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TRANSIT COOPERATIVE RESEARCH PROGRAM

The nation's growth and the need to meet mobility,
environmental, and energy objectives place demands on public transit
systems. Current systems, some of which are old and in need of
upgrading, must expand service area, increase service frequency, and
improve efficiency to serve these demands. Research is necessary to
solve operating problems, to adapt appropriate new technologies from
other industries, and to introduce innovations into the transit industry.
The Transit Cooperative Research Program (TCRP) serves as one of
the principal means by which the transit industry can develop
innovative near-term solutions to meet demands placed on it.

The need for TCRP was originally identified in TRB Special
Report 213--Research for Public Transit: New Directions, published
in 1987 and based on a study sponsored by the Urban Mass
Transportation Administration--now the Federal Transit
Administration (FTA). A report by the American Public Transit
Association (APTA), Transportation 2000, also recognized the need
for local, problem-solving research. TCRP, modeled after the
longstanding and successful National Cooperative Highway Research
Program, undertakes research and other technical activities in response
to the needs of transit service providers. The scope of TCRP includes
a variety of transit research fields including planning, service
configuration, equipment, facilities, operations, human resources,
maintenance, policy, and administrative practices.

TCRP was established under FTA sponsorship in July 1992.
Proposed by the U.S. Department of Transportation, TCRP was
authorized as part of the Intermodal Surface Transportation Efficiency
Act of 1991 (ISTEA). On May 13, 1992, a memorandum agreement
outlining TCRP operating procedures was executed by the three
cooperating organizations: FTA, the National Academy of Sciences,
acting through the Transportation Research Board (TRB), and the
Transit Development Corporation, Inc. (TDC), a nonprofit educational
and research organization established by APTA. TDC is responsible
for forming the independent governing board, designated as the TCRP
Oversight and Project Selection (TOPS) Committee.

Research problem statements for TCRP are solicited periodically
but may be submitted to TRB by anyone at any time. It is the
responsibility of the TOPS Committee to formulate the research
program by identifying the highest priority projects. As part of the
evaluation, the TOPS Committee defines funding levels and expected
products.

Once selected, each project is assigned to an expert panel,
appointed by the Transportation Research Board. The panels prepare
project statements (requests for proposals), select contractors, and
provide technical guidance and counsel throughout the life of the
project. The process for developing research problem statements and
selecting research agencies has been used by TRB in managing
cooperative research programs since 1962. As in other TRB activities,
TCRP project panels serve voluntarily without compensation.

Because research cannot have the desired impact if products fail
to reach the intended audience, special emphasis is placed on
disseminating TCRP results to the intended endusers of the research:
transit agencies, service providers, and suppliers. TRB provides a
series of research reports, syntheses of transit practice, and other
supporting material developed by TCRP research. APTA will arrange
for workshops, training aids, field visits, and other activities to ensure
that results are implemented by urban and rural transit industry
practitioners.

The TCRP provides a forum where transit agencies can
cooperatively address common operational problems. The TCRP
results support and complement other ongoing transit research and
training programs.
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FOREWORD
By Staff

Transportation Research
Board

This report will be of interest to transit railcar maintenance professionals concerned with
improving railcar maintenance fault-diagnostic capabilities through the use of artificial
intelligence (AI) technologies. For the purpose of this report, AI is defined as a computer
program that uses human problem-solving techniques to assist and augment the diagnostic
process. Seven AI technologies--expert systems, case-based reasoning, model-based reasoning,
artificial neural networks, computer vision, fuzzy logic, and knowledge-based systems-are
investigated to determine their potential for application to the diagnosis of transit railcar systems
and subsystems. The report concludes that AI technology is sufficiently mature for cost-effective
application in the transit railcar diagnostic process and provides recommendations for
implementation of the technology.

Under TCRP Project E-2, research was undertaken by ANSTEC, Inc. to assess the potential
application of AI techniques to diagnostic practices in the railcar maintenance environment and,
where appropriate, to recommend steps to introduce such practices.

To achieve the project objectives, site surveys were conducted at transit railcar maintenance
facilities and at railcar subsystem suppliers to gather information regarding current and future
diagnostic and maintenance practices, possible barriers to implementing advanced AI
technology, and maintenance cost data. In addition, an extensive review of the literature was
performed to identify any AI techniques currently in use for railcar diagnostics and to identify
and describe AI-based maintenance support systems developed and used in other industries that
would have potential application for railcar maintenance. An economic analysis was performed
to provide an estimate of the cost savings expected by reducing the diagnostic effort resulting
from the application of AI techniques. Finally, strategic recommendations for the introduction of
AI-based diagnostic practices in the railcar maintenance environment were developed. Thus, this
report is a valuable resource for transit railcar maintenance professionals considering the use of
AI techniques to improve railcar maintenance diagnostic capabilities.
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ARTIFICIAL INTELLIGENCE FOR
TRANSIT RAILCAR DIAGNOSTICS

SUMMARY This report presents the results of an evaluation of seven Artificial Intelligence (AI) techniques, which
may be applicable to the diagnosis of malfunctioning transit railcar systems and subsystems. The seven
AI techniques included expert systems, case-based reasoning, model-based reasoning, artificial neural
networks, computer vision, fuzzy logic, and knowledge-based systems. These techniques were chosen
for evaluation because they have already shown potential for performing diagnosis in other industries
and operations. With the exception of computer vision, all of the AI techniques were found to be
appropriate for use in railcar systems diagnostics. A criterion based on maintenance operational
requirements was developed to prioritize the AI techniques.

Surveys of transit railcar maintenance personnel and system manufacturers were conducted to
determine the status of current and planned maintenance and diagnostic operations. These surveys
revealed a need to improve diagnostic capability in their systems and showed an appreciation for the
potential cost savings that could result from such an improvement. Although such issues as cost, system
support, and personnel capability should be addressed in any AI diagnostic program implementation, the
personnel surveyed believed that the program would be acceptable if it were user friendly and proved to
be an effective tool in improving diagnosis. The maintenance personnel also indicated that the greatest
impact in cost savings could come from improvement in diagnosis of the railcar propulsion system.
They also believe that the initial AI program should be developed to perform as an assistant to the
maintenance technician rather than perform the complete function by itself.

A cost model titled "Cost Savings Potential from Improvement in Railcar Reliability and
Maintainability" was calibrated with data from a generic transit authority. The American Public Transit
Association (APTA) Annual Financial Statistical Report of 1992 was used to calibrate the model for a
generic authority of 600 vehicles. Exercising the model revealed that a modest improvement in
diagnosis could have cost savings in maintenance, operations, and capital costs. For example, if the
number of "No Defect Found" reports was reduced by 5 percent in each of the vehicle systems, a net
annual cost reduction of $576,000 would be realized. Another run of the cost model showed that an AI
diagnostic tool that initially cost $172,000 would only have to provide a 7.2 percent reduction in the
propulsion system Mean Time to Repair (MTTR) to pay for itself from the cost savings in one year.

Recommendations

AI technology is mature enough to be used to develop a program that will support the diagnostic
process in transit railcars. The development of an initial AI diagnostic program
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consisting of a hybrid of model-based reasoning and expert system approaches is recommended. Such a program will provide the
greatest flexibility and potential for this application. Commercially available AI software can be used as the basis for this program,
requiring the human-computer interface to be established and the knowledge required to support the AI program to be developed in a
knowledge base. The initial AI program should be developed as an assistant to the maintenance technician. It is also recommended
that the railcar propulsion system should be the initial focus for the AI diagnostic program. Incremental increases in capability can
be added in the future by including more railcar systems or additional AI techniques to the initial program.

Although the AI diagnostic program could be used in a stand alone mode, its capability will be increased if it is integrated into
the existing maintenance support system. This would allow the AI program to interface with the maintenance historical data base,
electronic technical manuals, engineering or schematic drawings, and test equipment.

Conclusions and Suggested Research

AI diagnostic programs offer the potential to be placed on board the railcar itself as an embedded diagnostic system. Such a
system would perform complete systems' startup and shutdown diagnosis on command, and continuously monitor the systems while
the railcar was in operation. The on-board AI program also can perform fault identification and some fault prediction. Research is
suggested to achieve this capability.

Research into the initial AI program support system architecture will provide a starting point with which to evolve a more
automated solution. At the same time, research should begin into the architecture for the on-board AI program. Research should be
conducted into the optimal type and placement of on-board sensors required to support identification and prediction of system faults.
Finally, the predictive capability of various AI techniques should be researched.



CHAPTER 1

INTRODUCTION AND RESEARCH APPROACH

INTRODUCTION

Problem Statement

Transit agencies spend a significant portion of their operating
budgets on problem diagnostics and maintenance of equipment
subsystems and systems. The diagnostic task associated with the
maintenance activities is an area that has a substantial influence on
the overall maintenance cost as well as on railcar reliability and
availability. Although little analysis has been done to quantify the
diagnostic portion of the total maintenance cost in transit agencies,
it is believed to be significant. Misdiagnosis leading to
inappropriate repairs or to "no defect found" (NDF) can be a
substantial cost.

Improvements in transit railcar diagnostics and maintenance
can have a major effect on both maintenance budgets and fleet
availability. Information from the Bay Area Rapid Transit District
(reported by Plummer (1)) indicates that there is an annual budget
of $35 million for primary maintenance (where primary
maintenance is defined as the "evaluation of a car that has
indicated some operating problem, identifying the source of that
problem, and either removing or replacing the problem
component"). The report also states that approximately 90 percent
($31.5 million) of the total direct expense is for unscheduled
maintenance. Additionally, the report shows that "vehicle-caused
delays rank number one in importance both in terms of number of
delays and minutes of delay time"; that is, 53.71 percent of train
delays.

The purpose of this effort is to determine the potential for
using such computer technologies as Artificial Intelligence (AI)
techniques to improve transit railcar diagnosis, with the overall
goal being to increase transit railcar availability and save costs by
decreasing the maintenance labor-hours required to predict and
diagnose failures.

Objective

The objective of this report is to provide transit authorities
with the results of an investigation in the use of AI techniques to
improve transit railcar systems and subsystems maintenance and
diagnostic capabilities. Decreasing the time required in diagnosing
equipment problems, by using advanced computer software
technology, has the potential of substantial cost savings.

For this study, site surveys of transit properties and subsystem
suppliers were performed in order to understand the current
diagnostic practices and concerns, and to obtain data with which to
perform a cost analysis. The assessment revealed the

range of potential savings and which railcar subsystems could have
the greatest potential impact on cost through improvements in the
diagnostics process.

Information was gathered from other industries about AI
techniques used in diagnosis of equipment and systems used in
those industries and how those techniques might be applied to the
transit railcar industry. Implementing advanced AI computer-based
diagnostics may involve the overcoming of some operational and
technical barriers. Those barriers were investigated and are
discussed in this report. Finally, an analysis was performed of
which AI techniques should be implemented and what function in
the diagnostic process these techniques should perform.

Research Technology-Artificial Intelligence

For purposes of this report, AI can be narrowly defined as a
computer program that assists and augments problem solving by
techniques inspired by human problem-solving approaches.
Although an AI program is designed and developed somewhat
differently than a conventional computer program (e.g., data bases
or accounting programs), its use is very similar. Al programs can
provide personnel with answers to problems, suggest courses of
action, or act automatically by being embedded within a system.
The problems solved by AI techniques are those that were most
often too difficult for conventional software programs and were,
therefore, solved by human experts. The difficulty of these
problems resulted from their having a large number of interacting
variables or a structure that was poorly defined. For many AI
techniques, the specific approach of the technique was inspired by
how the human expert seemed to solve the problem.

There are many different AI techniques, just as there are
many human problem-solving approaches. The AI techniques
investigated in this effort are expert systems, Case-Based
Reasoning (CBR), Model-Based Reasoning (MBR), Artificial
Neural Network (ANN), Computer Vision (CV), fuzzy logic, and
Knowledge-Based Systems (KBS). Although there are additional
AI techniques, these appeared to have the highest potential for
application to the diagnostic domain. A short discussion of these
AI techniques will aid in understanding their potential use in the
diagnostic process.

Experts who have been performing diagnosis for a long time
have seen faults, symptoms, and causes for certain problems so
often that they sometimes develop a set of generalized rules that
cover many of the problems. The generalized rules are developed
from seeing many examples of the same problem and can usually
be characterized as, "If this symptom is seen,

3
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then this is the cause of the fault." This "if-then" rule is used by
expert system computer programs to try to arrive at the same
conclusion as the human expert. The expert system rule set is
derived directly from the human expert and is called the
knowledge base. The data input into an expert system is the same
or similar to what the human expert would use: that is, primarily
symptom information. The expert system has some controlling
software, called an inference engine, which is used to run through
the rules to find which ones are true and then arrive at the correct
answer.

Occasionally, a fault occurs that does not happen very often.
A human expert may have seen a similar fault only once or twice
before, and, therefore, has not developed a generalized rule for it.
The human expert can correctly diagnose the fault, anyway, by
remembering the specific cases seen before and realizing that the
current fault, which is unknown, is similar to those past cases. This
is the technique used by CBR computer programs, which contain
many specific cases of past events. Each case is stored with the
information important to the case and with data related to the
diagnostics. For example, a case may contain the system,
subsystem, and component involved; the symptoms displayed; the
circumstances (e.g., date, location, mileage); and results of various
tests. When an unknown fault occurs, the symptoms, as many
circumstances as possible, and any test results that are available
are input into the CBR program. The CBR program attempts to
find the stored case that matches the input data closest. If the
match is close enough, then the program retrieves the case and
presents it as the solution to diagnosing the fault.

Human experts may be confronted with a diagnostic problem
for which they have neither rules nor previous cases with which to
solve it. In this situation, experts may have to use their knowledge
of the workings of the system to systematically understand how
the fault could occur and what the resulting symptoms would be.
Human experts accomplish this by mentally building a model of
the system and walking through the activities associated with the
fault. This model could come from a schematic drawing or some
other abstract model. The AI technique of MBR uses a very
similar approach in which one or more models of the system are
developed. Usually, the functional model appears as a diagram
with a box for each functional component making up the system or
subsystem. There are values for the inputs (data and model
parameters) and output of each box. The functional model input
and output values will closely match those of the railcar system
modeled. This allows the model to be manipulated in such a way
as to show what components could fail to produce the same results
as the railcar system when it has a problem. Additionally, a casual
model may be built that shows how one component (box) affects
or is affected by another component. Using these models, MBR
can evaluate what is expected to be normal and abnormal behavior
in the system. Complex faults can be determined by exercising the
models with different input values.

Human experts also have the capacity to receive complex data
patterns and match them with memories of those patterns that are
stored. Matching the patterns often requires no logical thought on
the part of the expert. Once the pattern is matched,

then information about that pattern is remembered and can be used
in one of the logical processes described above (i.e., use of
generalized rules, remembered cases, or understanding the
system). The pattern-matching activity in humans is often
associated with the senses. Sight, smell, and sound are examples of
human pattern matching at work. An AI technique that also uses
pattern matching is ANNs, a computer program that "learns"
patterns of complex data and can associate the patterns with
certain states. An example of such data is a waveform produced by
a printed circuit board. The waveform is a complex set of data
whose structure indicates the current state of the board. The data
from many properly functioning boards are presented to the ANN
along with the fact that the boards are good; conversely, data from
many improperly (degraded) functioning boards are presented to
the ANN along with the fact that the boards are bad (or degraded).
When the waveform of a board of unknown state (good or
degraded) is presented, the ANN can often determine if the board
is good or degraded. This is true even if the ANN was not trained
on a waveform identical to the new one presented. Of course, just
like the human expert, the closer the unknown set is to the training
set, the more likely the ANN will correctly classify the pattern.
ANNs are especially useful in classifying complex patterns of
data.

The type of pattern recognition most often used by human
experts in diagnosis is visual. Understanding what a human sees
often includes more than just pattern recognition. The complete
understanding of a picture, for example, requires recognizing the
patterns in the picture as well as the relationships between the
patterns. The AI technique, CV, which is sometimes called image
understanding, deals with processing and understanding electronic
images such as those in a computer. An example is the digital
image of a blackened, cracked, and misshapen piece of metal. The
CV technique could potentially understand the state of the metal.

The AI technique of fuzzy logic has been found to help
various diagnostic approaches. Human diagnostic experts have to
blend specifications that have precise numbers with the knowledge
that most systems do not fail at precise points. Most equipment
manufacturers specify precise points that are to be used as
threshold values. For example, an electrical component may be
specified by the manufacturer as operating correctly if its
resistance is between 9.2 and 10.3 ohms. This specification implies
that a value of 9.1 or 10.4 ohms would indicate a 100 percent
failed component. The human expert knows that in most cases this
is not true; many components do not have a precise point of failure
that is true for all the identical components. Many components (as
well as systems) have varying degrees of failure. Setting the
threshold specifications is often a trial-and-error affair for the
manufacturer even with the help of maintenance experts. Time is
often expended on newly received systems attempting to establish
a threshold for fault logging, which is a compromise between the
threshold specifications being set too low and creating many false
alarms and its being set too high and allowing a failed system
without the fault being logged.

Fuzzy logic allows the diagnostic system to use such
imprecise terms as high, normal, and low. Additionally, fuzzy
logic



provides for varying degrees of degradation of components
(nodes) instead of the traditional working/failed (on/off). Thus,
fuzzy logic allows diagnostic systems to be much more flexible in
evaluating realistic systems. This can often reduce the false alarm
rate in diagnostic systems while giving indications of system
degradation.

