Introduction to Structural Design of Buried Bridges (Non-seismic)

Mr. Jesse L. Beaver, PE Simpson Gumpertz & Heger, Waltham, MA <u>JLBeaver@sgh.com</u>, 781-907-9272

Chair, TRB AFF70 - Culverts and Hydraulic Structures

Webinar Outline

- Description of Buried Bridges and Design Input
- Design of Concrete Buried Bridges Philip Creamer
- Design of Metal Buried Bridges Joel Hahm
- Questions

What is a Buried Bridge?

- Buried bridges are arch, three-sided, or box-shaped structures with unsupported spans (bridge lengths) greater than 20 ft that rely on soils for support.
- "Buried bridge" is distinguished from "bridge" to capture the need for design and analysis methods that consider soil-structure interaction.
- "Buried bridge" is distinguished from "culvert" to describe the importance of these large structures for highway safety.
- Addressed by Transportation Research Board (TRB)
 - Technical Committee AFF70 Culverts and Hydraulic Structures
 - Subcommittee AFF70-1 Buried Bridges

Buried Bridge Geometry

SHAPE	RANGE OF SIZES	COMMONUSES							
REINFORCED CONCRETE									
RECTANGULAR (BOX)	Span 8 ft to 48 ft	Culverts and Short-span bridges.							
THREE-SIDED	Span 8 ft to 48 ft	Culverts and Short-span bridges.							
ARCH	Span 15 ft to 102 ft	Culverts and Short-span bridges For low, wide waterway enclosures, aesthetic bridges							
	CORRUGATED	METAL							
	SpanxRise 5ftx1ft9.5in to 82ftx42ft	Culverts and Short-span bridges, Low clearance waterway, aesthetic bridges							
	Span 20 ft To 83 ft	Culverts and Short-span bridges, Grade separations, Amminition magazines, earth covered storage							
	Span 10 ft To 53 ft	Culverts and Short-span bridges							

Applications of Buried Bridges

- Bridge replacement or rehabilitation
- Limited site access and remote locations
- Staged construction
- Accelerated Bridge Construction (ABC) alternative to Cast-in-place (CIP) reinforced concrete bridge components
- Wildlife & aquatic crossings
- Environmentally sensitive crossings
- Canal / utility crossings
- Pedestrian access
- Emergency or temporary detours
- Single span alternative to daylight multi-cell culverts
- Extreme live loadings Mines, runways, etc...
- ...any bridge project!

Double-cell Highway Stream Crossing

Railway Overpass with Cooper E-80 Loading

Airport Taxiway Grade Separation

Application: Preservation of Historical Stone Arch Bridge

- Conventional bridge replacement estimate
 - \$600k bridge
 - \$1.4M shoring for historical bldgs
- Custom fit metal buried bridge metal with grouted annular space

– \$260k

Application: Bridge Replacement

- Steel girder overpass scheduled for replacement
- Contractor proposed value engineering concrete buried bridge
 - Half construction time
 - Maintained 4 traffic lanes
 - No bridge deck maintenance
 - Est. \$2.5M savings

Introduction to Structural Design of Buried Bridges

Benefits of Buried Bridges – Design and Installation

- Reduced engineering design time
 - Simple/standard designs less than 1 week.
 - Designs including soil-structure interaction 2 to 3 weeks.
- Reduced fabrication and installation times (ABC)
 - Shop fabrication and relatively fast delivery.
 - Typical installation in 1-3 days reduces traffic impact.
 - Reduced manpower and equipment vs. conventional bridge installation.
 - Specialized labor skills are not required for installation.
- Sustainability benefits:
 - Reduced materials shipment needs.
 - Use of recycled materials for backfill and structure fabrication.

Other Benefits of Buried Bridges

- Reduced overall costs over conventional bridges.
- Reduced cost to add shoulders, bike lanes, etc. to width.
- Good seismic and blast performance due to soil embedment.
- Designs are adaptable to site-specific requirements such as curves, skews, and slopes.
- Aesthetics are easily adapted to fit local architecture or landscaping goals by using form liners, facades, and special end treatments.
- Significant increased load capacity relative to conventional girder bridges due to load sharing with soil embedment.
- No bridge deck or expansion joints significantly reduces common bridge maintenance needs.
- Reduced structural components simplifies routine inspection.
- Reduced cost to lengthen for future roadway widening.

Metal Buried Bridge Fabrication

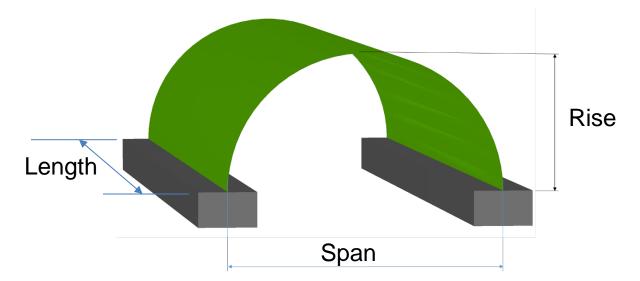
Precast Concrete Buried Bridge Fabrication

Reduced Labor for Installation

Buried Utilities in Fill Over Bridge

Common End Treatments

- MSE wire or block walls, geosynthetics
- Corrugated metal faced walls
- Vegetated or paved slopes
- Cast-in-Place or Precast Concrete Walls
- Stones or other architectural treatment


Introduction to Structural Design of Buried Bridges

General Design Steps – Buried Bridges


- Function
 - Determine buried bridge structure geometry
 - Hydraulics and special design (not discussed here)
- Serviceability
 - Evaluate durability (not discussed here)
- Safety
 - Structural design by soil-structure interaction (SSI)
 - Design foundation/bedding and backfill
- Design end treatments
- Specify product and installation requirements

Buried Bridge Structure Geometry

- <u>Span</u> x <u>rise</u> determined by:
 - hydraulic opening based on design flood for stream crossing
 - roadway clearance envelope for grade separation
- Scour depth may influence rise and foundation depth.
- Bridge <u>length</u> determined by roadway geometry, embankment slopes, waterway channel alignment

Corrugated Metal Structure Shapes

	SHAPE	RANGE OF SIZES	COMMON USES					
Round		6 in. – 51 ft	Culverts, subdrains, sewers, service tunnels etc. All plates some radius. For medium and high fills (or trenches).					
Verticolly- elongated (ellipse) 5% is common		4 - 21 ft nominal; before elongating	Culverts, sewers, service tunnels, recovery tunnels. Plates of varying radit shop fabrication. For appearance and where backfill compaction is only moderate.					
Pipe—arch	SPAN - SPAN	Span x Rise 17 in. x 13 in. to 20 ft 7 in. x 13 ft 2 in.	Where headroom is limited. Has hydraulia advantages at low flows. Corner plate radius. 18 inches or 31 inches for structural plate.					
Underpass*		Spon x Rise 5 ft 5 in. x 5 ft 9 in. to 20 ft 4 in. x 17 ft 9 in.	For pedestrions, livestock or vehicles (etructural picte).					
Arch	SPAN-	Span x Rise 5 ft x 1 ft 9½ in. 82 ft x 42 ft	For low clearance large waterway opening, and aesthetics (structural plote).					
Horizontal Elipse	SPAN_	Span 7 – 40 ft	Culverts, grade separations, storm sewers, tunnels.					
Pear		Span 25 – 30 ft	Grade separations, culverts, storm severs, tunnels.					
High Profile Arch	SPAN-	Span 20 – 83 ft	Culverts, grade separations, storm sewers, tunnels. Ammo ammunition magazines, earth covered storage.					
Low Profile Arch	-SPAN-	Span 20 – 83 ft	Low-wide waterway enalosures, aulverts, storm sewers.					
Box Culverts	SPAN-	Span 10 – 53 ft	Low-wide waterway enclosures, culverts, storm sewers.					
Specials		Various	For lining old structures or other special purposes. Special fabrication.					

20

Precast Concrete Shapes

SHAPE	RANGE OF SIZES	COMMON USES					
	12 to 144 in. reinforced 6 to 10 in. nonreinforced	Culverts, storm drains, and sewers.					
PIPE ARCH	15 to 72 in. equivalent diameter	Culverts, storm drains, and sewers. Used where fill depth is limited.					
HORIZONTAL ELLIPSE	Span x Rise 18 to 144 in. equivalent diameter	Culverts, storm drains, and sewers. Used where fill depth is limited.					
VERTICAL ELLIPSE	Span x Rise 18 to 144 in. equivalent diameter	Culverts, storm drains, and sewers. Used where lateral clearance is limited.					
RECTANGULAR (BOX)	Span 3 ft to 12 ft	Culverts, storm drains, and sewers. Used for wide openings with limited head.					
ARCH	Span 15 ft to 102 ft	Culverts and storm drains. For low, wide waterway enclosures.					

Hydraulic Design (not covered in this presentation)

- AASHTO Drainage Guidelines
- Considerations
 - Scour depth/limits
 - Alignment and end treatments
- Special Case Considerations
 - Design for Aquatic Organism Passage (AOP)

Durability (not covered in this presentation)

- AASHTO LRFD Sec 11.10 (from MSE Walls) to determine required steel protection based on soil corrosion potential.
- Manufacturer will offer coatings and linings for metal based on soil and water chemistry effects on the structure and foundation.
- Manufacturer will offer concrete mix designs for resistance to sulfates, if necessary.

AASHTO LRFD Structural Design

- AASHTO LRFD Bridge Design Specifications
 - 3.4 Load Factors and Combinations
 - 12.4 Soil and Material Properties
 - 12.5 Limit States and Resistance Factors
 - 12.6 General Design Considerations
 - 12.7, 12.8, 12.8.9, 12.9 Metal Arches & Boxes, Long-span, Deep corrugated, Structural Plate Box
 - 12.11, 12.14 Reinforced Concrete Boxes & Arches, Precast Reinforced Concrete Three-Sided Structures
- Design Live Loads:
 - AASHTO HL-93
 - State-specific HL-93 Mod; legal loads, overload trucks (load ratings)
 - Railroad Cooper E-80
 - Runway FAA Aircraft
 - Other Owner specific special design loads

AASHTO Sec 3.4 Load Combinations & 12.5 Limit States

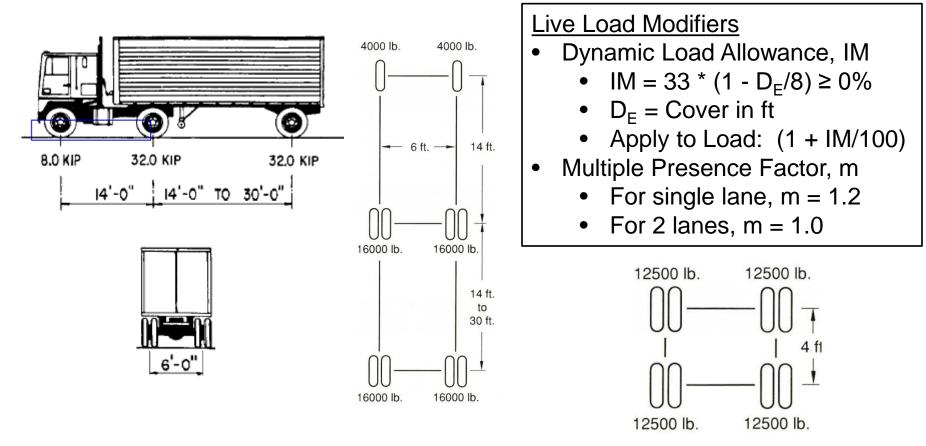
- 12.5 Design for Service I, Strength I, and Strength II
- C12.5.3 Do not design for fatigue, seismic due to burial

