Design Guidance for Intersection Auxiliary

Lanes (NCHRP Project 03-102 Report 780)

September 13, 2016

Today's Presenters

- **Double Left Turn Lanes** 1. Kay Fitzpatrick, Texas A&M Transportation Institute
- Speed and Deceleration of Left Turning Vehicles in Deceleration 2. Lanes Approaching Signalized Intersections

Marcus Brewer, Texas A&M Transportation Institute

- **Typical Designs** 3. Paul Dorothy, S-E-A, Limited
- **Overview of Researcher's Recommended Changes to the AASHTO** 4. **Green Book (next edition)**

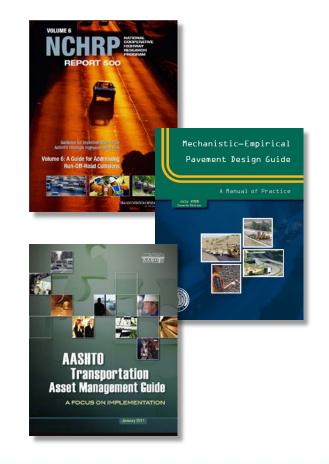
Kay Fitzpatrick, Texas A&M Transportation Institute

NCHRP is...

A state-driven national program

- The state DOTs, through AASHTO's Standing Committee on Research...
 - Are core sponsors of NCHRP
 - Suggest research topics and select final projects
 - Help select investigators and guide their work through oversight panels

NCHRP 03-102 PANEL

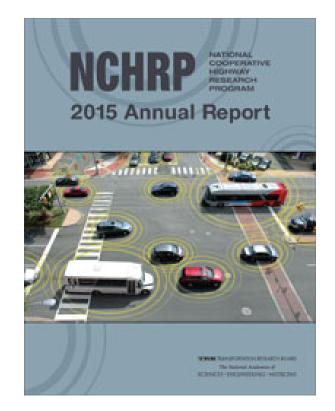

- **B. Ray Derr**, NCHRP Senior Program Officer
- Michael S. Fleming, Washington State DOT, Olympia, WA
- Aaron M. Frits, Kansas DOT, Topeka, KS
- Evangelos I. Kaisar, Florida Atlantic University, Boca Raton, FL
- Lawrence T. Moore, California DOT, Sacramento, CA
- James L. Pline, Pline Engineering, Inc., Boise, ID
- Lisa Schletzbaum, Massachusetts DOT, Boston, MA
- Anthony D. Wyatt, North Carolina DOT, Garner, NC (Chair)
- Jeffrey Shaw, FHWA Liaison
- Richard A. Cunard, TRB Liaison

NCHRP delivers...

Practical, ready-to-use results

- Applied research aimed at state DOT practitioners
- Often become AASHTO standards, specifications, guides, manuals
- Can be directly applied across the spectrum of highway concerns: planning, design, construction, operation, maintenance, safety

A range of approaches and products


- Traditional NCHRP reports
- Syntheses of highway practice
- IDEA Program
- Domestic Scan Program
- Quick-Response Research for AASHTO
- Other products to foster implementation:
 - Research Results Digests
 - Legal Research Digests
 - Web-Only Documents and CD-ROMs

NCHRP Webinar Series

- Part of TRB's larger webinar program
- Opportunity to interact with investigators and apply research findings.

הר

Double Left-Turn Lanes Operational Field Study

Kay Fitzpatrick, Eun Sug Park, Pei-Fen Kuo, James Robertson, and Marcus Brewer Texas A&M Transportation Institute