KBSs can include any computer program that has knowledge
derived from a human expert as a major part of its problem-solving
approach. One technique relevant to diagnostics is that associated
with procedural activities such as troubleshooting. Diagnosis on
established systems consists of procedures developed in large part
by the diagnostic experts. If an organization has a large number of
novice maintenance personnel, a program used to assist them in
performing diagnosis could be very cost-effective. The program
would be an "intelligent troubleshooter" and be derived from the
diagnostic procedural knowledge of the expert.

Although a considerable amount of research and early
prototype development of those AI techniques has been performed
in many domains, their operational application to real-world
problems has been limited. There are perhaps many reasons for
this, but certainly the practical implementation issues (as with any
emerging technology) have a major impact on AI's acceptance and
utility. Promoters of AI techniques in diagnostics have been faced
with such issues as which technique to use, how the technique
should be incorporated into the diagnostic process, how to
determine the extent of the diagnostic problem that will be solved
by the technique, and what the costs and benefits are from using
the techniques. Because most of the applications research has been
through the proof-of-concept prototype stage only, these issues
have not been considered in great depth. Additionally, since the
application of each of the AI techniques is specific to a domain
within a particular environment, these questions have to be
reevaluated each time an AI technique is considered.

Most AI development programs require three major software
components. The knowledge base contains the knowledge from the
experts that is specific to the domain or problem to be solved. The
software used to control and manipulate the knowledge is called
the inference engine. There is also software to interface to the
users of the system and to perform other necessary or desired
functions (such as developing reports or accessing external data
bases). Most of the AI techniques developed to the prototype or
operational stage during the 1970s and 1980s were completely
customized. This is a costly and time-consuming process.
Although the knowledge base has to be domain specific, and
therefore customized, the software for the inference engine and
other functions does not. A more recent trend has been the
development of more generalized "shells" that contain all the
necessary software to support a specific AI technique. Essentially,
all that is needed to be customized is the knowledge base. As the
shells have been commercialized, the cost and time necessary to
implement particular AI techniques to specific domains has
dropped significantly.

RESEARCH APPROACH

The study described in this report was conducted in six tasks
described in the following paragraphs.

Task 1. Railcar Subsystems and Current
Diagnostic Practices

The goal of Task 1 was to compile a listing of rail transit
vehicle subsystems describing their use and features relative to
effects of failures, inherent diagnostic complexity, and current
industry diagnostic practices. The approach to reaching this goal
was to initially draw on the experience of the project team and
supplement that with selected site surveys and telephone surveys
with representative industry operators and suppliers. Data were
also solicited for identifying potential sets of measurements for
maintenance diagnostic activities, such as mean time to repair, and
for identifying the operators' greatest diagnostic concerns. The
railcar subsystems were categorized according to criteria relating
relative importance of the subsystem.

Task 2. Al Techniques Used for Diagnosis

The goal of Task 2 was to identify AI-based techniques that
have been used to improve the diagnostic process in various
industries and that could be profitably used on transit railcars. The
AI-based applications may improve diagnostics on current or
future configurations of railcars and may be applicable to railcars
from many different agencies. The AI techniques investigated
included expert systems, KBS, MBR, CBR, ANN, fuzzy logic, and
CV systems. An extensive literature search and information-
gathering activity was launched. Sources of information included
the Department of Defense through the specific armed services and
through the Advanced Research Projects Agency, National
Aeronautics and Space Administration, university technical data
bases, the DIALOG on-line technical data base service (through
which the Transportation Information Service and INSPEC data
bases were queried), AI software vendors and AI development
companies, and individual research projects.

Task 3. Al Techniques-Railcar Subsystem
Correlation

Task 3 used information acquired during Tasks 1 and 2 to
develop an understanding of how the different AI techniques could
be used on the railcar subsystems. The goal of Task 3 was to rank
the railcar subsystems and the AI diagnostic techniques in such a
way that high-probability-of-success AI techniques were matched
to railcar subsystems whose improved diagnosis would provide a
major impact in cost reduction. Two sets of criteria were
developed from the site surveys and AI technique information-
gathering tasks. One set of criteria, based on the applicability of
each AI technique to work against the railcar subsystems, was used
to rank the subsystems with the AI techniques. The other set of
criteria was based on the operational requirements for
implementation in the maintenance environment and was used to
rank the AI techniques.

Task 4. Economic Analysis

A mature cost model was used in this task to develop an
understanding of potential cost saving through application of
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AI techniques to railcar diagnostics. Data to drive the model were
developed from transit authorities. The model was exercised
through a range of potential improvements in diagnosis for all of
the railcar subsystems. Additionally, a representative AI program
was analyzed for implementation cost, and the cost model was
used to determine the payback period for such a program.

Task 5. Barriers to Implementation

The goal of Task 5 was to identify potential barriers to the
implementation of AI diagnostic techniques in the maintenance
process at the transit authorities. Discussions with maintenance
experts and managers were used to identify the operational,
system, and cost barriers. Review of AI diagnostic information in
other industries revealed potential technical barriers to
implementing the different computer-based techniques.

Task 6. Recommendations

The goal of Task 6 was to develop recommendations for both
application and research. The recommendation for nearterm
implementation of an AI diagnostic program was developed from
the understanding of the mature AI techniques and how they apply
to railcar systems. The research recommenda-

tion was developed from the understanding of the eventual
diagnostic goals which were expressed by transit authority
maintenance personnel surveyed during the course of the
investigation.

ORGANIZATION OF REPORT

Chapter 2 reports the findings of the site surveys of the transit
railcar maintenance properties, the literature search in AI
diagnostic techniques, the AI technique to railcar subsystem
correlation, an economic analysis related to implementing AI
techniques in the diagnostic process, and the barriers to
implementing AI technology at the properties. Chapter 3 discusses
details of how the AI technology can be applied in the near term
and for potential follow-on applications. Chapter 4 discusses the
conclusions of the report and where additional research could
support the improvement of the diagnostic process.

Appendix A describes the transit railcar subsystems that were
investigated in detail. Appendix B contrasts the differences
between heavy, light, and commuter rail transit systems. Appendix
C presents samples of maintenance data derived from various
reports from four transit authorities. Appendix D provides a point
of contact for interested individuals to obtain information on
commercial AI software products. Appendix E contains the
references and bibliography.



CHAPTER 2

FINDINGS

RAILCAR SUBSYSTEMS AND CURRENT
DIAGNOSTIC PRACTICES

Site Surveys and Contacts

As part of the efforts of Task 1, a number of transit-operating
authorities and suppliers were visited or contacted by telephone.
The contacts made are shown in Table 1. The properties selected
for site visits represented the breadth of equipment and diagnostic
practices necessary to provide the needed information. The
purpose of these surveys was to develop the vehicle system
characterization and obtain data to rank the importance of the
vehicle systems, learn the authorities' concerns with diagnostic
needs, and uncover potential obstacles to implementing different
techniques. Additionally, data were collected to conduct an
economic analysis of the impact of reducing system diagnosis
using AI. A formal site survey form was developed for use by the
survey team; however, the visits were conducted on an informal
basis in order to elicit more open responses to the team's inquiries.

The site visits and telephone contacts created a limited and
directed survey. The response from the properties visited were
strikingly similar; therefore, originally planned visits to Chicago
Transit Authority (CTA) and the South Eastern Pennsyl

TABLE 1. Project Visits and Contacts

PERSONAL VISITS
Washington Metropolitan Area Transit Authority (WMATA) Lemuel Proctor,
General Superintendent
Port Authority Transit Corporation (PATCO) - Dick Burt, Superintendent of
Equipment
Bay Area Rapid Transit District (BART) - Eugene Nishinaga, Research and
Development Manager
WABCO - Rick Mazur, Principal Engineer

GE Transportation Division - Dave Phelps, Manager
Maryland Department of Transportation (MD-DOT) Raymond Carrol, Director
Systems & Equipment Engineering

TELEPHONE CONTACTS

AEG Westinghouse - Tom Faber, Project Engineer

Kawasaki - Brad Craig, Project Engineer
New York City Transit Authority (NYCTA) - Charles Timmons, Manager, R
110A Project
Port Authority Trans-Hudson System (PATH) - William Fellini, Engineer

Source Ray Oren

vania Transportation Authority (SEPTA) were not conducted.
However, the scope and range of information obtained from the
contacts that were established was as expected. There were no
unexpected diagnostic concerns or topics that suggested the need
for a more extensive survey. The site surveys and contacts served
to substantiate the comprehensive knowledge of the research team.

Because this project was defined as related to maintenance
activities, no time was allocated during the visits to explore
operational problems with diagnosing and isolating failures during
revenue service. The approaches to and complaints about
diagnosing vehicle problems were universal.

Diagnostic Practices and Concerns

The diagnostic-related practices and concerns of rail transit
authorities can be categorized in four major areas: cost, system
support, personnel capabilities, and railcar diagnostic focus. A
detailed discussion of these areas follows. Additionally, the
diagnostic approach of subsystem manufacturers and how that
approach may affect properties is discussed.

Cost Considerations. Properties are feeling the pressure to
reduce costs. The maintenance area is a prime target because it is a
large portion of the operating cost. The managers in charge of the
maintenance activities feel that reducing the diagnostic effort is
one of the major areas left where cost reductions can be made.
Those surveyed feel that from the cost reduction aspect, the overall
maintenance process has been "scrubbed" extensively and that
costs have been reduced. However, more innovative ways of
cutting costs must be found, and the diagnostic process is a prime
target.

The emphasis on cost reduction will also carry into whatever
approach is taken to improve the diagnostic process. The
application of advanced technology, such as an AI program's, must
come under the cost-effectiveness umbrella. The properties feel
that any AI diagnostic program's cost and benefits must be highly
visible. Specifically, emphasis must be placed on a "quick-
payback" period without substantial capital outlay. Additionally,
the properties feel that incremental implementation of an advanced
AI approach to diagnosis with extensive interaction between the
developer and maintenance personnel is necessary to reduce risk.

System Support. Properties use various system architectures
to support their diagnostic and maintenance activities. The

7
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architectures include computers, electronic and paper data bases,
electronic and paper technical publications, test equipment, and
various software packages. Both current maintenance practices and
application of new technology have to interface with the support
system.

In many properties, maintenance personnel have available
historical maintenance data that are usually stored in an electronic
data base. The data's use and utility vary from property to property.
It is felt by many maintenance personnel that the operations
department failure reports are not sufficient nor consistent enough
to permit shortcuts in the diagnostic procedure. Most often, the
maintainer must begin with a complete system checkout; many
believe that this method entails time "wasted" in checking parts of
a system that are already functioning properly. The line
maintenance supervisor has the responsibility for job assignments,
but some supervisors intentionally do not provide the maintainer
with a full fault description, thus forcing a full system checkout.
On the other hand, some supervisors use their experience, vehicle
and fleet history, and the initial report to direct the maintainer to
specific portions of the failed system. All line supervisors know
their best maintenance experts and reserve this resource for the
tough problems.

Suppliers of new microprocessor-based control systems are
providing what they refer to as "diagnostic aids" as a fallout from
the use of the processors; in most cases, however, what is provided
is a fault-logging capability. Most of the fault loggers use the
control system algorithms and have been implemented by
suppliers to satisfy the needs of system setup. As a consequence,
the faults recorded may be too restrictive for normal operation: the
fault logging may shut down the monitored system too frequently
and needlessly. Predictive failure techniques and techniques for
handling repetitive, intermittent faults are not currently part of
these fault-logging systems. Where the fault loggers are available,
they are being used by maintainers as an aid in the fault diagnosis
process. In some of the newer vehicle procurements, with the latest
technology, the fault logger identifies the failed Line Replaceable
Unit (LRU), thus enhancing vehicle repair and turnaround. It is not
known whether the criterion for failure identification is most
efficient; the system might be just diverting the diagnostic
difficulties to the back shop. It is most likely that the procedure for
determining a failure relies on the use of very accurate alignment
values. Larger tolerances might be acceptable for normal
operations. How accurate a system component must be, or the
combination of stacked inaccuracies, or the time until the next
system alignment are not yet considered in the fault-logging
procedures.

Another diagnostic improvement concept forwarded by the
supervisors is to put system data, manuals, and schematics close to
the worksite in a handy, easy-to-use manner. Authorities have been
trying to implement this concept by specifying the format and
content of maintenance manuals (including their having soil-
resistant finishes) and placing the manuals at the work sites. The
manuals, while generally useful, are still difficult and cumbersome
to use. One authority is translating its maintenance manuals to
electronic media, with the intent of possibly presenting the data in
this form at the worksite. Most maintenance supervisors believe
that this data, coupled with

software that leads an inexperienced maintainer through a
diagnostic process, would be a significant improvement.

One of the difficulties every property faces is using system
support architectures that have been pieced together over time. The
pieces seldom interface with each other. Maintenance personnel
feel that the capability to have compatible hardware and software
would greatly enhance the maintenance process, and that the
addition of any new technology should help this situation.

Personnel Capabilities. Some authorities believe the
diagnostic capability of their staffs is decreasing. One stated that
the maintainer takes troubleshooting only to the first obvious fault-
but this fault may not be the cause of the system failure. Another
authority relies heavily on its experts: it believes that expert
maintainers will spend time performing complete system
checkouts and routine preventive maintenance tasks, such as
cleaning and adjustment, as part of their normal diagnostic
approach. This is believed to clear faults, even when an explicit
fault is not found. The time spent is not all diagnostic time.

Most authorities agree that some standardization of
maintenance practices based on expertise would be helpful. By
developing a mechanism to help maintenance personnel perform a
minimum set of diagnostic activities, the problem of quitting after
finding the first obvious fault can be reduced.

The larger authorities have training programs in place, to
which maintainers are assigned by the supervisors. However, the
programs mostly cover system operation explanations and do not
cover improvements in diagnostic skills.

Discussions with maintenance personnel indicated that there
is a wide variation of computer literacy. Most managers believe
that the growing use of computers in society is being reflected in
more personnel feeling comfortable with computers. It is also
believed that maintenance personnel can learn and will accept
computer-based technology if it is easy to use and truly helps do
the job. It was emphasized, however, that the introduction of
computer-based technology would only be successful if the
programs were very user friendly and produced results the
personnel found helpful. It was also stated that the interface had to
use terminology with which the personnel were comfortable.
Finally, the credibility of the program had to be high. The ability
of the program to explain its logic to the personnel was deemed
very desirable.

Maintenance managers were asked where in the diagnostic
process they believe a diagnostic program should be located.
Although it was hoped that eventually such a program could reside
on board the railcar to automatically monitor, detect, and diagnose
faults, most managers believe that a program that assists the
maintenance individual should be the first priority.

Diagnostic Focus. Almost all the maintenance supervisors
indicated that a significant diagnostic problem was with
intermittent faults, either in cabling or by other means. The
problem with diagnosing these faults is the inability to duplicate
the fault as reported. The intermittent fault and short duration
might even be a reason for the obscure failure description. Because
of



reported failures that cannot be duplicated and multiple system
configurations producing similar fault conditions, inordinate
resources are frequently spent in diagnosing "unfound" faults.

All the authorities have experienced repeat failures, which are
vehicles that return to the shop with similar failures over a short
period of time. Repeat failures indicate that the real cause of the
failure was not found or that the wrong repair was performed. This
is attributable in part to intermittent or pending failures, and to
inadequate diagnostic capability. Some authorities feel this last
factor may be the primary reason.

Maintenance managers were asked to which railcar subsystem
they believed advanced diagnostic capability should be applied.
Most responded that improving diagnosis on the propulsion system
would provide the greatest benefit: the difficulty in diagnosis, the
expertise required, and the impact of a failed propulsion unit were
cited as the reasons. Automatic Train Control (ATC) was also
mentioned, primarily because of the impact of a failure.

Suppliers' Diagnostic Push. System suppliers were contacted
about advances in diagnostics for their systems. Many systems are
being developed with microprocessor controls, which lend
themselves to data-logging and diagnostic capability, and most
suppliers did state that they were developing the capability to log
data. Often, system parameters are monitored and recorded: if the
system parameters remain within set threshold values, no action is
taken to save the recorded values. If, however, the system
parameters are found to be out of specification, then, within a time
window around that event, the recorded data were saved. The
suppliers term this activity "fault logging." After further
discussion, however, the suppliers admitted that it was really
"event recording," because there is no guarantee that a fault has
actually occurred. There is little done with the data logged beyond
making them available to the maintenance expert, and the
maintenance expert has to use that information to perform
diagnostics. Some suppliers stated that they are investigating the
development of advanced diagnostic capabilities in their systems;
however, they said that the purchasing authorities have not shown
enough interest in such capabilities to justify their development.

Discussion with the suppliers revealed that even in the case of
event logging, the data recorded and the sensor locations were not
designed for any particular diagnostic approach. Additionally,
some of the system designs precluded the easy inclusion of sensors
or monitoring devices for add-on diagnostic capability.

Vehicle System Characterization. Transit railcar systems
include a wide spectrum of different system types. Traditionally,
relay logic is used for providing control of systems related to
safety, such as train control and door control. Relay logic, with
multiple contact points and mechanical action, is subject to hard-
to-locate, intermittent, and inaccurately described faults. Operating
properties specify lamps or lights on some of these relay functions
to indicate when the relay is in a particular state. However, for a
particular vehicle, there usually is no
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history of correct or incorrect relay or relay system operation:
diagnostics usually entail tracing the circuit using a schematic or
wiring diagram and electrical meter. Difficulty is often
encountered in establishing the equipment operating condition that
reproduces the reported fault. Because of known and accepted
failure modes, the application of relay-logic-based systems to
safety circuits will persist in the transit railcar industry.

