Transportation Research Board 2016 Webinar Sponsored by Committee AFF50 – Seismic Design & Performance of Bridges

Soil-Foundation-Structure Interaction Webinar

August 29, 2016

Lee Marsh, PhD, PE President/CEO BergerABAM, Inc Seattle, WA Member: TRB AFF50 Committee Transportation Research Board 2016 Webinar Sponsored by Committee AFF50 – Seismic Design & Performance of Bridges

Outline

- Overview of Seismic Design Principles
- Design Example 1 Pile-founded Bridge
- Design Example 2 Drilled Shaft-founded Bridge

Scope: Ordinary bridges, not large, signature bridges, nor seismically isolated bridges

Workshop Learning Objectives

 List the steps necessary to develop foundation spring values

 Describe the effects of foundation flexibility on the push-over displacement check

 List several methods of approximating deepfoundation spring stiffnesses

Reference Materials

- AASHTO Guide Specifications for LRFD Seismic Bridge Design (GS)
- AASHTO LRFD Bridge Design Specifications (LS)
- NHI Course 130093A (3-Day) Displacement-Based LFRD Seismic Analysis and Design of Bridges
- NHI Course 130093 (5-Day) LFRD Seismic Analysis and Design of Bridges
- Associated Design Examples FHWA-NHI-14-039
- NHI Course 132094 and 132094A LRFD Seismic Analysis and Design of Transportation Geotechnical Features

Seismic Design Overview

Topics Covered:

- Basic objectives in seismic design
- Emphasis on displacement-based design
- Effects of foundation flexibility
- Design steps involved

Two Themes or "Subplots" of the Webinar

 Designs are based on "Capacity Design" principles

2. Analysis uses equivalent linearization techniques to predict response

We Permit Earthquakes to Damage Bridges

The forces induced if the structure is to remain undamaged can be too large to deal with, thus uneconomical

We Make Bridges Damage-Tolerant

5-8

Chain Analogy - Capacity Protection

Chain Analogy - Capacity Protection

We Analyze Bridges Elastically

Can use linear elastic analysis to predict nonlinear displacements!

Inelastic to Elastic Response

Two common methods:

"Coefficient" Method (AASHTO – LS and GS) Substitute Structure Method (Capacity Spectrum - Isolation)

T = Fundamental Period of System T_s = "Corner" of Response Spectrum

Area gives effective damping – based on hysteretic behavior

Basic Steps of Seismic Design

Step	Basic Steps for Seismic Design
1	Determine Seismic Input
2	Establish Design Procedures
3	Identify the Earthquake Resisting System and Global Design Strategy
4	Perform Demand Analysis
5	Design and Check Earthquake Resisting Elements (Ductile or Other)
6	Capacity Protect the Remaining Elements

Foundation "K"s vs Structural "K"s

Bridge System Displacement

Foundation "K"s vs Structural "K"s

Displacement-Based Method (DBM)

Ductile Design Activity - DBM

Soil-Foundation-Structure Interaction

• Inertial Response (structure 'loads' soil)

Soil and structure respond dynamically due to their mass and the flexibility of the soil around foundation

(Most often included form of SFSI and focus of this webinar)

 Kinematic Response (soil 'loads' structure)
Presence and rigidity of foundation alters the free-field motion of soil

Foundation Modeling Aspects

Masses

Structural inertial forces usually dominant Inertia of soil and foundation is usually small and neglected

Damping

Difficult to properly account for radiation and material damping of foundation systems

Material damping is strain dependent

Additional (>5%) damping is typically and conservatively neglected

• Therefore usually only include stiffness effects!

Foundation Modeling

- Little in LS about modeling (Appendix A10)
- GS more specific (Could be used with LS)
 - Method I modeling: simple-to-none
 - Method II detailed guidance

Foundation Type	Modeling Method I	Modeling Method II
Spread Footing	Rigid	Rigid for Site Classes A and B. For other soil types, foundation springs required if footing flexibility contributes more than 20% to pier displacement.
Pile Footing with Pile Cap	Rigid	Foundation springs required if footing flexibility contributes more than 20% to pier displacement.
Pile Bent/Drilled Shaft	Estimated depth to fixity	Estimated depth to fixity or soil springs based on P - y curves.