Acknowledgments

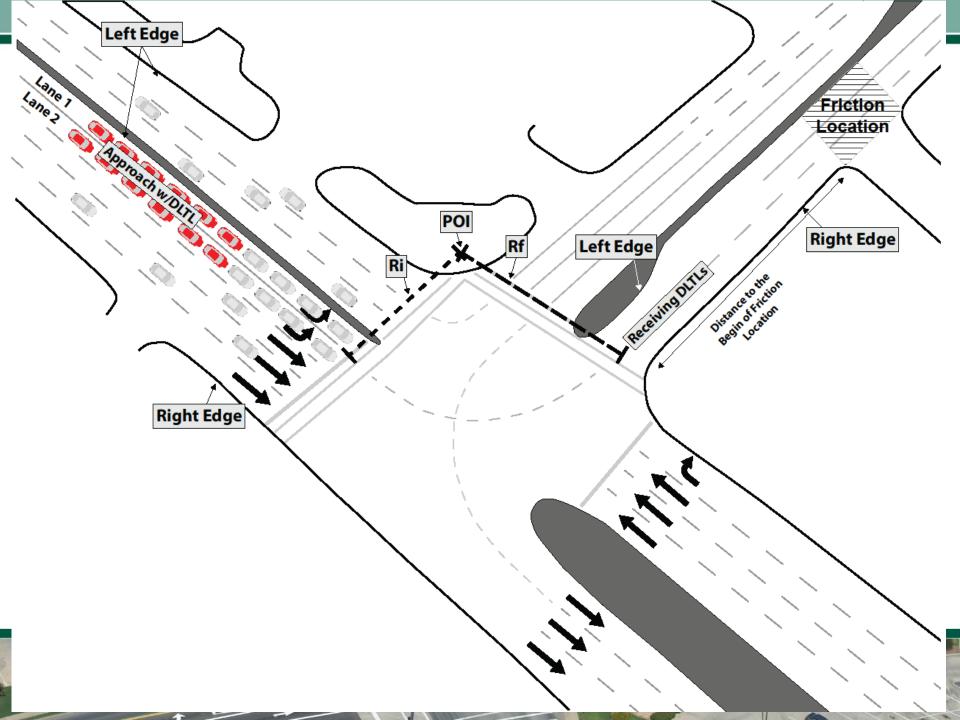
- Sponsor = NCHRP
 - NCHRP 3-102 "Design Guidance for Intersection Auxiliary Lanes"
- Comments from Panel
- Assistance with data collection
 - TTI staff
 - TRA (subcontractor)
 - CDM Smith Research Program

State of Practice Double Left-Turn Lanes

- Most have guidance, not always very detailed
- Installation often based on:
 - Current / expected turning demand
 - Signalization
- Receiving leg design
- Capacity less than 2× single lane (GB says 180%)
- Desired guidance on adjustments to length

Study Variables

	Variable	Range		
	Receiving leg width	 Narrow, < 26 ft Moderate, 26 to 30 ft Wide, > 30 ft 		
	Left-turn lane width	Less than 11.5 ft11.5 ft or more		
	Downstream friction point – type	Bus stop, driveway, right-turn lane, none		
	Downstream friction point – distance	 Near, < 150 ft Medium, 150 to 350 ft Long, > 350 ft 		

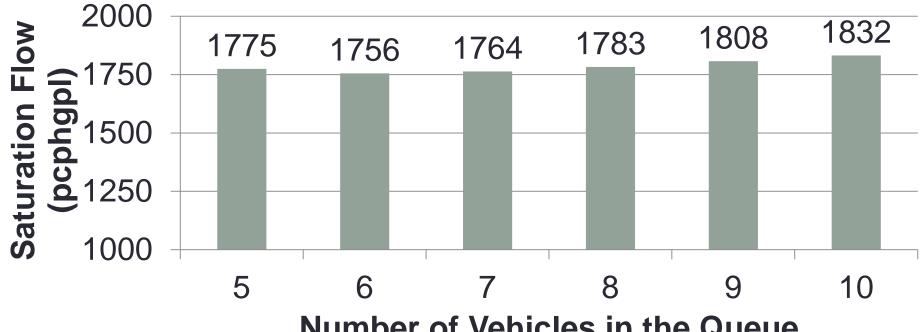

Data Collection

- 26 sites in:
 - Arizona (Flagstaff, Phoenix, Tucson)
 - California (San Leandro, Palo Alto)
 - Texas (Houston, Bryan, College Station)
- Video

Data Reduction

- Saturation flow rate (SFR)
 - Time each left-turning vehicle crossed stop bar
 - Whether veh is truck or in queue at start of cycle
 - ITE Manual of Transportation Engineering Studies
 → use 7th, 8th, 9th, 10th vehicle in queue
 - We used 5th to 10th vehicle

