APPENDIX C. SPREADSHEET PROGRAM AND USER MANUAL

INTRODUCTION

The safety prediction models developed in NCHRP Project 17-58 (1, 2) apply to two-way urban and suburban arterials with six or more lanes, one-way urban and suburban arterials, and intersections on these types of arterials. These models were developed for possible inclusion in a future edition of the *Highway Safety Manual* (HSM) (3). Because the models are complex in form and require numerous calculations to implement, an Excel®-based spreadsheet program was developed to assist analysts in implementing the safety prediction models.

This *User Guide* provides instructions for using the spreadsheet program to implement the calculations in the revised HSM Chapter 12 (2). All variable names and definitions in the spreadsheet program are consistent with those in the revised HSM Chapter 12. Hence, it is recommended that the analyst read the revised HSM Chapter 12 before using the spreadsheet program, and refer back to the Chapter when clarification is needed on variable definitions and procedures for measuring or counting variable values.

BASIC OPERATION

The spreadsheet program can be used on a computer with Microsoft Office® 2007 or newer versions. This User Guide provides instructions on using the spreadsheet program to analyze individual sites (arterial segments or intersections), tabulate results for a facility consisting of multiple sites, and conduct an empirical Bayes (EB) analysis.

Enabling Macro Content

The spreadsheet program uses macros for several of its calculation and organization tasks. Hence, it is essential that Excel be configured such that macros are not always disabled. Macro security settings are located in the Trust Center (see Figure 1), which is accessed by choosing the File tab on the upper-left portion of the Excel screen and choosing "Options". The spreadsheet program will not function properly if the highest macro security setting, "Disable all macros without notification", is chosen. If "Disable all macros with notification" or "Disable all macros except digitally signed macros" is chosen, the yellow bar shown in Figure 2 will appear when the program is opened. Click on the "Enable Content" button to enable macros. If the last macro security option, "Enable all macros", is chosen, the yellow bar will not appear and macros will function.

Worksheet Organization

When the spreadsheet program is opened, the Welcome screen shown in Figure 3 will appear. This screen provides a basic overview of the program and brief description of the color scheme used for the cells. The five tabs below the Welcome message are used to access the five worksheets that are provided in the program. The first of these worksheets is the Welcome screen. The next three worksheets, "Two-way segments", "One-way segments", and "Intersections", are the input data worksheets that are used to analyze individual sites on the urban or suburban arterial facility of interest. The last worksheet, "Totals", is used to obtain

crash totals for the entire facility as well as to conduct a site-specific or project-level EB analysis based on the procedures described in Appendix A of the HSM.

Figure 1. Macro Security Settings in Excel

				₩ -	Append	ix_C-Spread	sheet.xlsm	•			
le Home	Insert	Draw Pa	age Layout	Formula	s Data	Review	View	Developer	Help		
	WARNING M	acros have b	been disabled	<u>d.</u> Ena	able Conter	nt					
A B	С	D	E	F	G	Н	1	J	K	L	М

Figure 2. Enabling Macros in Excel

	Safety	Predi	ction Model	s for Six-	Lane an	d One-Wa	ay Urban	and Su	burban A	rterials	
FOI	REWORD										
This	software can be	e used to	assist with the	assessme	nt of the sa	afety perform	ance of urb	an and sul	burban arte	rial facilities	
incl	uding segments	and inte	sections. It is	intended for	use by en	gineers and	technicians	responsit	ble for safet	v analysis or	r
mar	agement of urba	an street	S.			3				,,	
This	software is inte	nded for	use with the ch	apter in the	Highway S	Safety Manu	al dealing w	ith urban a	and suburba	an arterials	
The	analyst is enco	uraged to	read the docu	ment so tha	t s/he will I	have an und	erstanding o	f how bes	t to use the	software an	d
inte	rpret its output.	3									
The	equations used	in this s	oftware are doc	umented in	this chapte	er. Analysts	should refe	r to the ch	apter when	ever they ha	ve
have	e questions abou	ut the mo	deling approac	h, assumpti	ons, or lim	itations.					
AC	NOWLEDGME	NT OF S	PONSORSHIP								
This	work was spon	sored by	the American	Association	of State H	ighway and	Transportati	on Official	s (AASHTC) and the Fe	dera
High	nway Administra	tion (FH	NA), and was o	conducted in	the Nation	nal Cooperat	ive Highway	Research	Program,	which is	
adm	inistered by the	Transpo	rtation Researc	h Board of t	he Nationa	I Academy	of Sciences				
DIS	CLAIMER										
This	is unedited mat	terial as	submitted by th	e contracto	r for NCHR	P Project 17	7-58, Safety	Prediction	n Models for	r Six-Lane ar	nd
One	-Way Urban and	d Suburb	an Arterials. Th	ne opinions :	and conclu	isions expre	ssed or imp	lied in the	material ar	e those of th	е
con	tractor. They are	e not neo	essarily those	of the Trans	portation F	Research Bo	ard; the Nat	ional Acad	demy of Sci	iences or the	9
prog	gram sponsors.										
		and and								and the second	
No	warranty is made	e by the	developers or th	neir employe	r as to the	accuracy, o	completenes	ss, or relia	bility of this	software an	d its
ass	ociated equation	is and do	cumentation. I	No responsi	bility is as	sumed by th	e developer	s for incorr	ect results	or damages	
rest	liting from the us	se of this	sonware.								
cor	PVRICHT										
This	material and th	e convrie	hts herein are	owned by th	e National	Academy o	f Sciences				
THE	material and th	e copyrig	into nerein are	owned by th	e mational	ricuaciny o	Concinees.				
INS	TRUCTIONS										
Eac	h cell on the ana	alysis wo	rksheets has b	een color-co	ded to ind	icate the typ	oe of data er	ntered or d	lisplayed. 1	The following	list
inde	ntifies the mean	ning of ea	ch cell color.								
11											
Blue	e cells represent	"input d	ata." Each tim	e the works	heet is use	d, the value:	s in these c	ells should	d be change	ed to represe	nt th
-	segment	or inters	ection being ev	aluated. Inp	out data mu	ust be provid	ed by the a	nalyst.	5.1.A.S.	ALC: CAR	
Yell	ow cells represe	ent "calib	ration factors."	The values	in these co	ells represer	it reasonabl	e values fo	or most situ	ations and d	o no
	need to b	be chang	ed. Calibration	factors can	be change	ed to more a	ccurately re	flect local	conditions.	However,	
D	tield data	from sit	es local to the a	agency shou	ild be the l	basis for this	change.				
Pur	pie cells represe	nt key o	output variables	The value	s are com	puted using	the input da	ita, calibra	ition factors	, and default	valu
NOU	e. vvnite, gray,	and purp	ie cells are lock	ked and can	not be cha	ngea.					