 $\sum \eta_i \gamma_i Q_i \leq \phi R_n = R_r$

Table 3.4.1-1—Load Combinations and Load Factors

	DC									Use One of These at a Time					
	DD														
	DW														
	EH														
	EV	LL													
	ES	IM													
	EL	CE													
Load	PS	BR													
Combination	CR	PL													
Limit State	SH	LS	WA	WS	WL	FR	TU	TG	SE	EQ	BL	IC	CT	CV	
Strength I	γ_p	1.75	1.00	_	_	1.00	0.50/1.20	Υrg	γ_{SE}	_	_	_	_	_	
(unless noted)															
Strength II	γ_p	1.35	1.00	_	_	1.00	0.50/1.20	γ_{TG}	γ_{SE}					—	
Strength III	Υn	—	1.00	1.4	—	1.00	0.50/1.20	γ_{TG}	γ_{SE}	—	_	—	—	_	
Extreme	γ_p	0.50	1.00	_	—	1.00	_	_	—	_	1.00	1.00	1.00	1.00	
Event II															
Service I	1.00	1.00	1.00	0.3	1.0	1.00	1.00/1.20	γ_{TG}	γ_{SE}	_	_	_	_	—	
				0											

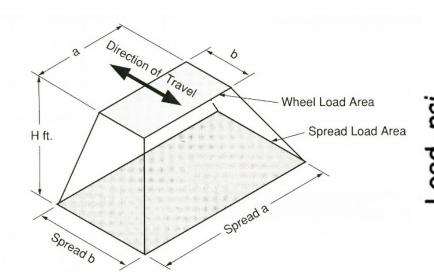
AASHTO Sec 12.4.1 - Foundations and Soils

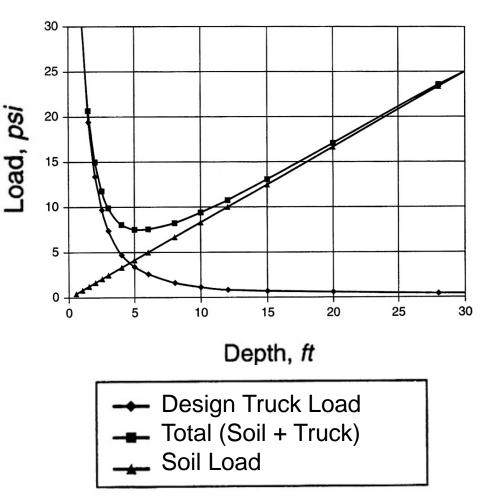

- Arches and Three-sided Structures
 - AASHTO LRFD Bridge Design Specifications Section 10 Foundations
 - Deep foundations (piles with pile cap)
 - Strip (spread) footings
- Closed shapes include design of bedding
- May require imported fill
- Re-use excavated site soils for backfill where quality, consistency, and economics allow
- Critical backfill around structure is engineered fill and includes specified material properties and specified compaction
- Roadway subgrade requirements dictate fill above critical backfill zone

AASHTO Design for Different Structure Types

- Sec 12.4.2 structure materials for buried bridges include:
 - Aluminum pipe and structural plate
 - Concrete, CIP and Precast
 - Steel pipe and structural plate
 - Deep corrugated structures

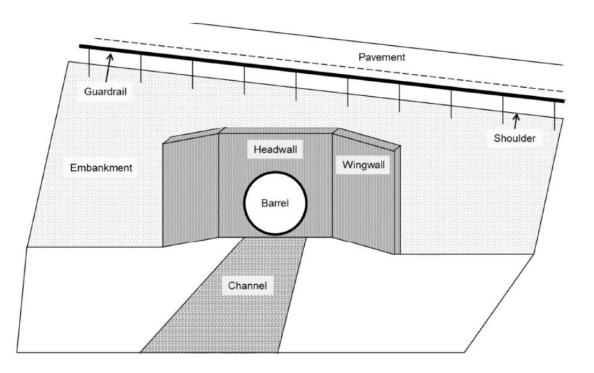
AASHTO Design Vehicular Live Load


 HL-93 live load is the design truck or design tandem with the design lane load.


AASHTO Design Truck

AASHTO Design Tandem

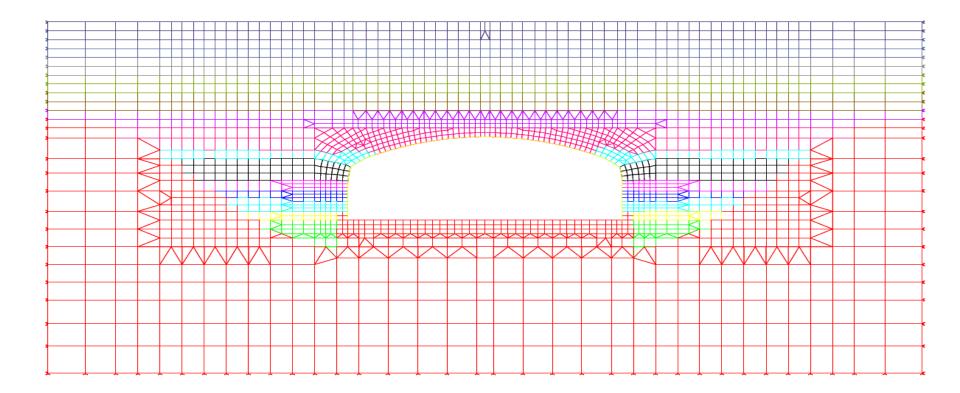
Application of Live Load



- Live Load Distribution
 - Wheel Area = a x b
 - Spread a = a + 1.15H
 - Spread b = b + 1.15H
 - Area at depth = Spread a x
 Spread b

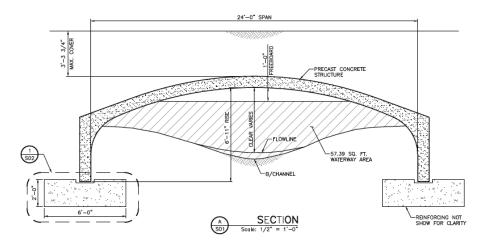
End Treatments

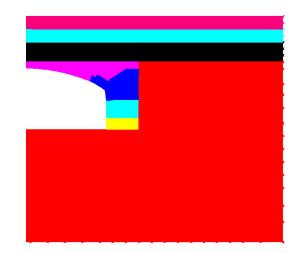
- Site conditions influence end treatments (headwall, wingwall, spandrel wall)
 - Waterway hydraulic design and alignment
 - Roadway and embankment support
 - Economy
 - Aesthetics



Design of Concrete Buried Bridges Philip Creamer Contech Engineered Solutions LLC

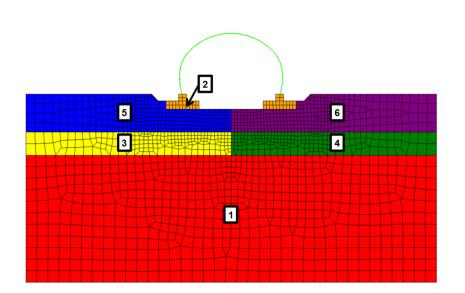
Design of Metal Buried Bridges Joel Hahm Big R Bridge

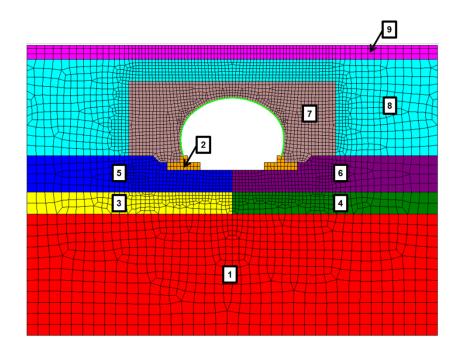

Introduction to Structural Design of Buried Bridges


Advanced Analysis of Buried Bridges

Two-Dimensional (2D) Finite Element Analysis (FEA)

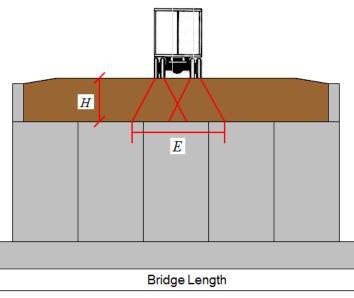
- Many tools available for buried pipe structural design
- FHWA Culvert ANalysis and DEsign (CANDE)
 - Free download <u>http://www.candeforculverts.com/home.html</u>
 - Analysis of buried bridges using soil-structure interaction (SSI).
 - Non-linear structure and material models.
 - Advanced soil model capabilities.
 - Ability to model backfill construction increments.
 - Can model single or multi-cell structures.





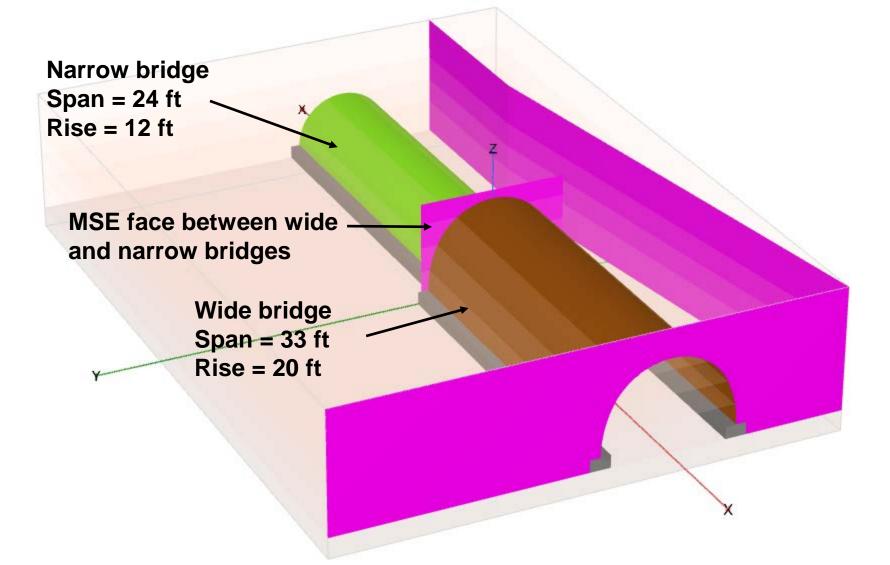
Introduction to Structural Design of Buried Bridges

Sample 2D FEA Model

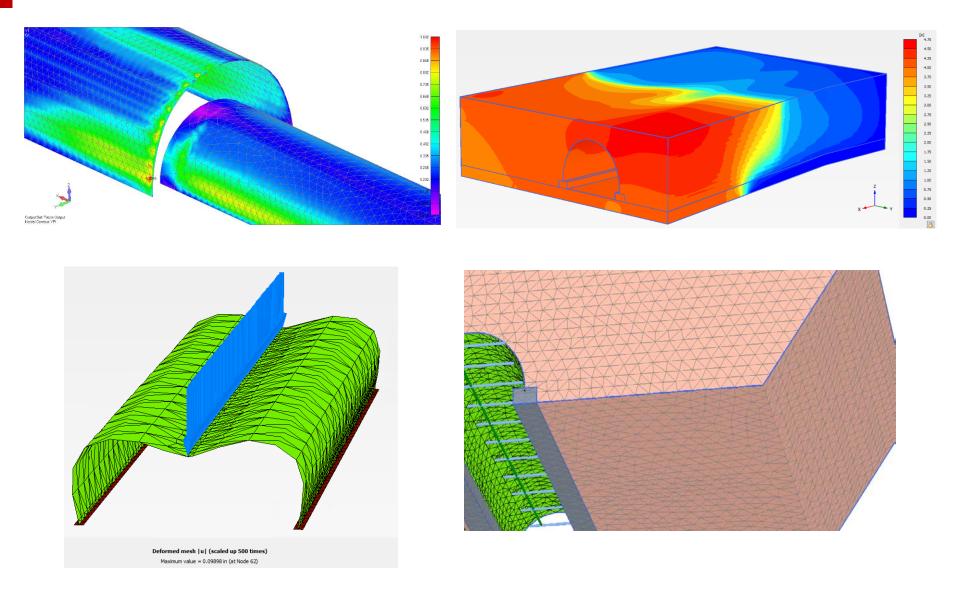

- Native (in situ) soil Zones 1,3,4,5, and 6.
- Concrete footings in Zone 2.
- Backfill soil in Zones 7, 8, 9.
 - Placed in 12 in. lifts at specified compaction and unit weight.
 - Can simulate construction compaction loading.

