.95 block shear	12.07 block shear	12.14 block shear
Member 4	2.86 buckling	NA	NA	3.71 buckling	NA	NA
Chord Splice	NA	3.67	4.84	NA	4.76	8.07
Horizontal Shear	16.72 fracture	14.39 fracture	14.36 fracture	21.67 fracture	18.66	
fracture	23.96 fracture					
Controlling Rating Factor	3.20	3.67	4.84	3.71	4.76	8.07
N/A = Not Applicable PPSY = Partial Plane Shear Yield						

I-35W GUSSET PLATE CHECKS

All Units: kip, in
These checks will make comparisions between the existing FHWA Guidance, the new proposed LRFR MBE specification, and the new proposed LFR MBE provisions. Fastener checks will also not be provided. Condition factors are assumed to be 1.00.

Note this joint has a bearing reaction on the bottom and the built-up multi-cell box section beneath the vertical member is extremely stiff and negates checking some limit states. This multi-celled section should be checked for compression resistance from the bearing reaction, but will not be done in this example
$\mathrm{F}_{\mathrm{y}}:=50 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{u}}:=70 \mathrm{ksi} \quad$ Material Properties
$\mathrm{E}:=29000 \mathrm{ksi}$
$\mathrm{t}_{\mathrm{g}}:=\frac{1}{2} \mathrm{in} \quad \quad$ Gusset and Shingle Plate Thickness

Existing FHWA Guide Resistance Factors

$\phi_{\mathrm{y}}:=0.95 \quad \phi_{\mathrm{C}}:=0.9$
$\phi_{\mathrm{u}}:=0.80 \quad \phi_{\mathrm{vy}}:=0.95$
$\phi_{\mathrm{bs}}:=0.80 \quad \phi_{\mathrm{vu}}:=0.80$
$\Omega:=0.74$

Proposed Resistance Factors

$$
\begin{array}{ll}
\phi_{\mathrm{bs} _ \text {new }}:=1.00 & \phi_{\mathrm{C} _ \text {new }}:=0.95 \\
\phi_{\mathrm{vg}}:=1.00 & \phi_{\mathrm{Cs}}:=0.85 \\
\Omega_{\mathrm{new}}:=0.88 &
\end{array}
$$

Load Factors

$\gamma_{L L}:=1.75$
$\gamma_{\mathrm{DL}}:=1.25$
$\gamma_{\text {LL_LFR }}:=2.17$
$\gamma_{\text {DL_LFR }}:=1.3$

System Factor

$$
\begin{aligned}
\phi_{\mathrm{s}}:=0.90 & \text { assumes it's a bolted truss, proposed as mandatory for LRFR under MBE Article } \\
& \text { 6A.6.12.6. The system factor will not be used in calculations using the existing } \\
& \text { FHWA Guidance }
\end{aligned}
$$

Member Forces For One Gusset Plate

$\mathrm{P}_{1 \mathrm{DL}}:=\frac{560}{2} \mathrm{kip}$	$\mathrm{P}_{1 \mathrm{LL}}:=\frac{311+65}{2} \mathrm{kip}$	Compression
$\mathrm{P}_{2 \mathrm{DL}}:=\frac{323}{2} \mathrm{kip}$	$\mathrm{P}_{2 \mathrm{LL}}:=\frac{207+62}{2} \mathrm{kip}$	Compression
$\mathrm{P}_{3 \mathrm{DL}}:=\frac{662}{2} \mathrm{kip}$	$\mathrm{P}_{3 \mathrm{LL}}:=\frac{462+60}{2} \mathrm{kip}$	Compression
$\mathrm{P}_{4 \mathrm{DL}}:=\frac{190}{2} \mathrm{kip}$	$\mathrm{P}_{4 \mathrm{LL}}:=\frac{394+35}{2} \mathrm{kip}$	Compression

MEMBER 1

Compression Member - Need to check Whitmore buckling and partial plane shear yielding

Calculate LRFR rating factors using existing FHWA Guidance method

$$
\mathrm{K}:=1.2
$$

Calculate the compression capacity of the primary gusset plate

$$
\begin{array}{ll}
\lambda_{1}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg} 1}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda_{1}=1.74 \\
\mathrm{C}_{1}:=\phi_{\mathrm{c}} \cdot \left\lvert\,\left(\begin{array}{l}
\left(\lambda_{1}\right. \\
\left.0.66 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}\right) \text { if } \lambda_{1} \leq 2.25 \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}}{\lambda_{1}} \text { otherwise }
\end{array}\right.\right. & \mathrm{C}_{1}=414.05 \cdot \mathrm{kip}
\end{array}
$$

Calculate the compression capacity of the shingled plate

$$
\begin{array}{ll}
\lambda_{2}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg} 2}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda_{2}=1.57 \\
\mathrm{C}_{2}:=\phi_{\mathrm{c}} \cdot \left\lvert\,\left(\begin{array}{ll}
\left(\lambda_{2}\right. \\
0.66 \\
\left.\mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}\right)
\end{array}\right)\right. \text { if } \lambda_{2} \leq 2.25 & \mathrm{C}_{2}=346.97 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}}{\lambda_{2}} \text { otherwise } &
\end{array}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {FHWAinv }}:=\frac{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{1 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{1 \mathrm{LL}}}=1.25 \\
& \mathrm{RF}_{\text {FHWAopr }}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {FHWAopr }}=1.62
\end{aligned}
$$

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

$$
\begin{aligned}
& \frac{\mathrm{P}_{1 \mathrm{DL}}}{\mathrm{P}_{1 \mathrm{LL}}}=1.49 \\
& \mathrm{R}_{\text {DL_LL }}:=1-0.1 \cdot\left(\frac{1.49-1}{5}\right) \quad \mathrm{R}_{\text {DL_LL }}=0.99
\end{aligned}
$$

calculate the factored Whitmore buckling strength.

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{e} 1}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\mathrm{mid}}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s} 1}=3804.43 \cdot \mathrm{kip} & \mathrm{P}_{\mathrm{e} 2}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\mathrm{mid}}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s} 2}=2971.27 \cdot \mathrm{kip} \\
\mathrm{P}_{\mathrm{o} 1}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}=947.5 \cdot \mathrm{kip} & \mathrm{P}_{\mathrm{o} 2}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}=740 \cdot \mathrm{kip}
\end{array}
$$

$$
\begin{aligned}
& \text { Whit }_{1}:=\phi_{\text {C_new }} \cdot\left(\begin{array}{l}
\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o} 1}}{\mathrm{P}_{\mathrm{e} 1}} \cdot \mathrm{P}_{\mathrm{o} 1}
\end{array}\right) \text { if } \frac{\mathrm{P}_{\mathrm{e} 1}}{\mathrm{P}_{\mathrm{o} 1}} \geq 0.44=811.02 \cdot \mathrm{kip} \\
0.877 \cdot \mathrm{P}_{\mathrm{e} 1} \text { otherwise }
\end{array}\right. \\
& \text { Whit }_{2}:=\phi_{\mathrm{C} _ \text {new }} \cdot\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o} 2}}{\mathrm{P}_{\mathrm{e} 2}} \cdot\binom{0.658}{0.877 \cdot \mathrm{P}_{\mathrm{e} 2}} \text { if } \frac{\mathrm{P}_{\mathrm{e} 2}}{\mathrm{P}_{\mathrm{o} 2}} \geq 0.44=633.41 \cdot \mathrm{kip}
\end{array}\right. \\
&
\end{aligned}
$$

calculate the partial plane shear yield check

$$
\begin{aligned}
& \mathrm{PS}_{1}:=\phi_{\mathrm{vg}} \cdot \frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(62.4 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (50.2 \mathrm{deg})}=1243.89 \cdot \mathrm{kip} \\
& \mathrm{PS}_{2}:=\phi_{\mathrm{vg}} \cdot \frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.5 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (50.2 \mathrm{deg})}=1086.41 \cdot \mathrm{kip}
\end{aligned}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
\begin{aligned}
\mathrm{C}_{\text {LRFR }}:= & \min \left(\text { Whit }_{1}+\text { Whit }_{2}, \mathrm{PS}_{1}+\mathrm{PS}_{2}\right) \\
& \operatorname{RF}_{\text {LRFRinv }:=\frac{\mathrm{R}_{\mathrm{DL}_{2} \mathrm{LL}} \cdot \phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{1 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{1 \mathrm{LL}}}=2.85}^{\mathrm{RF}_{\text {LRFRopr }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35}} \\
& \mathrm{RF}_{\text {LRFRopr }}=3.69
\end{aligned}
$$

Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)
calculate the factored Whitmore buckling strength

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cr}}:=\left\lvert\, \mathrm{F}_{\mathrm{y}} \cdot\left[1-\frac{\mathrm{F}_{\mathrm{y}}}{4 \cdot \pi^{2} \mathrm{E}}\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}\right]\right. \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}} \leq \sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=46.89 \cdot \mathrm{ksi} \\
& \frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}} \text { otherwise } \\
& \text { Whit }:=0.85 \cdot\left(\mathrm{~A}_{\mathrm{s} 1}+\mathrm{A}_{\mathrm{s} 2}\right) \cdot \mathrm{F}_{\mathrm{cr}}=1345.06 \cdot \mathrm{kip}
\end{aligned}
$$

calculate the partial plane shear yield check

$$
\text { PS }:=\frac{\Omega_{\text {new }} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(62.4 \mathrm{in}+54.5 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (50.2 \mathrm{deg})}=2330.29 \cdot \mathrm{kip}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
\begin{aligned}
& \mathrm{C}_{\text {LFR }}:=\min (\text { Whit, } \mathrm{PS})=1345.06 \cdot \mathrm{kip} \\
& \mathrm{RF}_{\text {LFRinv }}:=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{1 \mathrm{DL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{1 \mathrm{LL}}}=2.4 \\
& \mathrm{RF}_{\text {LFRopr }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=4.01
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Member 1

	Inventory	Operating
Existing FHWA LRFR Method	$\mathrm{RF}_{\text {FHWAinv }}=1.25$	$\mathrm{RF}_{\text {FHWAopr }}=1.62$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=2.85$	$\mathrm{RF}_{\text {LRFRopr }}=3.69$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=2.4$	$\mathrm{RF}_{\text {LFRopr }}=4.01$

MEMBER 2

Compression Member - Need to check Whitmore buckling

$$
\begin{aligned}
& \mathrm{L}_{\text {wavglv }}=\frac{4.3 \mathrm{in}+4.3 \mathrm{in}+4.3 \mathrm{in}}{3} \\
& \mathrm{~L}_{\text {Mavg2: }}:=\frac{4.3 \mathrm{in}+4.3 \mathrm{in}+4.3 \mathrm{in}}{3} \\
& \mathrm{~L}_{\text {maidv }}=4.3 \mathrm{in} \\
& \mathrm{r}_{\text {su: }}:=\frac{\mathrm{t}_{\mathrm{g}}}{\sqrt{12}} \\
& \mathrm{~A}_{\mathrm{msid}}:=27.7 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}} \\
& \mathrm{~A}_{\mathrm{s} 2 \mathrm{siv}}:=19.6 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}
\end{aligned}
$$

Calculate LRFR rating factors using existing FHWA Guidance method
K

Calculate the compression capacity of the primary gusset plate

$$
\begin{array}{ll}
\lambda_{d a}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg} 1}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda_{1}=0.22 \\
\mathrm{C}_{d \mathrm{~d}}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{ll}
\left({ }^{\lambda_{1}}{ }^{1} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}\right) \text { if } \lambda_{1} \leq 2.25 & \mathrm{C}_{1}=568.03 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}}{\lambda_{1}} \text { otherwise } &
\end{array}\right.
\end{array}
$$

Calculate the compression capacity of the shingled plate

$$
\begin{aligned}
& \lambda_{\text {man }}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\text {avg } 2}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) \\
& \mathrm{C}_{2} \mathrm{~N}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{l}
\left(0.66{ }^{\lambda_{2}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}\right) \text { if } \lambda_{2} \leq 2.25 \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}}{\lambda_{2}} \text { otherwise }
\end{array}\right. \\
& \mathrm{RF}_{\text {ㅎhatainum }}:=\frac{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{2 \mathrm{LL}}}=3.26
\end{aligned}
$$

$$
\mathrm{RF}_{\text {EWhWhapav }}=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35}
$$

$$
\mathrm{RF}_{\text {FHWAopr }}=4.23
$$

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

$$
\begin{aligned}
& \frac{\mathrm{P}_{2 \mathrm{DL}}}{\mathrm{P}_{2 \mathrm{LL}}}=1.2 \\
& \mathrm{R}_{\text {MDLaubhar }}=1-0.1 \cdot\left(\frac{1.18-1}{5}\right)
\end{aligned} \quad \mathrm{R}_{\text {DL_LL }}=1 .
$$

calculate the factored Whitmore buckling strength. Sum together the individual components of the gusset and shingle plate.