Figure 3. Foreword Screen

Cell Color Scheme

In the various worksheets, color shading is used to assist the analyst in understanding which cells may be manipulated and which cannot be disrupted. The spreadsheet program uses numerous equations and macros to perform the calculations needed to implement the safety prediction models, and cells containing these calculations are locked to prevent inadvertent alteration that would lead to erroneous results.

Input Data Cells

Input data cells are shaded blue, like the "General Information" and "Site Information" cells shown in Figure 4. The analyst will routinely change the values in these cells to describe the site being analyzed and to examine changes in predicted crash frequency that may occur if input parameters are altered. The required content for these cells is described in greater detail in the next section of this Guide.

General I	nformation	Site Information	1
Analyst	MPP	Street number	SH 1
Agency	TTI	Street name	Main Street
Date	12/8/2015	Segment number	1
Location	City of Fillmore	Analysis year	2011

Figure 4. Input Data Cells – Blue Shading

Some input data cells describe characteristics that can only be described in discrete quantities. For example, area type can only be described as urban or suburban for the facilities included in the scope of the safety prediction models contained in the spreadsheet program. When the analyst selects one of these cells, a drop-down menu will appear as shown in Figure 5. The analyst may choose one of the options in the menu or type one of the allowed options into the cell. If the analyst enters a value that is not valid for the input data cell, an error message will appear as shown in Figure 6.

Figure 5. Drop-Down Menus

Input Data	Value	Microsoft Excel
Basic Roadway Data		
Area type	Rural 🔻	
Segment type	6D	Area type must be urban or suburban.
Segment length, mi	0.4	
Annual average daily traffic (AADT), veh/day	90000	Retry Cancel <u>H</u> elp
Number of highway-rail grade crossings present	0	
Posted speed limit, mi/h	45	Was this information helpful?
Automated speed enforcement present?	No	<u> </u>

Figure 6. Input Data Cell Error Message

Some input data cells are accompanied by advisory messages that will appear in red to the right of the cell. These messages may provide clarifications on certain data inputs, warnings if model parameter ranges have been exceeded, or warnings if an invalid value has been entered into the input data cell. All three of these situations are visible in Figure 7. For the described two-way arterial segment, the segment type was entered as "8D", or eight-lane divided. The analyst indicated that the segment length is 0.4 mi and there are 18 roadside fixed objects present, so an advisory message explains that the object density is "45 objects per mile". The analyst entered a median width of 0 ft, which is not consistent with an eight-lane divided cross section, so a warning message indicates that the analyst "must enter nonzero median width". The posted speed limit is 30 mi/h, and the pedestrian and bicyclist adjustment factors (f_{ped} and f_{bike}) that are needed for some calculations are not available for that speed, so the advisory message indicates that the factors must be estimated ("Estimated ped/bike factors").

Input Data	C	Value	Advisory Messages
Basic Roadway Dai	ta		
Area type		Suburban	
Segment type		8D	
Segment length, m	E. S. Martin and	0.4	
Annual average dai	ly traffic (AADT), veh/day	90000	*
Number of highway	-rail grade crossings present	0	the second second
Posted speed limit,	, mi/h	30	Estimated ped/bike factors.
Automated speed e	enforcement present?	No	
Access Data		-	
Driveway count	Major commercial	0	
	Major industrial	0	
	Minor	0	
Cross Section Data	9	-	
Lane width, ft		11	
Outside shoulder w	ridth, ft	1.5	*
Median width, ft		0	Must enter nonzero median width.
Median barrier pres	ent?	Yes	
Roadside Data			A little line la
Roadside fixed obje	ect count	18	45 objects per mile.
Average roadside fi	xed object offset, ft	7	*

Figure 7. Advisory Messages for Input Data Cells

Calibration Factor Cells

Calibration factor cells are shaded yellow as shown in Figure 8. These cells contain parameters like the local calibration factor C and the pedestrian and bicyclist adjustment factors f_{ped} and f_{bike} . These calibration factors affect key calculation results in each of the input data worksheets. The analyst can change the values entered into calibration factor cells, but should do so only based on analysis of field data from the jurisdiction containing the sites of interest. The original values in the calibration factor cells are the factors and model coefficients that were derived from the research conducted in NCHRP Project 17-58. It is expected that these cells may need to be altered on occasion based on a jurisdiction's data trends, but they should not need to be altered during the course of a routine analysis exercise.

Calibration Factors	Value
Local calibration factor (C)	1.000
Adjustment factor for pedestrians (fped)	0.029
Adjustment factor for bicyclists (f bike)	0.007
Severity distribution calibration factor (C sdf, tws)	1.000

Figure 8. Calibration Factor Cells

Key Output Variable Cells

Key output variable cells are shaded purple as shown in Figure 9. These cells contain key output quantities, such as the total predicted crash frequency, combined CMF (product of all individual CMFs), and severity distribution for fatal-and-injury crashes. These cells are locked and cannot be altered, but are shaded to denote their importance.

Output Summary	Predicted cra	ash frequen	cy, crash
	F+1	PDO	Total
Total crashes	4.145	5.039	9.184
Multiple-vehicle crashes	2.878	3.872	
Single-vehicle crashes	0.948	1.167	
Vehicle-pedestrian crashes	0.257		
Vehicle-bicycle crashes	0.062		

Figure 9. Key Output Variable Cells

Other Types of Cell Shading

Some cells are shaded white or gray as shown in Figure 10. These cells contain intermediate calculations that may be of interest to the analyst, but do not represent the final analysis result. The white cells in Figure 10 contain the computed values for each individual CMF on a two-way segment. The analyst may need to inspect these values to determine which site characteristics contribute most to a high or low predicted crash frequency. White cells are also visible in Figure 9, showing the tabulation of predicted crash frequency by severity (fatal-and-injury or property-damage-only) and crash type (multiple-vehicle, single-vehicle, vehicle-pedestrian, or vehicle-bicycle).