Considering Foundation Effects

- Generally, demand model and assessment (pushover) models should be consistent (i.e. either both include flexibility or both ignore flexibility)
- If demand model includes foundation flexibility:

OK to check without foundation considered, if all foundation effects are included with the plastic deformations (quick and dirty method)

Do not include foundation effects as an increase in yield – unconservative!

Foundation Effects

Structural / Geotech Collaboration

Capacity-Protected Elements

Design and detail to remain "elastic".

Resistance factors (ϕ) along with nominal or expected properties are used depending on desired conservatism.

Design Example No. 1

Topics Covered:

- Guide Specifications for LRFD Seismic Bridge Design
- Pile group and pile cap stiffness
- Structural modeling
- Displacement checks
- Capacity protection of pile group foundations

Design Example No. 1 - Elevation

Design Example No. 1 - Sections

Design Example No. 1 - Abutments

Design Example No. 1 - Data

- Location New Madrid, MO
- Zip Code 63873, Lat: 36.555 Long: 89.618
- Guide Specifications for LRFD Seismic Bridge Design (GS)
- Operational Classification "Other" (although not in SGS)
- SD1 = 0.83 g
- Site Class D
- Seismic Design Category D
- Multi-column Piers
- No skew or curve

Basic Steps of Seismic Design

Step	Basic Steps for Seismic Design
1	Determine Seismic Input
2	Establish Design Procedures
3	Identify the Earthquake Resisting System and Global Design Strategy
4	Perform Demand Analysis
5	Design and Check Earthquake Resisting Elements (Ductile or Other)
6	Capacity Protect the Remaining Elements

Structural Model

Nonlinear Lateral Behavior of Piles

Development of Pier Springs

LPILE results. Stiffnesses for various shear values.

Axial Load to piles = 27.9 kips/pile Pile Type: 12" Diameter CIP with steel casing

Number of Piles	14
Spaced at 3'-0" o	center to center Long.
Spaced at 3'-6" o	center to center Trans.

Deflection Fixed Top		
Shear	Deflection	
0 kips	0 in	
10 kips	0.05 in	
25 kips	0.271 in	
35 kips	0.502 in	
50 kips	0.985 in	

Pile Stiffness (Fixed)

Development of Pier Springs

		1.51
Axial S	Stiffness	of Pile
12" CIP p	ile Steel	Encased
Area =	190	in^2
E =	4372	ksi
Length =	63	ft
Alpha		Skin
Modifier =	2	Friction
K =	550	kips/in
Ktot =	7.70E+0	3 kips/in

Pile Group effects AASHTO LRFD Table 10.7.2.4-1				
<u>Spacing</u>	_	<u>Row 1</u>	<u>Row 2</u>	<u>Row 3+</u>
3B		0.7	0.5	0.35
3.5		0.78	0.59	0.44
5B		1	0.85	0.7

Longitudinal Stiffne	ess of Pile
Longitudinal Elastic Deflection	0.36 in
Pile Longitudinal Axis Stiffness	80.15 kips/in
Group Longitudinal Axis	
Stiffness	513 kips/in
Including Pile Cap	555 kips/in
	/

Transverse Stiffness of Pile	
Transverse Elastic Deflection	0.47 in
Pile Transverse Axis Stiffness	71.64 kips/in
Group Transverse Axis	
Stiffness	603 kips/in
Including Pile Cap	665 kips/in

Requires Iteration with Structural Model

Longitudinal Pile Cap Passive Stiffness		
4	ft = Cap Height	
4.35	= Kp (Passive Pressure)	
115	pcf = Soil Unit Weight	
10	ft = Cap Width	
40	kips = Plastic Soil Resistance	
0.02	= Fw for Medium Dense Sand	
0.96	in = Yield Deflection	
41.7	kips/in = Stiffness at Elastic Deflection	

Transverse Pile Cap Passive Stiffness			
4	ft = Cap Height		
4.35	= Kp (Passive Pressure)		
115	pcf = Soil Unit Weight		
15	ft = Cap Width		
60	kips = Plastic Soil Resistance		
0.02	= Fw for Medium Dense Sand		
0.96	in = Yield Deflection		
62.5	kips/in = Stiffness at Elastic Deflection		