$$
\begin{aligned}
& \mathrm{P}_{\text {Mad }}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\text {mid }}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s} 1}=17866.8 \cdot \mathrm{kip} \quad \quad \mathrm{PA}_{2}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\text {mid }}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s} 2}=12642.21 \cdot \mathrm{kip} \\
& {\underset{\text { madv }}{ }}=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}=692.5 \cdot \mathrm{kip} \quad \quad \mathrm{P}_{\mathrm{mazi}}=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}=490 \cdot \mathrm{kip}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Whit }_{\text {dN }}:=\phi_{\text {C_new }} \cdot\left(\begin{array}{l}
\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o} 1}}{\mathrm{P}_{\mathrm{e} 1}} \cdot \mathrm{P}_{\mathrm{o} 1}
\end{array}\right) \text { if } \frac{\mathrm{P}_{\mathrm{e} 1}}{\mathrm{P}_{\mathrm{o} 1}} \geq 0.44=647.29 \cdot \mathrm{kip} \\
0.858{ }^{\left(877 \cdot \mathrm{P}_{\mathrm{e} 1}\right. \text { otherwise }}
\end{array}\right. \\
& \underset{\text { Whit } 2 \text { _n }}{\text { Win }}:=\phi_{\mathrm{C}_{-} \text {new }} \cdot\left(\begin{array}{l}
\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o} 2}}{\mathrm{P}_{\mathrm{e} 2}} \\
0.658 \\
\mathrm{P}_{\mathrm{o} 2}
\end{array}\right) \text { if } \frac{\mathrm{P}_{\mathrm{e} 2}}{\mathrm{P}_{\mathrm{o} 2}} \geq 0.44=458.01 \cdot \mathrm{kip} \\
0.877 \cdot \mathrm{P}_{\mathrm{e} 2} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

calculate the partial plane shear yield check
This check is not relavent to this vertical member because there is no partial plane that can shear and reduce the out-of-plane stiffness of the member
therefore the capacity is only detemined from the sum of the Whitmore buckling strength from the primary gusset and shingle

$$
\begin{aligned}
& \mathrm{RF}_{\text {LRERAMA }}:=\frac{\mathrm{R}_{\mathrm{DL}} \mathrm{LL} \cdot \phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{2 \mathrm{LL}}}=3.35
\end{aligned}
$$

$$
\begin{aligned}
& R F_{\text {LRFRopr }}=4.35
\end{aligned}
$$

Calculate the proposed LFR rating factors

calculate the factored Whitmore buckling strength

$$
\begin{aligned}
& \underset{\text { wax }}{\mathrm{K}}:=0.5 \\
& \mathrm{~F}_{\mathrm{mak}}:=\left\{\mathrm{F}_{\mathrm{y}} \cdot\left[1-\frac{\mathrm{F}_{\mathrm{y}}}{4 \cdot \pi^{2} \mathrm{E}}\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}\right] \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}} \leq \sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=49.52 \cdot \mathrm{ksi}\right. \\
& \frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}} \text { otherwise }
\end{aligned}
$$

$$
\text { Whit: }=0.85 \cdot\left(\mathrm{~A}_{\mathrm{s} 1}+\mathrm{A}_{\mathrm{s} 2}\right) \cdot \mathrm{F}_{\mathrm{cr}}=995.39 \cdot \mathrm{kip}
$$

calculate the partial plane shear yield check
This check is not relavent to this vertical member because there is no partial plane that can shear and reduce the out-of-plane stiffness of the member
therefore the capacity is only detemined from the sum of the Whitmore buckling strength from the primary gusset and shingle

$$
\mathrm{C}_{\text {Mhand }}:=\text { Whit }=995.39 \cdot \mathrm{kip}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {LhLRLinaw }}=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{2 \mathrm{LL}}}=2.69 \\
& \mathrm{RF}_{\text {LidRaph }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=4.49
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Member 2

	Inventory	Operating
Existing FHWA LRFR Method	$\mathrm{RF}_{\text {FHWAinv }}=3.26$	$\mathrm{RF}_{\text {FHWAopr }}=4.23$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=3.35$	$\mathrm{RF}_{\text {LRFRopr }}=4.35$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=2.69$	$\mathrm{RF}_{\text {LFRopr }}=4.49$

MEMBER 3

Compression Member - Need to check Whitmore buckling and partial plane shear yielding

Calculate LRFR rating factors using existing FHWA Guidance method

$$
\underset{\sim}{k}:=1.2
$$

Calculate the compression capacity of the primary gusset plate

$$
\begin{array}{ll}
\lambda_{d s}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg} 1}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda_{1}=0.29 \\
\mathrm{C}_{\mathrm{m} d \mathrm{v}}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{ll}
\left(0.66{ }^{\lambda_{1}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}\right) \text { if } \lambda_{1} \leq 2.25 & \mathrm{C}_{1}=823.79 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}}{\lambda_{1}} \text { otherwise } &
\end{array}\right.
\end{array}
$$

Calculate the compression capacity of the shingled plate

$$
\begin{aligned}
& \lambda_{\text {Mas }}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\text {avg } 2}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) \\
& \mathrm{C}_{2 \mathrm{~N}} \mathrm{~V}=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{l}
\left(0.66{ }^{\lambda_{2}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}\right) \text { if } \lambda_{2} \leq 2.25 \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}}{\lambda_{2}} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {FHWAopr }}=2.62
\end{aligned}
$$

Calculate the proposed LRFR rating factors
Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

$$
\begin{aligned}
& \frac{\mathrm{P}_{3 \mathrm{DL}}}{\mathrm{P}_{3 \mathrm{LL}}}=1.27 \\
& \mathrm{R}_{\text {MDLaubhar: }}=1-0.1 \cdot\left(\frac{1.27-1}{5}\right)
\end{aligned} \quad \text { R }_{\text {DL_LL }}=0.99 \text {. }
$$

Calculate the factored Whitmore buckling strength.

$$
\begin{aligned}
& \mathrm{P}_{\text {Mad }}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\text {mid }}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s} 1}=2279.39 \cdot \mathrm{kip} \\
& \underset{\text { madn }}{ }=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}=1032.5 \cdot \mathrm{kip} \\
& \mathrm{Me}_{\mathrm{Ma}}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\text {mid }}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s} 2}=1523.28 \cdot \mathrm{kip} \\
& {\underset{\text { ma }}{2} \mathrm{~N}}=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}=690 \cdot \mathrm{kip}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Whit } 2:=\phi_{\text {C_new }} \cdot \left\lvert\, \begin{array}{l}
\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o} 1}}{\mathrm{P}_{\mathrm{e}}} \\
0.658 \\
\mathrm{P}_{\mathrm{o} 1}
\end{array}\right) \text { if } \frac{\mathrm{P}_{\mathrm{e} 1}}{\mathrm{P}_{\mathrm{o} 1}} \geq 0.44=811.48 \cdot \mathrm{kip} \\
0.877 \cdot \mathrm{P}_{\mathrm{e} 1} \text { otherwise }
\end{array}\right. \\
& \text { Whit }_{2}:=\phi_{\mathrm{C}_{-} \text {new }} \cdot \left\lvert\, \begin{array}{l}
\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o} 2}}{\mathrm{P}_{\mathrm{e} 2}} \\
0.658 \\
\mathrm{e}^{2}
\end{array}\right) \quad \text { if } \frac{\mathrm{P}_{\mathrm{o} 2}}{\mathrm{P}_{\mathrm{o} 2}} \geq 0.44=542.29 \cdot \mathrm{kip} \\
0.877 \cdot \mathrm{P}_{\mathrm{e} 2} \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Calculate the partial plane shear yield check

$$
\begin{aligned}
& \mathrm{PS}_{2 \mathrm{n}}:=\phi_{\mathrm{vg}} \cdot \frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(35.7 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (39.9 \mathrm{deg})}=593.79 \cdot \mathrm{kip} \\
& \mathrm{PS}_{2 \mathrm{n}}:=\phi_{\mathrm{vg}} \cdot \frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(25.2 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (39.9 \mathrm{deg})}=419.14 \cdot \mathrm{kip}
\end{aligned}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
\mathrm{C}_{\text {MhRERRM }}:=\min \left(\text { Whit }_{1}+\text { Whit }_{2}, \mathrm{PS}_{1}+\mathrm{PS}_{2}\right)
$$

$$
\mathrm{RF}_{\text {LRERRMN }}:=\frac{\mathrm{R}_{\mathrm{DL} _L L} \cdot \phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{3 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{3 \mathrm{LL}}}=1.08
$$

$$
\mathrm{RF}_{\mathrm{L} \mathrm{RRRRaph}}=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35}
$$

$$
\mathrm{RF}_{\text {LRFRopr }}=1.4
$$

Calculate the proposed LFR rating factors

calculate the factored Whitmore buckling strength

$$
\begin{aligned}
& \mathrm{F}_{\text {Wak }}:=0.5 \\
& \mathrm{~F}_{\mathrm{y}} \cdot\left[1-\frac{\mathrm{F}_{\mathrm{y}}}{4 \cdot \pi^{2} \mathrm{E}}\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{s}}}\right)^{2}\right] \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}} \leq \sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=44.34 \cdot \mathrm{ksi} \\
& \frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}} \text { otherwise } \\
& \text { Whit: }=0.85 \cdot\left(\mathrm{~A}_{\mathrm{s} 1}+\mathrm{A}_{\mathrm{s} 2}\right) \cdot \mathrm{F}_{\mathrm{cr}}=1298.32 \cdot \mathrm{kip}
\end{aligned}
$$

calculate the partial plane shear yield check

$$
\mathrm{PS}:=\frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(35.7 \mathrm{in}+25.2 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (39.9 \mathrm{deg})}=1012.93 \cdot \mathrm{kip}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
C_{\text {Mharerw }}:=\min (\text { Whit }, \text { PS })=1012.93 \cdot \mathrm{kip}
$$

$$
\mathrm{RF}_{\mathrm{W} \text { ERRopki }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3}
$$

$$
\mathrm{RF}_{\text {LFRopr }}=1.72
$$

Summarize Rating Factors Using the Three Methods for Member 3

	Inventory	Operating
Existing FHWA LRFR Method	$\mathrm{RF}_{\text {FHWAinv }}=2.02$	$\mathrm{RF}_{\text {FHWAopr }}=2.62$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=1.08$	$\mathrm{RF}_{\text {LRFRopr }}=1.4$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=1.03$	$\mathrm{RF}_{\text {LFRopr }}=1.72$

MEMBER 4

Calculate LRFR rating factors using existing FHWA Guidance method that suggests a Whitmore buckling analysis

Calculate the compression capacity of the primary gusset plate

$$
\begin{array}{ll}
\lambda_{d i}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg} 1}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda_{1}=0.4 \\
\mathrm{C}_{d \mathrm{~d}:}:=\phi_{\mathrm{C}} \cdot \left\lvert\,\left(\begin{array}{ll}
\left(0.66{ }^{\lambda_{1}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}\right) \text { if } \lambda_{1} \leq 2.25 & \mathrm{C}_{1}=808.95 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}}{\lambda_{1}} \text { otherwise } &
\end{array}\right.\right.
\end{array}
$$

Calculate the compression capacity of the shingled plate

$$
\begin{array}{ll}
\lambda_{2 a}:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg} 2}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda_{2}=0.39 \\
\mathrm{C}_{2 \mathrm{~m} 2 \mathrm{v}}:=\phi_{\mathrm{C}} \cdot\left(\begin{array}{ll}
\left(0.66{ }^{\lambda_{2}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}\right) \text { if } \lambda_{2} \leq 2.25 & \mathrm{C}_{2}=697.1 \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 2}}{\lambda_{2}} \text { otherwise } &
\end{array}\right.
\end{array}
$$

$$
\mathrm{RF}_{\text {عhwhadinum }}: \frac{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{4 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{4 \mathrm{LL}}}=3.7
$$

$$
\mathrm{RF}_{\text {为hahaopav }}=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35}
$$

$$
\mathrm{RF}_{\text {FHWAopr }}=4.79
$$

Calculate the proposed LRFR rating factors. Check the member as if it was a chord splice to ensure the section won't yeild under the eccentric loading, this would consider the load from both the P3 and P4 members.