Crash Modification Factors	F+1		PDO	Sec.
	Multiple Sin	gle	Multiple S	lingle
Lane width	1.022	1.022	1.022	1.022
Outside shoulder width	1.000	1.000	1.000	1.000
Median width	1.011	1.011	1.011	1.011
Median barrier	0.600	1.967	0.600	1.967
Highway-rail grade crossing	1.000	1.000	1.000	1.000
Major commercial driveways	0.932	100 C	0.932	and the second se
Major industrial driveways	0.989		0.989	
Minor driveways	0.947		0.947	
Automated speed enforcement	1.000	1.000	1.000	1.000
Roadside fixed objects		1.180		1.180

Figure 10. Other Cells

A small number of gray cells exist in the spreadsheet program. These cells are shaded gray to indicate that they are not applicable. For example, Figure 10 shows that the cells for single-vehicle driveway CMFs and the multiple-vehicle roadside fixed object CMF are gray.

These cells are not applicable because the driveway CMFs do not apply to single-vehicle crashes and the roadside fixed object CMF does not apply to multiple-vehicle crashes.

Some input data cells are configured to be shaded different colors depending on whether they are needed. For example, as shown in Figure 11, the input data cell for average roadside fixed object offset is typically shaded blue. However, if the analyst enters 0 for roadside fixed object count, the average roadside fixed object offset cell shading turns white and its text turns gray. This change denotes the fact that an average roadside fixed object offset need not be provided if no such objects are present.

Roadside Data Roadside fixed object count	18
Average roadside fixed object offset, ft	7
Roadside Data	
Roadside fixed object count	0
Average roadside fixed object offset, ft	7

Figure 11. Automated Cell Shading

Analysis Sequence

To conduct a safety analysis of an urban or suburban arterial facility, the analyst would complete the following steps:

- 1. Identify the facility of interest. The facility will likely consist of multiple sites, where a site is a homogeneous two-way arterial street segment, a homogeneous one-way arterial street segment, or a signalized or stop-controlled intersection of two streets.
- 2. Determine the analysis period of interest. The analysis period will consist of one or more years.
- 3. Analyze the first site on the facility using the relevant input data worksheet.
- 4. Transfer the data and calculations from the input data worksheet to the Totals worksheet.
- 5. Repeat steps 3 and 4 for each year in the analysis period (if there are multiple years).
- 6. Repeat steps 3-5 for each site on the facility (if there are multiple sites).
- 7. Enter crash count data into the Totals worksheet (if an EB adjustment is desired).
- 8. Calculate the predicted crash frequency (if EB adjustment is not applied) or expected crash frequency (if EB adjustment is applied) for the entire facility using the Totals worksheet.

The analysis procedure is described in greater detail in the next parts of this Guide, which describe the input data worksheets and the Totals worksheet.

Input Data Worksheets

The spreadsheet program contains input data worksheets for describing and analyzing individual sites. There are three worksheets, which correspond to the three facility types that were addressed in NCHRP Project 17-58. These facility types include two-way urban and

suburban arterial street segments with six or more lanes, one-way urban and suburban arterial streets, and intersections on these streets.

All three input data worksheets have the three command buttons that are shown in Figure 12. These buttons serve the following purposes:

- Add to Totals worksheet: Click this button to transfer the data and calculations from the input data worksheet to the Totals worksheet. If the site has already been described for the specified year, and the data and calculations have already been transferred to the Totals worksheet, an error message will appear (see Figure 13) and the data will not transfer. The data will be added to the bottommost empty row in the relevant data table (segment or intersection) on the Totals worksheet; if this row is filled, an error message will appear (see Figure 14) to indicate that the data table is full, and the data will not transfer.
- Restore equations: Some of the input data cells and calibration factor cells contain equations, though these cells are unlocked. For example, the Date cell in the General Information input data cells contains an equation that gives today's date, but the analyst can overwrite the equation-computed date with a different date if desired. Click this button to restore the equations in the cells.
- Reset input cells: Click this button to populate the input data cells with a set of prechosen values. These values describe a fictitious site. This function is useful if the analyst is finished analyzing a site and desires to start a new analysis without retaining data describing the previous site.

Add to Totals worksheet	Restore equations	Reset input cells
-		

Figure 12. Command Buttons on Input Data Worksheets

Add to Totals worksheet	Microsoft Excel
<u>Output Summary</u> Total crashes Multiple-vehicle crashes	Pred. Data for this segment-year combination are already tabulated.
Vehicle-pedestrian crashes Vehicle-picycle crashes	ОК 4.0!
Add to Totals worksheet	Microsoft Excel
<u>Output Summary</u> Total crashes Total-vehicle crashes Vehicle padastrian crashes	Pre Data for this intersection-year combination are already tabulated.

Figure 13. Data Transfer Error Messages – Duplicate Data

Figure 14. Data Transfer Error Messages – Full Data Table

Each of the input data worksheets consists of a main work area that is denoted by a boldbordered box. The main work area contains all input data cells, calibration factor cells, and output cells. The worksheets also have numerous boxes containing calibration coefficients and some intermediate calculations in the space to the right of the main work area. It is not anticipated that the analyst would need to use the boxes to the right of the main work area. Some of these boxes contain cells that are shaded yellow because they are populated with calibration coefficients for the various equations. These coefficients were derived in NCHRP Project 17-58, and the analyst should not alter them without significant justification based on detailed analysis of field data from the jurisdiction of interest.

Two-Way Segments

The general information and site information input data cells are shown in the top portion of Figure 15. Cells are provided for the analyst to enter analyst's name, agency, date (this cell is populated with an equation that computes the current date), location, street number, street name, segment number, and analysis year. To avoid the error message shown in Figure 13, it is essential to change the segment number every time a new site at a facility is being analyzed, and to change the analysis year every time a new year is being analyzed.