Analog electronic systems are used for most control systems
on transit railcars. Data available for troubleshooting these systems
depend on the specific equipment, who supplied it, and a
property's resources when the equipment was specified. On the
low end this is a system schematic with no signal data; on the high
end, system-specific bench testers with output signal comparators
are provided. As with relay logic systems, reproducing the
equipment operating condition is often difficult.

Transit railcar control systems are being implemented with
microprocessor logic. The switch from analog electronics is due to
microprocessor speeds and the capability to provide a satisfactory
simulation of continuous control functions. The switch from relay
logic is also occurring because techniques are being provided to
operate the microprocessor in a fail-to-a-safe mode. The
microprocessor technology offers flexibility beyond relay logic,
the major feature being event logging. Generally, this is a time-
history logging in nonvolatile memory of specific parameters in
the control system with a shutdown of the logging function at the
occurrence of an identifiable fault. Properties are requesting and
suppliers are providing this as a "first-cut" diagnostic aid.

Transit railcar systems also include power-switching circuits
(contactors and interlocks) in the 1,000-Vdc, 1,000-A range for
providing power to the traction and auxiliary systems. There are no
data indicating a pending fault for these subsystems, so these
systems fail thus resulting in a vehicle shutdown condition. In
most cases, then, fault isolation only requires identifying a missing
function, such as no interior lights, or visually identifying a
destroyed component (an overly simplified statement). Solid-state
power electronics are replacing power switching systems. At
present, these subsystems are fault-monitored in a way similar to
that of contactor systems. The systems go to a full-fault condition,
while intermittent anomalies, if data are available, might indicate a
pending failure.

At the vehicle level, the industry is only just beginning to
specify car-level monitoring of on-board system operations. Most
of this is an event recording with little or no diagnostic, or even
operational adjustment, capability. Car-level monitoring has not
progressed to an integrated system in the transit railcar industry.
This subsystem could provide data to assist in both fault
identification and fault diagnosis.

Table 2 presents a summary of the efforts to categorize rail
transit vehicle systems. Preliminary categorization and initial site
visits identified widely different diagnostic needs during different
phases of the repair efforts. The isolation and identification of
faults are different during revenue operations, vehiclelevel
troubleshooting, and component checkout. These differences result
in the use of different diagnostic techniques. This delineation of
differences has resulted in structuring of the vehicle categorization
to differentiate the three levels of fault
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TABLE 2.Vehicle System Characterization

 Source: Ray Oren

isolation: revenue service level, vehicle level, and back shop level.
Revenue service level applies to faults occurring during

operations or revenue service. The goal is to minimize disruption
to service. The diagnostic need is to quickly ascertain which
system has failed, how it affects passenger safety, and what actions
are necessary to continue revenue operations. A measure of the
fault identification and repair function in this mode is the amount
of time the revenue service is disrupted.

Vehicle-level diagnostics refers to the period from when a
fault has been reported and the vehicle has been assigned to the
shop up to the time it has been returned to service. The goal is to
repair the vehicle and return it to service as quickly and as
accurately as possible. The maintenance requirement is to
efficiently identify the failed lowest LRU. Diagnostic needs are an
accurate report of the failure and a rapid, comprehensive, well-
structured system checkout procedure. The measure of
maintenance and fault diagnosis capability is the time to return the
vehicle to service and the number of indeterminate failures.

Back-shop-level diagnostics refers to repairs on components
that have been removed from the vehicle and repaired on the
bench. The maintenance and diagnostic needs are more complex:
rigorous component checkout and alignment procedures are
necessary. Again, the measure of maintenance and fault diagnosis
capability is the time to repair, but separating this effort from the
total repair is often difficult. An in-depth description of the railcar
systems is provided in Appendix A.

Vehicle System Evaluation. A methodology for evaluating
vehicle systems is presented, which is based on equipment
reliability and maintainability. The vehicle system components and
reliability data are developed for a composite or generic vehicle
representative of the heavy rail transit operators visited. Appendix
B characterizes heavy, light, and commuter rail systems.

All the transit-operating authorities have Maintenance
Information Systems (MISs) in use for reporting maintenance
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TABLE 2. Vehicle System Characterization (continued)

Source: Ray Oren

activity and providing vehicle and component histories. A
common feature of these MISs is their uniqueness to the property
where they are installed. Although the basic purposes of the MISs
are similar, the structure for coding vehicle components and the
availability of reports is different. Some MIS vehicle codes are
such that the components can be associated with the major vehicle
systems and assemblies. WMATA uses such a coding system,
which is similar to many military and aircraft code structures.
Even within this structure, however, there are some codes that are
based on the physical location of the components.

Propulsion system components, for example, are coded with truck
equipment. This location-type of coding is more apparent at
PATCO. Some of the structuring is also based on the trade
performing the repair. In some MISs, not necessarily represented
by the sites visited, the equipment-coding structure is based on the
initial inventory control system implemented, and the system
association is to original equipment suppliers. Appendix C
provides samples of data retrieved from several transit authorities.

The extent and use of the MIS vary widely from property
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TABLE 2. Vehicle System Characterization (continued)

Source: Ray Oren

to property. For any individual operating authority, a great deal of
data is available for history and trend analysis. However, there is
no easy way to make an industrywide comparison.

Reports from two of the sites visited were used to develop a
generic vehicle performance matrix, which is shown in Table 3.
The breakdown of the vehicle systems and components is the same
as in Table 2, where the vehicle systems characterization was
reduced to a generic vehicle by selecting the configuration of
various systems. As an example, the propulsion system
configuration is a solid-state, microprocessor-controlled system
with electromagnetic contactors. The friction brake system is
electropneumatic with microprocessor control, doors are a relay-
based control system, and the HVAC is printed circuit board
controlled. These systems are similar to a WMATA fleet because
the WMATA reliability data were used to generate the service
portion of the performance matrix. Although this makes the matrix
resemble that of the WMATA fleet, it is only a snapshot in time.
The resulting tabled data are consistent

with an intuitive opinion for the magnitude and order of the
vehicle system failures. The failure rate data can be reexamined for
different system configurations, such as a cam-controlled
propulsion system.

As mentioned, the Field Service Report (FSR) section of the
fleet performance matrix was developed from a WMATA report.
The report did not include data on the repair effected: it reports
incidents charged against various vehicle components or
assemblies. The assignment of an FSR incident to a category listed
in the matrix (e.g., Microboards) was made when the WMATA
coding structure clearly indicated that the incident was identified
to that level. Incidents in the report shown against upper level
assemblies were assigned to the No Defect Found (NDF) category.
Some judgement was applied here as to what may or may not be a
line replaceable or repairable assembly. Normally, an operating
authority does not indicate as large an NDF category as the matrix
shows. The NDFs may indicate that a specific fault was not
uncovered for the incident.
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The lower lever assignments of incidents do indicate a definitive action against a specific
component.

The FSR section of the matrix is read slightly out of normal reading order to enable
subsequent automatic spreadsheet cal-

culations. The total number of FSR incidents is that show in the Operations column.
Since these are service failures, theoperation department sees all the failures. These total
failures are assigned to the remaining categories. For example in the
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Propulsion System, these are NDF, Remove & Replace,
Microboards, Relays, and Amplifier.

The Time per Incident portion of the Fleet Performance
Matrix was developed in a different manner. The Service Delay
section is based on BART's monthly operations report. The BART
service delay data were restructured to be similar to the structure
of the generic vehicle systems. As with the reliability data, it is
only a snapshot, not necessarily a stable statistical sample. It is
believed, however, to be reasonably representative of normal
service delays.

Mean Time to Repair (MTTR) was not available as part of
any operating authority's MIS. The values used in the matrix are
based on a review of a number of vehicle technical specifications.
MTTR values are specified in some vehicle procurements and are
warranted and demonstrated by suppliers. The values are, at least,
an agreed-upon target. A review of maintainability analyses and
demonstration reports for a specific vehicle procurement was also
accomplished. The values shown are consistent as a set: they may
be lower than what an operating authority experiences. If time is
reported to the MIS, the authorities do not separate administrative
time from repair time. Back shop MTTRs are estimates based on
knowledge of the repair procedures and discussions with
supervisors during the site visits.

The Time per 1,000 Hours column is a product of failure rate
and average repair time expressed as a function of 1,000 hours of
vehicle operation. The values in the Service Delay column (under
Time per 1,000 Hours) is a multiplication of the total number of
FSRs (in the Operations column) with the Service Delay per
incident (under Time per Incident). Vehicle repair time (under
Time per 1,000 Hours) is a multiplication of the sum of NDFs and
vehicle FRSs with the vehicle MTTR per incident. The Back Shop
Repair (under Time per 1,000 Hours) is a multiplication of the
FSRs in each back shop category with the back shop MTTR per
incident.

The matrix can be used to evaluate railcar systems for
prioritization in application of AI diagnostic techniques. The car
body, friction brake, and propulsion systems rank high in
maintenance requirements. The car body system, probably because
of its passenger interface, requires the greatest maintenance effort
for reported incidents. The friction brake system causes the longest
service delays. The propulsion system is second in maintenance
effort, but has a very large number of NDFs. The number of NDFs,
the amount of maintenance required, and the opinion of the transit
maintenance managers that the propulsion system should be the
initial focus for improved diagnostics place the propulsion system
at the highest priority.

ARTIFICIAL INTELLIGENCE TECHNIQUES USED
FOR DIAGNOSIS

Literature Search

Information is available about various AI techniques used or
proposed for diagnosis. A descriptive word search of the INSPEC
data base using the key words "Artificial Intelligence AND
Diagnosis" resulted in 591 citations. Although a few of these
citations were of popular media reporting on advances

TABLE 4. Domains Represented in the Literature of AI
Approaches to Diagnosis

Source: Ian Mulholland

in this area, the vast majority were technical papers reporting
theoretical, prototypical, or operational aspects of using AI in
diagnosis. Table 4 lists the primary domains reported.

The systems targeted for diagnosis using AI techniques
within the domains listed in Table 4 included electrical, electronic,
mechanical, biological, chemical, and behavioral (in the physical
sense). Additionally, combinations of the systems were also
candidates for the AI techniques and these included complete
systemwide diagnosis. Some of the reports explicitly stated that
the approach described was domain and system independent. Even
most of the reports of techniques that used specific domains and
systems as examples stated that the techniques could be used
across other domains and systems. There were few reports
describing transit, transportation, or railcarlike vehicles used as
target systems of the AI technique. Even so, the techniques
described for other industrial domains seem completely
appropriate for the transit railcar domain. The techniques described
fell into the categories of expert systems, case-based reasoning
(CBR), model-based reasoning (MBR), artificial neural networks
(AANs), computer vision (CV), fuzzy logic systems, and
knowledge-based systems (KBSs). Many of the reports discussed
combinations of the techniques. Each of the individual techniques
was often discussed in terms of its strengths and weaknesses, the
knowledge available to support it, the data type (symptoms)
required to drive the technique, how the technique was to fit into
the diagnostic process, and aspects of its implementation. The
bibliography of material reviewed is given in Appendix E.
References are for material that provided substantial information
on the subject.

Al Techniques Reported

Expert Systems. Rule-based expert systems were reported on
extensively, both as stand-alone diagnostic systems and in
combination with other AI techniques. Most of the systems
described were ideas for either an approach or a prototype system.
Few of the systems would be considered to be operational; they
were reported as being used mainly as a technician's aid to help
novice maintenance personnel identify a problem. It some cases
they were used directly in a monitoring program. The expertise
used in the development of the system



came from current experts who had extensive experience with the
system. The data used were generally the behavior of the system,
which ranged from specific performance data at the component
level to broad status at the subsystem level. Expert systems were
considered in the reports to be fairly mature technology and were
believed to be useful in the maintenance domain. It was
emphasized in several reports that the capability of the expert
system to archive expertise for use by novice personnel is
important. Additionally, it was deemed crucial that the system be
able to explain its conclusions as a mechanism to increase its
credibility as well as to train novice personnel. It was noted,
however, that the expertise needed to develop the rule base had to
exist in an experienced person; thus the expert system approach to
diagnosis would have difficulty with a new system. It was also
admitted that rule bases that become large can be inflexible,
unpredictable, and cumbersome to use.

An example of a rule-based expert system used for diagnosis
is that of the CLEAR system (Hughes 1991). CLEAR monitors the
communications between a primary satellite and a relay satellite,
alerts the satellite analyst to any problems, and offers advice on
how to correct them. It monitors more than 100 realtime
performance parameters that represent the condition and operation
of the spacecraft's communications with the relay satellite. CLEAR
has approximately 165 rules and isolates 75 problems.

Case-Based Reasoning. CBR is a fairly recent AI approach to
attacking problems. There has been only limited investigation into
using CBR for diagnostic uses. CBR stores previous cases of
correct diagnosis (and possibly common incorrect diagnosis) with
the related symptoms and allows for quick access to those cases by
attempting to match current symptoms with the set of stored
symptoms. The data used for the symptoms can be at any level for
which previous data were used in the cases. If the CBR system
cannot exactly match the input symptoms, it can modify the case
closest to the input. If that result is correct, it will maintain the
modified case and in effect "learn" a new case. In addition to being
fast and using previous knowledge, CBR also has the advantage of
being usable on a new system without previous diagnostic
knowledge. Since the CBR system can "learn," its performance
will increase as it continues to function. CBR can be profitably
combined with other techniques for performing diagnosis. One
such combination reported by Karamousiz and Feyock (2) uses
MBR in which aircraft engine failures were diagnosed. For some
applications, MBR is computer intensive; and because it generates
the hypotheses and conclusions from the beginning for each
situation, the process may take longer than necessary. By
combining CBR with the MBR system, a first look can be made to
the CBR to determine if this situation has occurred before. If it
has, then the determination is very quick; if not, then the MBR
portion of the system can do its function. The current belief is that
CBR holds promise for diagnosis; however, there is little
operational experience with it.

Model-Based Reasoning. From the amount of recent
publications concerning MBR, it would appear that this AI
technique
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is the current favorite in the diagnostic world. Both the National
Aeronautics and Space Administration and Department of Defense
have done extensive work in this area. Much of the work reported
has been theoretical; however, some prototypes have been
developed along with a few operational systems. At least one
vendor has developed an MBR diagnostic shell. The models used
in this approach range from complex mathematical models such as
those used during the design phase (e.g., satellites) to "qualitative"
models that depict structure and function at a fairly high level.
Especially important in this approach is a "causal" model, which
indicates the causal relationships between components. These
models can be developed from schematic or functional diagrams of
the systems, along with an understanding of how the system
functions. The system can be modeled at whatever level of detail is
appropriate for performing the diagnosis. The MBR technique then
uses the system behavior to determine if a fault exists and to
develop candidate causes for the fault. The MBR technique was
shown to be appropriate for continuous monitoring of systems, but
has been used operationally as a technician's assistant. Because
existing diagnostic expertise is not required, the MBR can be used
on new systems. Additionally, this technique shows good
flexibility in response to changes in the system, and MBR
diagnostic techniques can provide good explanations to users.
Finally, an advantage to this approach is its capability to find faults
that were not previously expected from the system. MBR systems
do require, however, a considerable amount of effort to develop
and ensure accuracy of the model, depending on the level of
diagnosis required. Additionally, it is possible that running the
model would require considerable computer resources, depending
on the size and detail of the model.

FIS, an MBR diagnostic program reported by Pipitone et al.
(3), was developed by the Naval Research Laboratory. The goal
was to develop a program that could be used on many different
electronic systems by providing a general fault isolation shell that
employs a common knowledge acquisition and representation
scheme. This scheme was a model of the system being diagnosed.
It was realized, however, that there would still be a different model
for each system, so FIS supported the concept of reuse knowledge
modules. In essence, the reuse knowledge module represents a
specific component or function and can be reused in any model at
any location where that component or function should appear. A
simple on/off electrical switch is an example. Once the switch is
modeled, the switch module can be used anywhere in the full
model or in another model where a similar switch is needed. After
building a library of knowledge modules, many different models
can be constructed by combining these modules in different ways.

Artificial Neural Networks. ANNs have become popular in
recent years and are well represented in the literature about AI and
diagnosis. ANNs seem well suited for use in diagnosis because
they can find patterns in complex data. These patterns can be used
to distinguish between properly functioning components and
systems and those that are malfunctioning, even if the differences
are fairly subtle. Additionally, ANNs can learn and increase their
accuracy and ability to discriminate as
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they function. Most of the reports in the literature about ANNs in
diagnosis were theoretical or proof-of-concept descriptions. Little
discussion was presented on how the ANNs would fit into a
diagnostic system beyond the designation of a component or
system as functioning properly or improperly. There was
discussion of using the output of the ANN as an input into another
AI-based system (e.g., expert system). Much of the discussion
concerned the amount and kinds of training data needed to set up
the ANNs so that a high level of accuracy would be achieved. It
was stated by many that the initial training set would not have to
be large if the ANN were set to learn through its functioning
process. A concern was expressed about the inability of ANN to
explain to a technician how it arrived at its conclusion.

A pilot project, reported by Jones and Plummer (4), in the
application of ANNs in transit railcar diagnostics was performed
on a converter. A simulation of a converter was used to
accumulate the data necessary to train the ANN. The ANN was to
correctly categorize the waveforms from the converter associated
with component variations. The simulation produced 10 faults in 5
areas. The first approach was to have one ANN identify all the
faults. The result was a 22 percent error rate. The approach was
then changed so that one ANN was used to identify the area (out of
five areas) of the fault and then another ANN to identify the fault
within that area. The result for this approach was only a 4 percent
error rate.