$$
\underset{\mathrm{Nw}}{\mathrm{~K}}:=0.5 \quad \mathrm{~L}_{\text {splice }}:=5.2 \text { in } \quad \frac{\mathrm{K} \cdot \mathrm{~L}_{\text {splice }} \cdot \sqrt{12}}{2 \cdot \mathrm{t}_{\mathrm{g}}}=9.01
$$

Since KL/r of the free plate between chords is less than 25, Fcr equals Fy (MBE Equation 6A.6.12.6.8-2)

$$
\mathrm{F}_{\text {wat }}:=\mathrm{F}_{\mathrm{y}}
$$

Calculate the height (h1) of the P3 and P4 force resultant, use the factored loads

$$
\begin{array}{ll}
\text { P3 }:=2 \cdot \gamma_{L L} \cdot P_{3 L L}+2 \cdot \gamma_{D L} \cdot P_{3 D L} & \text { P3 }=1741 \cdot \mathrm{kip} \\
\text { P4 }:=2 \cdot \gamma_{L L} \cdot P_{4 L L}+2 \cdot \gamma_{D L} \cdot P_{4 D L} & \mathrm{P} 4=988.25 \cdot \mathrm{kip} \\
\mathrm{~h}_{1}:=\frac{\mathrm{P} 4 \cdot \cos (1.6 \mathrm{deg}) \cdot(14.0 \mathrm{in})+\mathrm{P} 3 \cdot \cos (38.3 \mathrm{deg}) \cdot(29.2 \mathrm{in})}{\mathrm{P} 4 \cdot \cos (1.6 \mathrm{deg})+\mathrm{P} \cdot \cos (38.3 \mathrm{deg})} & \mathrm{h}_{1}=22.82 \mathrm{in}
\end{array}
$$

Calculate the gross area of the combined gusset and shingle plate cross-section

$$
\mathrm{A}_{\mathrm{g}}:=2 \cdot \mathrm{t}_{\mathrm{g}} \cdot(61.7 \mathrm{in})+2 \cdot \mathrm{t}_{\mathrm{g}} \cdot(51.7 \mathrm{in})=113.4 \mathrm{in}^{2}
$$

Calculate the height of the centroid of the combined gusset and shingle plate cross-section

$$
\mathrm{h}_{2}:=\frac{2 \cdot \mathrm{t}_{\mathrm{g}} \cdot(61.7 \mathrm{in}) \cdot\left(\frac{61.7}{2} \mathrm{in}\right)+2 \cdot \mathrm{t}_{\mathrm{g}} \cdot(51.7 \mathrm{in}) \cdot\left(\frac{51.7}{2} \mathrm{in}\right)}{\mathrm{A}_{\mathrm{g}}} \quad \mathrm{~h}_{2}=28.57 \mathrm{in}
$$

Calculate the eccentricity between the force resultant and the centroid of the cross-section

$$
\mathrm{e}_{\mathrm{p}}:=\mathrm{h}_{2}-\mathrm{h}_{1} \quad \mathrm{e}_{\mathrm{p}}=5.75 \mathrm{in}
$$

Since the centroid of the force is below the centroid of the cross-section, the maximum axial+bending stress will be at the bottom of the plate. Now calculate the section modulus to the bottom of the cross-section

$$
\begin{gathered}
\mathrm{I}_{\mathrm{g}}:=2 \cdot\left[\frac{(61.7 \mathrm{in})^{3} \cdot \mathrm{t}_{\mathrm{g}}}{12}+(61.7 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot\left(\frac{61.7}{2} \mathrm{in}^{2}-\mathrm{h}_{2}\right)^{2}+\frac{(51.7 \mathrm{in})^{3} \cdot \mathrm{t}_{\mathrm{g}}}{12}+(51.7 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot\left(\frac{51.7}{2} \mathrm{in}-\mathrm{h}_{2}\right)^{2}\right] \\
\mathrm{S}_{\mathrm{g}}:=\frac{\mathrm{I}_{\mathrm{g}}}{\mathrm{~h}_{2}} \quad \mathrm{~S}_{\mathrm{g}}=1112.78 \cdot \mathrm{in}^{3}
\end{gathered}
$$

Calculate the capacity of the section assuming it occurs at first yield using beam bending theory (MBE Eqn. 6A.6.12.6.8-1)

$$
\frac{\left(\mathrm{P}_{4 \mathrm{DL}} \cdot \cos (1.6 \mathrm{deg})+\mathrm{P}_{3 \mathrm{DL}} \cdot \cos (38.3 \mathrm{deg})\right)}{\left(\mathrm{P}_{4 \mathrm{LL}} \cdot \cos (1.6 \mathrm{deg})+\mathrm{P}_{3 L L} \cdot \cos (38.3 \mathrm{deg})\right)}=0.85
$$

** The $D L / L L$ ratio is less than 1.0 , so no $D L / L L$ reduction is necessary **

Calculate the LRFR Inventory rating factor

$$
\begin{aligned}
& \underset{\mathrm{RF}_{\mathrm{LNRARRWMN}}}{ }:=\frac{\phi_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{DL} _\mathrm{LL}} \cdot \mathrm{C}_{\mathrm{LRFR}}-2 \cdot \gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{4 \mathrm{DL}} \cdot \cos (1.6 \mathrm{deg})+\mathrm{P}_{3 \mathrm{DL}} \cdot \cos (38.3 \mathrm{deg})\right)}{2 \cdot \gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{4 \mathrm{LL}} \cdot \cos (1.6 \mathrm{deg})+\mathrm{P}_{3 \mathrm{LL}} \cdot \cos (38.3 \mathrm{deg})\right)} \\
& \text { ** dead and live loads were doubled because ealier in the } \\
& \text { sheet they were halved so resistance checks could be made } \\
& \text { per gusset plate, which doesn't apply to the chord splice ** } \\
& \mathrm{RF}_{\text {LRFRinv }}=1.26 \\
& \mathrm{RF}_{\text {whernapan }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35} \\
& \text { RF }_{\text {LRFRopr }}=1.63
\end{aligned}
$$

Calculate the proposed LFR rating factors
The capacity calculation is no different in LFR

$$
\begin{aligned}
& \underset{\text { MhwerRe }}{\mathrm{C}_{\mathrm{N}}}: \frac{\mathrm{C}_{\mathrm{LRFR}}}{\phi_{\mathrm{CS}}}=3575.4 \cdot \mathrm{kip}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {LERRopu }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=2.43
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Member 4

Inventory

Existing FHWA LRFR Method

Proposed LRFR Method

Proposed LFR Method

$$
\mathrm{RF}_{\text {FHWAinv }}=3.7
$$

$\mathrm{RF}_{\text {LRFRinv }}=1.26$
$\mathrm{RF}_{\text {LFRinv }}=1.46$

Operating

$$
\mathrm{RF}_{\mathrm{FHWAopr}}=4.79
$$

$\mathrm{RF}_{\text {LRFRopr }}=1.63$
$\mathrm{RF}_{\text {LFRopr }}=2.43$

Vertical Plane 1 Shear Check

Calculate LRFR rating factors using existing FHWA Guidance method
Gross Yielding

$$
\mathrm{V}_{\mathrm{ny}}:=\phi_{\mathrm{vy}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.4 \mathrm{in}+63.0 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega=1197 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\mathrm{nu}}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[54.4+63.0-16 \cdot\left(1+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}}=1614 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{FHWA}}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1196.72 \cdot \text { kip }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {FHWAopr }}=4.49
\end{aligned}
$$

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE
Article 6A.6.12.6.1

$$
\begin{aligned}
& \frac{\mathrm{P}_{\mathrm{VDL}}}{\mathrm{P}_{\mathrm{VLL}}}=1.3 \\
& \mathrm{R}_{\mathrm{RD} L_{\text {Luhhawa }}:=1-0.1 \cdot\left(\frac{1.30-1}{5}\right)} \quad \mathrm{R}_{\mathrm{DL} _L L}=0.99
\end{aligned}
$$

Gross Yielding

$$
V_{\text {why }}:=\phi_{\mathrm{vg}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.4 \mathrm{in}+63.0 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}}=1498 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\text {whan }}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[54.4+63.0-16 \cdot\left(1+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}}=1614 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{C}_{\text {Mhandrina }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1498.02 \cdot \mathrm{kip} \\
& \mathrm{RF}_{\text {LRARLMN }}:=\frac{\mathrm{R}_{\mathrm{DL}} \mathrm{LL} \cdot \phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{\mathrm{VDL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{\mathrm{VLL}}}=3.99
\end{aligned}
$$

$$
\mathrm{RF}_{\mathrm{L}_{2} \text { RERQPavi }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35}
$$

$\mathrm{RF}_{\text {LRFRopr }}=5.17$

Calculate the proposed LFR rating factors

Gross Yielding

$$
\mathrm{V}_{\text {way }}:=\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.4 \mathrm{in}+63.0 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\text {new }}=1498 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\text {MAA }}:=0.85\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[54.4+63.0-26 \cdot\left(1+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}}=1521 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{C}_{\text {LWERRM }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1498.02 \cdot \text { kip } \\
& \mathrm{RF}_{\text {LLFRLiaNW }}:=\frac{\mathrm{C}_{\mathrm{LFR}}-\gamma_{\mathrm{DL}_{-}} \text {LFR } \cdot \mathrm{P}_{\mathrm{VDL}}}{\gamma_{\mathrm{LL} _ \text {LFR }} \cdot \mathrm{P}_{\mathrm{VLL}}}=3.65 \\
& \mathrm{RF}_{\text {wherapke }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.30} \\
& \mathrm{RF}_{\text {LFRopr }}=6.1
\end{aligned}
$$

	Inventory	Operating
Existing FHWA LRFR Method	$\mathrm{RF}_{\text {FHWAinv }}=3.46$	$\mathrm{RF}_{\mathrm{FHWAopr}}=4.49$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=3.99$	$\mathrm{RF}_{\text {LRFRopr }}=5.17$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=3.65$	$\mathrm{RF}_{\text {LFRopr }}=6.1$

Vertical Plane 2 Shear Check

$$
\begin{aligned}
& \mathrm{P}_{\text {whatan }}:=\mathrm{P}_{1 \mathrm{DL}} \cdot \cos (50.2 \mathrm{deg})=179 \cdot \text { kip } \\
& {\underset{\text { makhan }}{ }}_{\mathrm{P}_{1}}=\mathrm{P}_{1 \mathrm{LL}} \cdot \cos (50.2 \mathrm{deg})=120 \cdot \text { kip }
\end{aligned}
$$

Calculate LRFR rating factors using existing FHWA Guidance method
Gross Yielding

$$
\mathrm{V}_{\text {way }}:=\phi_{\mathrm{vy}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.5 \mathrm{in}+62.4 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega=1192 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\text {Wana }}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[54.5+62.4-14 \cdot\left(1+\frac{1}{8}\right)\right] \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=1643 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{C}_{\text {GLKWKAA: }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1191.62 \cdot \text { kip } \\
& \mathrm{RF}_{\text {FLWALink }}:=\frac{\mathrm{C}_{\mathrm{FHWA}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{\mathrm{VDL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{\mathrm{VLL}}}=4.59 \\
& \mathrm{RF}_{\text {玉hahatandi }}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {FHWAopr }}=5.96
\end{aligned}
$$

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.1

$$
\begin{aligned}
& \frac{\mathrm{P}_{\mathrm{VDL}}}{\mathrm{P}_{\mathrm{VLL}}}=1.49 \\
& \mathrm{R}_{\text {Didanhah: }}=1-0.1 \cdot\left(\frac{1.49-1}{5}\right)=0.99
\end{aligned}
$$

Gross Yielding

$$
\underset{\text { maxy }}{\mathrm{V}_{2}}:=\phi_{\mathrm{vg}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.5 \mathrm{in}+62.4 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}}=1492 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\text {Whai }}:=\phi_{\mathrm{Vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[54.5+62.4-14 \cdot\left(1+\frac{1}{8}\right)\right] \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=1643 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\mathrm{C}_{\text {Manam }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1491.64 \cdot \mathrm{kip}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {whankapa: }}:=\mathrm{RF}_{\text {LRFRinv: }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {LRFRopr }}=6.8
\end{aligned}
$$

Calculate the proposed LFR rating factors

Gross Yielding

$$
{\underset{W W y y}{c}}:=\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(54.4 \mathrm{in}+63.0 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}}=1498 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\text {MAAA }}:=0.85\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[54.4+63.0-26 \cdot\left(1+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}}=1521 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{C}_{\text {MLERR: }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1498.02 \cdot \mathrm{kip} \\
& \mathrm{RF}_{\text {L_LRians }}:=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{\mathrm{VDL}}}{\gamma_{\mathrm{LL}} \mathrm{LFR} \cdot \mathrm{P}_{\mathrm{VLL}}}=4.84 \\
& \mathrm{RF}_{\mathrm{F}_{\text {LIRROph: }}}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.30} \\
& \mathrm{RF}_{\text {LFRopr }}=8.09
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Vertical Plane 2 Shear

	Inventory	Operating
Existing FHWA LRFR Method	$\mathrm{RF}_{\text {FHWAinv }}=4.59$	$\mathrm{RF}_{\text {FHWAopr }}=5.96$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=5.25$	$\mathrm{RF}_{\text {LRFRopr }}=6.8$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=4.84$	$\mathrm{RF}_{\text {LFRopr }}=8.09$

Horizontal Plane Shear Check

the only valid plane would have to pass through the multi-celled box above the bearing thus requiring alot of area to shear that cannot occur.