Development of Pier Springs

	Rotational Stiffness about Vertical Axis								
Long	ngitudinal stiffness of a single pile (kips/in) Transverse Dimension to locate pile (ft)				Transv	Transverse stiffness of a single pile (kips/in Longitudinal Dimension to locate pile (ft)			
					Lon				
	56.10	56.10	56.10]		55.52	42.09	31.34	
Rotational Stiffness	3.5	0	3.5			6	6	6	
5 rows @ 3' of 3 piles @ 3.5' centers	40.07	40.07	40.07	1		55.52	42.09	31.34	
(no pile under column, 14 total)	3.5	0	3.5			3	3	3	
About Long Axis 9.70E+06 k-in/rad	28.05		28.05			55.52		31.34	
About Trans Axis 2.14E+07 k-in/rad	3.5		3.5			0		0	
	28.05	28.05	28.05		55.52	42.09	31.34		
	3.5	0	3.5			3	3	3	
	28.05	28.05	28.05		55.52	42.09	31.34		
	3.5	0	3.5			6	6	6	
	<u>K (</u>	<u>K (Y²) (Kip-ft/rad)</u>				<u>K (Y²) (Kip-ft/rad)</u>			
	57.27	0.00	57.27	Ŀ		166.57	126.27	94.03	
	40.91	0.00	40.91			41.64	31.57	23.51	
	28.64		28.64			0.00		0.00	
	28.64	0.00	28.64			41.64	31.57	23.51	
	28.64	0.00	28.64			166.57	126.27	94.03	
	SUM:	368.17	Kip-ft/rad	-		SUM:	967.16	Kip-ft/rad	
			Combin	ed SUM:	1335.33 Kip-ft/rad 16023.98 Kip-in/rad				

Abutment Stiffness - Longitudinal

Model Results

Model Results – Longitudinal Direction

Mode	Т	C _a	$(\%mass \times C_a)^2$
[]	[second	[g]	[]
	s]		
1	0.6287	1.328	0.000
2	0.5606	1.509	1.342
3 to 20	< 0.44	1.888	0.189
		Total:	1.53

$\sqrt{\sum(\%mass \times C_a)^2} =$	1.24
W =	2,601 kips
V =	3,218 kips
Vmodel =	3,225 kips
% difference =	-0.2

Model Results – Response Spectrum Displacements

Pier	Joint	Longitud	dinal EQ	Transverse EQ		
				Y	X	
[]	[]	[inches]	[inches]	[inches]	[inches]	
2	521	4.04	0.00	5.69	0.00	
3	531	4.04	0.00	5.69	0.00	

Load Case 1: 100% EQ LONGITUDINAL + 30% EQ TRANSVERSE Load Case 2: 30% EQ LONGITUDINAL + 100% EQ TRANSVERSE

Longitudinal Displaced Shape

Transverse Displaced Shape

$$R_{d} = \left(1 - \frac{1}{\mu_{D}}\right) \times \frac{T}{T} + \frac{1}{\mu_{D}}$$

$$T_s = \frac{S_{D1}}{S_{DS}} = \frac{0.831g}{1.888g} = 0.44s$$

$$T^* = 1.25 \times 0.44s = 0.55s$$

Longitudinal Direction

$$T = 0.561s$$

$$\frac{T^*}{T} = \frac{0.55 \,s}{0.561 \,s} = 0.98 \,<\, 1.0$$

Displacement magnification is not required

Transverse Direction

$$T = 0.629s$$

$$\frac{T^*}{T} = \frac{0.55 \,s}{0.629 \,s} = 0.87 \,<\, 1.0$$

Displacement magnification is not required

Pushover Analysis Models

Pier Pushover Longitudinal Direction

42

Pier Pushover Transverse Direction

43

Elastic and Plastic Overstrength Forces

Elastic and Plastic Overstrength Forces

Take the horizontal translation of the pile cap under elastic and overstrength forces and apply to an individual pile pushover (without group effects)