Computer Vision. The CV approach to diagnostics was
described in several reports dealing with medical imagery. CAT
scans, x-rays, and MRI scans were the primary imagery input into
the CV programs. The medical diagnostic domain is producing and
using greater quantities of imagery data and has an acute need for
automated preprocessing (prescreening) of imagery data. The CV
approach requires special equipment for acquiring the image, mass
storage media for storing the imagery, and powerful computers for
processing the data. Although there was some allusion to using CV
in manufacturing quality control and nonmedical diagnosis, there
were no direct reports found in that area.

Fuzzy Logic. Although the literature discusses the use of
fuzzy logic in reference to data values used in ANNs, expert
systems, and other AI techniques, there were very few reports
focusing on fuzzy logic in diagnosis. Traditionally, maintenance
specialists have had to deal with a mixture of precise component
threshold values, as defined by the manufacturer, and imprecise
values, as developed by experience doing diagnosis and repair.
Fuzzy logic provides for imprecise values for measurements such
as high, low, warm, and hot. The fuzzy logic approach can support
values in ANNs, expert systems, MBR, or any other AI approach.

One approach to using fuzzy logic in diagnosis was in a
report by Bocklisch (5), which described the method of clustering
important features of a system being diagnosed to reveal the
differences between the normal (nominal) system and a system
with various faults. The features are sets using fuzzy

values determined either by an expert or by some data
reduction/classification algorithm. This approach allows for a
much broader capability to determine a partially faulted (degraded)
system then some more traditional methods.

Knowledge-Based System. Within the realm of KBSs reported
is one developed by the U.S. Army. It is based on procedural
activities resembling a troubleshooting decision tree: in fact, it is
the troubleshooting functional charts that support the creation of
this system. Maintenance personnel are very familiar with this type
of approach; it can be used with ease and is relatively simple. It
can be used at any level for which there are troubleshooting charts.
The primary use for this system is as a technician's assistant. It is
fairly easy to modify this system; however, care must be taken to
ensure the accuracy of the decision tree, as well as the descriptive
nature of each decision point. The Army, using a commercial shell,
developed the Turbine Engine Diagnostic application, which
provides Army mechanics with engine maintenance procedures in
a step-by-step fashion. Information in the form of hints, prompts,
and graphical representations is presented to the mechanics.
Reports and parts-ordering paperwork are also developed in this
system.

Completeness and Accuracy of Al Techniques

The majority of the literature discusses the AI techniques in
terms of stand-alone processes. There is some discussion,
however, of combining AI techniques; an AI system that uses two
or more AI techniques in conjunction is termed a hybrid. Often
this is done in order to take advantage of certain strengths. The
earlier discussion of CBR and MBR is an example. In some cases,
one AI technique can be used as an overall control mechanism
(e.g., an expert system) and another technique (e.g., ANN) can
process specific components and provide input to the control
mechanism. Perhaps one of the most compelling reasons to use a
hybrid system is the increase in the amount (and possibly
accuracy) of diagnosis performed by the system. The literature
contains some general discussion of what the researchers believe
would be the level of completeness and accuracy of specific AI
techniques in performing diagnosis on the research or prototypical
systems. However, there were no data on or discussions of the
completeness and accuracy of fully operational systems.
Additionally, there were few improvement statistics cited; that
kind of data can be developed through recording the results of
operational systems over time. To estimate the potential for
completeness and accuracy of an AI technique in diagnosis would
require extensive knowledge-engineering activity. Knowledge
engineering identifies the knowledge available to drive the AI
technique. Assessing the extent of knowledge available to support
the technique in performing diagnosis and comparing that extent
with the success the human expert currently has with that
knowledge would give a fair approximation of how well that AI
technique would perform (if properly implemented). For example,
if an expert used only if-then rules in performing diagnosis of a
system



and that resulted in a 90 percent successful diagnosis, then an
expert system alone could be expected to perform at least that well
(the system could theoretically perform better than any one expert
if the rule set were developed from multiple experts). However, if
the expert was found to use additional knowledge in the form of
cases or pattern recognition (which is usually the case), then a
rule-based expert system alone would not be sufficient. Using
human experts as a standard would indicate that no one approach
(i.e., AI technique) would be sufficient to completely solve the
diagnostic problem.

The literature discusses criteria for selection of particular AI
techniques in terms of knowledge available for the AI program,
what data were used as input to the program, the primary function
the AI program was to perform within the diagnostic process, and
what implementation features were important to the developers
and users. Since most of this work can be considered research or
prototypical development, instead of operational implementation,
the selection criteria were not concerned with the issue of which
AI technique would provide the best overall solution in supporting
the diagnostic process.

Comparison of Al Techniques

A summary of the AI diagnostic techniques is given in Table
5. Although these techniques are applicable to most diagnostic
problems, each technique has its own strengths and weaknesses.
All the AI techniques listed in Table 5, with the exception of CV,
use symptom data as input. These data are primarily the same data
that a human expert would use to perform diagnostics, although
ANNs can use raw symptom data that are not used by a human.
The CV approach uses imagery data that have been digitized.
Additionally, except for CV, there is available commercial
software for each of the AI techniques. This software is for the
shell of the system: that usually includes the computer-user
interface, the processing or inference engine, and the supporting
software. To create a viable diagnostic system, the user would
have to develop the knowledge base and interface it with the shell.
Some of the commercial software shells have incorporated the AI
techniques into a diagnostic-directed program (e.g., MBR shell
that is designated as a diagnostic program). Others are generic
shells related to the AI technique (e.g., expert system shell). Even
the generic shells, however, could be successfully developed to
support the diagnostic domain. The computer vision approach does
have some commercial software available; however, the
application to diagnostics would take much more effort than the
other approaches.

ARTIFICIAL INTELLIGENCE TECHNIQUES AND
RAILCAR SUBSYSTEM CORRELATION

Criteria

An analysis was performed to correlate AI techniques with
railcar subsystems. The information gathered during the site
surveys and the AI diagnostic techniques literature search were
used to relate the various AI techniques with the railcar subsys-
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tems. The goal is to develop an understanding of how well each AI
technique would function against each railcar subsystem. That
information can be used as criteria for recommending
implementation of specific AI techniques against individual railcar
subsystems. Additionally, recommendations for further research
can be derived from information about how AI techniques function
on the specific subsystems.

Reducing cost and increasing accuracy of diagnostics requires
the application of effective AI techniques to the railcar
subsystems. The railcar subsystems differ not only functionally,
but also by how the subsystems operate and are diagnosed.
Because no one AI technique can solve the diagnostic problems
for all railcar subsystems, it is necessary to understand how each
AI technique can contribute to the diagnosis of each railcar
subsystem.

Most of the railcar systems are composed of a combination of
mechanical, electrical, and electronic functional types of
subsystems and components. The amount of each of these
functional types varies within the system. Additionally, each
system varies in complexity and difficulty to diagnose. AI
techniques, even those used primarily in the diagnosis domain, are
not tied in any primary way to those functional types of
subsystems and components. Instead, AI techniques attempt to
emulate the different human problem-solving approaches. As
described in the background section, each particular AI technique
can be associated with a specific human problem-solving approach
or activity.

Human experts bring to bear on each diagnostic situation all
their problem-solving techniques. It is true, however, that some of
the approaches are used more often with some of the railcar
systems, depending on the experience and knowledge of the
human expert. For a system with which the experts have a great
deal of experience, they may use generalized rules as the primary
diagnostic approach, perhaps remembering specific past cases as
an added technique. For a new and complex system, the experts
may have to rely on schematics and their knowledge of how the
system works to track down faults. The experts do not rely on only
one approach to diagnosis for any system.

To correlate AI techniques to railcar subsystems, the
attributes in Table 6 were used. Many of the AI techniques can use
varying kinds or levels of symptom data. For example, rule-based
expert system programs could potentially use highlevel symptom
data associated with the physical behavior of complete
components or functional portions of the subsystem or fine-
grained symptom data such as would be provided by a
microprocessor. Each of the AI techniques, however, is used most
often with specific kinds or levels of data.

Each AI technique is constructed around a specific kind of
knowledge. For example, it is difficult to build a procedural KBS
if no procedures exist; therefore, the knowledge of the railcar
subsystem in the form required by an AI technique must exist for
that technique to be viable against that particular subsystem.

Diagnosis of a subsystem or component may require an
explanation to be accepted. This is particularly true for complex
subsystems that have a large number of potential faults. For an AI
technique to be effective in such a case, the technique
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TABLE 5. Comparison of AI Diagnostic Techniques

Source: Ian Mulholland

TABLE 6. Criteria for Correlation of AI Technique to Railcar
Subsystem

Source Ian Mulholland

would have to be able to explain its logic in arriving at its answer.
Of course, that explanation would have to be in terminology that
the maintenance personnel understand. In other cases, simply the
determination that a component is bad (e.g., a line replaceable
component) is sufficient.

Some AI techniques can handle complex subsystems better
than others. For example, expert systems have been found to have
difficulty in dealing with complex systems that require

many rules. Alternatively, MBR systems are designed to handle
complex systems well.

Correlation

Table 7 lists the AI techniques (with the exception of CV)
evaluated in this study and the transit railcar systems to which the
AI techniques may be applied. The entries in the matrix specify the
relative potential performance of an AI technique against the
railcar subsystem. Any of the AI techniques have the potential of
being applied to any of the railcar systems; however, some of the
techniques are best used with specific systems.

An expert system is appropriate to use on railcar systems for
which experience has been used by human experts performing
diagnosis. The expert system will be composed of rules derived
from the diagnostic expert, and the input data will be symptoms of
the faulted railcar system. In general, neither the diagnosed railcar
system nor the symptom data should be too complex.

18
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TABLE 7.     Matrix of Railcar Systems and AI Techniques

Source: Ian Mulholland

CBR diagnostic programs can be used on any railcar system
for which previous diagnosis has been performed and the
information of those cases recorded. Even for systems where little
previous information has been recorded, CBR programs have the
capability to learn and improve their performance as they function.
CBR programs are fast, use previous experience, and are able to
relate the current situation to the previous ones.

MBR diagnostic programs would be especially useful for
complex railcar systems or where there are systems interacting
with each other. In these kinds of systems, the symptomatic data
may be subtle or indirect: as, for instance, when one component's
failure causes the symptoms to show up in another component.
Additionally, since the basis for an MBR program is a model of
the railcar system that can be derived from schematics or
computer-aid design data, the MBR program is especially useful
when there is little diagnostic experience due to the newness of the
railcar system.

ANNs can perform pattern recognition on complex data of the
type produced by such electronic systems as Printed Circuit
Boards (PCBs), as well as symbolic data. ANNs can be effective
for situations even where it is difficult for a human expert to
determine the difference between the output of a good electronic
component and a degraded one. The ANN has to be trained using
data reflecting good and degraded components; however, the ANN
has the capability to continue to learn and improve its performance
as it does its diagnostic job.

As stated in the background section, CV approaches attempt
to emulate the vision capability of the human expert. Although this
approach appears to have some potential for use in railcar
diagnostics, little work has been done using CV in the diagnostic
domain in other industries (with the exception of the medical
domain). With the lack of background research in CV diagnostics
and with the requirements for specialized equipment such as
cameras and special image-processing hardware, it is currently
unknown if CV would be appropriate for use in the

diagnosis of any railcar systems. The CV category has been left
out of Table 7.

Fuzzy logic can be applied as part of any diagnostic system.
Its use allows familiar terminology for data values to be used in
the expert knowledge. Additionally, fuzzy logic provides for
understanding the degradation (partial failure) of the railcar system
and can be used anywhere precise threshold values are not needed.
The level of operational maturity for fuzzy logic use in diagnosis is
still low. The extent of the contribution that fuzzy logic can
provide to diagnosis is unknown.

A procedural KBS can be used on any railcar system for
which there is procedural expertise. If human experts have
developed diagnostic procedures such as reliable troubleshooting
decision trees, which, if followed, will lead to correct diagnosis,
then that procedure decision tree can be automated.

Operational Requirements

Inspection of Table 7 reveals that the criteria used (listed in
Table 6) did not result in very good discrimination for selecting
specific AI techniques for use on particular railcar subsystems. In
fact, any AI technique has the potential of working on any railcar
subsystem. The primary criterion that could have made the ranking
of AI techniques to railcar subsystems possible was found to be
beyond the scope of this effort. That criterion was the level of
completeness and accuracy that each AI technique provides to
each railcar subsystem. As described earlier, determining or
estimating how much an AI technique would contribute to the
completeness and accuracy of diagnosis in a particular railcar
subsystem would require an extensive amount of effort. The
selection of specific railcar subsystems and AI techniques for
inclusion in a recommendation for implementation will require
using other criteria.

Instead of just focusing on the applicability of an AI diagnostic
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TABLE 8.    Operational Requirements

Program must work well on high-priority
railcar subsystems
Program must be cost-effective and be able to
be implemented without long delays
Program must be able to interface with other
AI techniques, computer programs, or data
sources (e.g., electronic technical manuals)
Program must be user friendly for both devel-
opment and end use
Program must be able to be implemented
Incrementally
Program must be able to explain its conclu-
sions
Program must be able to perform the function
of advising technicians in the diagnostic
process

Source: Ian Mulholland

technique against each railcar subsystem, criteria were developed
in response to the operational needs of the properties as
determined in the site surveys. Table 8 lists those needs as they
relate to a diagnostic AI program (AI technique or techniques
implemented in a computer program).

As explained in the findings from the site surveys, the
propulsion system was designated by most maintenance managers
as being the system they believe should be the priority candidate
for advanced diagnostics. This is supported by the very high
percent of incidents with no defect found, as listed in Table 3. The
AI program implemented must be able to function on the
propulsion system.

A large cost of implementing an AI program relates to
development of the shell. If the shell has to be developed from
scratch or customized extensively, then the cost will be much
higher than if the shell has been commercialized and available at
reasonable cost. Therefore the shell for the AI program should be
Commercial Off-the-Shelf (COTS) software. Additionally, COTS
AI shells allow for the quick implementation of an initial AI
system. An economic analysis was performed and reported in the
next section.

Properties want as much capability in the program as
possible. This means the ability to increase completeness and
accuracy of diagnosis by adding additional AI techniques to the
core program. Just like a human expert who uses all the problem-
solving techniques possible, a viable AI program will do the same.
The usability of the program will also increase if it is able to
interface to other computer programs and data sources. A
capability of interfacing to and using historical maintenance data
would be extremely useful, as would the ability to display
technical drawings when appropriate.

The AI program must be easy to use, and have terms the

user understands. Knowledge engineers, domain experts, and
computer programmers must be able to easily enter knowledge and
data and test the system during development. Maintenance
personnel and managers must be able to use the program without
being required to have special skills or learn new terminology.

Reducing developmental risk and allowing improvement
through lessons learned can be supported by a program that can be
implemented incrementally. It is important that each increment of
the program be useful on its own, as well as adding to the
functionality of the whole program.

The success of an AI diagnostic program will depend, in large
part, on the credibility the program has with the maintenance
personnel. The ability of the program to explain how it arrived at
its conclusions will improve that credibility. There are some
important additional benefits of being able to explain its logic
process: during the testing of new knowledge, the explanation
function can be of tremendous help; additionally, novice
maintenance personnel can use the AI program to help them learn
new diagnostic skills.

Most maintenance personnel, as described in the site survey
section, believe that installing the AI program to directly assist the
maintenance specialist during diagnosis should be the first step in
implementing this technology. This "technician's assistant" would
not only provide recommendations as to the fault, but could also
display technical text and drawings and provide recommendations
for repair. It was also considered important, especially by
maintenance managers, that such an AI program could help the
technician accomplish all the required diagnostic steps to ensure
that a false fault was not found and "fixed" and the railcar released
just to be returned later. Finally, the technician's assistant could
help efficiently document the diagnostic (and possibly
maintenance) process.

The ultimate goal may be to install AI computer programs on
board the railcar to automatically monitor, detect, and identify
faults; however, most maintenance specialists believe that a
program used by them during the diagnostic process is the best
way to start. This approach will help them become comfortable
with the technology and provide stimulation for eventually placing
these techniques in a more automated location.

ECONOMIC ANALYSIS

Cost Model and Calibration

This section discusses the use of the cost model reported by
Moutoh and Elms (6), Cost Savings Potential from Improvement in
Railcar Reliability and Maintainability, and its calibration. As the
title implies, this model was developed for the express purpose of
evaluating potential cost savings from improvements in
maintainability or reliability. The model comprises three separate
but related modules: operations, maintenance, and capital costs.
All three of these areas can benefit from improvements in
maintenance diagnostic procedures; hence the model is well suited
for use in this project.

Each cost module develops an annual incremental cost
reduction based on postulated improvements in reliability,



expressed as Mean Time Between Failures, and improvements in
maintainability, expressed as MTTR. The reliability values used
are those developed for the vehicle subsystems evaluation as
described in Table 3. These reliability values are representative of
a composite heavy rail transit fleet. The purpose of the analysis is
to evaluate the effect of incremental changes in the MTTR; a
significant portion of the repair time is the time to diagnose the
problem.

A detailed description of the model is found in the referenced
document. The model requires calibration for the specific
operating property because it accounts for different operating and
maintenance structures and uses actual annual costs as a base. The
costs used to calibrate the model were developed in a manner
similar to the way the reliability values were developed. A generic
operating property was characterized from the data in the
American Public Transit Association's (APTA) Annual Financial
Statistical Reports of 1992. This generic property was assumed to
have a fleet size of 600 vehicles. The values used are presented
below.