I-80 GUSSET PLATE CHECKS

All Units: kip, in
These checks will make comparisions between the existing FHWA Guidance and new proposed MBE specification. Since the final report clearly outlined that Whitmore compression checks of chord splices do not provide value, they will not be reported. Fastner checks will also not be provided. Condition factors are assumed to be 1.00.

TRUSS JOINT L3

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{y}}:=50 \mathrm{ksi} \\
\mathrm{~F}_{\mathrm{u}}:=70 \mathrm{ksi} \quad \text { Material Properties } \\
\mathrm{E}:=2900 \mathrm{ksi} & \\
\mathrm{t}_{\mathrm{g}}:=0.75 \mathrm{in} \quad \text { Gusset Thickness } & \\
\mathrm{A}_{\mathrm{TCS}}:=\left(\frac{3}{8} \mathrm{in}\right) \cdot 24 \mathrm{in} & \mathrm{~A}_{\mathrm{TCS}}=9 \mathrm{in}^{2} \\
\mathrm{~A}_{\mathrm{BCS}}:=\left(\frac{3}{8} \mathrm{in}\right) \cdot 18 \mathrm{in} & \mathrm{~A}_{\mathrm{BCS}}=6.75 \mathrm{in}^{2} \quad \text { Splice Plate Areas } \\
\mathrm{A}_{\mathrm{SCS}}:=\left(\frac{4}{8} \mathrm{in}\right) \cdot 30 \mathrm{in}+\left(\frac{7}{16} \mathrm{in}\right) \cdot 16 \mathrm{in} & \mathrm{~A}_{\mathrm{SCS}}=22 \mathrm{in}^{2}
\end{array}
$$

Existing FHWA Guide Resistance Factors

$$
\begin{array}{ll}
\phi_{\mathrm{y}}:=0.95 & \phi_{\mathrm{c}}:=0.9 \\
\phi_{\mathrm{u}}:=0.80 & \phi_{\mathrm{vy}}:=0.95 \\
\phi_{\mathrm{bs}}:=0.80 & \phi_{\mathrm{vu}}:=0.80 \\
\Omega:=0.74 &
\end{array}
$$

Proposed Resistance Factors

$$
\begin{array}{ll}
\phi_{\mathrm{bs} _ \text {new }}:=1.00 & \phi_{\mathrm{C} _ \text {new }}:=0.95 \\
\phi_{\mathrm{vg}}:=1.00 & \phi_{\mathrm{Cs}}:=0.85 \\
\Omega_{\text {new }}:=0.88 &
\end{array}
$$

Load Factors

$$
\begin{array}{ll}
\gamma_{\mathrm{LL}}:=1.75 & \gamma_{\text {LL_LFR }}:=2.17 \\
\gamma_{\mathrm{DL}}:=1.25 & \gamma_{\text {DL_LFR }}:=1.3
\end{array}
$$

System Factor

$\phi_{\mathrm{s}}:=0.90 \quad$ assumes it's a bolted truss, proposed as mandatory for LRFR under MBE Article 6A.6.12.6. The system factor will not be used in calculations using the existing FHWA Guidance

Member Forces For One Gusset Plate

$P_{1 D L}:=\frac{1213}{2}$ kip
$\mathrm{P}_{1 \mathrm{LL}}:=\frac{419+37}{2} \mathrm{kip}$
Compression
$\mathrm{P}_{2 \mathrm{DL}}:=\frac{719}{2} \mathrm{kip}$
$P_{2 L L}:=\frac{183+23}{2} \mathrm{kip}$
Tension
$\mathrm{P}_{3 \mathrm{DL}}:=\frac{262}{2} \mathrm{kip}$
$\mathrm{P}_{3 \mathrm{LL}}:=\frac{124+36}{2}$ kip \quad Compression
$\mathrm{P}_{4 \mathrm{DL}}:=\frac{667}{2}$ kip
$\mathrm{P}_{4 \mathrm{LL}}:=\frac{206+26}{2}$ kip Compression
$\mathrm{P}_{5 \mathrm{DL}}:=\frac{267}{2} \mathrm{kip}$
$\mathrm{P}_{5 \mathrm{LL}}:=\frac{255+22}{2}$ kip Compression

MEMBERS 1 and 5

Calculate LRFR rating factors using existing FHWA Guidance method

$$
\underset{\sim}{K}:=1.2
$$

Calculate the compression capacity of the primary gusset plate

$$
\begin{array}{ll}
\lambda:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg}}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda=0.16 \\
\mathrm{C}_{\mathrm{N}}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{ll}
\left(0.666^{\lambda} \cdot \mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}\right) \text { if } \lambda \leq 2.25 & \mathrm{C}=1709.3 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}}{\lambda} \text { otherwise } &
\end{array}\right.
\end{array}
$$

Calculate the rating factors for Member 1

$$
\begin{aligned}
& \mathrm{RF}_{\text {FHWAinv }}:=\frac{\mathrm{C}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{1 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{1 \mathrm{LL}}}=2.38 \\
& \mathrm{RF}_{\text {FHWAopr }}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {FHWAopr }}=3.09
\end{aligned}
$$

Calculate the rating factors for Member 5

$$
\mathrm{RF}_{\text {chahaina: }}=\frac{\mathrm{C}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{5 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{5 \mathrm{LL}}}=6.36
$$

$$
\mathrm{RF}_{\text {FHWAopr }}=8.25
$$

Calculate the proposed LRFR rating factors. In the proposed method, both members are evaluated as part of a chord splice check.

Start by calculating the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6. Look at loads on both sides of the splice and use the worst case.
left side

$$
\mathrm{F}_{\text {left }}:=\gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{5 \mathrm{DL}}+\mathrm{P}_{4 \mathrm{DL}} \cdot \cos (53.1 \mathrm{deg})\right)+\gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{5 \mathrm{LL}}+\mathrm{P}_{4 \mathrm{LL}} \cdot \cos (53.1 \mathrm{deg})\right)=781.44 \cdot \mathrm{kip}
$$

right side

$$
\mathrm{F}_{\text {right }}:=\gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{1 \mathrm{DL}}-\mathrm{P}_{2 \mathrm{DL}} \cdot \cos (53.1 \mathrm{deg})\right)+\gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{1 \mathrm{LL}}-\mathrm{P}_{2 \mathrm{LL}} \cdot \cos (53.1 \mathrm{deg})\right)=779.09 \cdot \mathrm{kip}
$$

since the loads are very similar, calulate the DL/LL reduction for each set of loads to consider the worst case loading

$$
\begin{array}{ll}
\frac{\left(\mathrm{P}_{5 \mathrm{DL}}+\mathrm{P}_{4 \mathrm{DL}} \cdot \cos (53.1 \mathrm{deg})\right)}{\left(\mathrm{P}_{5 \mathrm{LL}}+\mathrm{P}_{4 \mathrm{LL}} \cdot \cos (53.1 \mathrm{deg})\right)}=1.6 & \frac{\left(\mathrm{P}_{1 \mathrm{DL}}-\mathrm{P}_{2 \mathrm{DL}} \cdot \cos (53.1 \mathrm{deg})\right)}{\left(\mathrm{P}_{1 \mathrm{LL}}-\mathrm{P}_{2 \mathrm{LL}} \cdot \cos (53.1 \mathrm{deg})\right)}=2.35 \\
\mathrm{R}_{\mathrm{DL} _ \text {LLleft }}:=1-0.1 \cdot\left(\frac{1.6-1}{5}\right)=0.99 & \mathrm{R}_{\mathrm{DL} _ \text {LLright }}:=1-0.1 \cdot\left(\frac{2.35-1}{5}\right)=0.97
\end{array}
$$

The loads on the right side would be more sever, so base the chord splice capacity on the of the right side of the connection
Determine the height (h1) of the M1 and M2 force resultant, using the factored loads. Since both members share a common workpoint that is on the spliced plane, h1 is simply half the depth of the chord.

$$
\mathrm{h}_{1}:=31.88 \frac{\text { in }}{2} \quad \mathrm{~h}_{1}=15.94 \text { in }
$$

Calculate the gross area of the combined gusset and shingle plate cross-section

$$
\mathrm{A}_{\mathrm{g}}:=2 \cdot \mathrm{t}_{\mathrm{g}} \cdot(74.20 \mathrm{in})+\mathrm{A}_{\mathrm{TCS}}+\mathrm{A}_{\mathrm{BCS}}+2 \cdot \mathrm{~A}_{\mathrm{SCS}}=171.05 \mathrm{in}^{2}
$$

The other cross-sectional properties of the combined section were determined using a CAD program.

$$
\begin{array}{ll}
\mathrm{e}_{\mathrm{p}}:=13.98 \text { in } & \begin{array}{l}
\text { is the eccentricity between the force resultant and } \\
\text { the centroid of the combined plate area. }
\end{array} \\
\mathrm{I}_{\mathrm{g}}:=74126 \mathrm{in}^{4} & \begin{array}{l}
\text { is the moment of inertia of the gross spliced } \\
\text { section, calculated with a CAD program }
\end{array}
\end{array}
$$

Since the centroid of the force is below the centroid of the cross-section, the maximum axial+bending stress will be at the bottom of the plate. Now calculate the section modulus to the bottom of the cross-section

$$
\mathrm{S}_{\mathrm{g}}:=\frac{\mathrm{I}_{\mathrm{g}}}{\mathrm{~h}_{1}} \quad \mathrm{~S}_{\mathrm{g}}=4650.31 \cdot \mathrm{in}^{3}
$$

Determine if the chord splice is compact

$$
\underset{\mathrm{W}}{\mathrm{~K}}:=0.5 \quad \mathrm{~L}_{\text {splice }}:=5.5 \text { in } \quad \frac{\mathrm{K} \cdot \mathrm{~L}_{\text {splice }} \cdot \sqrt{12}}{\mathrm{t}_{\mathrm{g}}}=12.7
$$

Since KL/r of the free plate between chords is less than 25 , Fcr equals Fy

$$
\mathrm{F}_{\mathrm{cr}}:=\mathrm{F}_{\mathrm{y}}
$$

Calculate the capacity of the section assuming it occurs at first yield using beam bending theory

$$
\mathrm{C}_{\mathrm{LRFR}}:=\phi_{\mathrm{CS}} \cdot \mathrm{~F}_{\mathrm{Cr}} \cdot\left(\frac{\mathrm{~S}_{\mathrm{g}} \cdot \mathrm{~A}_{\mathrm{g}}}{\mathrm{~S}_{\mathrm{g}}+\mathrm{e}_{\mathrm{p}} \cdot \mathrm{~A}_{\mathrm{g}}}\right)=4800.91 \cdot \mathrm{kip}
$$