Individual Pile Pushover

Elastic and Plastic Overstrength Forces

Column Ductility Checks

Ductility without Foundation Effects

$$u_D = \frac{\Delta_D}{\Delta_y}$$

Ductility with Foundation Effects

$$\mu_{D,fdn} = \frac{\Delta_D}{\Delta_y + \Delta_{fdn}}$$

Therefore:

$$\mu_{D,fdn} \leq \mu_D$$

AASHTO GS Article C4.9

"In calculating the yield displacement and plastic displacement demand, any contribution to the displacements from foundation, capbeam, or superstructure should be removed. **Inclusion of such flexibilities is unconservative**"

Column Ductility Checks

	= 5.69) in			
	Left Column	Center Column	Right Column		
Axial Load (kip)	37	254	471		Axial Loa (kip)
φ _y (1/in.)	0.000154	0.000150	0.000144		φ _y (1/in.)
L (in.)	159	159	159		L (in.)
Δ_y (in.)	2.60	2.52	2.43		∆ _y (in.)
μ _D	2.19	2.26	2.34		Δ_{fdn} (in.)
·					

Ductility *without* Foundation Effects

OK < 6 GS 4.9 Multicolumn Piers SDC D

Left Center Right Column Column Column d 37 254 471 0.000154 0.000150 0.000144 159 159 159 2.60 2.52 2.43 0.13 0.16 0.19 2.12 2.08 2.17 μ_D

Ductility with Foundation Effects

	_	Δ_{D}		
μD	_	$\overline{\Delta_y}$	╀	Δ_{fdn}

 $\Delta_y = 2\left(\frac{\phi_y L^2}{3}\right)$

Design Example No. 2

Topics Covered :

- LRFD Bridge Design Specifications seismic design
- Drilled shaft stiffness
- Structural modeling
- Column design
- Capacity protection of drilled shafts

Design Example No. 2 – Elev and Plan

Design Example No. 2 – Section at Pier

51

Design Example No. 2 - Abutments

Design Example No. 2 - Data

- Location Big Arm, MT (Flathead Lake)
 Zip Code 59910, Lat: 47.798 Long: -114.309
- LRFD Bridge Design Specifications
- Operational Classification "Other"
- SD1 = 0.39 g
- Site Class D
- Seismic Zone 3
- Multi-column Bent, R=5

Spine Model

Modeling Deep Foundation Stiffnesses

Direct foundation spring model, P-y springs

Model, Depth-tofixity

Spring Model

DM7 (NAVFAC Design Manual 7.02)

Shear on Free Head Case

Characteristic Length

 $T = (EI / n_h)^{1/5}$

- EI Pile Flexural Stiffness n_h – Coefficient of Lateral Subgrade Reaction (sometimes "f")
- L / T = Measure of Pile Embedment

Equivalent Depth to Fixity – Extended Column

Single-Pile Lateral Stiffness Iteration

- 1. Model entire pile using P-y based program
- 2. Generate P-y curves for springs along pile [FHWA (1986) or other]
- 3. Load model and determine Δ and θ

Iterate until convergence is obtained

P-y based program

- 4. For a given Δ and θ calculate foundation springs (uncoupled or coupled)
- 5. Analyze mathematical model of bridge
- 6. Using foundation forces from bridge model (must judge elastic vs plastic), determine new Δ and θ from P-y model

Limitation of Superposition

Example: 7-ft Drilled Shaft DE2

Development of Coupled Matrix Coefficients

Example: 7-ft Drilled Shaft DE 2

Comparison – Uncoupled vs Coupled

Uncoupled Springs:

- V=386 kip Δ =1.34 in,
- M=57,907 k-in θ =0.00508 rad

Coupled Springs:

- V=386 kip Δ =1.29 in (94% of uncoupled),
- M=57,907 k-in θ=0.00494 rad (97% uncoupled) Difference is due to soil nonlinearity for combined V and M

Design Example 2: Dynamic Model Results

	Longitud	linal (X-axis)	Transver	<u>se (Y-axis)</u>
Fundamental Period:	1.33	sec	0.52	sec
Total Mass Participation:	98.9	%	99.1	%
Calculated Base Shear:	1,394	kips	3,620	kips
Model Base Shear Reaction:	1,445	kips	3,732	kips
% Difference:	-3.6	%	-3.1	%

Top of Column Displacements

Pier	Joint	Longitud	dinal EQ	Transverse EQ		
		X Y		Y	X	
[]	[]	[inches]	[inches]	[inches]	[inches]	
2	4213	5.09	0.00	2.08	0.00	

Transverse Direction

 $T_s = 0.85 \cdot sec$

- $1.25 \cdot T_{S} = 1.25 \cdot (0.85 \cdot sec) = 1.06 \cdot sec$
- $T = 0.52 \cdot sec < 1.25 \cdot T_{S} = 1.06 \cdot sec$
- \rightarrow Magnification is required.