The following terms and values are taken from Table 3 as
input variables for calibrating the cost model:

Number of failures per 1,000 hours                    6.69225
Service delays (minutes per 1,000 operating      8.523

hours)
Repair time (hours per 1,000 operating hours)  13.167

The model variable for Annual Operating Cost (Co) is taken
from the APTA Financial Report 1992, and is equal to
$63,065,446. Annual Corrective Maintenance Cost (Ccm) is
$16,254,926. Annual Corrective Spare Parts Cost (Csp) is
$4,768,111. These values are one-half the total vehicle
maintenance and spare parts costs reported for the same property.
Annual Operating Hours (Hs) was taken from APTA Operating
Statistics for the same property, and are 1,498,740 hours. The
average number of cars in a train (No) was set at 6 cars. An annual
operating schedule of 18 hours per day, 7 days a week, yields a
schedule operating hours per car per year (hs) of 6,570 hours.

The MTTR Line Service, in hours (R1) is equal to 0.021226
hours. It is Service Delay in hours divided by Number of Failures
(both per 1,000 hours). The Mean Time Between Failures (Fs) is
equal to 149.42658 hours. This is the inverse of the Number of
Failures per 1,000 hours. The Total Number of Failures (Nf) is
10,029.943. This is the Number of Failures per 1,000 hours times
the Annual Operating Hours (Hs) divided by 1,000. The Repair
Time is divided by Number of Failures (both per 1,000 hours) to
yield the MTTR (Rs) of 1.9674997 hours. The Mean Time to
Restore (shop time) (Rm), is estimated to be 8 hours: this is shop
turnaround time and includes actual repair time. The Annual
Maintenance Cost is Cm.

The Annual Fleet Capital Cost is Ec. The Cost per Vehicle
(Cv) used in the model is $1,000,000. A discount factor (crf) of 10
percent discount for 30 years was calculated, and the value is
0.057309.

All the cost modules use a ratio expression for improvements
to reliability and maintainability. The improvement in reliability is
expressed as Pf. Pf is the ratio of the increased time

21
between failures divided by the base failure rate. For the Operating
Cost module, these values are the Service Delay failures. For the
Maintenance and Capital Cost modules, these are the equipment
failure rates. Maintainability is Pr for the Operating Cost module
and Prs for the Maintenance and Capital Cost modules. Pr is the
decrease in time to return the line to service divided by the base
time. Prs is the decreased time to repair the system.

Operating Cost Module. The expression for the change in
annual operating cost due to an improvement in reliability, Pf, and
maintainability, Pr, is

Delta(Co) = Co*{(Pf + Pr)/(1 + Pf)*(No*R1/Fs)}

Evaluating the variables yields

Delta(Co) = (Pf + Pr)/(1 + Pf)*53750.68

Maintenance Cost Module. The expression for the change in
annual maintenance cost as a function of Pf and Prs is

Delta(Cm) = Nf*{Ks*Rs*(Pf + Prs)/(1 + Pf) + Kp(Pf/(1 + Pf))}

where
Ks = Ccm/Ds
Ds = Nf*Rs
Kp = Csp/Nf

Evaluating: Ks = 823.7053
Kp = 475.38771

Delta(Cm) = 16254926*(Pf + Prs)/(1 + Pf)
+ 4768111.5*(Pf/(1 + Pf))

Fleet Capital Cost Module. The expression for the change in
annual fleet capital cost as a function of Pf and Pr is

Delta(Ec) = Cv*Hs*(crf)/hs*{No*R1/Fs + Rm/Fs}
*(Pf+ Pr)/(l + Pf)

where
Rm/Fs = 0.053538

No*R1/Fs = 0.0008523
Cv*Hs*(crf)/hs = 13073256

and, therefore,

Delta(Ec) = 711058.31*(Pf + Pr)/(l + Pf)

Economic Analysis
The cost model developed and described above is used to

illustrate a few diagnostic improvement strategies. These strategies
include a system to improve the diagnostic time for PCB repair, a
system to improve the ratio of NDFs, and a system to improve
individual vehicle systems. The model was exercised postulating
various levels of improvements. The annual cost
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TABLE 9.    All PCB Repair Time Improvement

Source Ray Oren

TABLE 10.    Microprocessor Board Only Repair Time 

Source Ray Oren

TABLE 11.    All PCBs But Microprocessor Board Repair
   Time Improvement

Source Ray Oren

reductions were tabled, and graphed, and are presented as follows.

Printed Circuit Boards

The first case examines the use of a system that would improve the
repair of PCBs by improving the time to diagnose a problem. A
maximum of 25 percent of the current repair time was set as the
limit of expected improvement. Postulated new MTTRs were
entered in the cost matrix, and the resultant annual costs are shown
in Tables 9 through 13.

TABLE 12.    Communication PCB Only Repair Time 

Source Ray Oren

TABLE 13.    ATC PCBs Only Repair Time Improvement

Source Ray Oren

The tabled data are shown in Figure 1. The figure shows that a
system that can be applied to improving the repair times for all
printed circuit boards, if it can reduce repair times by 25 percent,
has the potential of reducing annual maintenance costs by nearly
1.2 percent.

Improving No Defects Found (NDFs)

The cost model was used to evaluate the effect of reducing
the number of NDFs by 5 percent. If the number of NDFs is
reduced by 5 percent in each of the vehicle systems, the net annual
cost reduction is $576,000, which includes reduction in operating
costs and fleet capital costs, as well as maintenance costs. This
dollar value would only relate to an operating authority similar in
size to that of the model variants. The percentage of annual
maintenance cost reduction is 2.6 percent.

Individual Systems MTTR Improvements

The model was next used to examine the effect of
improvements in the MTTR of each individual vehicle system.
Reduced repair times at the vehicle level were entered and the
resultant annual maintenance cost reductions in percent are
tabulated in Table 14. Figure 2 presents a simple bar chart
comparing the

   Improvement

   Improvement
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Figure 1. Annual Maintenance Cost Reduction for Improvement in PCB Rapair Time.

TABLE 14. Vehicle Systems MTTR Reduction

Source Ray Oren

annual maintenance cost reductions in percent possible with a 10
percent reduction in individual systems' MTTR.

Model-Based Al System for the Propulsion System

A model-based system is proposed as a diagnostic tool for the
propulsion system including the traction motors, gearboxes, power
switchgear, and control logic units. The initial cost estimate for the
system is $120,000. That cost includes a COTS shell, initial
development of the base system by a contractor, training and
follow-up consultation, and cost of a transit authority's
maintenance specialist. Reviewing the value used in the cost
model, there would be 1,719 propulsion system failures in a year.
With a 5-day work week, this is 6.6 failures per day. Ignoring
multiple shifts, eight workstations should be provided.

At $6,500 a workstation, an additional $52,000 is added to the
system cost estimate. This is a total of $172,000 for an operating
authority of the size similar to that of the cost model. The cost
model uses an annual corrective maintenance cost of $21,073,038.
The cost of the proposed diagnostic tool is 0.82 percent of this
annual corrective maintenance cost. The diagnostic tool only has
to provide a 7.2 percent reduction in the propulsion system MTTR
to pay for itself out of cost savings in 1 year. A 7.2 percent
reduction in the propulsion MTTR, moving from 1.8 to 1.67 hours
MTTR, is less than the postulated limit of a possible 25 percent
improvement used in the above sensitivity exercises. The MTTR is
composed of actual repair time and diagnostic time. As mentioned
earlier, there are no operating statistics on how much of an MTTR
is repair and how much is diagnostic time. One approach to
determining
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Source Ray Oren

Figure 2. Annual Maintenance Cost Reduction for a 10 Percent Reduction in System MTTR.

how reasonable a 7.2 percent reduction in the propulsion system
MTTR requires examining the average MTTR. Assume for this
example that, on the average, the 1.8 hour MTTR is split equally
between repair and diagnostic time, i.e., 54 minutes for each. To
achieve an average MTTR of 1.67 hours, retaining the same repair
time, the diagnostic time would have to be reduced to 46.2 minutes
(54 + 46.2 minutes = 1.67 hours). This is only a 15 percent
reduction in average diagnostic time. This seems to be a
reasonable possibility.

The useful life of this AI system is based primarily on the use
of the propulsion system modeled. The AI system will not have to
be replaced unless a different propulsion system is used. Updates
to the AI system could occur because of slight modification to the
propulsion system or additional diagnostic knowledge emerging.

BARRIERS TO IMPLEMENTATION

Introduction

The implementation of AI technology in the transit railcar
diagnostic process will require support from several sources:
maintenance operational support, systems support, personnel
support, and financial support.

The maintenance operational environment and procedures
have to be structured to promote and support the inclusion and use
of the AI technology. Maintenance managers need to develop
required procedures that ensure the collection, storage, and use of
appropriate historical data necessary to support the AI techniques
used. Additionally, training for personnel who

will be involved in the AI technology should be developed and
promoted. Support that may have a profound effect on the success
of introducing this new technology is management proponancy.

System support is necessary to provide the equipment and
information for the maintenance personnel to effectively and
efficiently use the AI diagnostic capability. System and component
suppliers can play an important part in this support. A well-
designed and integrated system can substantially increase the
overall use of the AI program.

The capability and desire of the transit railcar maintenance
personnel is crucial to the successful implementation of this
technology. The injection and use of AI technology in this domain
require that maintenance personnel be capable and comfortable in
using computers and software. Additionally, since maintenance
experts will also be involved with helping to develop and maintain
this diagnostic system, they have to be able to interface and use the
more sophisticated development capability of the AI software.

The implementation of any new technology will, of course,
require financial support, and in the current environment of tight
budgets the implementation cost must be visible. To take full
advantage of the capability of AI diagnostic techniques will
require financial support for computer equipment, software,
development expertise, training, and system support.

Maintenance Operational Support

Most AI techniques use historical data to support or drive
their approach. In some techniques, the data are used directly,
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as with CBR, and with others the data are modified, such as rule
development for an expert system. In all techniques, the content
and accuracy of the historical data are important.

In the transit railcar maintenance environment, this data can
be potentially located in two places. First, as the AI program is
exercised it will collect and store localized data. The localized data
will be derived only from the problem being diagnosed at that
moment. Additionally, historical data can be stored in a centralized
data base receiving data from all operational, diagnostic, and
maintenance sources within the facility or authority. This second
data location is currently being used by most transit authorities.
However, as described in the section on current diagnostic
practices, many maintenance personnel do not feel that the
historical data in their MIS data base are sufficient to support
diagnosis in great detail. Expansion of the data in the MIS data
base will help to support the AI diagnostic program.

The AI program implemented will determine the content and
form that both the localized and centralized data need to have in
order to support the techniques in the program. The content and
form requirement for both sets of data will best be designed as the
AI program is developed in the specific diagnostic environment.

Maintenance operational procedures will have to be
established that encourage or require maintenance personnel to
collect, record, and save into the central data base the specified
historical data. Although none of the AI techniques evaluated in
this study are required to use the data from the centralized data
base, that kind of data can improve performance of the AI
program.

The implementation of an AI computer program will require a
training module to be established directed toward its use. Railcar
transit authorities that intend to help develop and maintain the AI
program will also have to train the individuals charged with those
tasks. Most of the training requirements will be for end users.

The AI diagnostic training module can well be incorporated
with diagnostic training, and can even use the AI program itself.
The AI program implementation details will determine the level of
training necessary. A program having an intuitive interface that is
couched in terms that maintenance personnel are comfortable with
will require less training than will a more obscure program. It is
important to understand, however, that the use of an AI program
requires a somewhat different approach in training. Computer
training of conventional software generally assumes that the
software, if properly used, will generate a correct answer that the
user can accept. AI programs, however, generate the best solution
possible from the evidence available. That solution is not
guaranteed to be sufficient. The maintenance specialist must be
trained to use the information provided by the AI program as
advice and use the explanation capability of the program if there is
a question about the output.

A management proponent to support the inclusion of AI
technology in transit railcar maintenance is important. AI
technology is not well understood by many people and it is often
considered a threat, although attempts have been made to
implement AI approaches in different domains. It was believed
that some of the difficulties encountered were because of the

characteristics and terminology used with these approaches:
phrases like "expert in a box" and "intelligent machine" conjure up
images of workers being replaced by automation. In most cases,
AI technology would be used to improve the performance of
maintenance personnel; it is important that there is a management
proponent to help explain this to the maintenance personnel.

Discussions with managers and personnel at the railcar
maintenance facilities indicated general support for the
requirements listed above. There was some concern, however,
about the ability to effectively implement procedures to
consistently collect, record, and store the historical diagnostic and
maintenance data at the level needed by the AI program. Some of
this concern related to the system support required to store and use
the data; this will be discussed in more detail in the next section.
Another concern, however, was with the discipline needed by the
maintenance personnel to perform this level of data collection.
This problem can be mitigated through a combined development
of operational procedures and an AI program that makes it easy for
the personnel to collect and store the needed historical data.

None of the operational problems listed would preclude the
successful implementation of an AI diagnostic program. If
attention is focused upon these, however, the program can be more
readily accepted and used to good effect. It was believed by most
of the maintenance managers and specialists that an AI diagnostic
program would be readily accepted by most people (regardless of
their jobs) if the program truly helps to relieve the diagnostic
problem.

System Support
Implementation of an AI diagnostic program requires

equipment, software, and information support. Computer
equipment, sensors, data bases, technical publications, and
supporting software need to be able to interface, allowing efficient
transfer of information and data for the AI program. Such an
integrated system would considerably increase efficiency.

In such a system, computer equipment such as laptops or
workstations, and their support peripherals, will be used as the
primary interface between the maintenance specialists and the AI
program. Data related to specific subsystem failures will be
entered into the AI program by the maintenance specialist or
directly by downloading event logs from the subsystems. Event
data logging requires equipment sensors with monitoring and
recording software.

The maintenance specialist will receive information or advice
from the AI program through the user interface. Useful additional
information in the form of data from external databases and
technical publications (e.g., manuals and schematics) could be
accessed through the diagnostic program. Finally, the generation
of reports and the archiving of diagnostic and maintenance
activities could be accomplished from the diagnostic program.

The equipment, data, and activities discussed above describe
the system support required for an efficient and effective
diagnostic system. The critical attribute is the integration of those
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things. Equipment, software, and data bases need to be compatible
and allow easy communication; these capabilities are important for
achieving the highest potential of the AI approach, but railcar
transit authorities do not have the support system architecture in
place to allow easy integration of the necessary items. There is
movement toward developing more capability in computer
equipment, data bases, and technical publications; however, the
overall integration of these is lacking. Several transit authorities
are proceeding to install their technical publications in electronic
media, and some suppliers of subsystems are including event
logging in their systems. Although these activities will help
support the AI diagnostic program, a fully integrated system would
be superior. The AI program can perform its function in a stand-
alone mode; however, the complete potential could only be met
with a fully integrated system.

Personnel Support

The introduction of an AI diagnostic program into the transit
railcar maintenance facility will require that maintenance
personnel acquire certain skills and accept a different approach to
performing diagnostics. The capability of the personnel to learn
these skills and the readiness with which they accept the AI
program will, in large part, determine the program's success.
Maintenance personnel will be using the computer that hosts the
AI program. The specific skills required by the program depend on
which AI approach is taken and how the interface is implemented.
The more user friendly the program is to the maintenance
personnel, the fewer computer skills will be required. Those
computer skills required to support the AI diagnostic program will
be useful in other computerized functions in the maintenance
process and will add benefits independent of the diagnostic
capability.

Acceptance of the AI diagnostic program will be determined

primarily by the level at which the program helps the maintenance
specialist perform the job. If the program is easy to use and the
specialist becomes more efficient in performing diagnoses,
acceptance will follow. Maintenance managers believe that
personnel will accept and use an AI diagnostic program if the
program is easy to use and works well. Even in transit authorities
where union labor practices dominate, it is believed that such a
diagnostic program would be accepted.

Financial Support

The cost of implementing an AI program is an important
issue for transit authorities. Hardware, software, training, and
consulting costs, along with the cost of maintenance personnel
participating in the system development, will compose the initial
cost of the system. Additionally, an ongoing cost is that related to
maintaining the knowledge base and upgrading the program.
Funding the support system necessary to allow the AI program to
reach its highest potential could be substantial. There would be
cost for integrating the separate data and information sources with
the program to allow easy communication of information. Another
cost would be the design and installation of railcar subsystem
sensor equipment, along with the monitoring and recording of
equipment and software.

Incremental implementation of the AI program will allow the
cost to be spread across funding periods. The cost could also be
shared across transit authorities as the AI program is portable with
only marginal costs to adapt to each authority (assuming the
authorities have similar railcar systems). Additionally, the payback
period should be relatively short.

As described in the economic analysis section, the cost of
initially implementing the AI programs (with the exception of the
computer vision approach) can be paid back easily within 1 year.
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CHAPTER 3

APPLICATION

INTRODUCTION

Artificial Intelligence (AI) techniques can be applied to
transit railcar diagnostics in a cost-effective manner. The AI
techniques have been shown to be viable diagnostic approaches in
many equipment and process areas within various domains.
Research, prototype development, and operational development
has occurred and produced successful results in applying these AI
techniques to the diagnostic process. The objective of this chapter
is to discuss the initial application of a specific set of AI
techniques to a transit railcar subsystem.

The application of AI diagnostic technology into the transit
railcar domain should result in improved diagnostics and reduced
overall maintenance costs. AI-based computer programs, however,
are often viewed differently by personnel than are conventional
programs. Additionally, the development of an AI program
requires participation by end users to a much greater extent than
does that of conventional software programs. The AI diagnostic
program initial implementation, therefore, should be highly visible
and done in such a way as to reduce risk and concern.

The objective of the initial application of the AI diagnostic
program should be to demonstrate its capabilities in the railcar
maintenance environment. The use of the program will aid the
diagnostic process and reduce the associated costs, while at the
same time inform and educate maintenance personnel and
transportation managers about the use and benefit of AI
technology.