Calculate the rating factor

$$
\begin{aligned}
& \mathrm{RF}_{\text {LRFRinv }}:= \frac{\phi_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{DL}_{2} \mathrm{LLRight}} \cdot \mathrm{C}_{\mathrm{LRFR}}-2 \cdot \gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{1 \mathrm{DL}}-\mathrm{P}_{2 \mathrm{DL}} \cdot \cos (53.1 \mathrm{deg})\right)}{2 \cdot \gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{1 \mathrm{LL}}-\mathrm{P}_{2 \mathrm{LL}} \cdot \cos (53.1 \mathrm{deg})\right)} \\
& \frac{\mathrm{RF}_{\text {LRFRinv }}=5.55}{} \\
& \mathrm{RF}_{\text {LRFRopr }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {LRFRopr }}=7.19
\end{aligned}
$$

Calculate the proposed LFR rating factors
The capacity calculation is the same, though there is a difference in the resistance factors.

$$
\mathrm{C}_{\mathrm{LFR}}:=\frac{\mathrm{C}_{\mathrm{LRFR}}}{\phi_{\mathrm{Cs}}}=5648.13 \cdot \mathrm{kip}
$$

Calculate the rating factor

$$
\begin{gathered}
\mathrm{RF}_{\text {LFRinv }}:=\frac{\mathrm{C}_{\text {LFR }}-2 \cdot \gamma_{\text {DL_LFR }} \cdot\left(\mathrm{P}_{1 \mathrm{DL}}-\mathrm{P}_{2 \mathrm{DL}} \cdot \cos (53.1 \mathrm{deg})\right)}{2 \cdot \gamma_{\mathrm{LL} _\mathrm{LFR}} \cdot\left(\mathrm{P}_{1 \mathrm{LL}}-\mathrm{P}_{2 \mathrm{LL}} \cdot \cos (53.1 \mathrm{deg})\right)} \\
\frac{\mathrm{RF}_{\mathrm{LFRinv}}=6.42}{} \\
\mathrm{RF}_{\text {LFRopr }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.30} \\
\mathrm{RF}_{\text {LFRopr }}=10.72
\end{gathered}
$$

Summarize Rating Factors Using the Three Methods for the Chord Splice

Inventory Operating

Existing FHWA Method	not applicable	not applicable
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=5.55$	$\mathrm{RF}_{\text {LRFRopr }}=7.19$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=6.42$	$\mathrm{RF}_{\text {LFRopr }}=10.72$

MEMBER 2

Tension member - Need to check gross/net section checks on Whitmore section, and block shear

define the gross and net section areas on Whitmore section

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{Mg}}:=54.45 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=40.84 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{n}}:=\left[54.45 \mathrm{in}-6 \cdot\left(\frac{7}{8}+\frac{1}{8}\right) \mathrm{in}\right] \cdot \mathrm{t}_{\mathrm{g}}=36.34 \mathrm{in}^{2}
\end{aligned}
$$

define the gross and net sections for block shear check

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{tg}}:=17.56 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=13.17 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{vg}}:=(2 \cdot 33.75 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}=50.62 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{tn}}:=\mathrm{A}_{\mathrm{tg}}-5 \cdot\left(\frac{7}{8}+\frac{1}{8}\right) \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=9.42 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{vn}}:=\mathrm{A}_{\mathrm{vg}}-17 \cdot\left(\frac{7}{8}+\frac{1}{8}\right){\mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}}=37.88 \mathrm{in}^{2}
\end{aligned}
$$

Calculate LRFR rating factors using existing FHWA Guidance method

calculate yield on gross and fracture on net for the Whitmore plane

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{y}}:=\phi_{\mathrm{y}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}}=1940 \cdot \mathrm{kip} \\
& \mathrm{P}_{\mathrm{n}}:=\phi_{\mathrm{u}} \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{n}}=2034.9 \cdot \mathrm{kip}
\end{aligned}
$$

calculate block shear resistance

$$
\mathrm{P}_{\mathrm{bs}}:=\left\lvert\, \begin{aligned}
& {\left[\phi_{\mathrm{bs}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{vg}}+\mathrm{F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{tn}}\right)\right] \text { if } \mathrm{A}_{\mathrm{tn}} \geq 0.58 \cdot \mathrm{~A}_{\mathrm{vn}}=1756.98 \cdot \mathrm{kip}} \\
& {\left[\phi_{\mathrm{bs}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{vn}}+\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{tg}}\right)\right] \text { otherwise }}
\end{aligned}\right.
$$

the capacity is based on the minimum of block shear, yield on Whitmore, and fracture on Whitmore

$$
\begin{aligned}
& \mathrm{C}_{\text {FHWA }}:=\min \left(\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{n}}, \mathrm{P}_{\mathrm{bs}}\right)=1756.98 \cdot \mathrm{kip}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {玉hahatapar }}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {FHWAopr }}=9.4
\end{aligned}
$$

Calculate the proposed LRFR rating factors
Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

$$
\begin{aligned}
& \frac{\mathrm{P}_{2 \mathrm{DL}}}{\mathrm{P}_{2 \mathrm{LL}}}=3.49 \\
& \mathrm{R}_{\text {DL_LL }}:=1-0.1 \cdot\left(\frac{3.49-1}{5}\right)=0.95
\end{aligned}
$$

calculate yield on gross for the Whitmore plane

$$
\underset{\mathrm{My}}{\mathrm{P}}:=\phi_{\mathrm{y}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{R}_{\mathrm{DL} _\mathrm{LL}}=1843 \cdot \mathrm{kip}
$$

$$
\mathrm{P}_{\mathrm{an}}:=\phi_{\mathrm{u}} \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{n}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}=1933.56 \cdot \mathrm{kip}
$$

calculate the block shear resistance
the resistance is the minimum of the Whitmore yield on gross, Whitmore fracture on net, and block shear

$$
\mathrm{C}_{\mathrm{CLR}} \mathrm{RER}_{\mathrm{R}}:=\min \left(\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{n}}, \mathrm{P}_{\mathrm{bs}}\right)=1843.18 \cdot \mathrm{kip}
$$

$$
\mathrm{RF}_{\text {LRRKRinN }}:=\frac{\phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{2 \mathrm{LL}}}=6.71
$$

$$
\mathrm{RF}_{\text {LRFRopr }}=8.7
$$

Calculate the proposed LFR rating factors

calculate yield on effective Whitmore plan
calculate block shear resistance

$$
\stackrel{\mathrm{mbss}}{\mathrm{P}}:=\left\lvert\, \begin{aligned}
& {\left[0.85 \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{vg}}+\mathrm{F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{tn}}\right)\right] \text { if } \mathrm{A}_{\mathrm{tn}} \geq 0.58 \cdot \mathrm{~A}_{\mathrm{vn}}=1866.79 \cdot \mathrm{kip}} \\
& {\left[0.85 \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{vn}}+\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{tg}}\right)\right] \text { otherwise }}
\end{aligned}\right.
$$

the capacity is the minimum of the yield on effective Whitmore area or block shear

$$
\begin{aligned}
& \mathrm{C}_{\text {Cukren }}:=\min \left(\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{bs}}\right)=1866.79 \cdot \mathrm{kip} \\
& \mathrm{RF}_{\text {ILRLinaw }}=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{2 \mathrm{LL}}}=6.26 \\
& \mathrm{RF}_{\text {bwherapk: }}=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=10.45
\end{aligned}
$$

$$
\begin{aligned}
& \beta:=0.15 \\
& A_{e}:=\left\lvert\, \begin{array}{l}
A_{n}+\beta \cdot A_{g} \text { if } A_{n}+\beta \cdot A_{g} \leq A_{g}=40.84 \text { in }^{2} \\
A_{g} \text { otherwise }
\end{array}\right. \\
& \mathrm{P}_{\mathrm{m}} \mathrm{M}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{e}}=2042 \cdot \mathrm{kip}
\end{aligned}
$$

	Inventory	Operating
Existing FHWA Method	$\mathrm{RF}_{\text {FHWAinv }}=7.25$	$\mathrm{RF}_{\mathrm{FHWAopr}}=9.4$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=6.71$	$\mathrm{RF}_{\text {LRFRopr }}=8.7$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=6.26$	$\mathrm{RF}_{\text {LFRopr }}=10.45$

MEMBER 3

Compression Member - Need to check Whitmore buckling and partial plane shear yielding

Calculate LRFR rating factors using existing FHWA Guidance method
Calculate the compression capacity of the primary gusset plate

$$
\begin{aligned}
& \mathrm{K}:=1.2 \\
& \lambda:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg}}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right)=0.43 \\
& \text { C Ckhwhan }=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{l}
\left(0.66^{\lambda} \cdot \mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}\right) \text { if } \lambda \leq 2.25=1457.48 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}}{\lambda} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\mathrm{RF}_{\text {相hahaopav }}=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35}
$$

$$
\mathrm{RF}_{\text {FHWAopr }}=11.98
$$

Calculate the proposed LRFR rating factors (minimum of Whitmore buckling and partial plane shear)

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6

$$
\begin{array}{ll}
\frac{\mathrm{P}_{3 D L}}{\mathrm{P}_{3 L L}}=1.64 \\
\mathrm{R}_{\text {DLLAMLANM }}:=1-0.1 \cdot\left(\frac{1.64-1}{5}\right) & \mathrm{R}_{\mathrm{DL} _L L}=0.99
\end{array}
$$

calculate the factored Whitmore buckling strength.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\mathrm{mid}}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s}}=25943.81 \cdot \mathrm{kip} \\
& \mathrm{P}_{\mathrm{o}}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}=1936.12 \cdot \mathrm{kip}
\end{aligned}
$$

$$
\text { Whit } \left.:=\phi_{\mathrm{C} _ \text {new }} \cdot \mathrm{R}_{\mathrm{DL} _\mathrm{LL}} \cdot \left\lvert\, \begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{e}}} \\
0.658 \cdot \mathrm{P}_{\mathrm{o}}
\end{array}\right.\right) \text { if } \frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{o}}} \geq 0.44=1759.94 \cdot \mathrm{kip}
$$

calculate the partial plane shear yield check
there is no valid partial plane shear plane for this vertical member and this does not need to be checked
the buckling strength is the Whitmore buckling strength
$\mathrm{RF}_{\text {LRFRopr }}=13.15$

$$
\begin{aligned}
& \mathrm{RF}_{\text {MRARRWMA }}:=\frac{\phi_{\mathrm{s}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{3 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{3 \mathrm{LL}}}=10.14
\end{aligned}
$$

Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)
calculate the factored Whitmore buckling strength

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{Wak}}^{\mathrm{K}}:=0.5 \\
& \mathrm{~F}_{\mathrm{y}} \cdot\left[1-\frac{\mathrm{F}_{\mathrm{y}}}{4 \cdot \pi^{2} \mathrm{E}}\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{s}}}\right)^{2}\right] \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{s}}} \leq \sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=49.07 \cdot \mathrm{ksi} \\
& \frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{s}}}\right)^{2}} \text { otherwise } \\
& \text { Whit: }=0.85 \cdot \mathrm{~A}_{\mathrm{s}} \cdot \mathrm{~F}_{\mathrm{Cr}}=1615 \cdot \mathrm{kip}
\end{aligned}
$$

calculate the partial plane shear yield check
there is no valid partial plane shear plane for this vertical member and this does not need to be checked
the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
\mathrm{C}_{\text {Whakhe }}:=\text { Whit }=1615 \cdot \mathrm{kip}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {LLRRinaw }}=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{3 \mathrm{DL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{3 \mathrm{LL}}}=8.32 \\
& \mathrm{RF}_{\text {makRoph: }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=13.89
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Member 3

	Inventory	Operating
Existing FHWA Method	$\mathrm{RF}_{\text {FHWAinv }}=9.24$	$\mathrm{RF}_{\text {FHWAopr }}=11.98$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=10.14$	$\mathrm{RF}_{\text {LRFRopr }}=13.15$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=8.32$	$\mathrm{RF}_{\text {LFRopr }}=13.89$

MEMBER 4

Compression Member - Need to check Whitmore buckling and partial plane shear yielding

$$
\begin{aligned}
& \mathrm{K}:=1.2 \\
& \mathrm{~L}_{\text {avgg }}:=\frac{0 \mathrm{in}+14.26 \mathrm{in}+0 \mathrm{in}}{3} \\
& \mathrm{~L}_{\text {maidv }}:=14.26 \mathrm{in} \\
& \mathrm{r}_{\text {su: }}:=\frac{\mathrm{t}_{\mathrm{g}}}{\sqrt{12}} \\
& \mathrm{~A}_{\text {ms }}:=54.45 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}
\end{aligned}
$$