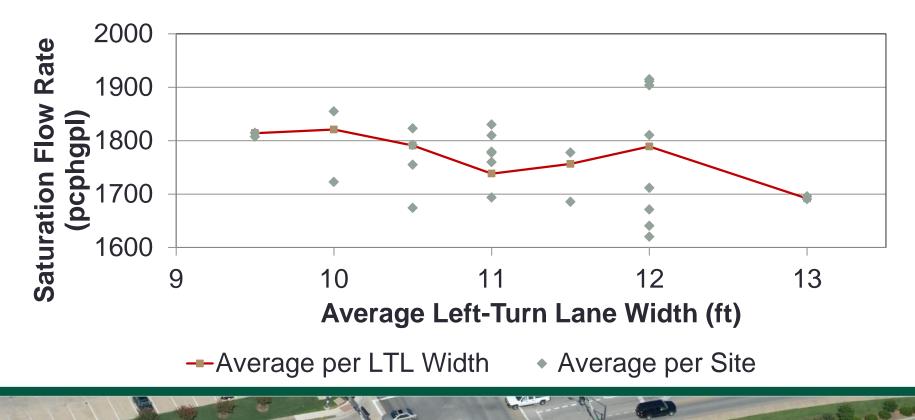
Results-Not Significant Variable


• Lane (inside or outside)

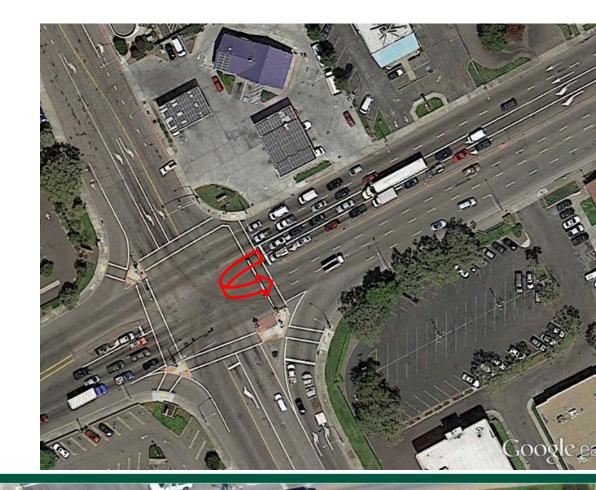
Lane	Unit	Findings	
Lane 1	SFR Average	1,774 pcphgpl	
(inside lane)	Count	4,992 passenger cars	
Lane 2	SFR Average	1,776 pcphgpl	
(outside lane)	Count	5,031 passenger cars	
Both lanes	SFR Average	1,775 pcphgpl	
	Count	10,023 passenger cars	

Results-Not Significant Variable

• Queue length (5, 6, 7, 8, 9 or 10 vehicles)