This chapter will discuss the initial implementation of an AI
diagnostic program and the criteria for selecting the railcar
subsystem to be used. A hybrid AI program and its attributes are
discussed. Use of the AI program in the diagnostic operational
process along with its overall advantages is described. This is
followed by the issues and recommendations relating to the
implementation of the AI program. The final section of this
chapter concerns applications that can add to the capability of the
initial AI program.

RAILCAR SUBSYSTEM

The propulsion subsystem including the traction motors,
gearboxes, power switchgear, and control logic units, described in
the Vehicle System Evaluation section presented earlier, was given
the highest priority for initial application of AI technology to the
diagnostic process. Most of the maintenance managers surveyed
felt that increasing the diagnostic capability on the propulsion
subsystem would provide a high initial benefit of reducing overall
maintenance costs. The high overall maintenance effort required
for propulsion and a large number of No 

Defects Found (NDFs) were cited as reasons for recommending
the propulsion subsystem. Since NDFs may be indicative of
difficulties in diagnosing the propulsion subsystem, they may be a
good indicator of achieving increased diagnostic capability. Of
course, decreased overall maintenance time (in which diagnostic
time is included) would also be a good indicator of its success.

Using the propulsion subsystem for the initial application of
the AI diagnostic program has other benefits. Because the
propulsion subsystem is complex, being composed of electrical,
mechanical, and electronic components, an AI diagnostic program
applied to the propulsion subsystem will show the capability of the
program to deal with complexity and with the variation of
components.

Much knowledge exists to support the development of an AI
program for diagnosing the propulsion subsystem. In addition to
maintenance manuals and troubleshooting charts, detailed
schematics and functional flow diagrams exist. There are also
experts in the propulsion domain who have extensive knowledge
of the diagnosis of propulsion.

Finally, the propulsion subsystem has a history of
technological progression. Manufacturers are improving the
propulsion subsystem and implementing data logging into the
newer versions. The manufacturers already have data collected,
which may be used in supporting the development of the AI
program. If the ultimate goal is to develop an on-board automated
diagnostic capability, data logging will be essential.

Al DIAGNOSTIC PROGRAM

The AI techniques that drive the diagnostic program must
effectively work with the propulsion subsystem. All of the
techniques have the potential of functioning to some degree
against the propulsion subsystem, however, as shown in Table 7,
model-based reasoning appears to offer the most potential. As
described in Chapter 2, because the AI techniques are not tied to
the railcar subsystems in any fundamental way, the application of
the techniques will be determined primarily by the operational
needs of the properties.

Applying a computer technology that is new to the railcar
maintenance environment will develop concerns about the
technology's capability to cost-effectively increase diagnostic
performance and meet the operational requirements. These
concerns may be even greater for AI technology, but can be
mitigated by using a program that is very visible to the transit
authorities. Applying the AI program initially to the high-level
requirements of propulsion subsystem diagnosis, and then having
the program evolve to finer levels of detail as needed, will provide
great flexibility and better demonstrate the program
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capabilities. Early review and evaluation of the program and its
capabilities will provide the necessary visibility to the program and
the development process. By including maintenance experts and
end users in the development process, the operational issues will
be addressed and each expert or user will have a stake in the
success of the program.

The AI program that best meets the needs and the operational
requirements, as defined in Table 8, will be a hybrid combination
of AI techniques. Eventually, the program may use most of the
techniques discussed in this report. That would ensure that the
maximum amount of knowledge available would be put to use.
The initial program, however, should use MBR as its core. An
MBR program will provide for application to various levels of
detail in a complex system; this allows the program to be
incrementally implemented and evolve over time. Additionally, the
MBR program can explain its findings in terms familiar to
maintenance personnel. An MBR program used as a core will
provide the framework on which to add other capabilities. Using a
functional model of the propulsion subsystem allows the
developers and users to follow the way the subsystem is used in
developing diagnostic processes.

In addition to the MBR core, an expert system capability
should be added to the initial implementation of the AI program.
The expert system will allow for use of the extensive knowledge
that already exists among the propulsion experts. The expert
system should be integrated with the MBR so that rules can be
used anywhere appropriate. Use of a commercial shell that has
already integrated the MBR approach with an expert system
capability would provide a cost-effective approach. There is at
least one commercial product (I-CAT developed by Automated
Technology Systems Corporation of Hauppauge, New York1)
meeting this criteria (see Appendix D for more commercial
products). It would be also possible to integrate an independent
MBR product with an expert system product to create an enhanced
capability.

DIAGNOSTIC FUNCTION
The application of an AI diagnostic program could occur at

several locations in the diagnostic process. The first application,
however, should be as a "maintenance assistant." Implementing the
initial AI diagnostic program as an assistant to maintenance
personnel, as many maintenance managers have requested, has
many advantages. A maintenance individual who is required to
interface with an AI program based on the MBR and expert system
approach will be exposed to how the propulsion subsystem
operates and how experts perform diagnosis on propulsion. This
will help train personnel and keep maintenance personnel current
in technology.

The AI program must establish a standard diagnostic
procedure that will ensure that the maintenance individuals
perform the activities needed to reduce the problem of quitting
after the first obvious fault is found. This will help reduce the
number of
______________________
____________
1The Transportation Research Board, the National Research Council, the Federal
Highway Administration, the American Association of State Highway and
Transportation Officials, and the individual states participating in the National
Cooperative Highway Research Program do not endorse products or manufacturers
Trade or manufacturers' names appear herein solely because they are considered
essential to the object of this report

times a vehicle or subsystem has to be diagnosed for the same
problem (i.e., repeat failures).

A maintenance assistant program will be highly visible and
can be used or observed by anyone, thus allowing maintenance
personnel and managers to evaluate the capabilities of the program
in performing diagnosis. The explanation facility of the program
will lend credibility to using AI technology and will naturally lead
to the identification of other approaches to support the diagnostic
program.

Finally, if the program is implemented with the capability to
perform report generation, it can help the maintenance specialist
perform a more thorough job of documenting and storing the
diagnostic and maintenance activities. Such a capability may be
very welcome to maintenance individuals and allow for more
standardization of maintenance reporting. More detailed
information can be automatically included in the report thus
making the report more useful.

IMPLEMENTATION

One of the most important implementation details required
for a successful AI program is the early inclusion of the end users.
A program that serves as an assistant to maintenance personnel
will have to provide an interface that is user friendly and capable
of supporting the activities needed. The only way to achieve this is
by including as many of the potential end users--from novices to
experts--in the development process as soon as possible.
Traditionally, in the development of the human interface in
computer programs, end users are interviewed about how they
would like to see the interface function. This is necessary since it
is critical that end users begin to actually exercise the interface as
early in the development process as possible. This concept of rapid
prototyping of the interface function will help create an interface
which is user friendly.

Most commercial AI shells support rapid prototyping of the
interface. Another important interface attribute that some
commercial off-the-shelf AI shells support is the ability to easily
customize the interface for each maintenance individual.
Individuals have different preferences and capabilities, and
interfaces that can easily be adapted in real time to an individual's
preference will promote use of the program.

In addition to end users being involved in development of the
interface, propulsion experts need to be involved in development
of the knowledge base. These experts should be drawn from
different sources if possible; for example, the lead maintenance
individual at the authority and a field service engineer of the
propulsion system. A propulsion diagnostic program based on the
MBR approach requires models of the propulsion subsystem, some
of which can be developed from schematics of the subsystem. The
schematics can be input into the program manually or from
computer-aided design files if they are available. The model of the
propulsion subsystem can be entered at any level of detail
appropriate to the diagnostic needs. For example, to demonstrate
capabilities, some portion of the model can be entered at a high
functional level, while another portion can be entered in detail.
The detailed portion can now be diagnosed down to that level of
detail. The ability to enter
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different levels of detail is another way of incrementally
implementing this approach.

Other models may have to be entered to fully support this
program. For example, a casual model may be of use. A
propulsion diagnostic expert will have to help develop this model.
The propulsion expert will also have to work with a knowledge
engineer to develop diagnostic rules in the form that the expert
system can use. The diagnostic rules in the expert system should
be integrated into the AI program such that the rules can be used at
specific locations within the models as the MBR process is being
used.

The railcar subsystems that interface with the propulsion
subsystem and are effected by or affect that system need to be
included in the AI program to some level. For example, the ATC
and Friction Brake subsystems may need to be modeled, perhaps
as only a single functional box, with appropriate diagnostic rules
attached to them. This will allow the diagnostic program the ability
to suggest that what appears to be a propulsion fault may actually
be associated with an interfacing subsystem.

The diagnostic program is a good place to integrate other
supporting capabilities. The inclusion of technical manuals and
drawings in electronic form can be very helpful to the maintenance
personnel. The section of the manuals and drawings associated
with the model components should be accessible to the
maintenance specialist from those specific model locations. For
example, if the specialist requests a technical drawing while
viewing the portion of the model that represents the power cam
controller, then the appropriate power cam controller drawing will
appear.

Interfacing the AI diagnostic program to the maintenance data
bases (MIS) would be helpful: access to the historical data in the
data bases would allow review of the maintenance background of
the propulsion subsystem by the maintenance

specialist. Additionally, the AI diagnostic program could directly
enter its results into the data base. Developing an interface
between the diagnostic program and the data bases may not be a
trivial task, but it should be considered.

FOLLOW-ON APPLICATIONS

The initial AI diagnostic program will provide substantial
improvement to the propulsion subsystem diagnostic capability.
The program can be expanded to a greater level of detail in the
propulsion models or to other railcar subsystems. Additionally,
other AI techniques can be added to the program, thus adding
diagnostic capability.

The initial AI diagnostic program will not be able to diagnose
all problems with the railcar subsystems. Adding other AI
techniques may better diagnose certain components: for example,
an Artificial Neural Network (ANN) program may be developed to
diagnose certain electronic components such as Printed Circuit
Boards (PCBs). The ANN may perform the diagnosis on the PCB
much more efficiently than developing the model of the PCB
down to the level of the components on the board. The ANN
program could be integrated into the initial AI program so that the
ANN would perform its function when requested by the AI
program and return its conclusions to that program.

The determination to increase the level of detail of the models
and perhaps add more rules, extend the model to other specific
railcar subsystems, or add other AI techniques to perform
additional diagnosis will depend upon the specific additional
diagnosis desired. There will be a point at which the resources
required to implement the process will exceed the benefit from the
additional diagnosis. This point of diminishing returns will be
different for every subsystem or component type to be diagnosed
and every approach taken.
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CHAPTER 4

CONCLUSIONS AND SUGGESTED RESEARCH

CONCLUSIONS

Initial Implementation

This investigation has shown that transit railcar diagnostics
can benefit from application of Artificial Intelligence (AI)
techniques. The process of diagnosis currently being performed by
human experts can be enhanced by the addition of an AI program
used to assist the expert. With the exception of computer vision, all
the AI techniques discussed in this report are capable of supporting
the AI diagnostic program. Using a model-based reasoning
approach as the core of the initial AI program provides the
functioning information of the railcar subsystem upon which to
expand and build an effective diagnostic program.

Quantifying the cost-to-benefit ratio is extremely difficult.
The complete cost of diagnosis is hard to determine, as is the
incremental cost for diagnosis on all different components, in all
different situations. The benefit from a potential AI diagnostic
program is difficult to quantify because of the effort required to
estimate the accuracy and completeness of the diagnosis that could
be done by the program.

The actual cost of diagnosis in the transit railcar maintenance
process can only be estimated. The various transit railcar
authorities do not have a standard maintenance data collection
methodology. The maintenance data stored includes diagnosis,
replacement, and repair times (and other time) without
specification. The diagnostic time is lost in the total time.
Additionally, some diagnostic time may not be reported at all. For
example, time spent following a false diagnostic trail will
occasionally not be reported if it did not lead to the difficulty
found in the system and reported by maintenance personnel.

The benefit that any particular AI technique or hybrid set of
techniques can have in performing diagnosis is also difficult to
quantify. One reason is the structure of the diagnostic problem.
The diagnosis of railcar subsystems involves the evaluation of
large numbers of variables (e.g., components, subcomponents,
input values, and symptoms) and combinations of these variables.
Human experts have handled this problem to date because of their
ability to quickly reduce the problem space by using their
experience or training. An AI program could do the same thing.
Determining or estimating the size of the problem space and how
well an AI program (or human) would function in that problem
space is very difficult. Determining how well an AI diagnostic
program would perform could be done, but the cost would be high.
In fact, the cost of implementing an AI program would probably be

considerably less than the cost of estimating the accuracy and

completeness of an AI diagnostic program.

Even though determining a cost-to-benefit ratio is difficult,
determining that it is cost-effective to implement an AI diag-

nostic program is not. As detailed in the Economic Analysis
section of this report, the initial implementation of an AI program
used to perform diagnostics on the propulsion subsystem would be
less than 1 percent of the annual corrective maintenance cost.

Program Acceptance

The majority of the maintenance personnel in the transit
railcar authorities surveyed would use a properly implemented AI
diagnostic program. The critical factors for acceptance are the ease
of use of the program and how well it helps maintenance personnel
perform their job. Although most current off-the-shelf AI shells
provide good interfaces for the end users, the development of the
diagnostic interface must be carefully implemented.

The implementation of the AI diagnostic program is expected
to encounter some barriers. However, none of these should prevent
the successful application of this technology. Although the
program can stand alone and be effective, providing support in the
maintenance operations and support systems areas will increase
the usefulness of the program.

Future Systems

The initial implementation of an AI diagnostic program
should be the first step in a process of adding advanced technology
to the diagnostic and maintenance process. The ultimate goal, as
expressed by many individuals with interest in railcar
maintenance, is the development of an on-board system that will
automatically monitor and predict faults before they occur, or
detect and identify faults after they occur. The information would
then be communicated to the operator with suggestions for
appropriate action. The diagnostic information could also be
transmitted to a maintenance specialist or stored for easy retrieval
by the maintenance personnel.

The goal of an advanced on-board diagnostic system is
attainable. The steps to reach this goal include incremental
improvement to the initial diagnostic program, development of an
integrated support system, development of an on-board diagnostic
system architecture, and determination of the predictive approach.
These steps require additional research.

SUGGESTED RESEARCH

Introduction

The research recommendations are intended to increase
diagnostic capability and support eventual implementation of
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on-board automatic diagnosis. The research falls into five areas:
(1) a prototype AI diagnostic program, (2) the architecture
necessary to improve the initial AI program capability, (3) the on-
board AI diagnostic system architecture, (4) the placement of on-
board sensors to support the on-board diagnostic system, and (5)
the evaluation of AI predictive techniques to support the on-board
diagnostic system.

Prototype Al Diagnostic Program

As discussed in Chapter 3, AI technology is sufficiently
mature to be implemented in the transit railcar maintenance
domain. The initial implementation should be accomplished as a
prototype using a Commercial Off-the-Shelf (COTS) shell. This
approach will allow rapid prototyping to be accomplished so that
the diagnostic program will benefit from support by the
maintenance personnel.

Organizations that successfully develop AI programs to an
operational level often do so through a prototype version. This
allows the organization to try various concepts with some
flexibility. Using a COTS shell allows easy change of the Human-
Computer Interface (HCI) and the knowledge base. If the
prototype version is sufficient then it naturally becomes the
operational version. If, however, the prototype version will not
support the operational requirements, a new HCI and knowledge
base are developed that allow the prototype to quickly transition to
the operational version. New hardware and COTS software are not
usually required.

The prototype implemented should follow the program
described in Chapter 3. A combination of MBR and expert system
used on the propulsion subsystem will provide the best
combination for the prototype. This system will translate well to an
operational system and then potentially to the advanced onboard
monitoring system.

Support System Architecture for Initial Al Diagnosis Program

Information technology has evolved to the point where
increases in productivity can be realized by a well-designed
information system architecture. Such an architecture supporting
the diagnostic and maintenance process could add substantially to
the overall productivity of maintenance personnel. The
communication of information between data bases, diagnostic
programs, knowledge bases and technical publications, test
equipment, sensor packages, and even training systems can help
the maintenance organization increase capability and reduce cost.

This report has discussed the benefits of supplying historical
maintenance information to the AI diagnostic program for use in
its processing. The ability of a maintenance specialist to quickly
access technical manuals and drawings was also discussed. There
are a few more advanced capabilities that could be developed
through the support system.

An advanced AI diagnostic program could use information in
independent knowledge bases, technical manuals, and schematics
by accessing them directly. By having a set of knowledge bases
and a series of technical manuals and schematics

on line that could be accessed by an AI program, the program
could adjust its diagnosis to the subsystem of interest.

Communication between test equipment and the diagnostic
program could provide greater efficiency. The AI diagnostic
program can specify which tests to perform along with the test
parameter values, and receive results that can then be used in the
program.

Finally, self-contained training programs can use the AI
diagnostic program and the support system to help train novice
maintenance personnel. Such a program could use AI to help
determine the best training approach and process for each
individual. The program would then use the same knowledge bases
and supporting data for training. The AI diagnostic program could
be used to train individuals; however, the process of performing
diagnosis and the process of training someone to perform
diagnosis are different.

It is recommended that research into the support system
architecture should be undertaken to develop the elements of the
system, how each should function, the contribution to the
maintenance process of each function, and the cost to implement
such an architecture.

On-Board Diagnostic Architecture

An on-board diagnostic system that continuously monitors the
system and predicts or identifies faults could have a major impact
upon both railcar maintenance and operations. Such a system
would be composed of sensors located at required monitoring
points, one or more processors to host the program, data storage
capability, and communication capability.