The input data cells on the Two-Way Segments worksheet are shown in Figure 16. The analyst must provide data to describe the basic roadway characteristics, access characteristics, cross-sectional characteristics, and roadside characteristics.

General I	nformation		Site Information						
Analyst	MPP		Street number Street name			SH 1			
Agency	TTI					Main Street			
Date	12/9/2015	Segment number 1							
Location	City of Fillmore			Anal	ysis year	2011			
Output Si	ummary P	redicted cra	ash frequen	cy, crashes /	year	C	ombined Cl	MF	
		F+/	PDO	Total		in the second	F+/	PDO	
	Total crashes	6.785	8.556	15.341	Multiple-vehi	cle crashes	1.035	1.035	
Λ	Multiple-vehicle crashes 5.492		7.389		Single-vehi	cle crashes	2.400	2.400	
	Single-vehicle crashes	0.948	1.167						
Vehicle-pedestrian crashes 0.225		0.225	_		Severity a	listribution for	F+I crashe	s	
Veh	CALLS AND								
Veh \	/ehicle-bicycle crashes	0.120			K	A A	В	C	

Figure 15. Two-Way Segments General Information Cells and Output Summary

Input Data		Value	Advisory Messages
Basic Roadway Da	ta		
Area type		Suburban	
Segment type		6D	
Segment length, n	ni	0.4	
Annual average da	ilv traffic (AADT), veh/dav	90000	
Number of highway	/-rail grade crossings present	0	
Posted speed limit	. mi/h	45	
Automated speed	enforcement present?	No	
Access Data			and the second second
Driveway count	Major commercial	6	15 major comm. driveways per mile.
	Major industrial	1	3 major industrial driveways per mile.
	Minor	7	18 minor driveways per mile.
Cross Section Dat	а		
Lane width, ft		11	
Outside shoulder v	vidth, ft	1.5	
Median width, ft		13	
Median barrier pres	sent?	Yes	*
Roadside Data			10000
Roadside fixed obj	ect count	18	45 objects per mile.
Average roadside f	ixed object offset, ft	7	

Figure 16. Two-Way Segments Input Data Cells

The following basic roadway characteristics are needed:

• Area type: Specify if the area surrounding the site is urban or suburban.

- Segment type: Select the appropriate code 6U for six-lane undivided segments, 6D for six-lane divided segments, 7T for six-lane segments with a two-way left-turn lane, or 8D for eight-lane divided segments. These codes are consistent with those used in the HSM.
- Segment length: Enter the segment length, in miles.
- Annual average daily traffic: Enter the AADT, in vehicles per day.
- Number of highway-rail grade crossings present: Enter the number of highway-rail grade crossings that are present on the segment.
- Posted speed limit: Select the posted speed limit, in miles per hour.
- Automated speed enforcement: Indicate whether automated speed enforcement is used on the segment.

The following access characteristics are needed:

- Driveway count major commercial: Enter the count of major commercial driveways on the segment.
- Driveway count major industrial: Enter the count of major industrial driveways on the segment.
- Driveway count minor: Enter the count of minor driveways (of any land use type) on the segment.

All driveway counts represent the number of full driveways, which are driveways that accommodate all entering and exiting turning movements. Driveways that are channelized to allow only right-turn entry and exit movements should be counted as half-driveway.

The following cross-sectional characteristics are needed:

- Lane width: Enter the lane width, in feet.
- Outside shoulder width: Enter the outside shoulder width, in feet. The outside shoulder is the shoulder to the right of drivers with respect to the direction of travel.
- Median width: Enter the median width, in feet. This quantity is not needed if an undivided or two-way left-turn lane segment type (6U or 7T) is specified.
- Median barrier present: Indicate whether a non-traversable median barrier is present. This quantity is not needed if an undivided or two-way left-turn lane segment type (6U or 7T) is specified.

The following roadside characteristics are needed:

- Roadside fixed object count: Enter the number of fixed objects that are present on the roadside (not including the median). Fixed objects that are located within 70 feet of one another longitudinally along the street are counted as a single object.
- Average roadside fixed object offset: Enter the average offset between travel lanes and fixed objects, in feet. The edge of the travel lanes is defined as the marked edgeline, or a line 2 feet from the face of the curb if no marked edgeline exists. This quantity is not needed if no roadside fixed objects are present.

If necessary, the analyst can enter values for the following calibration factors:

- Local calibration factor.
- Adjustment factor for pedestrians.
- Adjustment factor for bicyclists.
- Severity distribution calibration factor.

Computed values for the individual CMFs are provided in the lower portion of the worksheet (see Figure 17). The output summary on the top portion of the worksheet (see Figure 15) provides the predicted crash frequency, combined CMFs (product of individual CMFs), and severity distribution for the segment in the analysis year.

Calibration Factors	Value		Default Value	<u>es</u>
Local calibration factor (C)	1.000		1.000	
Adjustment factor for pedestrians (fped)	0.015		0.015	
Adjustment factor for bicyclists (f blke)	0.008		0.008	
Severity distribution calibration factor (C sdf, tws)	1.000		1.000	
Crash Modification Factors	F+I		PDO	
	Multiple Si	ngle	Multiple S	ingle
Lane width	1.022	1.022	1.022	1.022
Outside shoulder width	1.000	1.000	1.000	1.000
Median width	1.011	1.011	1.011	1.011
Median barrier	0.600	1.967	0.600	1.967
Highway-rail grade crossing	1.000	1.000	1.000	1.000
Major commercial driveways	1.576		1.576	
Major industrial driveways	1.016	-1	1.016	
Minor driveways	1.041	1	1.041	
Automated speed enforcement	1.000	1.000	1.000	1.000
Roadside fixed objects		1.180		1.180

Figure 17. Two-Way Segments Calibration Factor Cells and CMF Calculations

One-Way Segments

The general information and site information input data cells are shown in the top portion of Figure 18. Cells are provided for the analyst to enter analyst's name, agency, date (this cell is populated with an equation that computes the current date), location, street number, street name, segment number, and analysis year. To avoid the error message shown in Figure 13, it is essential to change the segment number every time a new site at a facility is being analyzed, and to change the analysis year every time a new year is being analyzed.