CANDE 2D FEA SSI Limitations

- Requires knowledge of soil-structure interaction and finite element analysis methods.
- Does not include dynamic loads.
- Requires preprocessor to create input file (no automeshing) and has limited ability for error checking.
- 2D, so must approximate 3D live load effects or nonuniform soil cover loadings.



Introduction to Structural Design of Buried Bridges


Three-Dimensional (3D) FEA

- Many tools available; common tools include Plaxis, Flac, Ansys, Abaqus, etc.
- Additional information required for:
 - Material models for bridge structure.
 - Material models for native soil(s).
 - Backfill material properties and compaction levels.
 - Structure variation along length (bridge width).
- Live load application and load spread using SSI.
- Allows variable foundation support along bridge length.
- Change structure geometry along bridge length.
- Allows evaluation of sloped or otherwise nonuniform soil cover.
- Computationally more expensive that 2D

Sample 3D FEA Model

Sample 3D FEA Results

Introduction to Structural Design of Buried Bridges

Questions?

Introduction to Structural Design of Buried Bridges (Non-seismic)

Jesse L. Beaver	Joel Hahm	Philip Creamer
JLBeaver@sgh.com	JHahm@bigrbridge.com	PCreamer@conteches.com
781-907-9272	970-347-2208	513-645-7340
Simpson Gumpertz & Heger	Big R Bridge	Contech Engineered Solutions

TRB Webinars - http://www.trb.org/ElectronicSessions/ConferenceRecordings.aspx

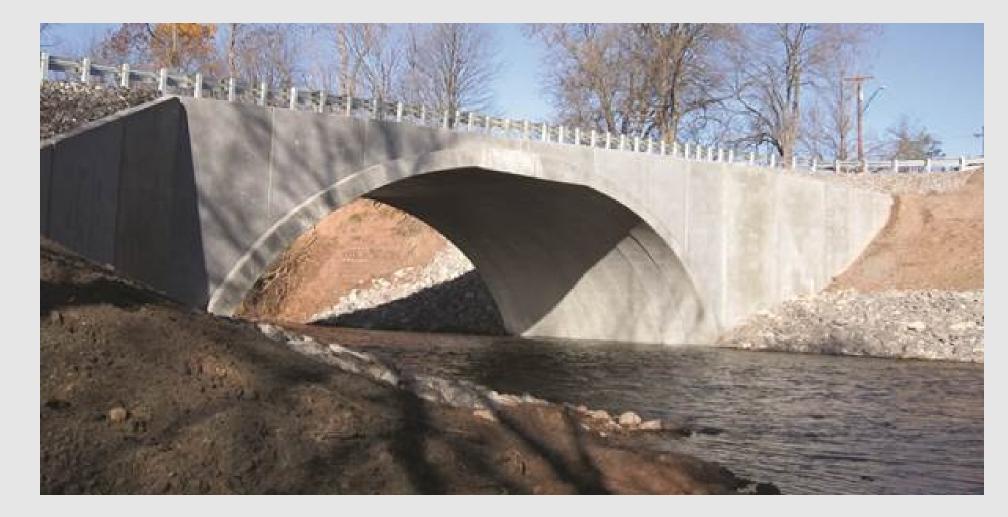
Design of Concrete Buried Bridges

Philip Creamer, P.E. – Contech Engineered Solutions

June 2016

6/23/2016

6/23/2016



6/23/2016

Material Components

- > Concrete
 - Typical Compressive Strengths 4 ksi to 6 ksi
 - Higher if Necessary
- Reinforcing
 - Welded Wire Reinforcing 65 ksi
 - Conventional Reinforcing Bars 60 ksi
 - Higher Strength Steel is becoming more common

- Strength Limit State
 - Flexure / Axial Effects
 - Shear Effects
- Service Limit State
 - Crack Control
 - Deflections
 - ➤ Fatigue

Table 3.4.1-1-Load Combinations and Load Factors

ſ	DC							_		U	se One o	of These	at a Tim	ie
Load Combination Limit State	DD DW EH EV ES EL PS CR SH	LL IM CE BR PL LS	• WA	WS	WL	FR	TU	TG	SE	EQ	BL	IC	CT	СИ
Strength I (unless noted)	γ_p	1.75	1.00			1.00	0.50/1.20	ŶTG	ΎSE	×	-			
Strength II	γ_{ρ}	1.35	1.00			1.00	0.50/1.20	ΎTG	YSE		>			<u> </u>
Strength III	Υp	-	1.00	1.4 0		1.00	0.50/1.20	ŶTG	ΎSE					-
Strength IV	γ_p		1.00		-	1.00	0.50/1.20		2	-	=			-
Strength V	γ_p	1.35	1.00	0.4 0	1.0	1.00	0.50/1.20	ΎTG	ΎSE	1	-			—
Extreme Event I	γ_p	γEQ	1.00	-		1.00		-		1.00			-	-
Extreme Event II	γ_p	0.50	1.00		$\gamma \longrightarrow \gamma$	1.00					1.00	1.00	1.00	1.00
Service I	1.00	1.00	1.00	0.3 0	1.0	1.00	1.00/1.20	Ŷ <i>τ</i> σ	ΎSE	<u> </u>		-		
Service II	1.00	1.30	1.00	-		1.00	1.00/1.20	-	$\sim - \epsilon$			-		
Service III	1.00	0.80	1.00	-	2	1.00	1.00/1.20	YTG	YSE		<u></u>			
Service IV	1.00		1.00	0.7 0		1.00	1.00/1.20		1.0	12	-			
Fatigue I— LL, IM & CE only		1.50					_			-		-		
Fatigue II— LL, IM & CE only		0.75			_			-		-				

Table 3.4.1-2—Load Factors for Permanent Loads, γ_p

	Type of Load, Foundation Type, and	Load I	Factor
	Method Used to Calculate Downdrag	Maximum	Minimum
DC: Component a	nd Attachments	1.25	0.90
DC: Strength IV of	only	1.50	0.90
DD: Downdrag	Piles, a Tomlinson Method	1.4	0.25
0	Piles, λ Method	1.05	0.30
	Drilled shafts, O'Neill and Reese (1999) Method	1.25	0.35
DW: Wearing Sur	faces and Utilities	1.50	0.65
EH: Horizontal E	arth Pressure		0.00
 Active 		1.50	0.90
 At-Rest 		1.35	0.90
 AEP for anch 	ored walls	1.35	N/A
EL: Locked-in Co	nstruction Stresses	1.00	1.00
EV: Vertical Earth	Pressure		
 Overall Stabi 	lity	1.00	N/A
Retaining Wa	alls and Abutments	1.35	1.00
 Rigid Buried 	Structure	1.30	0.90
 Rigid Frames 		1.35	0.90
 Flexible Buri 	ed Structures		
	ox Culverts and Structural Plate Culverts with Deep Corrugations	1.5	0.9
	plastic culverts	1.3	0.9
 All other 	2.	1.95	0.9
ES: Earth Surchar		1.50	0.75

Resistance Factors for Buried Structures – 12.5.5

•	Flexure Shear	Reinforced Concrete Cast-in-Place Box Structures	0.90 0.85
•	Flexure Shear	Reinforced Concrete Precast Box Structures	1.00 0.90
•	Flexure Shear	Reinforced Concrete Precast Three-Sided Structures	0.95 0.90

Live Load Distribution – 12.14.5.2 and 12.11.2

Cover 2'-0" or Greater – 3.6.1.2.6 (All Buried Structures)

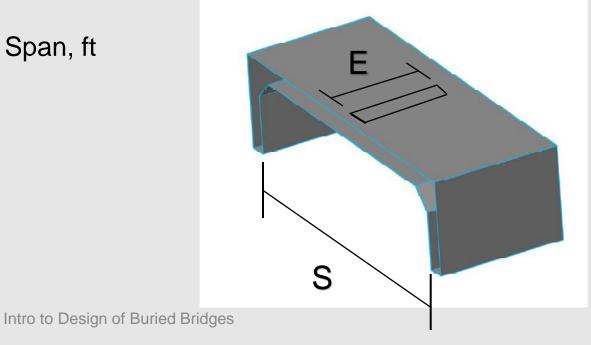
Distribution of Wheel Loads through Earth Fills

Live Load Distribution Factor (LLDF) = 1.15

➤ Cover Less than 2'-0" – 4.6.2.10 (Concrete Specific)

Equivalent Strip Widths

≻Equivalent Strip Widths


Traffic Travels Parallel to Span

Distribution Perpendicular to Span

E = 96 + 1.44 (S)

E = Equivalent Distribution Width for Axle Load, in.

S = Clear Span, ft

Equivalent Strip Widths

- Traffic Travels Parallel to Span
 - > Distribution Parallel to the Span

 $E_{span} = L_t + LLDF(H)$

- L_t = Tire Contact Length, in.
- H = Depth of fill from top of structure to top of pavement, ft
- LLDF = Distribution Factor (1.15 or 1)

Soil Structure Interaction Factor, Fe and Ft

- Box Culverts
- Small Buried
 Bridges/Culverts
- Not Typically used for Larger Structures

12.11.2.2—Modification of Earth Loads for Soil-Structure Interaction

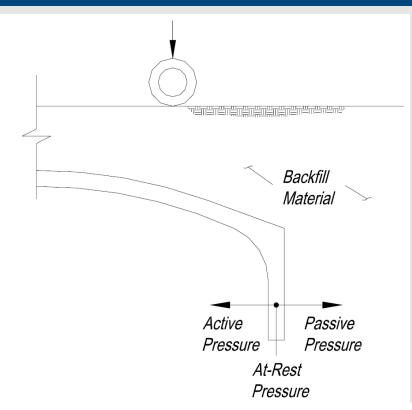
12.11.2.2.1-Embankment and Trench Conditions

In lieu of a more refined analysis, the total unfactored earth load, W_E , acting on the culvert may be taken as:

For embankment installations:

$$W_{E} = F_{e}\gamma_{s}B_{e}H$$
 (12.11.2.2.1-1)

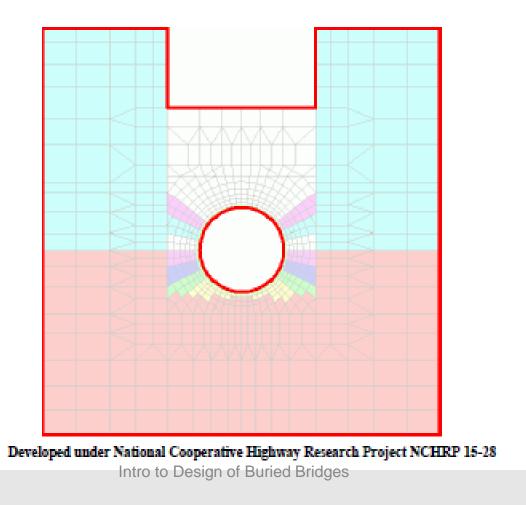
in which:


$$F_e = 1 + 0.20 \frac{H}{B_c} \tag{12.11.2.2.1-2}$$

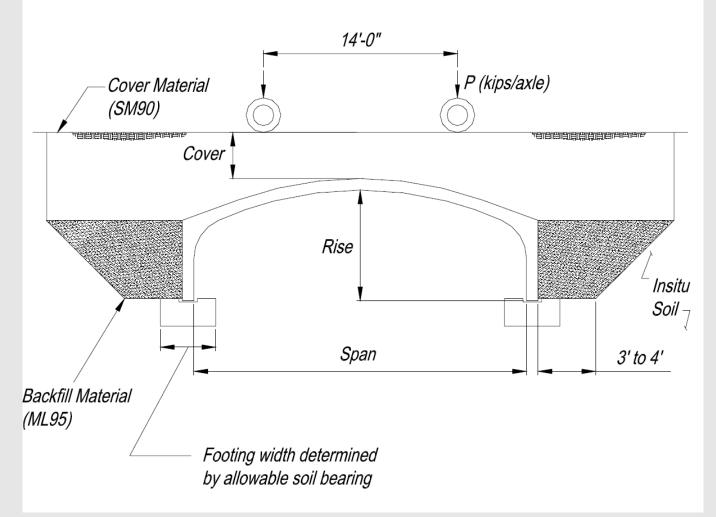
For trench installations:

$$W_E = F_t \gamma_s B_c H$$
 (12.11.2.2.1-3)

in which:

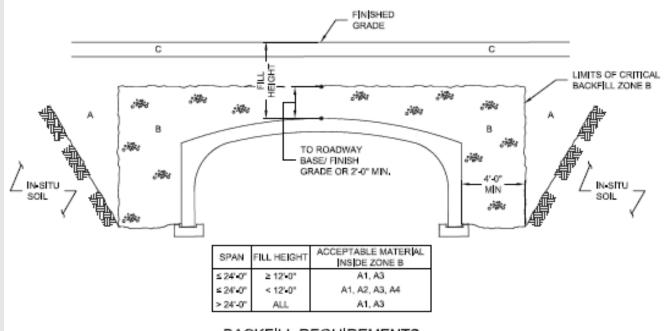

$$F_{t} = \frac{C_{d}B_{d}^{2}}{HB_{e}} \le F_{e}$$
(12.11.2.2.1-4)

Lateral Earth Pressure Conditions


- At-Rest Earth Pressure: No wall movement relative to backfill.
- Active Earth Pressure: Wall moves slightly away from backfill material.
- Passive Earth Pressure: Wall moves slightly toward backfill material.