The AI approach to performing diagnosis for the on-board
system may be different from that used at the maintenance facility.
One major difference may be a requirement for the on-board
system to learn. As the system will be mostly automatic, it may
have to make self adjustments, either in finetuning the program so
as not to produce false alarms or in learning new faults.

The diagnostic system would be able to receive a download
of information from the maintenance facilities data base providing
information on repairs or replacements made to the railcar
subsystems. The diagnostic system would be able to perform
startup and shutdown diagnosis on command and continuously
monitor the systems while the train is in operation. Prediction, or
detection and identification of a fault, along with suggested actions
would be provided to the train operator on a monitor at the
operator's station. Additionally, depending on the nature of the
problem, the diagnostic system could communicate directly with
the maintenance facility. Alternatively, a maintenance specialist
could download the diagnostic information stored on board the
railcar.

Research into the on-board diagnostic system should
investigate the AI techniques to use, the elements of the system,
which railcar subsystems should be monitored, the method and
contents of communication, the impact of a system on railcar
operations and maintenance, and the cost to implement such a
system.
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Sensor Placement

The placement of sensors on board to monitor subsystem
events can provide important information to the AI diagnostic
program (on board or at the maintenance facility). As discussed in
this report, intermittent faults are considered a difficult problem.
The collection and storage of event information can significantly
reduce this problem.

The location of sensors may very well be tied to the data
requirements of the AI diagnostic program. These locations may
be different from the locations indicated by subsystem suppliers
used for subsystem setup.
The research suggested for sensor placement should investigate the
type, number, and locations of sensors needed to support the AI
program. A trade-off analysis should be performed to investigate
the benefit from a large number of sensors versus the cost and
complexity of the sensor system.

Al Predictive Techniques

The capability to replace or repair components in a subsystem
before they fail can be cost-effective if it is possible to                                                           

predict with some certainty when that component will fail.
Obviously it is not cost-effective to replace a component that was
not going to fail. Most preventative replacements are currently
made on the basis of statistical probability of pending failure
instead of predictive events.

Many AI techniques have the theoretical possibility of
performing predictions. The operational implementation of
predictive AI techniques, however, is not widespread. The
implementation of predictive techniques in an on-board monitoring
system could contribute substantially to railcar operations and
maintenance activities.

Research into predictive AI techniques and how they could be
implemented should be undertaken. Techniques such as artificial
neural networks and case-based reasoning have shown promise in
using the current state and trend data to predict future states. These
techniques, as well as the data required to support them in
predicting railcar faults, should be investigated.
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APPENDIX A

VEHICLE SYSTEM CHARACTERIZATION

PROPULSION SYSTEM

Purpose
The purpose is to interpret train-lined commands and configure
the traction equipment to receive or generate high-voltage
power in order to move or slow the vehicle, and to regulate the
effort provided to the level commanded.

Equipment Type

The primary equipment associated with the propulsion system
is the traction motor. The most common traction motor is a
compound wound-direct current motor with series and shunt-
wound fields. There are separately excited dc motors. Newer
vehicle orders are tending toward ac induction motors. A
coupler provides the fixation of the traction motor to a gear
box, which provides speed reduction and is fixed to the axle.

Power circuits in the propulsion system are configured using
either pneumatics or low voltage to actuate the high-current
contactors, usually through interlocking relay logic. Some
systems use a cam controller, where a servo motor positions
cams to operate the contactors, establishing the power circuit
configuration. It is possible that new vehicles may provide the
power switching with solid-state, power Silicon-Controlled
Rectifiers (SCRs) and power Gate Turn-Off Thyristors (GTOs)
to configure the traction system.

Control logic subsystems use low voltage for power and apply
discrete components in analog and digital logic schemes, most
employing relays, with interlocking contacts as part of the logic
system. Interlocking occurs in both the power circuits and the
low-voltage control logic. Although these control schemes use
a number of control functions, not all points in the logic are
readily available for monitoring external to the control process.
Microprocessors are being applied to the propulsion control
process. This enables the external monitoring of the traditional
functions plus much of the process operation. Some event
logging is also being requested of the microprocessor control
systems.

Indicators/Signals

Usually there is only a single motor overload/shutdown
indicator available to the operator, but some older systems

have a motor current indicator available. Monitoring voltages
and currents at various points in the circuits is possible;
availability of signals varies with every car design. On older
systems, relay logic is used to control power; fault isolation is
accomplished with schematics and electrical meters. On newer
systems, a finer control of the level of tractive effort is
provided, and some form of discrete analog or digital printed
circuit boards is used. The possibility of waveform analysis of
SCR/GTOs for impending faults is possible. In current
microprocessor systems, there are checks of SCR/GTO limits
in the control system routines.

Consequence of Failure

Propulsion systems are sufficiently redundant that, at the most,
a minor reduction in performance will occur with the failure of
one system in a train. Most systems also have automatic
isolation of the failed system, permitting the train to continue
revenue operation.

Complexity of System

The system is relatively complex, with multiple circuit paths to
arrive at similar power system configurations and a multitude
of different power system configurations. Analog signal
tolerance levels require judgment to access faults.

Diagnostic Techniques

1. Revenue Service Level. Fault isolation is usually an
automatic cutout of the failed system. The individual
vehicle with the failure is identified by a local indicator

2. Vehicle Level. Electronic test equipment, schematics, wiring
diagrams and shop manuals containing checkout and
alignment procedures are used for fault diagnosis. On older
controller equipment, a visual inspection of contactors and
listening for air leaks is a first check procedure. For cam
controllers, a test box is used to cycle the cam, ensuring
cam motor operation and control availability. Low-voltage
discrete logic systems require signal tracing for fault
isolation. Microprocessor-based controls currently can
provide a record of the status of the system at the time of
the fault.
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3. Back Shop. Schematics and shop manuals for PCBs, usually
encompassing a complex test setup and alignment procedure,
are used. Electromechanical components are fault diagnosed by
repair manuals and rebuild kits.

Equipment Location
Traction motors, gearboxes, and couplers are located on the
axles. Power switchgear is usually located in equipment boxes
under the car body. Control logic units are in electrical
enclosures under the car, lockers inside the vehicle, or in a
seatwell.
Note:  Systems are configured as one propulsion system per

car or as two complete propulsion systems per car. A
traction motor may be arranged as a monomotor one
motor per truck, two motors per truck permanently
connected in series, or, two motors per truck with either
electrical connection possible.

FRICTION BRAKE

Purpose

The purpose is to interpret trainline commands and, when
requested, slow or stop the vehicle, controlling the effort to the
level commanded.

Equipment Type
Tread brake units are either pneumatic or hydraulic-actuated
units, mounted on the truck frame, which apply a friction pad
against the wheel tread. Disk brake units are either pneumatic
or hydraulic truck-mounted units that apply a friction pad
against a disk, separately mounted on the axles. Some
configurations entail a spring-applied, pneumatically released,
friction pad arrangement.

Control units in current use are full-pneumatic,
electropneumatic, or electronic. In a pneumatic control system,
the train control system establishes a trainlined Brake Pipe
(BP) pressure as the command signal. Individual pneumatic
units, on a per vehicle or per truck basis, monitor the BP and
apply or release the air pressure to the individual brake units in
response to the variations, both in level and rate of change of
the BP. In electropneumatic systems, a discrete component or
microprocessor system interprets trainlined low-voltage
electrical signals and provides an analog electrical signal to a
variable pneumatic valve, which in turn controls pressure to the
brake cylinder. A pneumatic panel includes solenoid valves for
charging and discharging the brake system air supply and a
pres-

sure-actuated mechanical control valve to provide a
loadweighing signal. A full electronic control system bypasses
the variable pneumatic valves and provides a digital signal to
solenoid valves, with pressure feedback, to control brake
cylinder pressure directly. Load-weighing and control signal
variation is completed in the electronics or microprocessor
routines.

Indicators/Signals Available
Usually, there is a train-lined Brakes On signal interlocked to
the propulsion system (any Brake Cylinder Pressure [BCP] on
train). This is used to prevent moving the train with a brake
applied. Brake pipe pressure is presented to operator, and,
sometimes, a single-truck BCP is presented. Different systems
have fault lights to assist operations in moving a failed vehicle
off the line. These are at the vehicle level (All Brakes On, All
Brakes Off, System Failure). Some pressure signals are
monitored by controllers. Microprocessor controllers monitor
enough pressures to isolate faults. Usually, only a few status
lights are available in analog electronic controllers.

Consequence of Failure
Friction brake systems are designed to fail to a brakes-on
condition. Failures during operation result in a service
interruption until the faulted vehicle can be isolated and
manually cut out. "Cut out" means different things to different
operators. In some cases, a single vehicle may be isolated and
continue in revenue service for the remainder of the day. In
other cases, the vehicle is isolated, the train is moved to a
station, passengers unloaded, and the train is deadheaded to a
service area.

Complexity of System
The system is not very complex. Each system, whether per
truck or per vehicle, monitors trainlines or brake pipe pressure
and responds independently.

Diagnostic Techniques
I. Revenue Service Level. Because of redundancy, brake

failures in a "failed off' condition may not be detected during
normal operation and would have no effect on operation.
Brake failures in a "failed on" condition causes operational
delays, as noted above. Some authorities have indicators that
facilitate operations' ability to isolate the failed vehicle.

2. Vehicle Level. Electrical test equipment, schematics, piping
diagrams, and wiring diagrams are used to isolate
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a failed component. Visual indication of linkage positions
and audible leaks are also used.

3.  Back Shop. Component repair manuals and rebuild kits are
used for fault isolation of pneumatic and mechanical
components. Discrete analog PCBs are used in
electromechanical control systems. Microprocessors are
also used.

Equipment Location
Actuators and brake cylinders are on each truck. Air piping is
throughout the undercar area. Pneumatic controllers are usually
located at the center of the undercar. Electronic control units
may be in undercar enclosures or in interior lockers or in a
seatwell.

Note:  Some friction brake systems are grouped at the vehicle
level; others are on a per truck basis for redundancy.

Auxiliary Electric Systems
The auxiliary electric system is separated into four parts below,
primarily because of the variations in the manner by which the
systems are tabulated in various authorities. The train control
system is usually incorporated as part of the propulsion system
by most authorities. This is probably due to the propulsion
system supplier's providing the first electrical control systems
on the vehicles. As the train control system takes on more
tasks, such as vehicle and train monitoring, it is being treated
separately in accounting and work breakdown structures. All
the rail transit vehicles have high and low-voltage systems,
some more complex than others. Again, some authorities do
not separate the systems; they are accounted for as part of other
systems. Auxiliary voltage systems are not on all vehicles, and
the voltages used are different for different authorities and
times of vehicle procurement.

TRAIN CONTROL

Purpose
The purpose is to determine which of multiple stations in a
train is the operating or control station, and, while active, will
prevent any other station in the train from gaining control, to
establish the mode of operation (manual, automatic,
combination), interpret input commands, and establish
trainlined commands that can be used by all the other
train/vehicle systems as operating commands Newer vehicle
procurement includes the task of monitoring train and vehicle
system status in the train control functions

Equipment Type
The train control system includes equipment necessary to
establish a train control station and to operate the vehicles.
There are key-operated switches, large manual and rotary
switches with mechanical interlocking to ensure proper
operating configuration. These usually interface to low-voltage
relays, with interlocking relay logic, again to enforce correct
operating configuration. Relays are used in order to provide the
power levels to drive the train-length trainline commands.
Some of the control circuits are arranged in a fail-to-safe
configuration. Microprocessor-based systems are beginning to
be applied, but relays are still used in the safety circuits.

Indicators/Signals
Traditionally, there are usually no direct indicators. Indicators
of the status of other train or vehicle systems at the operating
station are the indication that the control function has been
established (e.g., console lights, door status indication, friction
brake status).

With the advent of the microprocessor systems, it is possible to
monitor switch and relay positions. Monitoring systems, in
order to be a diagnostic tool, must include the logic of valid
configurations.

Consequence of Failure
Failures usually occur on train setup; therefore, disruption is
usually a delay in dispatching a train. For a failure in service,
some authorities permit operation from the second car in a
train, others remove the train from service. After operational
fault isolation, the vehicle is either buried in the middle of a
train until maintenance can be performed or it is removed from
service. The components of the system are discrete switches
and relays. Repairs are either complete part replacement or
limited to overhaul kits supplied by manufacturer.

Complexity of System
The complexity is moderate, there are numerous interlocks and
circuits to other vehicles in the train These must make
complete logical circuits in any train length within the possible
train lengths originally defined when the vehicle was procured
or modified

Diagnostic Techniques
1  Revenue Service Level  With loss of control, the quickest

operational procedure is to isolate a failed vehicle, operate
from another station under severely
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restrictive operating rules, off load passengers, and remove
the train from service. Some authorities are incorporating
bypass and redundant control systems to enable lead
vehicle operation using equipment in a remote vehicle.

2. Vehicle Level. Circuit schematics, wiring diagrams, and
electrical meters are used to trace the failed function.

3. Back Shop. Relay and switch repair manuals and kits,
essential to a rebuilding process are used in the back shop.
Specific failure data are rarely reported.

Equipment Location

Operating switches and controls are located near or at the
operator's console. Interior or undercar electrical lockers and
seatwell locations house the relay systems.

Note:  This system is sometimes grouped with the propulsion
system.

HIGH VOLTAGE
Purpose

The purpose is to collect high-voltage power (13 KVac, 750
Vdc) and distribute it to the using vehicle systems.

Equipment Type

Power collection is provided by pantographs, on the vehicle
roof, for overhead catenary supplied power and by third-rail
shoes, on the truck assembly, for power distributed by a third-
rail system adjacent to the running rails. Fuses and high-speed
circuit breakers provide system and cabling protection. Manual
transfer switches to isolate systems and provide shop power
connection are also part of the system. Low-voltage-operated
transfer contactors are used to provide alternate power source
connections. Transformers and a converter are used to convert
13 KVac to 750 Vdc.

Indicators/Signals

Usually there is no direct indication of correct high-voltage
system operation. Sometimes, the line voltage is indicated at or
near the operator's console. Propulsion control systems monitor
line input voltages and contactor positions, because they are
necessary for regenerative braking capability. In traditional
relay-logic and discrete-component logic systems, these
monitor points are buried in the logic system and not readily
available for external monitoring.

The availability of these signals is being enhanced with the
use of microprocessor control propulsion systems.

Consequence of Failure

Loss of a high-voltage system usually causes an automatic
isolation of the affected vehicle from the high-voltage system.
Little disruption to revenue operation should occur unless the
failure is in the lead vehicle. The failed train would unload
passengers and be removed from service at the first station.

Complexity of System

Usually the system is not complex, but dangerous voltage
levels may be present.

Diagnostic Techniques

1. Revenue Service Level. Usually a loss of all but the
emergency vehicle systems is the indication of a fault in the
high-voltage system.

2. Vehicle Level. Portable electrical test equipment,
schematics, wiring diagrams, and shop manuals are used to
isolate faults to a component.

3.  Back Shop. Repair kits and component manuals are used to
fault isolate the predominantly electromechanical
components. Electrical test equipment, schematics, and
checkout and alignment procedures are used to diagnose
PCBs.

Equipment Location

All high-voltage systems are isolated from the operator's
console and passenger areas. Pantographs are roof mounted;
third-rail shoes, some fuses, and cabling are on the trucks; and
other equipment is located in undercar equipment enclosures.

Note:  Any existing monitoring is part of the train control or
propulsion control system.

AUXILIARY VOLTAGE

Purpose

The purpose is to convert primary power (750 Vdc) to an
intermediate power level for various vehicle auxiliary systems
use.
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Equipment Type

Motor alternators are used to provide 115 or 230 Vac; static
inverters are replacing motor alternators in this application.
Low-voltage-controlled contactors are used to configure the
system circuits. Fuses and circuit breakers are included.

Indicators/Signals
Usually, there is no direct indication of a failure to the
operator. Operation of auxiliary equipment is a revenue service
indicator of auxiliary system operation. The motor alternator is
usually an analog PCB control system. Fault indicators are
sometimes located on a motor alternator control unit, and
sometimes a remote on/off indicator is located on a fault
indication panel. The static inverter might have fault indicators
and a control system similar to the motor alternator. However,
the inverter internal functions would include control of SCRs
and GTOs. Static inverters are also being provided with
microprocessor control systems.

Consequence of Failure
Loss of auxiliary voltage usually causes only minor service
disruptions. The train may continue operation to the end of the
run and then be removed from service.

Complexity of System
Complexity varies from simple to moderately complex. Motor
alternator systems have discrete-component analog control
circuitry. Static inverters contain more complex control
functions.

Diagnostic Techniques
1. Revenue Service Level. Usually a loss of a using system,

such as interior lighting, is the indication of a fault.
2. Vehicle Level. Portable electrical test equipment,

schematics, wiring diagrams, and shop manuals are used to
isolate faults to a component or PCB.

3. Back Shop. Repair kits and component manuals are used to
fault isolate electromechanical components. Electrical test
equipment, schematics, and checkout and alignment
procedures are used to diagnose PCBs.

Equipment Location
The power components of the system are located in undercar
enclosures. System controls might be in a separate electrical
locker, undercar, or in the interior.

Note:  230/115 Vac is used for incremental horsepower motors,
fans, and blowers. 115 Vac is used for interior
fluorescent lights.

Load management systems are used on some cars to shed
inessential battery loads during loss of primary power.

LOW VOLTAGE
Purpose
The purpose is to convert high-voltage input (750 Vdc) to a
low voltage (37.5 or 24 Vdc) and distribute it throughout the
vehicle, for use in control and indications of various vehicle
auxiliary systems, and to provide an alternative low-voltage
power source for essential systems in the absence of primary
power.