The input data cells on the One-Way Segments worksheet are shown in Figure 19. The analyst must provide data to describe the basic roadway characteristics, access characteristics, cross-sectional characteristics, and roadside characteristics.

Figure 18. One-Way Segments General Information Cells and Output Summary

Input Data		Value	Advisory Messages
Basic Roadway Dat	а		
Area type		Suburban	i i contra de la c
Segment type		30	
Segment length, mi		0.4	
Bicycle lanes prese	ent?	No	
Annual average dail	y traffic (AADT), veh/day	17500	
Posted speed limit,	mi/h	30	
Automated speed e	nforcement present?	No	4
Access Data			And a second
Driveway count	Major commercial	6	15 major comm. driveways per mile.
	Minor	7	18 minor driveways per mile.
Cross Section Data	e		
Lane width, ft		11	
Right shoulder widtl	n, ft	1.5	-
Roadside Data			
On-street parallel pa	arking length on right side, mi	0	
On-street angle par	king length on right side, mi	0	
On-street parallel pa	arking length on left side, mi	0	
On-street angle par	king length on left side, mi	0	
Roadside fixed obje	ct count	18	45 objects per mile.
Average roadside fix	ked object offset, ft	7	

Figure 19. One-Way Segments Input Data Cells

The following basic roadway characteristics are needed:

- Area type: Specify if the area surrounding the site is urban or suburban.
- Segment type: Select the appropriate code 2O, 3O, or 4O for two-lane, three-lane, or four-lane segments, respectively. These codes are consistent with those used in the HSM.
- Segment length: Enter the segment length, in miles.

- Bicycle lanes present: Indicate if bicycle lanes are present on the segment.
- Annual average daily traffic: Enter the AADT, in vehicles per day.
- Posted speed limit: Select the posted speed limit, in miles per hour.
- Automated speed enforcement: Indicate whether automated speed enforcement is used on the segment.

The following access characteristics are needed:

- Driveway count major commercial: Enter the count of major commercial driveways on the segment.
- Driveway count minor: Enter the count of minor driveways (of any land use type) on the segment.

All driveway counts represent the number of full driveways, which are driveways that accommodate all entering and exiting turning movements. Driveways that are channelized to allow only right-turn entry and exit movements should be counted as half-driveway.

The following cross-sectional characteristics are needed:

- Lane width: Enter the lane width, in feet.
- Right shoulder width: Enter the right shoulder width, in feet.

The following roadside characteristics are needed:

- On-street parallel parking length on right side: Enter the length of parallel parking present on the right side of the segment in the direction of travel, in miles.
- On-street angle parking length on right side: Enter the length of angle parking present on the right side of the segment in the direction of travel, in miles.
- On-street parallel parking length on left side: Enter the length of parallel parking present on the left side of the segment in the direction of travel, in miles.
- On-street angle parking length on left side: Enter the length of angle parking present on the left side of the segment in the direction of travel, in miles.
- Roadside fixed object count: Enter the number of fixed objects that are present on the roadside (not including the median). Fixed objects that are located within 70 feet of one another longitudinally along the street are counted as a single object.
- Average roadside fixed object offset: Enter the average offset between travel lanes and fixed objects, in feet. The edge of the travel lanes is defined as the marked edgeline, or a line 2 feet from the face of the curb if no marked edgeline exists. This quantity is not needed if no roadside fixed objects are present.

If necessary, the analyst can enter values for the following calibration factors:

- Local calibration factor.
- Adjustment factor for pedestrians.
- Adjustment factor for bicyclists.

- Severity distribution calibration factor.
- Probability of fatality given a crash involving fatality or incapacitating injury has occurred.

Computed values for the individual CMFs are provided in the lower portion of the worksheet (see Figure 20). The output summary on the top portion of the worksheet (see Figure 18) provides the predicted crash frequency, combined CMFs (product of individual CMFs), and severity distribution for the segment in the analysis year.

Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (fped)	0.024	0.024
Adjustment factor for bicyclists (f bike)	0.011	0.011
Severity distribution calibration factor (C sdf,ows)	1.000	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)	0.099	0.099
Crash Modification Factors	F+I	PDO
	Multiple Single	Multiple Single
Right shoulder width	1.052 1.052	1.052 1.052
On-street parallel parking	1.000 1.000	1.000 1.000
On-street angle parking	1.000 1.000	1.000 1.000
Major commercial driveways	1.259	1.259
Minor driveways	1.035	1.035
Automated speed enforcement	1.000 1.000	1.000 1.000
Roadside fixed objects	1.233	1.233

Figure 20. One-Way Segments Calibration Factor Cells and CMF Calculations

Intersections

The general information and site information input data cells are shown in the top portion of Figure 21. Cells are provided for the analyst to enter analyst's name, agency, date (this cell is populated with an equation that computes the current date), location, major street name, minor street name, intersection number, and analysis year. To avoid the error message shown in Figure 13, it is essential to change the intersection number every time a new site at a facility is being analyzed, and to change the analysis year every time a new year is being analyzed.

For intersections, the major street is defined based on the following rules:

- For 2x2 intersections (intersections of two two-way streets), the major street is the street with the higher volume.
- For 1x2 or 1x1 intersections (intersections where one or both of the streets are one-way), the major street is the one-way street.
- Note that in the case of 3-leg intersections, it is possible for the major street to be the one that ends at the intersection.

General I	nformation			Si	ite Information						
Analyst	MPP			M	ajor street name	Main Street	Street				
Agency	TTI			M	inor street name	Cross Stree	et				
Date	12/9/2015	1		Intersection number 1							
Location	City of Fillmore	1		Analysis year 2011							
Add t	o Totals worksheet		Restor	e equation	s	Res	et input cells				
Output S	ummary P	redicted cra	sh frequend	cy, crashes	s / year		Combined C	MF			
		F+I	PDO	Total			E+1	PDO			
	Total crashes	3.064	2.774	5.837	Total-veh	icle crashes	0.690	0.690			
	Total Glashes				Vehiala and at	rian araahaa	1 000				
	Total-vehicle crashes	2.862	2.774		venicie-pedesti	ian crashes	1.000				
Veh	Total-vehicle crashes icle-pedestrian crashes	2.862	2.774		venicie-pedesti	nan crasnes	1.000				
Veh	Total-vehicle crashes icle-pedestrian crashes /ehicle-bicycle crashes	2.862 0.095 0.107	2.774		Severity of	distribution fo	r F+I crashe	S			
Veh N	Total-vehicle crashes icle-pedestrian crashes /ehicle-bicycle crashes	2.862 0.095 0.107	2.774		Severity of	distribution fo	r F+I crashe	s C			

Figure 21. Intersections General Information Cells and Output Summary

The input data cells on the Intersections worksheet are shown in Figure 22. The analyst must provide data to describe characteristics of the intersection as a whole as well as both intersecting streets.