Calculate LRFR rating factors using existing FHWA Guidance method
Calculate the compression capacity of the primary gusset plate

$$
\begin{aligned}
& \mathrm{K}:=1.2 \\
& \lambda:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg}}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right)=0.12 \\
& \mathrm{C}_{\text {EWhWhan }}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{l}
\left(0.66^{\lambda} \cdot \mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}\right) \text { if } \lambda \leq 2.25=1747.39 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}}{\lambda} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\mathrm{RF}_{\text {whahainw: }}:=\frac{\mathrm{C}_{\mathrm{FHWA}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{4 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{4 \mathrm{LL}}}=6.55
$$

$$
\mathrm{RF}_{\text {Fhwhandi }}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35}
$$

$$
\mathrm{RF}_{\text {FHWAopr }}=8.5
$$

Calculate the proposed LRFR rating factors (minimum of Whitmore buckling and partial plane shear)
Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE
Article 6A.6.12.6

$$
\begin{aligned}
& \frac{\mathrm{P}_{4 \mathrm{DL}}}{\mathrm{P}_{4 \mathrm{LL}}}=2.88 \\
& \mathrm{R}_{\text {DLLambahar }}:=1-0.1 \cdot\left(\frac{2.88-1}{5}\right) \quad \mathrm{R}_{\text {DL_LL }}=0.96
\end{aligned}
$$

calculate the factored Whitmore buckling strength.

$$
\begin{aligned}
& \mathrm{Pe}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\mathrm{mid}}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s}}=10777.96 \cdot \mathrm{kip} \\
& \mathrm{MO}_{\mathrm{M}}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}=2041.87 \cdot \mathrm{kip} \\
& \text { Whit }:=\phi_{\mathrm{C} _ \text {new }} \cdot \mathrm{R}_{\mathrm{DL} _\mathrm{LL}} \cdot \left\lvert\,\left(\begin{array}{l}
\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{e}}} \\
0.658 \\
\text { W. } \mathrm{P}_{\mathrm{o}}
\end{array}\right)\right. \text { if } \frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{P}_{\mathrm{o}}} \geq 0.44=1724.53 \cdot \mathrm{kip} \\
& 0.877 \cdot \mathrm{P}_{\mathrm{e}} \text { otherwise }
\end{aligned}
$$

calculate the partial plane shear yield check

$$
\text { PS }:=\phi_{\mathrm{vg}} \cdot \frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(44.7 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}}{\cos (36.9 \mathrm{deg})}=1029.64 \cdot \mathrm{kip}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria
$\mathrm{C}_{\mathrm{m}}^{\mathrm{CR}} \mathrm{RE} \mathrm{ER}:=\min ($ Whit, PS$)=1029.64 \cdot$ kip

$$
\begin{aligned}
& \mathrm{RF}_{\text {LRMKRinMM }}:=\frac{\phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{4 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{4 \mathrm{LL}}}=2.51 \\
& \mathrm{RF}_{\mathrm{F}}^{\mathrm{MRERRQPM}}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35}
\end{aligned}
$$

$$
\text { RF }_{\text {LRFRopr }}=3.26
$$

Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear) calculate the factored Whitmore buckling strength

$$
\begin{aligned}
& \mathrm{K}:=0.5 \\
& \underset{\text { Mak: }}{\mathrm{F}_{\mathrm{M}}}:=\left\lvert\, \mathrm{F}_{\mathrm{y}} \cdot\left[1-\frac{\mathrm{F}_{\mathrm{y}}}{4 \cdot \pi^{2} \mathrm{E}}\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\text {mid }}}{\mathrm{r}_{\mathrm{s}}}\right)^{2}\right]\right. \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}_{\text {mid }}}{\mathrm{r}_{\mathrm{s}}} \leq \sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=47.63 \cdot \mathrm{ksi} \\
& \frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\text {mid }}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}} \text { otherwise } \\
& \text { Whit }:=0.85 \cdot \mathrm{~A}_{\mathrm{S}} \cdot \mathrm{~F}_{\mathrm{Cr}}=1653.39 \cdot \mathrm{kip}
\end{aligned}
$$

calculate the partial plane shear yield check

$$
\mathrm{PS}:=\frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(44.7 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}}{\cos (36.9 \mathrm{deg})}=1069.87 \cdot \mathrm{kip}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
\mathrm{C}_{\mathrm{ML}} \mathrm{ERRN}_{\mathrm{R}}:=\min (\mathrm{Whit}, \mathrm{PS})=1069.87 \cdot \text { kip }
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {UDRLiawh }}:=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{4 \mathrm{DL}}}{\gamma_{\mathrm{LL} \text { _LFR }} \cdot \mathrm{P}_{4 \mathrm{LL}}}=2.53 \\
& \mathrm{RF}_{\text {LerkRaph: }}=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=4.22
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Member 4

Inventory
Existing FHWA Method

Proposed LRFR Method
$\mathrm{RF}_{\text {LRFRinv }}=2.51$
$\mathrm{RF}_{\text {LFRinv }}=2.53$

Operating
$\mathrm{RF}_{\text {FHWAopr }}=8.5$
$\mathrm{RF}_{\text {LRFRopr }}=3.26$
$\mathrm{RF}_{\text {LFRopr }}=4.22$

Horizontal Plane Shear

Calculate LRFR rating factors using existing FHWA Guidance method

Gross Yielding

$$
\mathrm{V}_{\mathrm{ny}}:=\phi_{\mathrm{vy}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot 94.75 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega=1449 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\mathrm{nu}}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[94.75-20 \cdot\left(\frac{7}{8}+\frac{1}{8}\right)\right] \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=1821 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{RF}_{\text {EHWLANM: }}:=\frac{\mathrm{C}_{\text {FHWA }}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{\mathrm{HDL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{\mathrm{HLL}}}=4.04 \\
& \mathrm{RF}_{\text {whathanand }}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \text { RF }_{\text {FHWAopr }}=5.23
\end{aligned}
$$

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

$$
\begin{aligned}
& \frac{\mathrm{P}_{\mathrm{HDL}}}{\mathrm{P}_{\mathrm{HLL}}}=3.16 \\
& \mathrm{R}_{\mathrm{MD} \text { daubha: }}=1-0.1 \cdot\left(\frac{3.16-1}{5}\right)=0.96
\end{aligned}
$$

Gross Yielding

$$
\mathrm{V}_{\mathrm{whyy}}:=\phi_{\mathrm{vg}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot 94.75 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}=1735 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\text {whas }}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[94.75-20 \cdot\left(\frac{7}{8}+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}=1742 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& C_{\text {MLARERRM }}:=\min \left(V_{n y}, V_{n u}\right)=1735.17 \cdot \text { kip } \\
& \mathrm{RF}_{\text {LRNERWMN }}:=\frac{\phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{\mathrm{HDL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{\mathrm{HLL}}}=4.53 \\
& \mathrm{RF}_{\text {mRKRRaph: }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {LRFRopr }}=5.87
\end{aligned}
$$

Calculate the proposed LFR rating factors
Gross Yielding

$$
\mathrm{V}_{\text {mays }}:=\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot 94.75 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}}=1814 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\text { . whu }:=0.85 \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[94.75-20 \cdot\left(1+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}}=1870 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\begin{aligned}
& \mathrm{CumbRR}^{\prime}=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=1813.51 \mathrm{kip} \\
& \mathrm{RF}_{\text {L_LRLinawh }}:=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{\mathrm{HDL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{\mathrm{HLL}}}=4.46
\end{aligned}
$$

$$
\mathrm{RF}_{\text {makRoph }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.30}
$$

$$
\mathrm{RF}_{\text {LFRopr }}=7.44
$$

Summarize Rating Factors Using the Three Methods for Horizontal Shear

	Inventory	Operating
Existing FHWA Method	$\mathrm{RF}_{\text {FHWAinv }}=4.04$	$\mathrm{RF}_{\text {FHWAopr }}=5.23$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=4.53$	$\mathrm{RF}_{\text {LRFRopr }}=5.87$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=4.46$	$\mathrm{RF}_{\text {LFRopr }}=7.44$

Vertical Plane Stress Check

unnesseccary as plate cannot mobilize through chord splice

I-64 GUSSET PLATE CHECKS

All Units: kip, in

These checks will make comparisions between the existing FHWA Guidance, the new proposed LRFR MBE specification, and the new proposed LFR MBE provisions. Since the final report clearly outlined that Whitmore compression checks of chord splices do not provide value, they will not be reported. Fastener checks will also not be provided. Condition factors are assumed to be 1.00.

TRUSS JOINT U5

Existing FHWA Guide Resistance Factors

$$
\begin{array}{ll}
\phi_{\mathrm{y}}:=0.95 & \phi_{\mathrm{c}}:=0.9 \\
\phi_{\mathrm{u}}:=0.80 & \phi_{\mathrm{vy}}:=0.95 \\
\phi_{\mathrm{bs}}:=0.80 & \phi_{\mathrm{vu}}:=0.80 \\
\Omega:=0.74 &
\end{array}
$$

Proposed MBE Resistance

$$
\begin{array}{ll}
\frac{\text { Factors }}{\phi_{\text {bs_new }}:=1.00} & \phi_{\text {C_new }}:=0.95 \\
\phi_{\text {vg }}:=1.00 & \phi_{\text {CS }}:=0.85 \\
\Omega_{\text {new }}:=0.88 &
\end{array}
$$

Load Factors

$$
\begin{array}{ll}
\gamma_{\text {LL }}:=1.75 & \gamma_{\text {LL_LFR }}:=2.17 \\
\gamma_{\text {DL }}:=1.25 & \gamma_{\text {DL_LFR }}:=1.3
\end{array}
$$

System Factor

$\phi_{\mathrm{S}}:=0.90 \quad$ assumes it's a bolted truss, proposed as mandatory for LRFR under proposed MBE Article 6A.6.12.6. The system factor will not be used in calculations using the existing FHWA Guidance.

Member Forces For One Gusset Plate

$\mathrm{P}_{1 \mathrm{DL}}:=\frac{2838}{2} \mathrm{kip}$
$\mathrm{P}_{1 \text { LL }}:=\frac{783+76}{2}$ kip
Compression
$\mathrm{P}_{2 \mathrm{DL}}:=\frac{310}{2} \mathrm{kip}$
$\mathrm{P}_{2 \mathrm{LL}}:=\frac{145+10}{2}$ kip
Compression
$\mathrm{P}_{3 \mathrm{DL}}:=\frac{563}{2} \mathrm{kip}$
$P_{3 L L}:=\frac{197+19}{2}$ kip Tension
$\mathrm{P}_{4 \mathrm{DL}}:=\frac{3293}{2} \mathrm{kip}$
$\mathrm{P}_{4 \mathrm{LL}}:=\frac{843+77}{2} \mathrm{kip}$
Compression

MEMBERS 1 and 4

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{avg}}:=\frac{7.1 \mathrm{in}+7.1 \mathrm{in}+7.1 \mathrm{in}}{3} \\
& \mathrm{~L}_{\mathrm{mid}}:=7.1 \mathrm{in}
\end{aligned}
$$

$$
\mathrm{r}_{\mathrm{s}}:=\frac{\mathrm{t}_{\mathrm{g}}}{\sqrt{12}}
$$

$\mathrm{A}_{\mathrm{s} 1}:=52.7 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}$
$\mathrm{A}_{\mathrm{s} 4}:=55.0 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}$

Calculate LRFR rating factors using existing FHWA Guidance method

$$
\mathrm{K}:=1.2
$$

Calculate the compression capacity of the primary gusset plate

$$
\begin{array}{ll}
\lambda:=\left(\frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{avg}}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right) & \lambda=0.3 \\
\mathrm{C}_{1}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{ll}
\left(0.66{ }^{\lambda} \cdot \mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}\right) \text { if } \lambda \leq 2.25 & \mathrm{C}_{1}=4179.58 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 1}}{\lambda} \text { otherwise } & \mathrm{C}_{4}=4361.99 \cdot \mathrm{kip} \\
\mathrm{C}_{4}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{l}
\left(0.66{ }^{\lambda} \cdot \mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 4}\right) \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} 4}}{\lambda} \text { if } \lambda \leq 2.25
\end{array}\right. &
\end{array} .\right.
\end{array}
$$

Calculate the rating factors for Member 1

$$
\mathrm{RF}_{\text {FHWAinv }}:=\frac{\mathrm{C}_{1}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{1 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{1 \mathrm{LL}}}=3.2
$$

$$
\mathrm{RF}_{\mathrm{FHWAopr}}:=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35}
$$

$$
\mathrm{RF}_{\text {FHWAopr }}=4.15
$$

Calculate the rating factors for Member 4

$$
\begin{aligned}
& \mathrm{RF}_{\text {FHWAopr }}=3.71
\end{aligned}
$$

Calculate the proposed LRFR rating factors. In this case both members 1 and 4 are considered part c the chord splice check.