Equipment Type
Static converters, operated directly from the 750 Vdc, provide
the low-voltage power. Older systems used a motor generator
for this function. For systems with an auxiliary voltage motor
alternator, a transformer with a diode bridge provides the low
voltage. The system also includes a battery and battery-
charging capability.

Indicators/Signals
Usually, no indicators are available to the operator; loss of
individual systems is the indicator of a failure. Some vehicles
have a low-voltage meter located on a fault panel. Battery
chargers monitor charging currents and battery status but only
provide an on/off indicator at charger.

Consequence of Failure
Loss of low voltage, if not the battery system, is the same as
loss of auxiliary voltage. Battery capacity is sufficient to enable
completion of a round trip with all safety and emergency
systems functioning. If the loss is the battery, the effect is a
shutdown of operations until the faulted vehicle is isolated and
the affected train is removed from the operating line.

Complexity of System
This varies from simple to moderately complex. Batteries,
some chargers, and circuit breakers and switch-based systems
are simple. Motor alternators and motor generators have some
analog control circuitry. Static converters and some chargers
contain more complex control functions.
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Diagnostic Techniques

1. Revenue Service Level. Usually a loss of all but the
emergency systems is the indication of a fault in the low-
voltage system.

2. Vehicle Level. Portable electrical test equipment,
schematics, wiring diagrams, and shop manuals are used to
isolate faults to a component or PCB.

3.  Back Shop. Repair kits and component manuals are used to
fault isolate electromechanical components. Electrical test
equipment, schematics, and checkout and alignment
procedures are used to diagnose PCBs.

Equipment Location

Motor generators, converters, and batteries are usually located
under the car.

Note:  The principal users of the low voltage are the trainlined
command signals, the power to control systems, the
door operators, the running lights, and emergency
interior lights. An emergency bus separates distribution
for essential battery loads. Low voltage is distributed
and shared on trainlines. Battery voltage is sometimes
distributed and shared on trainlines. Battery charging is
not distributed on trainlines.

DOORS
Purpose

The purpose is to control the opening and closing of the vehicle
side doors permitting passenger egress in a safe manner.

Equipment Type

There is a vehicle-level door control system, monitoring
trainlines, using relay logic to control local door operations.
Solid-state, vehicle-level door control systems are not in wide
use. Door operators, at each door location, are pneumatic or
electric motors, with door leaf position monitored by
microswitches. Local door operator controls may be relay logic
or through discrete-component PCBs. Pushbutton control
stations are located at motorman's or conductor's station.

Indicators/Signals
At the vehicle level, there is an all-doors-closed trainline. This
signal is summed over the train and interlocked with

the propulsion system. Near each door operator is a leafclosed
and locked indicator. Individual leaf-closed and locked signals
are summed by vehicle. Indication of individual faults are not
centrally available on train or vehicle.

Consequence of Failure

Failure of the train or vehicle door control system is toward a
safe mode (i.e., the train stops or cannot open the doors) and
causes operational disruption of normal service. Passengers
must be unloaded and the train removed from service. The
failure of individual door operators or leaves is still toward a
safe mode. Service disruptions are not as severe, because the
faulted component can be locked out of service and bypassed.
Fault isolation requires walking the length of the train.
Depending on the particular operating agency, the train may
continue in service or be removed from service when
convenient. The net effect is minor delay in service.

Complexity of System

The door control systems are relatively simple. The most
complex are the trainline looping circuits that sum door status
and the door command trainlines. These must ensure correct-
door-side operation regardless of the direction of vehicle travel.

Diagnostic Techniques

1. Revenue Service Level. A train level indication of "doors
closed" is available to operator. An exterior-located,
vehicle-level "doors open" indicator, per car side, is
available on some vehicle designs. An interior "door leaf
open" indicator is available on some vehicle designs.

2. Vehicle Level. Portable electrical instruments, schematics,
wiring diagrams, and operating manuals for timing
functions are used to isolate door faults.

3.  Back Shop. Most systems are presently relay logic, in
which case component diagnosis is limited to manuals and
repair kits. PCBs with discrete-component logic circuits are
used in some door operator motor controls. Maintenance
manuals and checkout procedures are required for fault
diagnoses on these systems.

Equipment Location

Vehicle control is in an interior electrical locker. Door
operators and controls are adjacent to door locations, overhead
or in side panels. Pushbutton stations are at operator's
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and conductor's stations; passenger controls are at doorways.

Note:  The vehicle door control power system is interlocked with a
fail-safe no-motion signal. The doors closed summary is
interlocked with train propulsion and brake controls.

HEATING, VENTILATION, AND AIR
CONDITIONING

Purpose

The purpose is to condition the vehicle interior to a reasonably
comfortable temperature and humidity level.

Equipment Type
There are electrical heater elements, at 750 Vdc and 230 Vac, and
ceiling ductwork for air distribution. Air cooling may be provided
by modular air conditioning units or splitsystem air conditioning
systems. Control is provided by discrete-component PCBs, or, in a
few cases, by microprocessor-based controllers.

Indicators/Signals

This varies, but is usually limited to fault indicators on the control
unit or remote indicator panel. System diagnostic data are not
readily available. Microprocessor control systems are just being
introduced in new vehicle designs.

Consequence of Failure

Failure is the loss of heating or cooling. The train is usually
continued in service, at least for the completion of the current run.

Complexity of System

The system is moderately complex for newer systems that
comprise all three functions, and where the air conditioning
equipment includes modulation for partial cooling capacity.

Diagnostic Techniques

1. Revenue Service Level. Faults are diagnosed by operator or
passenger complaints.

2. Vehicle Level. Some systems have fault panels to indicate
which portion of a system is not operating. Pres-

sure gauges, electrical meters, schematics, wiring diagrams,
and operating manuals are the usual diagnostic means.

3. Component Level. Mechanical components are diagnosed
by manuals and repair kits. Electrical instruments,
schematics, and checkout procedures are necessary for
PCBs. Microprocessor controllers are just being introduced
to the industry.

Equipment Location

Heater elements are at floor level and in the overhead; heater
control is undercar. Modular air conditioner systems are roof
mounted. On split systems, the compressor is mounted
undercar, and the condenser is in ceiling ductwork. The system
control unit is in an interior electrical locker. Temperature
sensors are in the duct work or vehicle interior.

Note:  Compressor motors and blower motors may be operated
at 750 Vdc or 230 Vac.

COMMUNICATION

Purpose

The purpose is to provide the means for a train operator to
communicate: (1) to passengers in or near the train, (2) to and
from a central command center, external to the train, and (3) to
and from an individual passenger.

Equipment Type
Operator's control head with microphone, preamplifier, speaker
or handphone, audio power amplifier, VHF radio, and intercom
stations are the system components.

Indicators/Signals
The operator might have a radio transmit light.

Consequence of Failure
There may be a disruption of passenger service and delays for
authorities that rely on radio communication for operation. PA
and intercom failures, unless reported by passengers, are
transparent to operations and cause no delays.

Complexity of System
These systems are relatively simple.
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Diagnostic Techniques

1. Revenue Service Level. Radio faults are found by the
failure to communicate. PA and intercom failures would
be reported by passengers or found on preventive
maintenance inspection.

2. Vehicle Level. Schematics, wiring diagrams, and electric
meters assist in isolating the relatively few components of
this system.

3. Component Level. The various system PCBs range from
a very simple preamplifier board to a very complex UHF
receiving and digital decoding circuit. Radio circuits
require a licensed technician for repair.

Equipment Location

The control head is at the operator's station. The power
amplifier and radio are in an interior electrical locker or in a
seatwell. Speakers are distributed throughout the vehicle. One
or two passenger intercom stations are distributed in vehicle.

AUTOMATIC TRAIN CONTROL
(ATP, ATO, ATS)

Purpose

The purpose of the Automatic Train Protection (ATP) system
is to receive and interpret wayside command signals that are
intended to limit the train operation and to monitor the train
operation and impose those limits on the train in a fail-safe
manner.

The Automatic Train Operation (ATO) system converts the
wayside commands provided by the ATP and transmits them to
the train control system in a manner to enable the train to
operate within the limits commanded.

The Automatic Train Supervision (ATS) system monitors train
parameters are important to the train or the transit system
operations and communicate those parameters to an external
command center.

Equipment Type

Command reception is accomplished by externally mounted
antennas. Control systems may be discrete-component PCBs or
microprocessors. Interfaces to train control circuits are usually
relay logic.

Indicators/Signals

Wayside commands are presented to the operator, as cab signal
speed limits. Overspeed conditions are visually and audibly
indicated. The ATP system intervenes in train operation on
violation of commands. Fault indicators, in discrete systems,
vary from none to lights, at the control unit, of the correct
operation of specific functions (e.g., command received,
commanded decoded, relay picked).

Consequence of Failure

For the ATS, there is no immediate consequence of a failure,
although a record of train operation is lost.

For the ATO, the functions of this system are speed
maintaining, station stopping, and, sometimes, train start and
train routing. Loss of these functions makes the operator
establish and use manual vehicle operations. There are no
driverless automatic train operations in the rail transit industry
yet.

An ATP failure causes the train to stop, disrupting all train
operations, until the fault is isolated and overridden or
bypassed. Most authorities have very restricted movement
requirements until the passengers are unloaded and the faulted
train is removed from service.

Complexity of System

The ATS and ATO systems are moderately complex. They
contain analog circuits that may be discrete-component PCBs
or a microprocessor-based system.

The ATP system is relatively complex. The basic components
may be of the same design type as that of the ATS and ATO
systems, with the added complexity of all functions being
safety related and having to be fail-safe in design.

Diagnostic Techniques

1. Revenue Service Level. ATS failures would be found on
periodic maintenance or reported by central operations, if
monitored.

Failure of an ATO provided function (e.g., speed
maintaining) and the need to revert to manual vehicle
operation lead directly to fault isolation of an ATO failure.

For ATP failures, a loss-of-speed command at the
operator's station and a failure of functions provided by
ATP are usually sufficient to identify the fault. All faults
are to a safe condition (i.e., the train stops and cannot be
moved until failure is bypassed).
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2. Vehicle Level. The safety-related ATP system operation is
checked daily. Because of the interrelationship and action
of these systems, the ATP, ATO, and ATS systems are
usually provided with a special-purpose set of test
equipment. This test set provides wayside test-case input
functions and monitors vehicle-level response and
operation. Faults are either identified directly by the test
set or with the additional use of schematics, wiring
diagrams, and manuals.

3. Back Shop. Component schematics, electronic test
equipment, and operating manuals are used to diagnose
PCB-level faults.

Equipment Location

Antennas are undercar near running rails or on the side of the
vehicle. Control units are in an interior electrical locker or in a
seatwell.

CAR BODY

Purpose

The purpose is to provide the transit passenger with a relatively
safe and comfortable environment while being transported and
to house the equipment necessary to provide that service.

Equipment Type

There is an operator's station with associated equipment. The
car body includes passenger seats, windows, and lighting.

Indicators/Signals

Any available indicators are located near the operator's
console, but there are no central indicators for broken windows
or seats.

Consequence of Failure

Usually, there is no effect on normal service; repairs can be
performed after service. Windows are the exception: the
vehicle is probably removed from service as soon as possible,
causing minor service delays.

Complexity of System

The car body systems are simple. Faults are visually obvious,
such as torn seatcovers or broken windows. Lighting circuits
are similar to house wiring systems.

Diagnostic Techniques

1. Revenue Service Level. A fault is usually visually
obvious upon its being reported. Action taken depends on
authority operating rules.

2. Vehicle Level. Portable electrical meters and wiring
diagrams are used for the lighting system.

3. Back Shop. Mechanical component rebuilding, including
seats, occurs in the back shop area.

Equipment Location

Seats and windows are located throughout the car body
interior.

TRUCKS, SUSPENSION, AND
COUPLER

Purpose

Their purpose is to carry and guide the car body along the rail
system and to provide a means to join separate vehicles.

Equipment Type

This system is composed of wheels, axles, truck assemblies,
mechanical and electrical couplers, and pneumatic suspension
components.

Indicators/Signals

Usually, there would be only a secondary indication of a
failure, such as from the propulsion system failure if it uses
load weighing and the suspension system failed. Unusual noise
or motion might indicate a truck failure.

Consequence of Failure

A complete failure of one of these systems causes a major
disruption of service and loss of the vehicle. Intermittent
electrical coupling failures cause minor service delays.

Complexity of System

The systems are relatively simple to diagnose during failure.
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Diagnostic Techniques

1. Revenue Service Level. Complete failures are visually
and audibly obvious. Intermittent electrical coupling
failures can be diagnosed only through repeated failure of
the systems affected.

2. Vehicle Level. Most failures are obvious. There is no
direct diagnostic approach available to isolate intermittent
electrical coupling failures.

3. Back Shop. Mechanical component rebuilding occurs in
the back shop area.
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APPENDIX B

RAIL TRANSIT SYSTEM CHARACTERIZATION

HEAVY RAIL TRANSIT SYSTEMS

A substantial portion of this project's efforts were directed
toward heavy rail transit systems. This is natural because this
grouping is the most homogeneous in operations and vehicles,
facilitating the ability to characterize and enumerate vehicle
systems. This concentration of efforts does not in any manner
detract from the applicability of the findings and
recommendations of this project. The vehicle systems and
components are very similar in all three rail transit operations.
Slight variations and adjustments to the project findings would
be required for any specific heavy rail system based on fleet
size or operational nuances. Similar variations and adjustments
would be used to tailor the findings to a commuter or light rail
operation. There follows a description of the heavy rail transit
systems features used in the vehicle systems characterization
and cost modeling, and a brief description of the differences of
these features with the commuter and light rail operations.

The largest sector of the rail transit industry is the heavy rail
portion. A summary of the composition of this sector is shown
in Table B-l, U.S. Heavy Rail Transit System Operations.
There are 13 systems operating in the United States, 12 are
shown. SCRTD did not have operating statistics for 1992. The
data shown are taken from 1992 Transit Operating and
Financial statistics from APTA. Total costs are the portion of
the system's annual costs for the heavy rail portion, and
maintenance costs are annual cost for the heavy rail vehicle
maintenance. The AM Peak Fleet number is an indicator of the
minimum number of vehicles, with no reserve, required to
provide the present service. The column marked Percent
Reserve Fleet is a rough indicator of how much of the total
fleet could be in the repair pipeline. Maintenance cost per
active fleet is the system annual heavy rail maintenance cost
divided by the active fleet size. Maintenance cost per AM peak
is the same system annual heavy rail maintenance cost divided
by the AM peak fleet requirements. Both columns are merely
indicators of the per vehicle costs to maintain a rail transit
vehicle.

Table B-1. U.S. Heavy Rail Transit System Operations
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Concentration on the heavy rail sector was selected because it
represents the most homogeneous type of equipment and
operations.   Although the age and technology of the vehicles
span generations, the vehicles operate in multiple-unit trains
over protected rights of way with similar speeds and station
spacing.   Similar operations and equipment relate to similar
maintenance and diagnostic problems.

COMMUTER RAIL TRANSIT
SYSTEMS

Commuter rail transit system vehicle fleets vary widely from
property to property.  Although all operate in multiple-unit
trains, some are self-propelled and others are locomotive
hauled. Operations are different, with most vehicles making
only one round trip per day at high speed and with distant
station spacing.   Because of this operation, field maintenance
must be performed at locations away from  a shop support
facility.  The diagnostic and maintenance concerns are
somewhat different from those of the heavy rail systems
because of the off-site repair requirements.

LIGHT RAIL TRANSIT SYSTEMS

Light rail systems are also considerably different from heavy
rail. Light rail systems, with few exceptions, are smaller fleets.
The vehicles are designed to operate in single units on city
streets in mixed traffic.  This operation, the small fleet size, and
the resurgence of this mode of transit has produced a number
of small procurements over the past few years. As a
consequence, light rail systems have the advantages of not
having to be compatible with previous operations and they
contain the latest technologies. Foremost in this is the
availability of the microprocessor-based controllers with the
faultlogging and potential diagnostic capability. The light rail
vehicle in Baltimore is 3 years old. A vehicle-level processor is
linked to every other control system on the vehicle over a
common communication link. The other systems (e.g., brakes,
propulsion, HVAC) all report operating status to the vehicle
processor. The vehicle processor provides the operator with a
vehicle condition display and stores event data upon detection
of predefined fault conditions. The Baltimore system is in the
process of redefining some of the predetermined fault
conditions.
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APPENDIX C

MIS SAMPLE DATA

Figures C-l through C-6 provide examples of reports generated from MIS data bases.

Figures C-1. Composite of a Few of BART’s MARIS File Structures (page 1 of 2)
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Figure C-1. Composite of a Few of BART's MARIS File Structures (page 2 of 2)
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SYSTEM DELAY ANALYSIS
FOR: JULY 1993

Figure C-2. One Page of a BART MARIS Monthly Report
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Figure C-3. MD-DOT Portion of a Cost to Repair Report
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Figure C-4. MD-DOT Summary Defect Distribution Report
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Figure C-5. PATCO Component Functional Performance Report
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Figure C-6. WMATA - Single Page of a Reliability Report
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APPENDIX D

POINT OF CONTACT FOR COMMERCIAL Al PRODUCTS

Many commercial AI software products have been produced in recent years. Most of those products are shells based upon one or
more specific AI techniques. AI Expert magazine often publishes resource guides in its issues. The resource guides usually focus on
one AI technique and provide information on the product, including price and address. Information about specific resource guides
can be obtained from the magazine's publisher:

Miller Freeman Publications
600 Harrison St.
San Francisco, California 94107
(415) 905-2200 VOICE
(415) 905-2234 FAX
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