CANDE-2007 Culvert Analysis and Design User Manual and Guideline

6/23/2016


BASIC DESIGN ASSUMPTIONS

Backfill Envelope

	TYPICAL USCS	AASHTO	AASHTO		RCENT PASS US SIEVE NO			OF FRACTION	
	MATERIALS	GROUP	SUBGROUP	№10	#40	#200	LIQUID	PLASTICITY INDEX	SOIL DESRIPTION
	GW, GP, SP	A1	A-1a	50 MAX	30 MAX	15 MAX		6 MAX	LARGELY GRAVEL BUT CAN INCLUDE SAND AND FINES
	GM, SW, SP, SM	~1	A-1b		50 MAX	25 MAX		6 MAX	GRAVELLY SAND OR GRADED SAND, MAY INCLUDE FINES
	GM, SM, ML, SP, GP	A2	A-2-4			35 MAX	40 MAX	10 MAX	SANDS, GRAVELS WITH LOW- PLASTICITY SILT FINES
	SC, GC, GM	2	A-2-5			35 MAX	41 MIN	10 MAX	SANDS, GRAVELS WITH PLASTIC SILT FINES
	SP, SM, SW	A3			51 MIN	10 MAX		NON- PLASTIC	FINE SANDS
[ML, SM, SC	A4				36 MIN	40 MAX	10 MAX	LOW-COMPRESSIBILITY SILTS

ACCEPTABLE SOILS FOR USE IN ZONE B BACKFILL

6/23/2016

BACKFILL REQUIREMENTS In of Buried Bridges

CANDE Soil Models

Table 5.6-4 - Material names (MATNAM) and values for Duncan model (IBULK=0)

MATNAM	Y	oung's T	angent M	fodulus I	aramete	rs	Bulk Par	rameters	Density
	K	n	С	φ ₀	Δφ	R _f	K	m	reference
(word)*	()	()	(psi)	(deg)	(deg)	()	()	()	(lb/ft ³)
CA105	600	0.40	0.0	42	9	0.7	175	0.2	150
CA95	300	0.40	0.0	36	5	0.7	75	0.2	140
CA90	200	0.40	0.0	33	3	0.7	50	0.2	135
SM100	600	0.25	0.0	36	8	0.7	450	0.0	135
SM90	300	0.25	0.0	32	4	0.7	250	0.0	125
SM85	150	0.25	0.0	30	2	0.7	150	0.0	120
SC100	400	0.60	0.5	33	0	0.7	200	0.5	135
SC90	150	0.60	0.3	33	0	0.7	75	0.5	125
SC85	100	0.60	0.2	33	0	0.7	50	0.5	120
CL100	150	0.45	0.4	30	0	0.7	140	0.2	135
CL90	90	0.45	0.2	30	0	0.7	80	0.2	125
CL85	60	0.45	0.1	30	0	0.7	50	0.2	120

*MATNAM is composed of two letters and a number defined as follows:

CA = Course Aggregates, SM = Silty Sand, SC = Silty-Clayey Sand and CL = Silty Clay Number = percent relative compaction, per AASHTO T-99

Table 5.6-5 – M	faterial nam	ies (MAT	NAM) an	d value	s for Duncan	/Selig mode	l (IBULK=1)	

	Y	oung's T	angent M	fodulus I	aramete	rs	Bulk Para	meters***	Density
MATNAM	K	n	С	φ ₀	Δφ	R _f	B_i/P_a	٤	reference
	()	()	(psi)	(deg)	(deg)	()	()	()	(lb/ft ³)
(word)**									
SW100	1300	0.90	0.0	54	15	0.65	108.8	0.01	148
SW95	950	0.60	0.0	48	8.0	0.70	74.8	0.02	145
SW90	640	0.43	0.0	42	4.0	0.75	40.8	0.05	140
SW85	450	0.35	0.0	38	2.0	0.80	12.7	0.08	130
SW80	320	0.35	0.0	36	1.0	0.90	6.1	0.11	120
ML95	440	0.40	4.0	34	0.0	0.95	48.3	0.06	135
ML90	200	0.26	3.5	32	0.0	0.89	18.4	0.10	130
ML85	110	0.25	3.0	30	0.0	0.85	9.5	0.14	122
ML80	75	0.25	2.5	28	0.0	0.80	5.1	0.19	115
ML50	16	0.95	0.0	23	0.0	0.55	1.3	0.43	66
CL95	120	0.45	9.0	15	4.0	1.00	21.2	0.13	130
CL90	75	0.54	7.0	17	7.0	0.94	10.2	0.17	125
CL85	50	0.60	6.0	18	8.0	0.90	5.2	0.21	120
CL80	35	0.66	5.0	19	8.5	0.87	3.5	0.25	112

**MATNAM is composed of two letters and a number defined as follows: SW = Gravelly Sand, ML = Sandy Silt, and CL = Silty Clay Number = percent relative compaction, per AASHTO T-99

CANDE Model

Node Numbers

483	521	559	597	685	672	710 746 780	796 830	845 87	91	925 98	8 991	1065 1038	1052	1065 11	19 1184	1167 1183	12881295	1314	1362	1390	1428	1466	1504
482	520	558	596	634	671		795 829 828 794 827	844 87 842 87	940 989	924 98 923 98		1094 1087 1083 1088	1051 1050	1064 1063 9	1162	1166 1182	1287 1274	1313	1351	1369	1427	1465	1503
461	519	557	595	683	670	768 744 778	/93	012							161	1165 1179 1181 1180	1286 1273	1312	1360	1368	1425	1464	1502
480	518	556	594	682	669	767 743	92									1160	1225 1292	1311	1349	1367	1425	1463	1501
479	547	585	583	661	668	786 742 777										1195	1284 1271	1310	1348	1366	1424	1462	1500
478	516	554	592	630	667	785 722											1250 1270	1309	1347	1385	1423	1461	1499
477	545	553	591	629	666	685											1267	1308	1346	1384	1422	1460	1498
476	514	562	590	628	68	4												1268	1345	1363	1421	1459	1497
475	5#3	561	589	627	665	704 741 776	826	875	998	955	988	1085	1062	1115	18	64 129	1283 1269	1307	1344	1362	1420	1458	1495
474																							
	542	550	588	696	664	783 740 775	825	874	987	954	987	1054	1061	194	18	63 126	5 1282 1268	1305	1343	1381	1419	1467	1495
473	542 541	550 549	588 587	696 685	664 663	783 740 775 782 789 774	825 824	874 873	987 986	964 963	987 985	1084 1083	1061 1080	184 183	18		5 1282 1268 2 1281 1267	1305 1305	1343 1342	1361 1360	1419 1418	1467 1456	1 49 5 1 494
									987 986 985		987 986 985		1061 1060 1079		18	62 1243							
473	91	549	587	685	663	762 783 774	824	873	986	953	986	1083	1961 1090 1079 1078	1113	18	62 1243 61 124	2 1231 1267	1305	1342	1360	1448	1456	1494

CANDE Model

ELEMENTS

			1	-					T	- T		T							· · · · · · · · · · · · · · · · · · ·									
533	570	607	644	680	715	749	781 79	15 827				_	947 946	978 977	991 990	1022					1145	160	1213	1249	1287	1324	1361	1398
532	569	606	643	679	714	748	779 ⁷⁸	1 835	839	871 1/0	902	12	13	14	15	1021 16	1034 17	1065 18	50	JIII 7	1144	159	1212	1248	1286	1323	1360	1397
531	568	605	642	678	713	747	<u> </u>	1											Č.,	8	21	58	1211	1247	1285	1322	1359	1396
530	567	604	641	677	712	746	15															57	1209	1246	1284	1321	1358	1395
529	565	603	640	675	711																ę	102	1210	1244	1283	1320	1357	1394
528	565	602	639	674	1	•																-	R	1245	1282	1319	1356	1393
527	564	601	638	675/																			9	1267	1262	1318	1355	1392
526	563	600	637	7																				-	1263	1317	1354	1391
525	562	599	635	673	710	745	778	824	87	D	901	9	45	976		1020	1064	1	1096	t	142	1190	1208	1243	1281	1315	1353	1390
524	561	598	635	672	709	744	m	823	86	9	900	9	4	975		1019	1063	3	1095	1	141	1189	1207	1242	1280	1315	1352	1389
523	560	597	634	671	708	743	776	822	86	8	899	9	13	974		1018	1062	2	1094	T	140	1188	1206	1241	1279	1314	1351	1388
522	559	596	633	670	707	742	775	821	85	7	898	9	42	973		1017	1061	1	1093	1	139	1187	1205	1240	1278	1313	1350	1387
521	558	595	632	669	706	741	774	820	86	6	897	9	41	972		1016	1060	D	1092	T	138	1186	1204	1239	1277	1312	1349	1386
520	557	594	631	668	705	740	773	819	86	5	896	9	40	971		1015	1059	9	1091	t	137	1185	1203	1238	1276	1311	1348	1385