Start by calculating the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6. Look at loads on both sides of the splice and use the worst case.
left side
$\mathrm{F}_{\text {left }}:=\gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{1 \mathrm{DL}}+\mathrm{P}_{2 \mathrm{DL}} \cdot \sin (18.5 \mathrm{deg})\right)+\gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{1 \mathrm{LL}}+\mathrm{P}_{2 \mathrm{LL}} \cdot \sin (18.5 \mathrm{deg})\right)=2629.89 \cdot \mathrm{kip}$ right side

$$
\mathrm{F}_{\text {right }}:=\gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{4 \mathrm{DL}}-\mathrm{P}_{3 \mathrm{DL}} \cdot \cos (51.7 \mathrm{deg})\right)+\gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{4 \mathrm{LL}}-\mathrm{P}_{3 \mathrm{LL}} \cdot \cos (51.7 \mathrm{deg})\right)=2527.9 \cdot \mathrm{ki}
$$

since the loads are very similar, calulate the DL/LL reduction for each set of loads to consider the worst case loading

$$
\begin{array}{ll}
\frac{\left(\mathrm{P}_{1 \mathrm{DL}}+\mathrm{P}_{2 \mathrm{DL}} \cdot \sin (18.5 \mathrm{deg})\right)}{\left(\mathrm{P}_{1 \mathrm{LL}}+\mathrm{P}_{2 \mathrm{LL}} \cdot \sin (18.5 \mathrm{deg})\right)}=3.23 & \frac{\left(\mathrm{P}_{4 \mathrm{DL}}-\mathrm{P}_{3 \mathrm{DL}} \cdot \cos (51.7 \mathrm{deg})\right)}{\left(\mathrm{P}_{4 \mathrm{LL}}-\mathrm{P}_{3 L L} \cdot \cos (51.7 \mathrm{deg})\right)}=3.75 \\
\mathrm{R}_{\text {DL_LLleft }}:=1-0.1 \cdot\left(\frac{3.23-1}{5}\right)=0.96 & \mathrm{R}_{\text {DL_LLright }}:=1-0.1 \cdot\left(\frac{3.75-1}{5}\right)=0.95
\end{array}
$$

The loads on the right side would be more sever, so base the chord splice capacity on the of the right side of the connection

The other cross-sectional properties of the combined section were determined using a CAD program.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{g}}:=184.8 \mathrm{in}^{2} \quad \begin{array}{l}
\text { is the gross area of all gusset and splice plates. } \\
e_{\mathrm{p}}:=9.10 \text { in } \\
\mathrm{I}_{\mathrm{g}}:=58049 \mathrm{in}^{4} \\
\begin{array}{l}
\text { is the eccentricity between the force resultant and } \\
\text { the centroid of the combined plate area. }
\end{array} \\
\begin{array}{l}
\text { is the moment of inertia of the gross spliced } \\
\text { section. }
\end{array}
\end{array}
\end{aligned}
$$

Since the centroid of the force is above the centroid of the cross-section, the maximum axial+bending stress will be at the top of the plate. Now calculate the section modulus to the top of the cross-section

$$
\mathrm{S}_{\mathrm{g}}:=\frac{\mathrm{I}_{\mathrm{g}}}{18.3 \mathrm{in}} \quad \mathrm{~S}_{\mathrm{g}}=3172.08 \cdot \mathrm{in}^{3}
$$

Determine if the chord splice is compact

$$
\underset{\mathrm{K}}{\mathrm{~K}}:=0.5 \quad \mathrm{~L}_{\text {splice }}:=7.1 \mathrm{in} \quad \frac{\mathrm{~K} \cdot \mathrm{~L}_{\text {splice }} \cdot \sqrt{12}}{\mathrm{t}_{\mathrm{g}}}=12.3
$$

Since KL/r of the free plate between chords is less than 25, Fcr equals Fy

$$
\mathrm{F}_{\mathrm{cr}}:=\mathrm{F}_{\mathrm{y}}
$$

Calculate the capacity of the section assuming it occurs at first yield using beam bending theory

$$
\mathrm{C}_{\mathrm{LRFR}}:=\phi_{\mathrm{CS}} \cdot \mathrm{~F}_{\mathrm{cr}} \cdot\left(\frac{\mathrm{~S}_{\mathrm{g}} \cdot \mathrm{~A}_{\mathrm{g}}}{\mathrm{~S}_{\mathrm{g}}+\mathrm{e}_{\mathrm{p}} \cdot \mathrm{~A}_{\mathrm{g}}}\right)=10265.65 \cdot \mathrm{kip}
$$

Calculate the rating factor

$$
\mathrm{RF}_{\text {LRFRinv }}:=\frac{\phi_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{DL}} \text { LLright } \cdot \mathrm{C}_{\mathrm{LRFR}}-2 \cdot \gamma_{\mathrm{DL}} \cdot\left(\mathrm{P}_{4 \mathrm{DL}}-\mathrm{P}_{3 \mathrm{DL}} \cdot \cos (51.7 \mathrm{deg})\right)}{2 \cdot \gamma_{\mathrm{LL}} \cdot\left(\mathrm{P}_{4 \mathrm{LL}}-\mathrm{P}_{3 \mathrm{LL}} \cdot \cos (51.7 \mathrm{deg})\right)}
$$

** dead and live loads were doubled because ealier in the sheet they were halved so resistance checks could be made per gusset plate, which doesn't apply to the chord splice **

$$
\begin{aligned}
& \mathrm{RF}_{\text {LRFRinv }}=3.67 \\
& \mathrm{RF}_{\text {LRFRopr }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {LRFRopr }}=4.76
\end{aligned}
$$

only the capacity calculation changes because the resistance factor is 1.00 . Still calculate the splice capacity for each side

$$
\mathrm{C}_{\mathrm{LFR}}:=\frac{\mathrm{C}_{\mathrm{LRFR}}}{\phi_{\mathrm{CS}}}=12077.24 \cdot \mathrm{kip}
$$

the minimum rating factor using left and right loads will controll the rating

$$
\mathrm{RF}_{\mathrm{LFRinv}}:=\frac{\mathrm{C}_{\mathrm{LFR}}-2 \cdot \gamma_{\mathrm{DL}} / \mathrm{LFR} \cdot\left(\mathrm{P}_{4 \mathrm{DL}}-\mathrm{P}_{3 \mathrm{DL}} \cdot \cos (51.7 \mathrm{deg})\right)}{2 \cdot \gamma_{\mathrm{LL} _\mathrm{LFR}} \cdot\left(\mathrm{P}_{4 \mathrm{LL}}-\mathrm{P}_{3 \mathrm{LL}} \cdot \cos (51.7 \mathrm{deg})\right)}
$$

$$
\mathrm{RF}_{\text {LFRinv }}=4.84
$$

$$
\mathrm{RF}_{\text {LFRopr }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.30}
$$

$$
\mathrm{RF}_{\text {LFRopr }}=8.07
$$

Summarize Rating Factors Using the Three Methods for the Chord Splice

	Inventory	Operating
Existing FHWA Method	not applicable	not applicable
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=3.67$	$\mathrm{RF}_{\text {LRFRopr }}=4.76$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=4.84$	$\mathrm{RF}_{\text {LFRopr }}=8.07$

$$
\begin{aligned}
& \mathrm{L}_{\text {ang }}:=\frac{(4.5+9.2+13.5) \text { in }}{3} \\
& \mathrm{~L}_{\text {maidv }}:=9.2 \mathrm{in} \\
& \mathrm{r}_{\mathrm{s}}:=\frac{\mathrm{t}_{\mathrm{g}}}{\sqrt{12}} \\
& \mathrm{~A}_{\mathrm{s}}:=26.3 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}
\end{aligned}
$$

Calculate LRFR rating factors using existing FHWA Guidance method
Calculate the compression capacity of one gusset plate

$$
\begin{aligned}
& \text { K: }=1.2 \\
& \lambda:=\left(\frac{K \cdot L_{\text {avg }}}{\mathrm{r}_{\mathrm{s}} \cdot \pi}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{E}}\right)=0.5 \\
& \underset{\sim}{C}:=\phi_{\mathrm{C}} \cdot \left\lvert\, \begin{array}{l}
\left(0.66^{\lambda} \cdot \mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}\right) \text { if } \lambda \leq 2.25=1925.92 \cdot \mathrm{kip} \\
\frac{0.88 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}}{\lambda} \text { otherwise }
\end{array}\right. \\
& \mathrm{RF}_{\text {FWhadinm: }}: \frac{\mathrm{C}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{2 \mathrm{LL}}}=12.77 \\
& \mathrm{RF}_{\text {为hahatopav }}=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {FHWAopr }}=16.56
\end{aligned}
$$

Calculate the proposed LRFR rating factors (minimum of Whitmore buckling and partial plane shear)

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6

$$
\begin{array}{ll}
\frac{\mathrm{P}_{2 \mathrm{DL}}}{\mathrm{P}_{2 L L}}=2 \\
\mathrm{R}_{\mathrm{DL} _\mathrm{LL}}:=1-0.1 \cdot\left(\frac{2-1}{5}\right) & \mathrm{R}_{\mathrm{DL} _\mathrm{LL}}=0.98
\end{array}
$$

calculate the factored Whitmore buckling strength.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}}:=\frac{3.29 \cdot \mathrm{E}}{\left(\frac{\mathrm{~L}_{\mathrm{mid}}}{\mathrm{t}_{\mathrm{g}}}\right)^{2}} \cdot \mathrm{~A}_{\mathrm{s}}=29646.54 \cdot \mathrm{kip} \\
& \mathrm{P}_{\mathrm{o}}:=\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s}}=2630 \cdot \mathrm{kip}
\end{aligned}
$$

$$
\text { Whit }:=\phi_{\text {C_new }} \cdot \mathrm{R}_{\text {DL_LL }} \cdot \left\lvert\, \begin{aligned}
& \binom{\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{e}}}}{0.658} \quad \text { if } \frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{o}}} \geq 0.44=2359.28 \cdot \mathrm{kip} \\
& 0.877 \cdot \mathrm{P}_{\mathrm{e}} \text { otherwise }
\end{aligned}\right.
$$

calculate the partial plane shear yield check

$$
\mathrm{PS}:=\phi_{\mathrm{vg}} \cdot \frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(26.7 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}}{\cos (70.1 \mathrm{deg})}=3923.6 \cdot \mathrm{kip}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

RF $_{\text {LRFRopr }}=18.44$

$$
\begin{aligned}
& \underset{M}{C}:=\min (\text { Whit }, \text { PS })=2359.28 \cdot \text { kip } \\
& \mathrm{RF}_{\text {LRRARiMN }}:=\frac{\phi_{\mathrm{s}} \cdot \mathrm{C}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{2 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{2 \mathrm{LL}}}=14.23 \\
& \mathrm{RF}_{\text {IMRERAPME }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35}
\end{aligned}
$$

Calculate the proposed LFR rating factors (minimum of Whitmore buckling and partial plane shear)
calculate the factored Whitmore buckling strength

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{W}}^{\mathrm{K}}:=0.5 \\
& \underset{\text { maki }}{\mathrm{F}_{2}}:=\left\lvert\, \begin{array}{l}
\mathrm{F}_{\mathrm{y}} \cdot\left[1-\frac{\mathrm{F}_{\mathrm{y}}}{4 \cdot \pi^{2} \mathrm{E}}\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}\right] \text { if } \frac{\mathrm{K} \cdot \mathrm{~L}_{\mathrm{mid}}}{\mathrm{r}_{\mathrm{S}}} \leq \sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{~F}_{\mathrm{y}}}}=97.78 \cdot \mathrm{ksi} \\
\frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{~K} \cdot \mathrm{~L}_{\text {mid }}}{\mathrm{r}_{\mathrm{S}}}\right)^{2}} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\text { Whit: }=0.85 \cdot \mathrm{~A}_{\mathrm{s}} \cdot \mathrm{~F}_{\mathrm{cr}}=2185.92 \cdot \mathrm{kip}
$$

calculate the partial plane shear yield check

$$
\mathrm{PS}:=\frac{\Omega_{\mathrm{new}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot(26.7 \mathrm{in}) \cdot \mathrm{tg}_{\mathrm{g}}}{\cos (70.1 \mathrm{deg})}=4003.67 \cdot \mathrm{kip}
$$

the buckling strength will be controleld by the minimum of the Whitmore buckling strength and partial plane shear yield criteria

$$
\mathrm{C}_{\mathrm{L} k \mathrm{kR} R \mathrm{R}}:=\min (\text { Whit }, \text { PS })=2185.92 \cdot \mathrm{kip}
$$