Input Data	Value	1	Advisory Messages
Intersection Data			
Area type	Urban		
Number of legs	4		4SG intersection type
Traffic control type	Signalized		
Lighting present?	Yes		-
Red-light cameras present?	No		
Daily pedestrian volume crossing all legs (peds/day)	700		
Maximum number of lanes crossed by a pedestrian	7		
Number of bus stops within 1,000 ft of intersection	0		2 M
School(s) present within 1,000 ft of intersection?	No		÷
Alcohol sales establishments within 1,000 ft	0		
Street Data	Major	Minor	
Street configuration	Two-way	Two-way	2x2 intersection configuration
Annual average daily traffic (AADT), veh/day	20000	10000	
Number of lanes	6	4	
Number of approaches with left-turn lanes	2	2	
Number of left-turn movements with protected phasing	2	0	·
Number of right-turn movements prohibited on red	2	0	ž.
Number of U-turn movements prohibited	0	2	2
Number of approaches with right-turn channelization	0	2	

Figure 22. Intersections Input Data Cells

The following intersection characteristics are needed:

- Area type: Specify if the area surrounding the site is urban or suburban.
- Number of legs: Enter the number of street legs at the intersection (3 or 4).
- Traffic control type: Specify if the traffic control is signalized or two-way stop. Note that an advisory message will provide the intersection category code (3ST, 3SG, 4ST, or 4SG) that is used in the HSM to describe the four combinations of number of legs and traffic control.
- Lighting present: Indicate whether lighting is present at the intersection.
- Red-light cameras present: Indicate whether red-light cameras are used at the intersection. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Daily pedestrian volume crossing all legs: Enter the daily pedestrian volume, in pedestrians per day. Include all pedestrians crossing at all intersection legs. Note that the HSM refers to this quantity as "PedVol" and provides default values for 3SG and 4SG intersections based on qualitative general levels of pedestrian activity (high, medium-high, medium-low, and low). This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Maximum number of lanes crossed by a pedestrian: Count the total number of lanes (all through lanes plus turn lanes) at each intersection leg, and enter the highest number of lanes observed on the legs. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Number of bus stops within 1,000 ft. of intersection: Enter the number of bus stops present within 1,000 feet of the center of the intersection, across all legs. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- School(s) present within 1,000 ft. of intersection: Indicate whether one or more schools are present within 1,000 ft. of the center of the intersection. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Alcohol sales establishments within 1,000 ft.: Enter the number of alcohol sales establishments present within 1,000 ft. of the center of the intersection, across all legs. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.

The following street characteristics are needed for each street:

- Street configuration: Specify the street configuration as two-way or one-way. For a 1x2 intersection, the one-way street is defined as the major street.
- Annual average daily traffic: Enter the AADT, in vehicles per day. This quantity is a two-way total, including both arriving and departing vehicles. If different AADTs are present on the two legs of a street, enter the average of the two values. For 2x2 and 1x1 intersections, the major street must have equal or greater AADT than the minor street.
- Number of lanes: Enter the number of lanes (arriving plus departing) present on the street, not including turn lanes that are added by taper in the vicinity of the intersection.

- Number of approaches with left-turn lanes: Indicate the number of approaches on the street that have left-turn lanes. Count a leg if it has one or more left-turn lanes; the number of left-turn lanes on the leg does not matter. This quantity is not needed for the minor street at a signalized intersection or the major street at a two-way stop-controlled intersection.
- Number of left-turn movements with protected phasing: Enter the number of left-turn movements on the street that have protected-only phasing. This quantity is needed only for signalized 2x2 intersections.
- Number of right-turn movements prohibited on red: Enter the number of right-turn movements on the street that are prohibited when the signal indication is red. This quantity is not needed for a two-way stop-controlled intersection.
- Number of U-turn movements prohibited: Enter the number of U-turn movements on the street that are prohibited. This quantity is needed only for signalized 2x2 intersections.
- Number of approaches with right-turn channelization: Enter the number of approaches on the street that have right-turn channelization, or provision of free or yield-controlled right-turn movement. This quantity is not needed for a two-way stop-controlled intersection.

If necessary, the analyst can enter values for the following calibration factors:

- Local calibration factor.
- Adjustment factor for pedestrians for stop-controlled intersections.
- Adjustment factor for bicyclists.
- Severity distribution calibration factors for 2x2 intersections.
- Severity distribution calibration factors for 1x2 and 1x1 intersections.
- Probability of fatality given a crash involving fatality or incapacitating injury has occurred.

Computed values for the individual CMFs are provided in the lower portion of the worksheet (see Figure 23). The output summary on the top portion of the worksheet (see Figure 21) provides the predicted crash frequency, combined CMFs (product of individual CMFs), and severity distribution for the segment in the analysis year.

Totals Worksheet

After the analyst uses the input data worksheets to describe each site on the facility of interest, the Totals worksheet is available to tabulate the predicted crash frequency for the overall facility and also to conduct a site-specific or project-level EB analysis. The analyst transfers data from the input data worksheets to the Totals worksheet by clicking the "Add to Totals worksheet" button near the top of each input data worksheet.