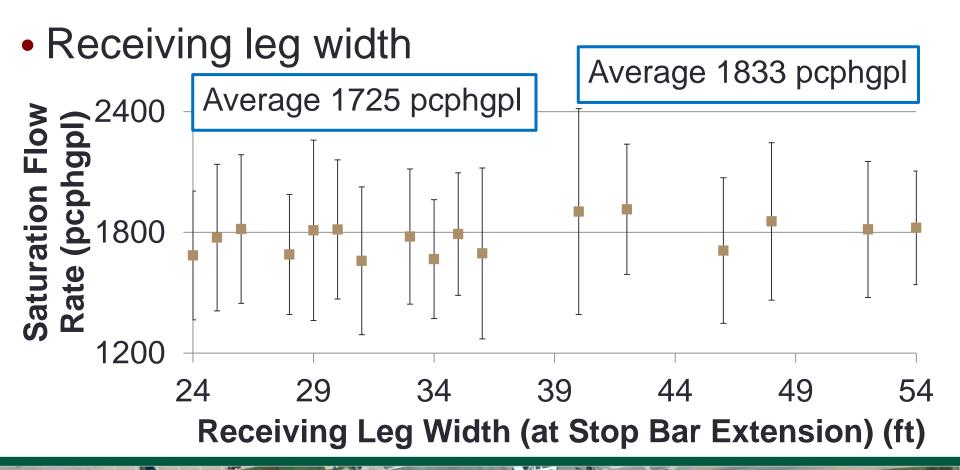
Number of Vehicles in the Queue


Results-Not Significant Variable

Left-turn lane width

Results-Significant Variable

 U-turns: each U-turning vehicle decreases SFR by 56 pcphgpl



Results-Significant Variable

- Add lane from channelized right turn
 - Increase SFR by
 52 pcphgpl

Results-<u>Significant</u> Variable

Suggested Changes to Green Book

- Capacity
 - GB \rightarrow approximately 180%
 - This study \rightarrow 196%
- Receiving leg
 - GB \rightarrow 30 ft used by several agencies
 - Previous study \rightarrow 36 ft desirable, 30 ft acceptable
 - This study \rightarrow supports 36 ft

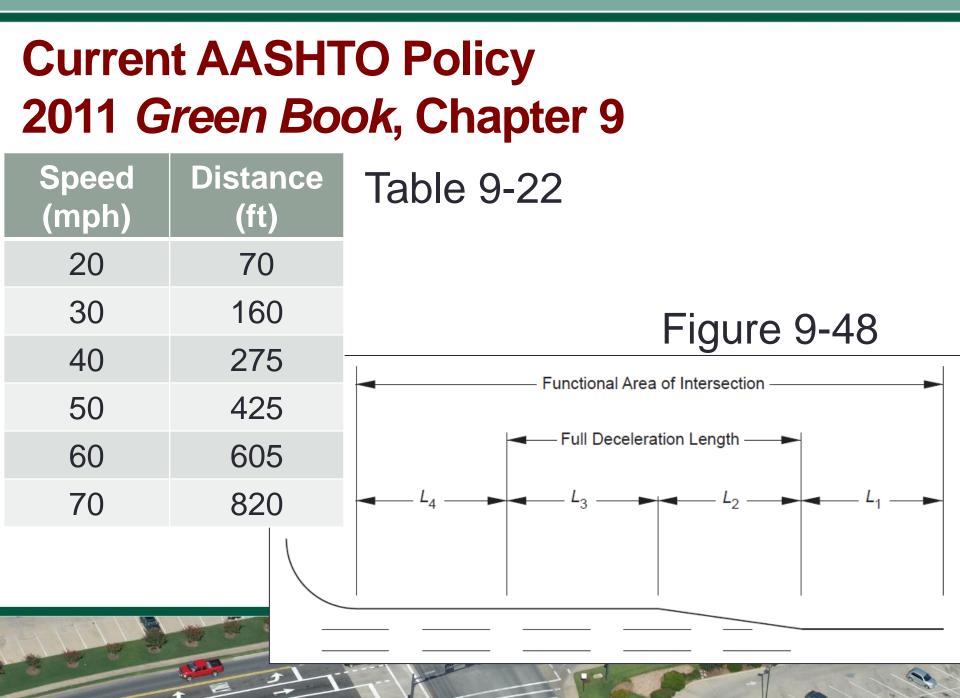
Potential Cautions to add to Green Book

- U-turning vehicles have a significant impact on operations of double left-turn lanes
- When receiving leg is 2 lanes plus 3rd lane due to dedicated downstream lane from channelized right-turn lane – left-turning vehicles observed to move into additional lane as soon as physically possible

Speed and Deceleration in Left-Turn Lanes at Signalized Intersections

Marcus Brewer and Kay Fitzpatrick Texas A&M Transportation Institute

Image: Dan Walker


Research Objective

 To recommend improvements to the guidance provided in the **AASHTO** Green Book for auxiliary lanes at intersections, leading to improved safety and operations.