$\mathrm{RF}_{\mathrm{F}_{\text {LIRMinaw }}}: \frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{2 \text { DL }}}{\gamma_{\text {LL_LFR } \cdot \mathrm{P}_{2 \mathrm{LL}}}}=11.8$

$$
\mathrm{RF}_{\text {wiwaph }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3}
$$

$$
\mathrm{RF}_{\text {LFRopr }}=19.7
$$

Summarize Rating Factors Using the Three Methods for Member 2

Inventory

Existing FHWA Method

Proposed LRFR Method

$$
\mathrm{RF}_{\text {LRFRinv }}=14.23
$$

$$
\mathrm{RF}_{\text {LFRinv }}=11.8
$$

Operating

$\mathrm{RF}_{\text {FHWAopr }}=16.56$
$\mathrm{RF}_{\text {LRFRopr }}=18.44$
$\mathrm{RF}_{\text {LFRopr }}=19.7$

MEMBER 3

Tension member - Need to check gross/net section checks on Whitmore section, and block shear

define the gross and net section areas on Whitmore section

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{ggv}}:=40.2 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=40.2 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{n}}:=\left[40.2 \mathrm{in}-2 \cdot\left(1+\frac{1}{8}\right) \mathrm{in}\right] \cdot \mathrm{t}_{\mathrm{g}}=37.95 \mathrm{in}^{2}
\end{aligned}
$$

define the gross and net sections for block shear check

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{tg}}:=3 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=3 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{vg}}:=(2 \cdot 26 \cdot 3 \mathrm{in}) \cdot \mathrm{t}_{\mathrm{g}}=52.6 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{tn}}:=\mathrm{A}_{\mathrm{tg}}-1 \cdot\left(1+\frac{1}{8}\right) \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}+\frac{3^{2}}{4 \cdot 3} \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=2.62 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{vn}}:=\mathrm{A}_{\mathrm{vg}}-17 \cdot\left(1+\frac{1}{8}\right) \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=33.47 \mathrm{in}^{2}
\end{aligned}
$$

Calculate LRFR rating factors using existing FHWA Guidance method
calculate yield on gross and fracture on net for the Whitmore plane

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{y}}:=\phi_{\mathrm{y}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}}=3819 \cdot \mathrm{kip} \\
& \mathrm{P}_{\mathrm{n}}:=\phi_{\mathrm{u}} \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{n}}=3339.6 \cdot \mathrm{kip}
\end{aligned}
$$

calculate block shear resistance

$$
\mathrm{P}_{\mathrm{bs}}:=\left\lvert\, \begin{aligned}
& {\left[\phi_{\mathrm{bs}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{vg}}+\mathrm{F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{tn}}\right)\right] \text { if } \mathrm{A}_{\mathrm{tn}} \geq 0.58 \cdot \mathrm{~A}_{\mathrm{vn}}=1948.56 \cdot \mathrm{kip}} \\
& {\left[\phi_{\mathrm{bs}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{vn}}+\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{tg}}\right)\right] \text { otherwise }}
\end{aligned}\right.
$$

the capacity is based on the minimum of block shear, yield on Whitmore, and fracture on Whitmore

$$
\mathrm{C}_{\mathrm{FHWA}}:=\min \left(\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{n}}, \mathrm{P}_{\mathrm{bs}}\right)=1948.56 \cdot \mathrm{kip}
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {Fhathatandin }}=\mathrm{RF}_{\text {FHWAinv }} \cdot \frac{1.75}{1.35} \\
& \text { RF }_{\text {FHWAopr }}=10.95
\end{aligned}
$$

Calculate the proposed LRFR rating factors
Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

$$
\begin{aligned}
& \frac{\mathrm{P}_{3 \mathrm{DL}}}{\mathrm{P}_{3 \mathrm{LL}}}=2.61 \\
& \mathrm{R}_{\mathrm{M} \text { dhanhaha: }}=1-0.1 \cdot\left(\frac{2.61-1}{5}\right)=0.97
\end{aligned}
$$

calculate yield on gross for the Whitmore plane

$$
\begin{aligned}
& \mathrm{P}_{\text {mi }}:=\phi_{\mathrm{y}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}=3696 \cdot \mathrm{kip} \\
& \mathrm{P}_{\text {as }}:=\phi_{\mathrm{u}} \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{n}} \cdot \mathrm{R}_{\mathrm{DL}} \mathrm{LL}=3232.06 \cdot \mathrm{kip}
\end{aligned}
$$

calculate the block shear resistance
the resistance is the minimum of the Whitmore yield on gross, Whitmore fracture on net, and block shear

$$
\begin{aligned}
& C_{\text {CLARERRMM }}:=\min \left(\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{n}}, \mathrm{P}_{\mathrm{bs}}\right)=2346.39 \cdot \mathrm{kip} \\
& \mathrm{RF}_{\text {LRNRRWMW }}:=\frac{\phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{3 \mathrm{DL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{3 \mathrm{LL}}}=9.31 \\
& \mathrm{RF}_{\text {LuRRRaph: }}:=\mathrm{RF}_{\text {LRFRinv }} \cdot \frac{1.75}{1.35} \\
& \mathrm{RF}_{\text {LRFRopr }}=12.07
\end{aligned}
$$

Calculate the proposed LFR rating factors
calculate yield on effective Whitmore plane

$$
\begin{aligned}
& \beta:=0.15 \\
& A_{e}:=\left\lvert\, \begin{array}{l}
A_{n}+\beta \cdot A_{g} \text { if } A_{n}+\beta \cdot A_{g} \leq A_{g}=40.2 \text { in }^{2} \\
A_{g} \text { otherwise }
\end{array}\right. \\
& \text { Mun }:=F_{y} \cdot A_{e}=4020 \cdot \mathrm{kip}
\end{aligned}
$$

calculate block shear resistance

$$
\mathrm{mbasi}_{\mathrm{P}}^{\mathrm{P}}:=\left\lvert\, \begin{aligned}
& {\left[0.85 \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{vg}}+\mathrm{F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{tn}}\right)\right] \text { if } \mathrm{A}_{\mathrm{tn}} \geq 0.58 \cdot \mathrm{~A}_{\mathrm{vn}}=2070.35 \cdot \mathrm{kip}} \\
& {\left[0.85 \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{vn}}+\mathrm{F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{tg}}\right)\right] \text { otherwise }}
\end{aligned}\right.
$$

the capacity is the minimum of the yield on effective Whitmore area or block shear

$$
\begin{aligned}
& \mathrm{RF}_{\text {ILRRiawh }}=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{3 \mathrm{DL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{3 \mathrm{LL}}}=7.27 \\
& \mathrm{RF}_{\text {IndROpR: }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.3} \\
& \mathrm{RF}_{\text {LFRopr }}=12.14
\end{aligned}
$$

Summarize Rating Factors Using the Three Methods for Member 3

	Inventory	Operating
Existing FHWA Method	$\mathrm{RF}_{\text {FHWAinv }}=8.45$	$\mathrm{RF}_{\text {FHWAopr }}=10.95$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=9.31$	$\mathrm{RF}_{\text {LRFRopr }}=12.07$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=7.27$	$\mathrm{RF}_{\text {LFRopr }}=12.14$

Calculate LRFR rating factors using existing FHWA Guidance method
Gross Yielding

$$
\mathrm{V}_{\mathrm{ny}}:=\phi_{\mathrm{vy}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot 78.0 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega=3180 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\mathrm{V}_{\mathrm{nu}}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[78.0-19 \cdot\left(1+\frac{1}{8}\right)\right] \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=2890 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture
$\mathrm{C}_{\text {EWhWKAn }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{V}_{\mathrm{nu}}\right)=2890.14 \cdot$ kip

Calculate the proposed LRFR rating factors

Calculate the DL/LL ratio for this limit state to account for further reduction according to MBE Article 6A.6.12.6.

$$
\begin{aligned}
& \frac{\mathrm{P}_{\mathrm{HDL}}}{\mathrm{P}_{\mathrm{HLL}}}=2.44 \\
& \mathrm{R}_{\text {DdLandahn }}: 1-0.1 \cdot\left(\frac{2.44-1}{5}\right)=0.97
\end{aligned}
$$

Gross Yielding

$$
\mathrm{v}_{\text {mysi }}:=\phi_{\mathrm{vg}} \cdot\left(0.58 \cdot \mathrm{Fy}_{\mathrm{y}}\right) \cdot 78.0 \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}} \cdot \mathrm{R}_{\mathrm{DL} _L L}=3866 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\underset{\text { manas }}{\mathrm{V}_{1}}:=\phi_{\mathrm{vu}} \cdot\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[78.0-19 \cdot\left(1+\frac{1}{8}\right)\right] \text { in } \cdot \mathrm{t}_{\mathrm{g}} \cdot \mathrm{R}_{\mathrm{DL} _\mathrm{LL}}=2807 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\mathrm{Cm}_{\text {MRRERM }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)=2806.9 \cdot \mathrm{kip}
$$

$$
\mathrm{RE}_{\mathrm{L} R \mathrm{RERWinMN}}: \frac{\phi_{\mathrm{S}} \cdot \mathrm{C}_{\mathrm{LRFR}}-\gamma_{\mathrm{DL}} \cdot \mathrm{P}_{\mathrm{HDL}}}{\gamma_{\mathrm{LL}} \cdot \mathrm{P}_{\mathrm{HLL}}}=14.39
$$

$$
\mathrm{RE}_{\mathrm{L}}^{\mathrm{LRRRRapp}}:=\mathrm{RF}_{\text {LRFRinv }} \frac{1.75}{1.35}
$$

$$
\text { RF }_{\text {LRFRopr }}=18.66
$$

Calculate the proposed LFR rating factors
Gross Yielding

$$
\bar{M}_{\text {Musi }}=\left(0.58 \cdot \mathrm{~F}_{\mathrm{y}}\right) \cdot 78.0 \mathrm{in} \cdot \mathrm{tg}_{\mathrm{g}} \cdot \Omega_{\mathrm{new}}=3981 \cdot \mathrm{kip}
$$

Shear Fracture

$$
\underset{\text { manas }}{\mathrm{V}_{1}}:=0.85\left(0.58 \cdot \mathrm{~F}_{\mathrm{u}}\right) \cdot\left[78.0-19 \cdot\left(1+\frac{1}{8}\right)\right] \mathrm{in} \cdot \mathrm{t}_{\mathrm{g}}=3071 \cdot \mathrm{kip}
$$

The capacity is the minimum resistance between shear yielding and fracture

$$
\mathrm{C}_{\text {MLRRu }}:=\min \left(\mathrm{V}_{\mathrm{ny}}, \mathrm{~V}_{\mathrm{nu}}\right)
$$

$$
\mathrm{RE}_{\text {ELRRinuw }}=\frac{\mathrm{C}_{\text {LFR }}-\gamma_{\text {DL_LFR }} \cdot \mathrm{P}_{\mathrm{HDL}}}{\gamma_{\text {LL_LFR }} \cdot \mathrm{P}_{\mathrm{HLL}}}=14.36
$$

$$
\begin{aligned}
& \mathrm{RF}_{\text {LheRapki }}:=\mathrm{RF}_{\text {LFRinv }} \cdot \frac{2.17}{1.30} \\
& \mathrm{RF}_{\text {LFRopr }}=23.96
\end{aligned}
$$

	Inventory	Operating
Existing FHWA Method	$\mathrm{RF}_{\text {FHWAinv }}=16.72$	$\mathrm{RF}_{\text {FHWAopr }}=21.67$
Proposed LRFR Method	$\mathrm{RF}_{\text {LRFRinv }}=14.39$	$\mathrm{RF}_{\text {LRFRopr }}=18.66$
Proposed LFR Method	$\mathrm{RF}_{\text {LFRinv }}=14.36$	$\mathrm{RF}_{\text {LFRopr }}=23.96$

Vertical Plane Stress Check

unnesseccary as plate cannot mobilize through chord splice