CANDE Model

D	T in t		Thickness	As (I)	As (O)	Cover (I)	Covert (O)
Parameter (columns)	Input Options	Description		()	· · ·	()	()
(format)			12	0.03	0.08	1.7	2.2
(units)			12	0.03	0.08	1.7	2.2
(umrs)			12	0.03	0.08	1.7	2.2
Concrete wall	Concrete wall thickness	The specified concrete wall thickness may	12	0.03	0.08	1.7	2.2
thickness at node N.	at node N for current	differ from node sequence to node sequence	12.2	0.03	0.08	1.7	2.2
PT(N)	node sequence.	along element group as desired. The current	14.06	0.03	0.08	1.7	2.2
(01-10)	_	node sequence is defined by the local node	17.17	0.03	0.08	1.7	2.2
(F10.0)	(Default = none)	numbers NSEQ1 through NSEQ2. See	21.34	0.03	0.08	1.7	2.2
(inches)		comments below (*See Note).	27.96	0.03	0.08	1.7	2.2
Area of steel, cage 1	Steel area of cage #1 for	Cage # 1 is associated with the inner pipe wall.	19,2	0.03	0.08	1.7	2.2
(ASI(N))	node sequence. This is a	Steel areas may vary from node sequence to	14.41	0.03	0.08	1.7	2.2
(11-20)	smeared average area per	node sequence as desired, including the case of	12.17	0.06	0.08	1.7	2.2
(F10.0) (in ² /in)	unit pipe length. (Default = 0.0 in ² /in)	no steel ASI(N) = 0.0.	12.17	0.06	0.08	1.7	2.2
Area of steel, Cage 2	Steel area of cage # 2 for	Cage # 2 is associated with the outer pipe wall.	12	0.06	0.08	1.7	2.2
(ASO(N))	node sequence. This is a	Steel areas may vary from node sequence to	12	0.06	0.03	1.7	2.2
(21-30)	smeared average area per	node sequence as desired, including the case of	12	0.06			
(F10.0)	unit pipe length.	no steel $ASO(N) = 0.0$.	12		0.03	1.7	2.2
(in ² /in)	$(Default = 0.0 in^2/in)$			0.06	0.03	1.7	2.2
Concrete cover, cage 1	Concrete cover thickness	Concrete cover thickness for cage # 1 is	12	0.06	0.03	1.7	2.2
(TBI(N))	to centerline of cage # 1	relative to the inner wall surface. Cover	12	0.06	0.03	1.7	2.2
(31-40)	for node sequence	thickness may vary from node sequence to	12	0.06	0.03	1.7	2.2
(F10.0)	(Default = 1.25 in)	node sequence as desired.	12	0.06	0.03	1.7	2.2
(inches)			12	0.06	0.03	1.7	2.2
Concrete cover, cage 2	Concrete cover thickness	Concrete cover thickness for cage # 2 is	12	0.06	0.03	1.7	2.2
(TBO(N))	to centerline of cage # 2	relative to the outer wall surface. Cover	12	0.06	0.08	1.7	2.2
(41-50)	for node sequence	thickness may vary from node sequence to	12	0.06	0.08	1.7	2.2
(F10.0)	(outer cage)	node sequence as desired	12.17	0.06	0,08	1.7	2.2
(inches)	(Default = 1.25 in)		14.41	0.03	0.08	1.7	2.2
			19.2	0.03	0.08	1.7	2.2
			27.96	0.03	0.08	1.7	2.2
			21.34	0.03	0.08	1.7	2.2
			17.17	0.03	0.08	1.7	2.2
			14.06	0.03	0.08	1.7	2.2
			12.2	0.03	0.08	1.7	2.2
			12	0.03	0.08	1.7	2.2
			12	0.03	0.08	1.7	2.2
			12	0.03	0.08	1.7	2.2

12

0.03

0.08

1.7

2.2

CONFIGURATION

Span: 16'-0" Rise: 5'-10" Cover: 1'-0" min. to 3'-6" max.

DESIGN LOADING

HL-93 & 60 PSF FUTURE WEARING SURFACE

DESIGN SPECIFICATIONS

AASHTO LRFD SPECIFICATIONS CURRENT EDITION

MATERIALS

Concrete: f'c = 4,000 psi WWF Reinforcing: fy= 65,000 psi

SOILS

In Situ: Youngs Modulus*= 3000-8000 psi Unit Weight

Backfill

Selig ML95 Unit Weight = 125 pcf

Cover

Duncan SM90 Unit Weight = 120 pcf

*In situ modulus varies with depth to model confined soil behavior. Soil modulus increases with increasing depth of fill.

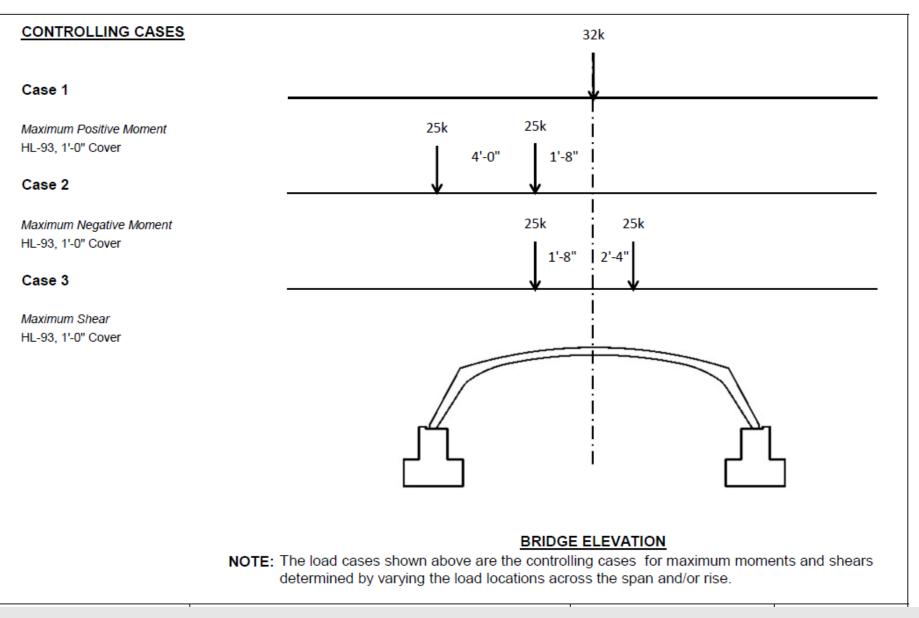
IMPACT

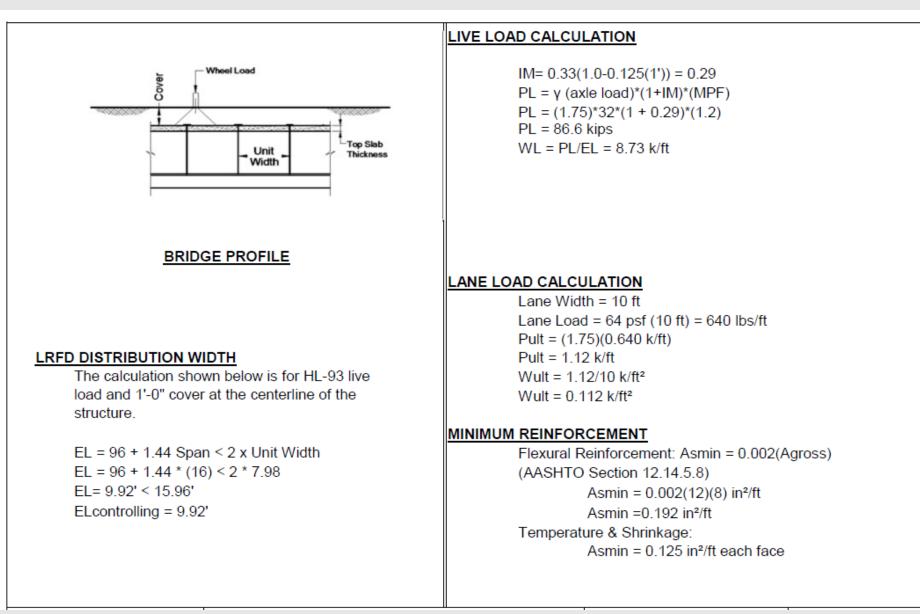
Per AASHTO Section 3.6.2.2 Impact = 33 (1.0 - 0.125 De) > 0% De = Cover (feet)

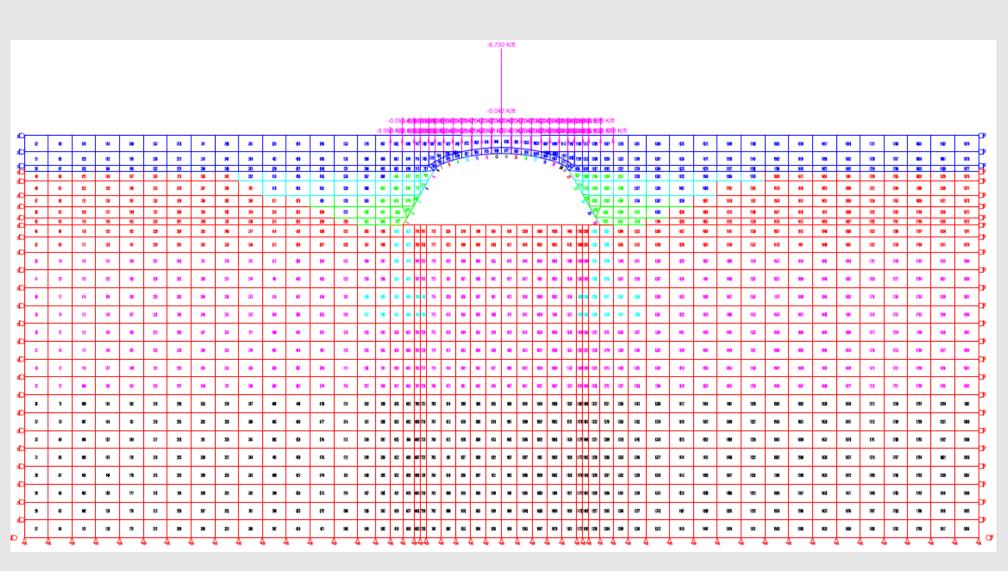
LOAD FACTORS (Y)

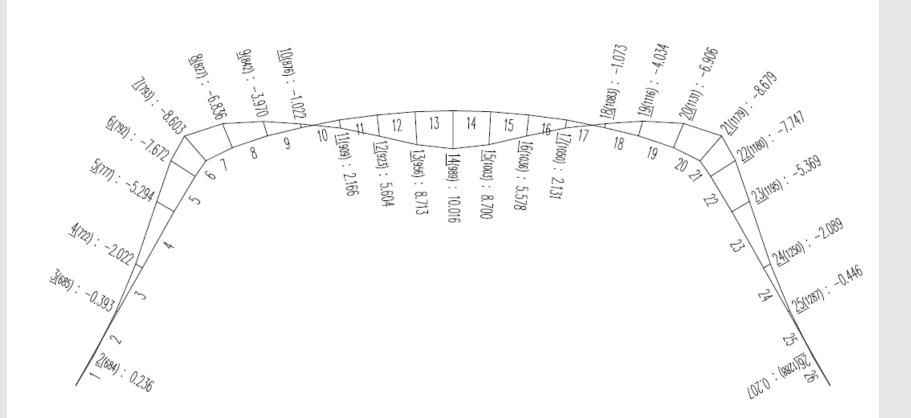
Dead Load = 1.3 Live Load = 1.75 Redundancy (Dead Load Only) = 1.05

LFRD DISTRIBUTION OF WHEEL LOADS

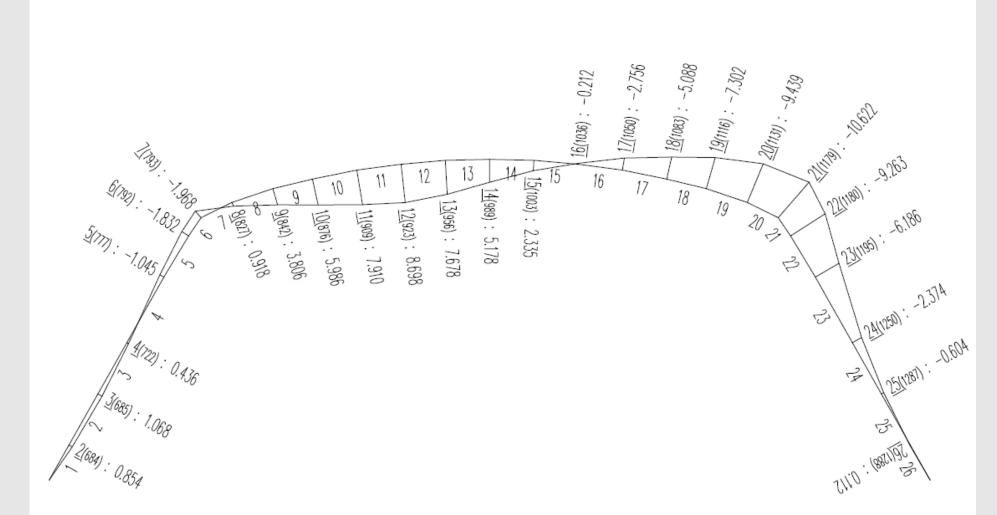

For cover less than 2'-0", live load shall be distributed per 4.6.2.10EL = 96 + 1.44 (S) < 2 Times Unit Width S = Span (feet) For covers greater than 2'-0", loads are distributed per 3.6.1.2.6ED = tire area + 1.15H