Image: Marcus Brewer

Literature Deceleration Rates

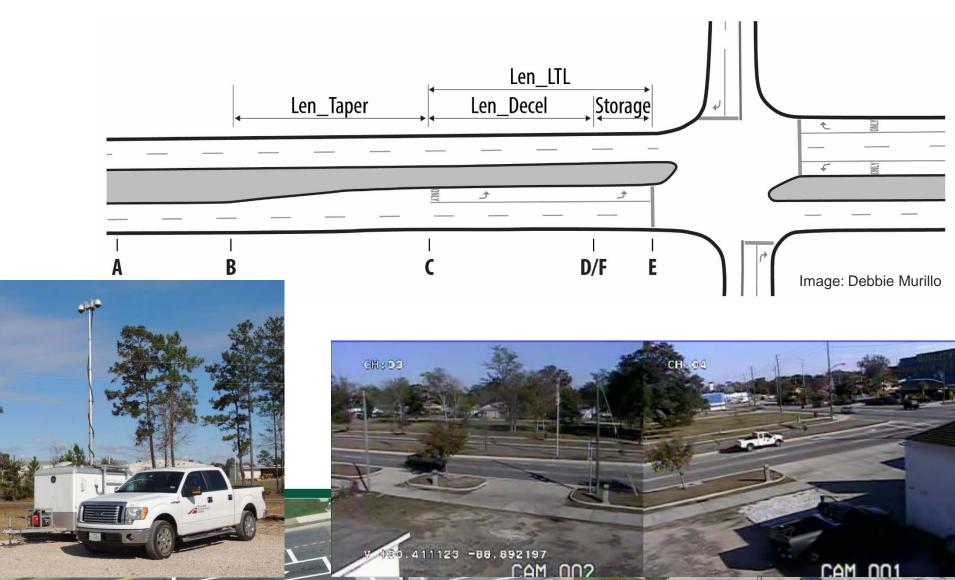
- Fambro, et al (NCHRP Report 400, 1997)
 - 11.2 ft/s² for SSD, 24.5 ft/s² for maximum/emergency
- ITE Traffic Engineering Handbook (1999)
 - 11.2 ft/s² maximum, up to 10 ft/s² "reasonably comfortable"
- Gates, et al (2007)
 - Greater than 40 mph: 9.2, 10.9, and 13.6 ft/s²
 - Less than 40 mph: 6.4, 8.3, and 11.6 ft/s²

Deceleration Study Questions

- What is speed differential for turning vehicles?
- How does speed differential vary based on taper length and/or posted speed limit?
- Are the 2011 *Green Book* deceleration rates representative of current left-turn drivers?

Deceleration Study Site Selection Controls

- Taper Length above or below Green Book
 - 8:1 (L:T) for speeds up to 45 mph 96 ft
 - 15:1 (L:T) for speeds 50 mph and above 180 ft
- Posted Speed Limit (30-65 mph)
- 4 legs, signalized
- 4-lane major, 2- or 4-lane minor
- Straight, level, no skew


Study Sites

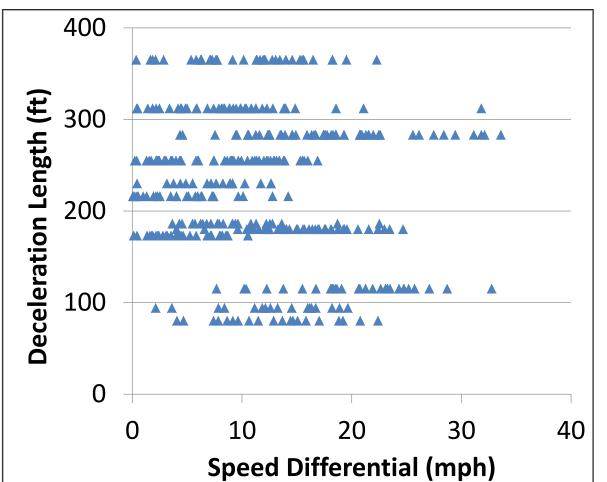
PSL (mph)	Taper Length (ft)	Below Taper Threshold	Above Taper Threshold
30-35	96	2 sites	2 sites
40-45	96	2 sites	2 sites
50-55	180		2 sites
60-65	180	1 site	1 site