Longitudinal Direction

T/T

 $T_{S} = 0.85 \cdot sec$

 $1.25 \cdot T_{S} = 1.25 \cdot (0.85 \cdot sec) = 1.06 \cdot sec$

$$T = 1.33 \cdot \sec > 1.25 \cdot T_{S} = 1.06 \cdot \sec t$$

 \rightarrow Magnification is not required.

$$R_{d} = \left(1 - \frac{1}{R}\right) \cdot \frac{1.25 \cdot T_{S}}{T} + \frac{1}{R} = \left(1 - \frac{1}{5}\right) \cdot \frac{1.06 \cdot \sec}{0.52 \cdot \sec} + \frac{1}{5} = 1.83$$

$$^{\Delta} \text{trans} = R_{d} \cdot \Delta_{e} = 1.83 \cdot (2.08 \cdot \text{in.}) = 3.82 \cdot \text{in.}$$

$$\frac{1}{T_{S}} = \frac{0.52}{0.85} = 0.62$$

$$R_{d} = \frac{1.33}{0.85} = 1.56$$

$$R_{d} = \frac{1.33}{0.25 \cdot 0.5 \cdot 0.75} = 1 \cdot 1.25 \cdot 1.5$$

$$T/T = 9$$

However, the structure is nearly elastic under transverse loading, determine distribution of forces:

$$\begin{split} & V_{trans} \approx 3,732 \cdot \text{kips} \\ & V_{pier} = 3 \cdot V_{COI} = 3 \cdot (220 \cdot \text{kips}) = 660 \cdot \text{kips} \\ & V_{abut} = V_{trans} - V_{pier} = 3,732 \cdot \text{kips} - 660 \cdot \text{kips} = 3,072 \cdot \text{kips} \end{split}$$

Prorate the base shear to determine the effective R value:

$$\frac{V_{trans}}{R_{eff}} = V_{abut} + \frac{V_{pier}}{R}$$

$$R_{eff} = \frac{V_{trans}}{V_{abut} + \frac{V_{pier}}{R}} = \frac{3,732 \cdot kips}{3,072 \cdot kips + \frac{660 \cdot kips}{5}} = 1.16$$

$$R_{d} = \left(1 - \frac{1}{R_{eff}}\right) \cdot \frac{1.25 \cdot T_{s}}{T} + \frac{1}{R_{eff}} = \left(1 - \frac{1}{1.16}\right) \cdot \frac{1.06}{0.52} + \frac{1}{1.16} = 1.14$$

$$The structure is essentially elastic!$$

$$\Delta_{trans} = R_{d} \cdot \Delta_{e} = 1.14 \cdot (2.08 \cdot in.) = 2.37 \cdot in.$$

Elastic

RSA

forces from

Lateral Deflection vs Depth for Shafts

Shaft Deflection
Bending Moment vs Depth/Height

Moment vs Depth at Plastic Hinging

Moment vs Depth at Plastic Hinging

Capacity Protection for this Bridge

- Column designed for overstrength shear based on plastic mechanism
- Drilled shaft designed for overstrength forces for full length (use bounding or 1.25 increase for soil variability)
- Abutments should be designed to mobilize backfill force whether or not it is counted on
- Abutment shear keys must consider postfailure response (i.e. torsion about vertical)

Webinar Summary

- Equivalent linear analysis is the workhorse of most bridge demand calculations
- Consider whether elastic or plastic overstrength conditions should be used for soil/foundation springs
- Several different foundation spring models may be used
- Assessment models should be consistent with demand models

Transportation Research Board 2016 Webinar Sponsored by Committee AFF50 – Seismic Design & Performance of Bridges