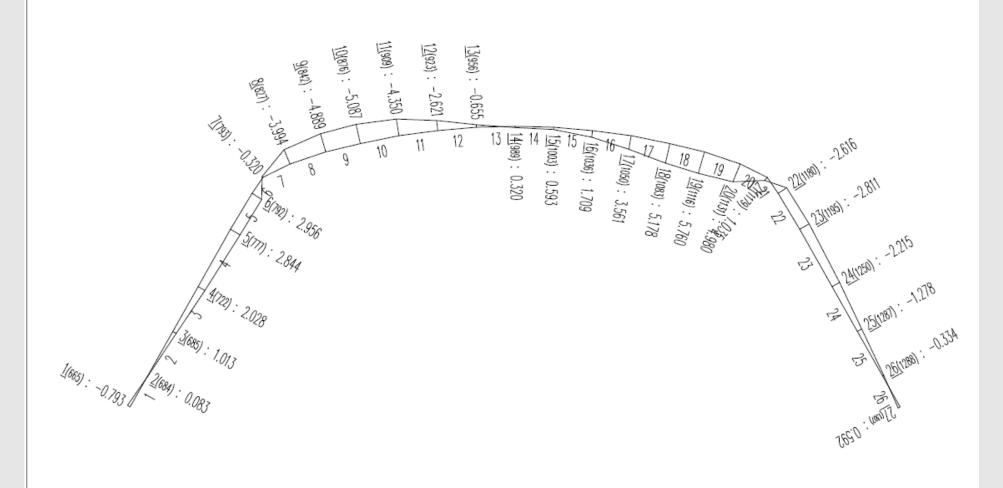

Whereas such areas overlap, the total load shall be uniformly distributed over the area. For Cover > 8'-0" & Cover Height > Span, Live Load not applied per AASHTO Section 3.6.1.2.6


A Multiple Presence Factor (MPF) shall be included on axle loads per Section 3.6.1.1.2


NOMENCLATURE

EL = length of lateral distribution ≤ 2'-0" Cover ED = length of lateral distribution > 2'-0" Cover W = line load per unit length P = axle or wheel loads H = height of cover (feet)





Controlling Case: Maximum Positive Moment

Controlling Case: Maximum Negative Moment

Controlling Case: Maximum Shear

Intro to Design of Buried Bridges

C3 LOAD INCREMENT 5: APPLIED LIVE LOAD

C3.1 STRUCTURAL RESPONSE OF BRIDGE

Displacements and Crack depth are in in, Forces are in K/ft, MOMENT are in ft*K/ft

BN(N) = Beam node number (N=Corresponding Node number) X-D, Y-D = Node displacements NP, SP = Normal and Shear pressures at the node MOMENT, SHEAR, THRUST = Values at the node CD = Crack depth V@C, T@C = Shear and Thrust values at the center of the element between

node BN and node BN+1

BN-(N)	X-D	Y-D	NP	SP	MOMENT	THRUST	SHEAR	CD	V@C	T@C
1 (665)	11	27	-7.97	3.25	0.0	-14.89	79	0.0	-6.94	-12.98
2 (684)	11	26	-6.53	2.65	0.27	-14.53	0.08	0.0	-7.52	-12.23
3 (685)	12	26	-6.12	2.49	3	-14.15	1.01	0.0	-8.18	-11.41
4 (722)	13	25	-5.79	2.56	-1.97	-13.72	2.03	0.0	-8.86	-10.49
5 (777)	14	25	-5.51	2.97	-5.59	-13.28	2.84	5.46	-9.41	-9.6
6 (792)	13	26	-4.29	4.09	-8.42	-12.97	2.96	6.33	-9.55	-9.05
7 (793)	11	27	-5.32	3.25	-9.57	-12.64	32	7.39	-9.6	-8.58
8 (827)	1	3	-4.58	2.52	-7.36	-12.01	-3.99	5.92	-9.54	-8.03
9 (842)	08	35	-3.09	2.89	-3.64	-11.22	-4.89	4.43	-9.32	-7.6
10 (876)	07	41	-5.16	8.64	0.35	-10.25	-5.09	0.0	-8.47	-6.79
11 (909)	05	48	-15.33	8.52	4.57	-8.98	-4.35	0.0	-7.75	-4.78
12 (923)	04	55	-21.28	4.12	7.71	-8.0	-2.62	5.4	-7.54	-2.18
13 (956)	04	6	-18.33	-3.55	8.97	-7.89	65	5.51	-8.09	0.0
14 (989)	04	62	-5.54	-9.49	8.81	-8.66	0.32	5.48	-9.23	0.67
15(1003)	04	61	-7.06	10.08	8.44	-8.65	0.59	5.45	-7.97	1.45
16(1036)	04	58	-18.84	1.39	7.82	-8.02	1.71	5.41	-7.55	3.69
17 (1050)	03	52	-19.43	-5.08	5.57	-8.41	3.56	0.0	-7.77	6.12
18 (1083)	02	47	-15.39	-8.38	1.79	-9.42	5.18	0.0	-8.34	8.08
19(1116)	01	42	-5.72	-9.1	-2.74	-10.77	5.76	0.0	-9.15	9.0
20 (1131)	0.01	37	-3.66	-3.85	-7.3	-12.09	4.98	5.91	-9.38	9.51
21 (1179)	0.02	34	-3.13	-5.32	-10.13	-13.12	1.04	0.0	-9.56	9.94
22 (1180)	0.04	32	-1.44	-4.4	-9.18	-13.74	-2.62	6.39	-9.67	10.37
23 (1195)	0.07	3	-3.86	-3.82	-6.51	-14.15	-2.81	5.63	-9.43	11.25
24 (1250)	0.09	29	-5.03	-3.26	-2.73	-14.73	-2.21	0.0	-8.92	12.21
25 (1287)	0.1	29	-5.99	-3.03	78	-15.27	-1.28	0.0	-8.33	13.1
26 (1288)	0.11	28	-6.9	-3.2	0.1	-15.72	33	0.0	-7.74	13.93
27 (1307)	0.12	28	-8.42	-3.91	0.0	-16.15	0.59	0.0		

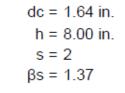
C3.2 STRESSES IN BRIDGE WALL

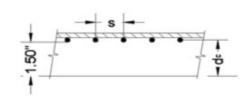
Stresses are in psi

BN = Beam node number FSI, FSO = Stresses in the Inner and Outer steel cages FC = Concrete compression FV = Shear stress

BN	FSI	FSO	FC	FV
1	-1331.0	-1330.9	-155.04	-11.52
2	-1152.1	-1382.3	-175.44	1.19
3	-1353.8	-1103.0	-169.13	13.89
4	-2017.0	-447.44	-302.8	26.81
5	-3934.2	23523.0	-1569.6	35.88
6	-5019.4	34591.0	-1970.6	33.53
7	-5470.9	30845.0	-1607.6	-2.95
8	-4261.8	33040.0	-1953.7	-49.12
9	-3281.1	12986.0	-1116.9	-66.63
10	-708.3	-993.18	-132.41	-69.32
11	1286.6	-2417.6	-498.9	-59.29
12	34054.0	397.31	-1927.9	-35.71
13	40683.0	712.03	-2096.5	-8.93
14	39681.0	505.9	-2088.1	4.37
15	37717.0	429.06	-2050.6	8.09
16	34574.0	425.56	-1953.5	23.29
17	1780.2	-2729.8	-582.53	48.53
18	3.39	-1443.9	-253.1	70.57
19	-2170.9	73.25	-354.25	78.5
20	-4250.7	32713.0	-1939.3	61.25
21	-3763.5	1719.5	-584.91	9.55
22	-5511.8	38345.0	-2065.1	-29.68
23	-4343.0	28414.0	-1831.7	-35.47
24	-2436.1	-262.7	-377.72	-29.27
25	-1667.7	-1025.2	-223.57	-17.53
26	-1339.5	-1423.0	-171.0	-4.76
27	-1444.0	-1443.8	-168.22	8.6

Intro to Design of Buried Bridges

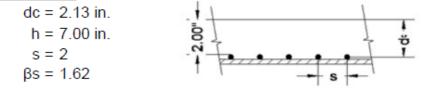

LRFD CHECK CRACK CONTROL


fs = $700\gamma e/\beta s(S+2dc) < 0.6(fy)$ AASHTO (5.7.3.4) $\beta s = 1 + dc / 0.7(h-dc)$

Notations:

- ye = exposure factor
- dc = thickness of concrete cover measured from extreme tension fiber to center of closest bar or wire. (in.)
- h = overall thickness or depth (in.)
- s = spacing of reinforcement (in.)

AT MIDSPAN



POSITIVE MOMENT REINFORCEMENT

fs = 700*0.75/1.37(2+2(1.64)) < 0.6(65 ksi) fs = 72.75 ksi > 39 ksi (39 ksi Controls)

AT HAUNCH

NEGATIVE MOMENT REINFORCEMENT

fs = 700*0.75/1.62(2+2(2.13)) < 0.6(fy)fs = 51.74 ksi > 39 ksi (39 ksi Controls)

FROM NON-FACTORED ANALYSIS (SERVICE LOADS)

fs,midspan = 27.6 ksi	OK
fs,haunch = 2.3 ksi	OK

LRFD FACTORED LOAD CHECK

Strength Reduction Factors (AASHTO Section 12.5.5)

 φ = .95 for Combined Flexure & Thrust

 φ = .90 for Shear

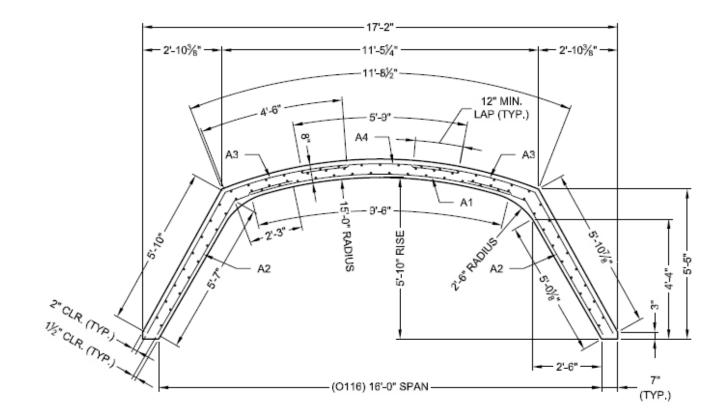
MAXIMUM POSITIVE MOMENT STEEL STRESS UNDER FACTORED LOADS:

fs(+) = 51.5 ksi $fs(+) < \phi Fy = 0.95(65 \text{ ksi}) = 61.75 \text{ ksi}$

ΟK

MAXIMUM NEGATIVE MOMENT STEEL STRESS UNDER FACTORED LOADS:

fs(-) = 53.6 ksi fs(-) < φFy = 0.95(65 ksi) = 61.75 ksi


ΟK

MAXIMUM SHEAR STRESS UNDER FACTORED LOADS:

v = 78.5 psi v < φ∨c = 0.9(0.0316)(2)√f'c v < φ∨c = 113.8 psi

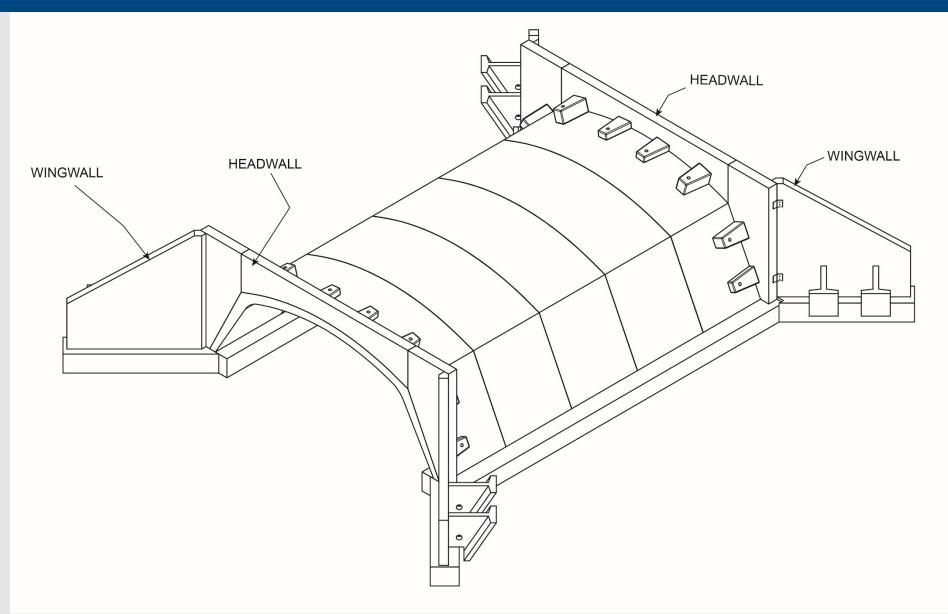
6/23/2016

Intro to Design of Buried Bridges

PRECAST UNIT REINFORCEMENT

SHEET NO.	CIRCUMFERENTIAL AREA REQ'D (IN ² /FT)	LONGITUDINAL AREA REQ'D (IN²/FT)	MESH SIZE	LENGTH (FT)	CIRCUMFERENTIAL AREA SUPL'D (IN²/FT)	LONGITUDINAL AREA SUPL'D (IN²/FT)		
1	A1 = 0.36	0.13		9'-6"				
2	A2 = 0.24	0,13		7'-10"				
3	A3 = 0.30	0.13		10'-4"				
4	A4 = 0.24	0,13		5'-9"				
5								
DESIC	DESIGN LOADING: HL-93 & 60 PSF FUTURE WEARING SURFACE COVER = 1'-0" MIN. \ 3'-6" MAX.							

6/23/2016


Intro to Design of Buried Bridges

Buried Bridge Foundations

➤ Types

- Spread Foundations
- Driven Piles
- Drilled Shafts
- ➤ Micropiles
- Concrete Slab
- Rammed Aggregate Piers, Helical Piles etc...

End Treatments

Intro to Design of Buried Bridges

Intro to Design of Buried Bridges

TRB Webinar – Introduction to Design of Buried Bridges (non-seismic)

Flexible Buried Bridges June 23, 2016

Joel Hahm, P.E. Senior Engineer Big R Bridge Greeley, CO jhahm@bigrbridge.com www.bigrbridge.com Chair of TRB AFF70-1

Outline

AASHTO LRFD Design Checks
Design Inputs & Considerations
Sample Design
End Treatments / Installation

Material & Design Properties

- •Material properties provided in AASHTO M167 / ASTM A761
- •Design properties provided in AASHTO LRFD Section 12 (Appendix A12)
- •Thicknesses up to 0.380" thick.
- •Hot dipped galvanized with 3.0 oz/ft² coating weight (50% more than CSP)
- •³/₄" or ⁷/₈" diameter high strength bolts (ASTM A449) depending on design
- •24, 33, or 44 ksi design yield strength depending on material
- •Granular backfill with same electrochemical requirements as those in AASHTO LRFD Design Section 11.10.6.4.2 for MSE walls. Considers pH, resistivity, chlorides, sulfates, organics.

Property	Aluminum (ALSP)	Shallow Corrugated Steel	Deep Corrugated Steel
Geometry Types	Small arch, box, closed shapes	Arches, closed shapes	Arch, box, pipe, multi-radius arches
Corrugation Profile	9" x 2.5"	6" x 2"	15" x 5.5"
Design Yield Strength	24 ksi	33 ksi	44 ksi
Relative Stiffness	~1.5 x shallow	1 (baseline)	~9 x shallow ~6.25 x ALSP

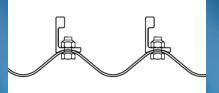
AASHTO LRFD Design Checks


•Shallow Corrugated Arches – Design Based on Thrust Loads (Section 12.7)

•Wall Area (12.7.2.3)

•Buckling (12.7.2.4)

•Seam Strength (12.7.2.5)


•Flexibility for Installation (12.7.2.6)

•Shallow Corrugated Boxes – Design Based on Flexure (Section 12.9)

•Moment Capacity (12.9.4.2, 12.9.4.3)

•Typically Includes Circumferential Reinforcing (Ribs)

AASHTO LRFD Design Checks

•Traditional Long Span Structures – Design Based on Thrust (Section 12.8)

•Wall Area, Buckling, Seam Strength, Flexibility Same as Above

•Additional Requirements Based on Geometric Limits (Table 12.8.3.1.1-1)

•Requires Special Features (typically longitudinal stiffeners or ribs)

Top Arc Minimum Thickness (in.)									
Top Radius (ft)	≤15.0	15.0-17.0	17.0-20.0	20.0-23.0	23.0-25.0				
6" × 2" Corrugated Steel Plate—Top Arc Minimum Thickness (in.)	0.111	0.140	0.170	0.218	0.249				
	Geometric Limits								

Table 12.8.3.1.1-1-Minimum Requirements for Long-Span Structures with Acceptable Special Features

The following geometric limits shall apply:

- Maximum plate radius—25.0 ft
- Maximum central angle of top arc—80.0°
- Minimum ratio, top arc radius to side arc radius—2
- Maximum ratio, top arc radius to side arc radius---5

Minimum Cover (ft)									
Top Radius (ft)	≤ 15.0	15.0-17.0	17.0-20.0	20.0-23.0	23.0-25.0				
Steel thickness									
without ribs (in.)									
0.111	2.5	BUTTORY .							
0.140	2.5	3.0							
0.170	2.5	3.0	3.0						
0.188	2.5	3.0	3.0						
0.218	2.0	2.5	2.5	3.0					
0.249	2.0	2.0	2.5	3.0	4.0				
0.280	2.0	2.0	2.5	3.0 4.0					

AASHTO LRFD Design Checks

•Deep Corrugated Structures – Design Based on Thrust and Flexure (Section 12.8.9)

- •Requires Rigorous Analysis (typically FEA)
- •Wall Area, Seam Strength Same as for Long Span Structures
- •Check Flexure (includes reduction for connections)
- •Moment-Thrust Interaction Check (Eq. 12.8.9.5-1)
- •Global Buckling Check (Eq. 12.8.9.6-1)
- •Flexibility, Special Features, Shape Requirements for Long Span do not Apply (12.8.9.1)
- Includes Requirements for minimum cover and backfill zone width (12.8.9.2 & 12.8.9.4)

$$\left(\frac{T_f}{R_t}\right)^2 + \frac{|M_u|}{|M_n|} \le 1.00$$

Steel Corrugation Profiles

General Design Inputs

•Inputs for Shallow Corrugated Structures:

•Span

•Soil Cover

•Wheel Loads (based on LL design vehicle) Plate Radii (for categorizing as arch, long span and box shapes) Structure Section Properties – from Appendix A12 Inputs for Deep Corrugated Structures: Structure Geometry (dimensions, shape, radii, etc.) Soil Cover & Backfill Zone Width Wheel Loads (based on LL design vehicle) •Structure Section Properties – from Appendix A12 Soil Properties – foundation soils, backfill zone soils, site soils •Foundation Type & Approximate Dimensions

Site Geometry Inputs

Inside clearance / end area

•Hydraulic / environmental considerations – maximize span to eliminate multi-cell crossings / get out of water, outside limits of disturbance, etc.

Available distance from bottom of structure to top of road

•Flexibility (raise road grade, lower foundations, encroach on clearance box, etc.)

•Custom geometries are most cost effective – Don't limit yourselves to what is in the brochure!

Geometry Type (arch vs. box)

•Determined by site limitations & end area / clearance requirements

•2 ft min cover for box (1.5 ft for spans \leq 25 ft 5 in), 3 ft min cover for arch

•Arch geometries are lighter / more efficient / lower structure cost

•No need to specify geometry type – can be determined by manufacturer based on project requirements & site limitations

Site Soil Conditions & Backfill

•Boring logs & historical site data

•Local geology & experience

•Classification & electrochemical tests of representative materials

•Scour depth & other hydraulic concerns

•Some geometries sensitive to FEA soil inputs

Loading Requirements

•HL-93 is AASHTO LRFD standard

•U-80, mining vehicles, E-80 Cooper, heavy trucks (heavier than legal loads)

•Special design loads require axle loads & spacing, tire size, vehicle specs (if available)

•Design capacity is driven by axle loading rather than GVW – less impact on design than a traditional or rigid bridge. As a result, buried bridges can generally carry higher loads.

Other Considerations

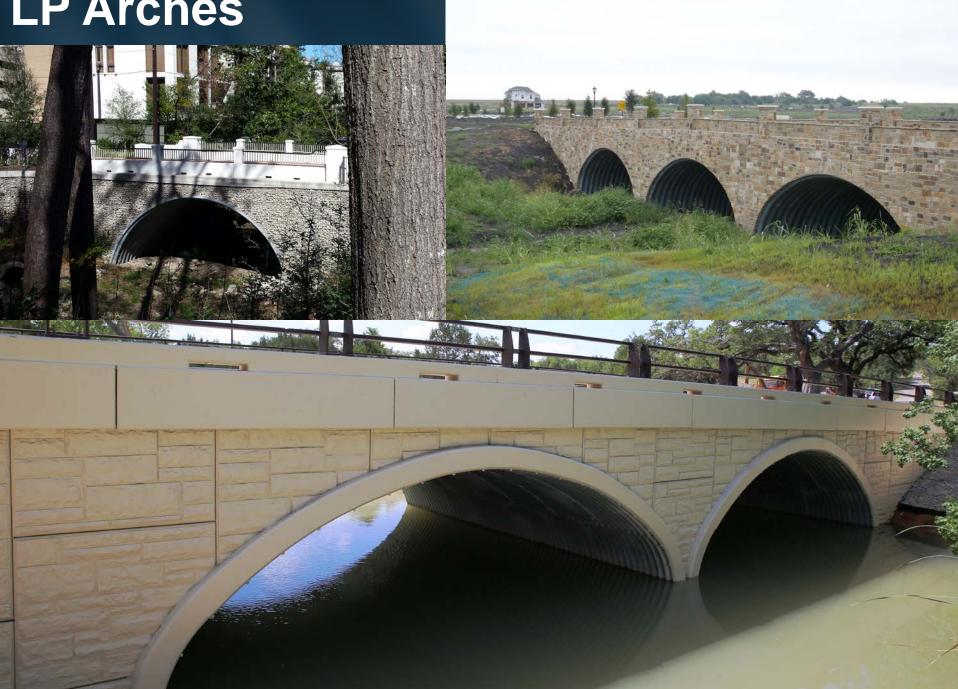
•Foundation types – design foundations based on settlement tolerance, consider foundation soil improvement to save on costs & improve quality. Biggest project cost / time savings vs. traditional & RCBC/Precast bridges can come from foundations.

•Modest investment in geotechnical engineering can pay off – have geotech consult with designer to make sure appropriate recommendations are provided. FEA designs can be customized and optimized to site.

•Look at project costs rather than only comparative structure costs. Construction time & labor, foundations, grading, site access, equipment, maintenance, inspection, and other costs can be very different between flexible buried bridge & rigid / traditional bridge options.