 3 sites each in Mobile, Tallahassee, Biloxi, and Austin

Data Collection

Data Analysis

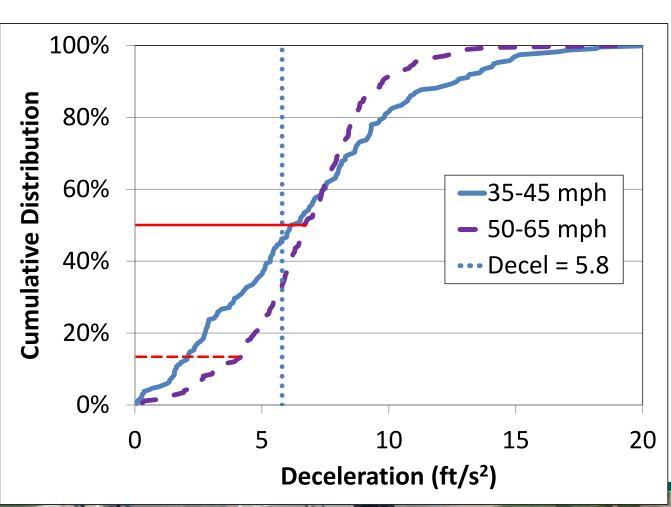
- Focus on three key guidelines from *Green Book*:
 - 10 mph speed differential when the turning vehicle clears the through traffic lane (Note 3 in Table 9-22)
 - 5.8 ft/s² average deceleration moving from the through lane into the left-turn lane (Note 4)
 - 6.5 ft/s² average deceleration after moving laterally into the left-turn lane (Note 4)


Analysis of Speed Differential

• Observed larger differentials at larger upstream speeds, statistically significant predictor

Upstream	# Vehicles with a Speed Differential (mph) of					
Speed (mph)						
	0-10	10-20	20-30	> 30	Total	
20-29	7	2	0	0	9	
30-39	47	21	1	0	69	
40-49	93	54	4	0	151	
50-59	38	72	26	1	137	
60-69	4	22	13	3	42	
<u>></u> 70	0	0	0	2	2	
Total	189	171	44	6	410	
Percent	46%	42%	11%	1%	100%	

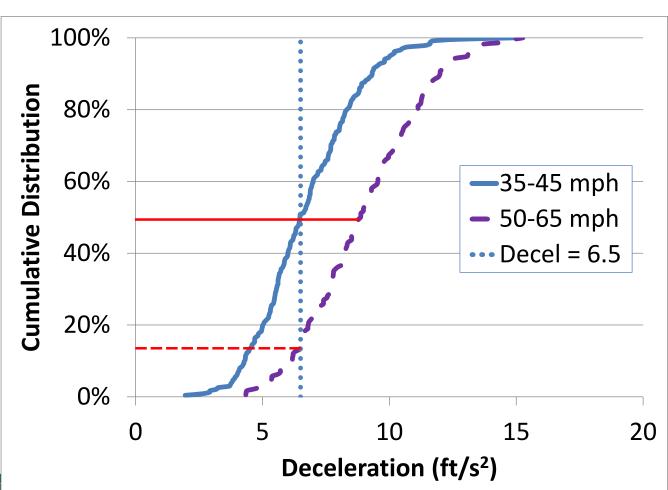
Speed Differential and Green Book


 No strong statistical relationship between deceleration length and speed differential

Deceleration Upstream of Taper

 About half of observed drivers were
 6.1 ft/s² or more

 85% of highspeed were
 4.2 ft/s²


Upstream Decel and Green Book

- GB guidelines recognize influence of speed, but decel rates/lengths not directly linked
- Guidelines flexible between 30 and 50 mph and allow consideration of other site characteristics
- Rate of 4.2 ft/s² in taper matches more drivers, especially at high-speed sites
- Tradeoffs for higher rate/shorter length

Deceleration in Decel Lane

 About half of low-speed drivers and 85% of highspeed were
 ≥ 6.5 ft/s²

Decel Length and Green Book

- GB: "it is not practical" to provide full decel length in many locations
- Most study sites did not have full GB decel length
- Decel length and vehicle speed were statistically significant
- 10-ft increase in decel length reduces decel rate by 0.2 ft/s²

Typical Designs

Paul Dorothy

Case Studies

- Island design
- Deceleration lane design
- Double left-turn lane design
- Triple left-turn lane design
- Double right-turn lane design

State-of-the-Practice Survey

- Request for "best practice" sites for each category (up to 3)
- 43 recommendations from 6 states

Island Design

- Island defined area between traffic lanes used to control vehicle movements and to provide an area for pedestrian refuge and placement of traffic control devices.
- Channelized Intersection at-grade intersection in which traffic is directed into definite paths by islands.