Calibration Factors			Value		Ē	Default Val	ues	
Local calibration factor (C)			1.000		F	1.000		
Adjustment factor for pedestrians	s for stop cont	rol (f ped)	0.049		1	0.049		
Adjustment factor for bicyclists (f _{bike})		0.019			0.019		
Severity distribution calibration fa	actor, 2-way (C	sdf,twi)	1.000		E	1.000		
Severity distribution calibration fa	actor, 1-way (C	sdf,owi)	1.000			1.000		
Probability of fatality given K+A	severity (PKIK	-A)	0.094			0.094		
			Manne	er of Collisio	n Proportio	ons		
2x2 intersections	3ST, F+1 35	ST, PDO	3SG, F+1 3	SG, PDO 4	IST, F+1 4	ST, PDO	4SG, F+1	4SG, PDO
Rear-end collision proportion	0.094	0.154	0.120	0.189	0.079	0.098	0.083	0.148
Angle collision proportion	0.764	0.629	0.676	0.554	0.806	0.707	0.746	0.552
1x2 or 1x1 intersections	3ST, F+1 35	ST, PDO	3SG, F+/ 3	SG, PDO 4	ST, F+1 4	ST, PDO	4SG, F+1	4SG, PDO
Rear-end collision proportion	0.100	0.100	0.111	0.143	0.047	0.065	0.030	0.059
Angle collision proportion	0.300	0.250	0.889	0.571	0.822	0.706	0.837	0.733
Crash Modification Factors			F+1		F	PDO		
Total-vehicle crash CMFs								
Lighting			0.911		E	0.911		
Red-light cameras			1.000		E	1.000		
Left-turn signal phasing			0.740			0.740		
Right-turn-on-red			0.960			0.960		
U-turn prohibition			0.922			0.922		
Right-turn channelization			1.000		1	1.000		
Number of lanes			1.158			1.158		
Vehicle-pedestrian crash CMFs								
Bus stops		[1.000					
Schools			1.000					
Alcohol sales establishments		- 3	1.000					

Figure 23. Intersections Calibration Factor Cells and CMF Calculations

Worksheet Organization

The Totals worksheet is organized with two large data tables like the one shown in Figure 24. The top table is labeled "Segment Site Information" and accommodates up to 15 segment-year combinations. The bottom table is labeled "Intersection Site Information" and accommodates up to 15 intersection-year combinations. For example, if the facility of interest consists of five segments and five intersections, and the analysis period is three years, all 15 rows in each table would be filled. Each table contains the following data:

- Site identification information like site number, analysis year, and site type.
- Predicted crash frequency, which was obtained from the relevant input data worksheet. These cells are shaded white.
- Site-specific observed crash totals. These cells are grayed out if no EB analysis or a project-level EB analysis is conducted, and are shaded blue if a site-specific EB analysis is conducted.
- Predicted or expected crash frequency. These cells are labeled with "Predicted crash frequency" and shown with purple shading in Figure 24 for the case of no EB analysis being conducted. The cells are shaded purple and labeled with "Expected crash

frequency" if a site-specific EB analysis is chosen, and grayed out if a project-level EB analysis is chosen.

- Combined CMF (not shown in Figure 24).
- Site location information (not shown in Figure 24).

	S.	amont	Sito In	formation			Predicted	crash freq	uency, crashes / year	1.	Site	specific obs	served cr	rash totals			Predicter	d crash free	uency, crashes / yea	r
	20	egineni -	one mi	ormation	Multiple	e-vehicle	Single	-vehicle	Vehicle-pedestrian	Vehicle-bicycle	Mult	ple-vehicle	Sing	gle-vehicle	Multi	ple-vehicle	Sing	le-vehicle	Vehicle-pedestrian	Vehicle-bicycle
Numb	er \	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
	1	2011	6D	SH 1	5.492	7.389	0.948	1.167	0.225	0.120		X		-		-				
	1	2011	30	SH 1	1.244	2.986	0.227	0.309	0.114	0.052			1	1						
				_		_									-	-				
				-	-						-				-	-				
		-							1		_	-	-		_	-	-	-		
							11.													
		a		1					1							-		1	· · · · · · · · · · · · · · · · · · ·	
				1		1			1							-	1	1		
															1					
		t = t	· · · · · · · · ·			* <u>-</u> 1	11.00	2.2.11									1.1.1	1 1	1	· · · · · · · · · · · · · · · · · · ·
																				1
						1.1.1		4.1.14	1			£.			1	-		1 1		
												10 1 mar								
	T					1.2.1			1			1				-	1	1 2 2 2	12.2	

Figure 24. Totals Worksheet, Segments Data Table

The controls for the Totals worksheet are shown in Figure 25. The blue cell contains a drop-down menu where the analyst specifies the type of EB analysis to be conducted (none, site-specific, or project-level). Both EB analysis options can be applied to past periods for which crash counts are available. A site-specific EB analysis requires crashes to be assigned to the appropriate site and year, while a project-level EB analysis allows a facility-wide crash total across all analysis years to be provided. The site-specific EB analysis is more precise but requires more detailed crash data.

Empirica adjustme	I Bayes ent type:		Clear tables
No	ne	*	
None			Son rows
Project-lev	vel		Calculate
		01 I I	and the second
<u>s</u>	egment .	Site Int	ormation
<u>S</u> Number	Segment - Year	Type	Street number
<u>S</u> Number	Year 2011	Type 6D	Street number

Figure 25. Totals Worksheet Controls

The following three command buttons are provided near the upper-left corner of the Totals worksheet (see Figure 25):

- Clear tables: Click this button to clear all data from the Totals worksheet.
- Sort rows: Click this button to sort the rows in each data table by year, site number, and site type code. This function is particularly useful when the data table is mostly full but has an empty row in the middle of the table that must be reclaimed because the bottom row was filled (see the error message in Figure 14).
- Calculate: Click this button to perform the calculations needed to aggregate crash totals and perform an EB analysis (if chosen).

Each row in the data tables has a square red button in the leftmost cell of the row. Clicking these buttons allows the analyst to (1) return the data in that table row to its origin worksheet (Two-way segments, One-way segments, or Intersections) and/or (2) delete the data in that row of the table.

The Totals worksheet consists of the main data tables that were discussed above; a second set of tables to the right of the main data tables, which contain intermediate calculations; two boxes that contain inverse dispersion parameters that are used for the EB analysis calculations and were derived along with the model coefficients in NCHRP Project 17-58; and an archived data area that contains all relevant site data in case the analyst needs to return these data to the input data worksheets for revision. The boxes for the inverse dispersion parameters contain yellow-shaded cells, as these parameters can be changed, but they should not be changed without significant justification based on detailed analysis of field data from the jurisdiction of interest.