Box Shapes

Simple Arches


HP Arches

LP Arches

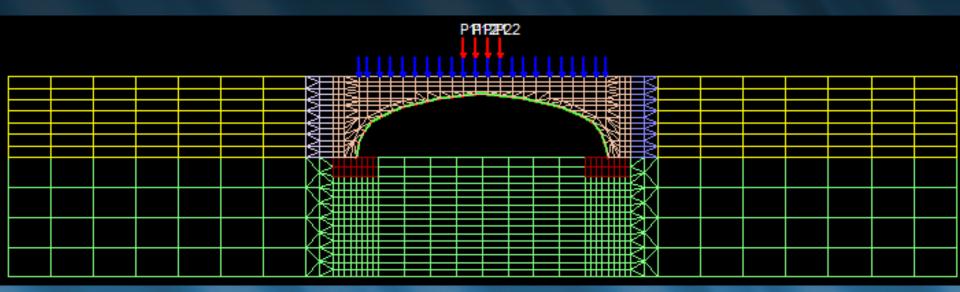
Table 3.4.1-2-Load	Factors for Permanent Loads, γ_p			Table 3.4.1-1	-Load C	ombinat	tions and	i Load	Factor	s								
	Type of Load, Foundation Type, and	Load	Factor	paratheresis and announced to the California California California	DC DD	[l	lse One	of These	at a Ti	ne
	Method Used to Calculate Downdrag	Maximum	Minimum		DW EH													
DC: Component a	ad Attachments	1.25	0.90		EV	LL												
DC: Strength IV o	nly	1.50	0.90		ES EL	IM CE												
DD: Downdrag	Piles, a Tomlinson Method	1.4	0.25	Load	PS PS	BR												
	Piles, λ Method	1.05	0.30	Combination	CR	PL												
	Drilled shafts, O'Neill and Reese (1999) Method	1.25	0.35	Limit State	SH	LS	WA	WS	WL	FR	$\frac{rv}{r}$	TG	SE	EQ	BL	10	CT	CV
DW: Wearing Surf	aces and Utilities	1,50	0.65	Strength I (unless noted)	Υ _P	1.75	1.00			1.00	0.50/1.20	476	Yse	10.1%	and As	107-01		
EH: Horizontal Ea	rth Pressure			Strength II	Y _P	1.35	1.00			1.00	0.50/1.20	Y 765	Yse					
 Active 		1.50	0.90	Strength III	γ_{ρ}		1,00	1.4	1.1.01011	1.00	0.50/1.20	γ_{RG}	Yse					
 At-Rest 		1.35	0.90	Strength IV	Y.		1.00		Alasta	1.00	0.50/1.20							
 AEP for ancho 	ored walls	1.35	N/A	Strength V	Υ _ρ	1.35	1.00	0.4	1.0	1.00	0.50/1.20	γ_{TG}	¥.sr:					
EL: Locked-in Cor	istruction Stresses	1.00	1.00	Extreme		γEO	1.00	0		1.00			·····	1.00	100	11.7.0	a collected as the birth of a collect	
EV: Vertical Earth	Pressure			Event I	Yp	TEQ	1.00			1.00				1.00	1.0.0%	0.536		
 Overall Stabil 	ity	1.00	N/A	Extreme	Υp	0.50	1.00			1.00	10.001	A.A./8.		-*	1.00	1.00	1.00	1.00
 Retaining Wal 	Is and Abutments	1.35	1.00	Event II Service I	1.00	1.00	1.00	0.3	1.0	1.00	1.00/1.20	Yrg	24					
 Rigid Buried S 	Structure	1.30	0.90	Bervice I	1.00	1.00	1.00	0	1.0	1.00	1.00/1.20	na	¥se:					
 Rigid Frames 		1.35	0.90	Service II	1.00	1.30	1.00			1.00	1.00/1.20							
 Elevible Buria 	d Structures			Service III	1.00	0.80	1.00			1.00	1.00/1.20	Yrg	<u> 7.sr</u>					
 Metal Be 	ox Culverts, Structural Plate Culverts with Deep Corrugations, and	1.5	0.9	Service IV	1.00		1.00	0.7 0		1.00	1.00/1.20		1.0					
	s Culverts	1.3	0.9	Fatigue I		1.50												
	lastic Culverts	1.95	0.9	LL, IM & CE only														
 All other 	s			Fatigue II	·	0.75									al 1 a bah ba a baal a ta'a a 2 - 5 a	- A and 1		
ES: Earth Surcharg	e	1.50	0.75	LL, IM & CE only														

Table 12.5.5-1-Resistance Factors for Buried Structures

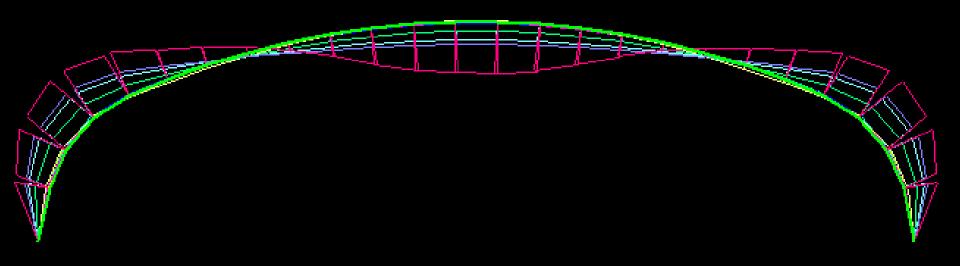
Structure Type	Resistance Factor
Metal Pipe, Arch, and Pipe Arch Structures	
Helical pipe with lock seam or fully welded seam:	
Minimum wall area and buckling	1.00
	1.00
Annular pipe with spot-welded, riveted, or bolted seam: Minimum wall area and buckling	1.00
5	0.67
Minimum longitudinal seam strength	Refer to Section 10
Bearing resistance to pipe arch foundations	
Structural plate pipe:	1.00
 Minimum wall area and buckling 	0.67
 Minimum longitudinal seam strength 	Refer to Section 10
Bearing resistance to pipe arch foundations	Refer to Section To
Long-Span Structural Plate and Tunnel Liner Plate Structures	
Minimum wall area	0.67
Minimum seam strength	0.67
Bearing resistance of pipe arch foundations	Refer to Section 10
Structural Plate Box Structures	
Plastic moment strength	1.00
 Bearing resistance of pipe arch foundations 	Refer to Section 10
Deep Corrugated Structural Plate Structures	
 Minimum wall area and general buckling, φ_b 	0.70
 Plastic hinge, φ_h 	0.70
• Soil, ϕ_e	0.90

Load & Resistance Factors

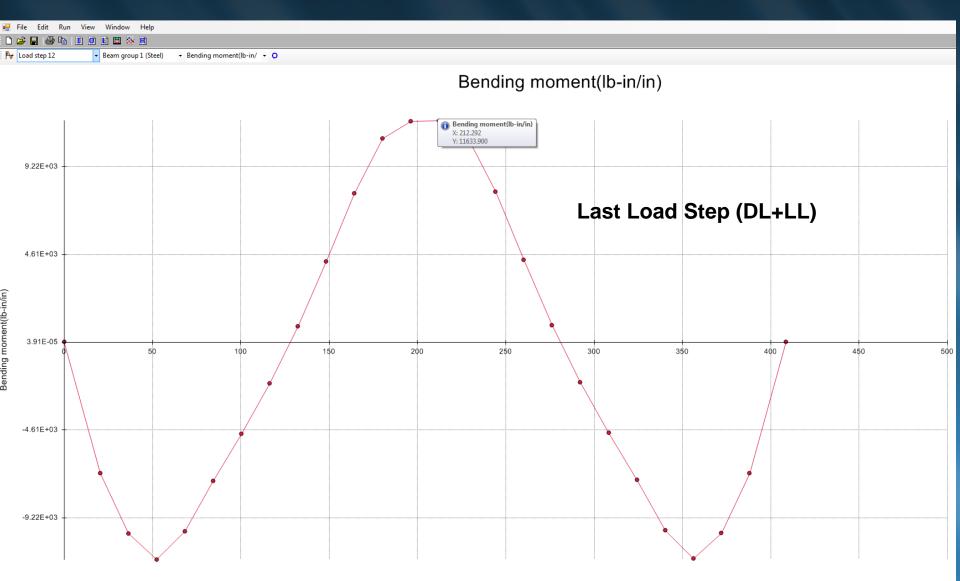
Design Example – Small Span Box


27'3"span, medium dense granular foundation soils, A-1 backfill, silty/sandy site soils, HL93 loading, 2' cover, span/5 backfill zone, spread footings, 15x5.5 profile, 1 gauge

Loads are applied incrementally...


and the second	- data a
	HHHHKIN I I I I I I I

	S <mark>_</mark> ⊱===============================							
	3							
	3====							
	₩+++++++++++++++++++++++++++++++++++++							


Live load applied at last step – design governed by HL93 Tandem

Moment diagram of all load steps (LL in pink)

Obtain loads from FEA output

Distance along beams from first node(in)

Obtain loads from FEA output

Distance along beams from first node(in)

Design loads obtained using FEA based on SSI & load factors applied

FEA Analysis:

Total Factored Thrust: 25.9 k/ft. Total Factored Applied Moment: 23.0 k-ft./ft.

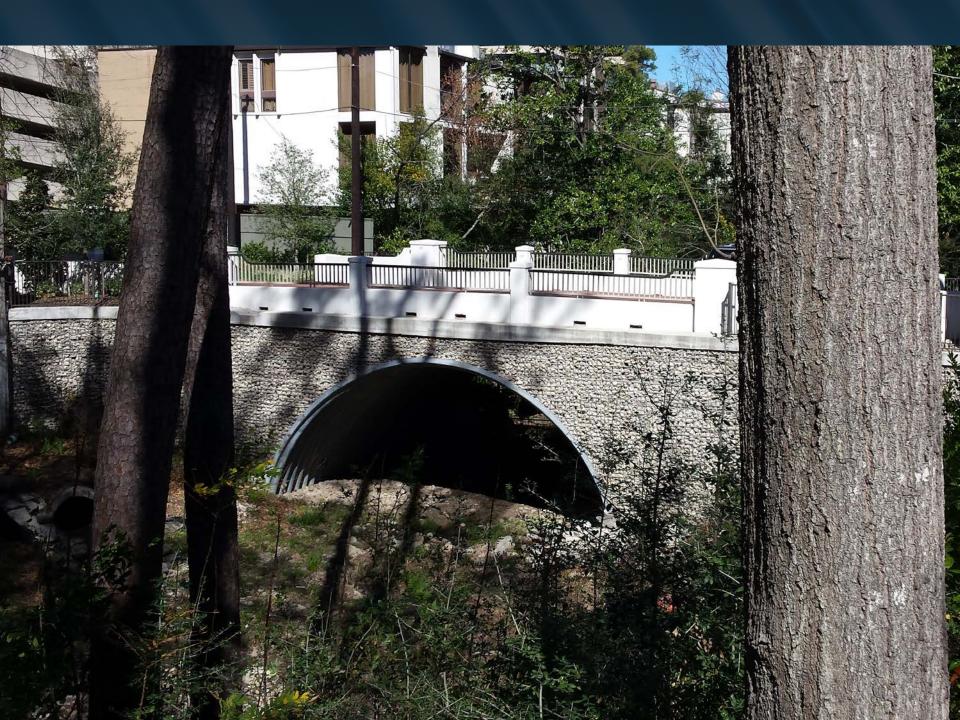
Structure capacities calculated based on AASHTO LRFD Equations

Calculated Capacity				
Nominal Buckling Resistance			Eq. 12.8.9.6-1	
	R _b = 78.3 k/ft.	ок		
Factored Wall Resistance	-		12.7.2.3	
	R _n = 142.8 k/ft.	ок		
Nominal Seam Resistance	SS = 96.5 k/ft.	ок	12.7.2.5	
	33 - 80.5 ML	UK		
Factored Moment Resistance	M _r = 26.9 k-ft./ft.	ок	12.8.9.7	
			12.0.0.7	
Factored Moment Resistance across seam (10% reduction in member moment capacity) M _{r10%} = 24.7 k-ft./ft.		ок	12.8.9.7	
				i i

Check moment-thrust interaction:

$$\left(\frac{T_f}{R_t}\right)^2 + \frac{|M_u|}{|M_n|} \le 1.00$$

$$\left(\frac{25.9}{142.8}\right)^2 + \frac{|23.0|}{|26.9|} = 0.89 \le 1.00$$



Thank You!

Joel Hahm, PE Senior Engineer Big R Bridge Greeley, CO jhahm@bigrbridge.com www.bigrbridge.com