Analysis Options

The Totals worksheet can perform three different types of analysis, which are described in the following paragraphs.

No Empirical Bayes Analysis. This option is denoted as "None" in the drop-down menu shown in Figure 25. With this analysis option, the Totals worksheet provides the predicted crash frequency for the facility as a simple summation of the predicted crash frequencies across the sites. The analyst need not provide crash counts. The crash totals tables on the top of the Totals worksheet will be populated with crash summations as shown in Figure 26. The "Facility Totals" table provides the total crash frequency for the facility, and aggregated by crash type (multiple-vehicle + single-vehicle, vehicle-pedestrian + vehicle-bicycle), severity (fatal-andinjury, property-damage-only). The "Total Predicted Crash Frequency" table provides a more detailed aggregation of crash frequency, broken down by site type (segment or intersection) in addition to crash type and severity. The "Project-Level Observed Crash Totals" table is not used when an EB analysis is not conducted.

Site-Specific Empirical Bayes Analysis. This option is denoted as "Site-specific" in the drop-down menu shown in Figure 25. With this analysis option, the Totals worksheet provides the expected crash frequency for each site-year combination, and also computes the total

expected crash frequency for the facility as a summation across all sites and analysis years. The analyst must provide crash counts for every site, as indicated by the blue cells for the columns in the middle portion of the data tables (see Figure 27). Vehicle-pedestrian crash counts need not be provided for stop-controlled intersections because the pedestrian-vehicle crash frequency model applies only to signalized intersections, so the relevant cells for these crash counts are shaded white accordingly. The crash totals tables on the top of the Totals worksheet will be populated with EB-adjusted crash totals, and the "Total Expected Crash Frequency" table will be populated with a more detailed aggregation of crash frequency. The "Project-Level Observed Crash Totals" table is not used when a site-specific EB analysis is conducted.

Facility Totals	Project-Level Observed Crash Totals			Tot	al Predicte	d Crash F	requency.	crashes /	vear				
MV+SV: 32.422	Crash type	F+I	PDO			Multip	e-vehicle	Single	-vehicle	Total-	vehicle	Veh-ped	Veh-bike
VP+VB: 1.425	Multiple-vehicle crashes on segments:		0 11	-	Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
F+I: 14.989	Single-vehicle crashes on segments:		1 4		Segments:	6.737	10.375	1.175	1.476	7.912	11.850	0.339	0.172
PDO: 18.858	Total-vehicle crashes at all intersections:		1 0		Intersections:					5.653	7.007	0.505	0.408
Total: 33.846	Vehicle-pedestrian crashes at signalized intersections:		0		Total:	6.73	10.375	1.175	1.476	13.564	18.858	0.844	0.580

Figure 26. Crash Totals Tables – No Empirical Bayes Analysis

Facility	Totals			Project-L	evel Observed Cras	sh Totals						Tota	al Expecte	d Crash F	requency,	crashes /	vear		
MV+SV:	38.068			Crash	type		F+I	PDO			100	Multiple	e-vehicle	Single	-vehicle	Total-	vehicle	Veh-ped	Veh-bike
VP+VB:	2.176		1	Multiple-	vehicle crashes on	segment	S:	100	52	Site	type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
F+I:	18.079			Single-	vehicle crashes on	segment	S:) and	-3	5	Segments:	7.845	11.560	1.597	2.061	9.442	13.621	0.391	0.200
PDO:	22.165			Total-vehicl	e crashes at all inte	ersection	S:	7		Inte	rsections:					6.461	8.544	1.106	0.478
Total:	40.243		Vehi	cle-pedestrian crashe	s at signalized into	ersection	S:	1			Total:	7.845	11.560	1.597	2.061	15.903	22.165	1.498	0.678
1					1.	1				T		-		Lun IV Card					
		Predicted	crash frequ	iency, crashes / year		Site-	specific of	served ci	ash totals			Expected	crash frequ	Jency, cra	ishes / yea	ar			Combin
Multiple	-vehicle	Single-	vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multip	le-vehicle	Sing	le-vehicle	Multiple	e-vehicle	Single	-vehicle	Vehicle-	pedestrian	Vehicle	-bicycle	Multiple	e-vehicle
F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO	F+I	PDO	F+I	PDO	F	+1	F	+1	F+I	PDO
5.492	7.389	0.948	1.167	0.225	0.120		7	9	2 3	6.455	8.569	1.312	1.686	0	270	0.	144	1.035	1.035
1.244	2.986	0.227	0.309	0.114	0.052		2	3	1	1.390	2.991	0.285	0.375	0.	121	0.1	055	1.370	1.370

Figure 27. Crash Totals Tables – Site-Specific Empirical Bayes Analysis

Project-Level Empirical Bayes Analysis. This option is denoted as "Project-level" in the drop-down menu shown in Figure 25. With this analysis option, the Totals worksheet provides the expected crash frequency for the facility across all analysis years. The analyst must provide crash counts for the facility, as indicated by the blue cells in the "Project-Level Observed Crash Totals" table (see Figure 28). These crash counts are aggregated by crash type and severity and summed across all analysis years. The crash totals tables on the top of the Totals worksheet will be populated with EB-adjusted crash totals. The "Total Predicted Crash Frequency" table is not used when an EB analysis is not conducted.

Figure 28. Crash Totals Tables – Project-Level Empirical Bayes Analysis

REFERENCES

- Lord, D., S. Geedipally, M. P. Pratt, E. S. Park, S. H. Khazraee, and K. Fitzpatrick. Safety Prediction Models for Six-Lane and One-Way Urban and Suburban Arterials. NCHRP Report 17-58. Transportation Research Board, National Academy of Sciences, Washington, D.C., 2016 (forthcoming).
- 2. Draft Chapter 12 of the Highway Safety Manual. NCHRP Project 17-58.
- 3. *Highway Safety Manual, 1st Edition.* Volume 2. American Association of State Highway and Transportation Officials, Washington, D.C., 2010.