Island – Purpose

- Separation of conflicts
- Control of angle conflicts
- Reduction of excessive pavement areas
- Regulation of traffic and indication of proper use of intersection

Island – Purpose

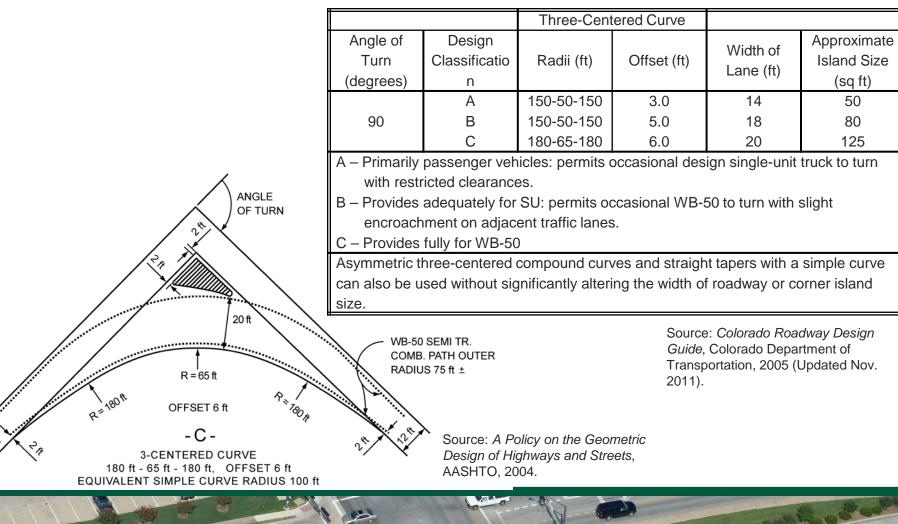
- Arrangements to favor a predominant turning movement
- Protection of pedestrians (must consider ADA)
- Location of traffic control devices
- Access control

Lakewood, Colorado

Turning Roadway – 5 Components

Approach Taper

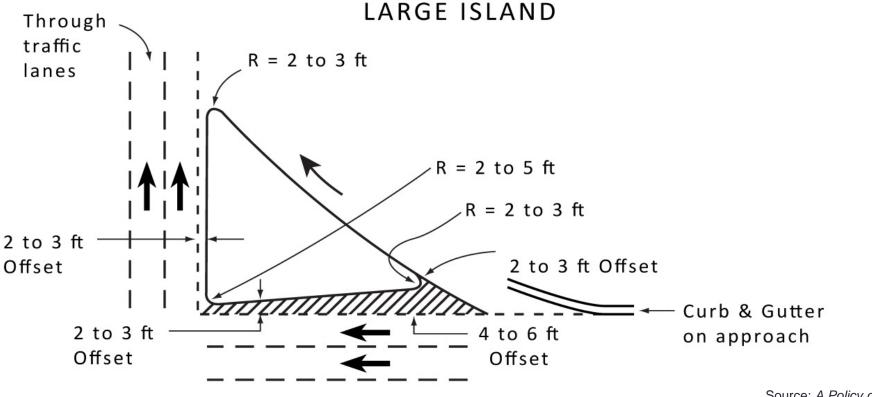
- Design speed = 50 mph
- Recommended taper = 15:1


Deceleration Lane

- Design speed 50 mph
- Assumes 10 mph decel. occurs in through lane
- Assumes 15 mph curve
- Length for 25 mph decel. required

• Note: A more conservative design may assume stop condition due to ped. crossing.

Turning Roadway Curve


-

Acceleration Lane/Merging Taper

- Configuration
 - 130 ft. full 20-ft width accel. lane
 - 170 ft. taper from 20-ft to 12-ft lane
 - 200 ft. auxiliary lane
 - Total 500 ft. distance provided

Large Island (Urban)

TRIANGULAR CURBED ISLAND ON URBAN STREETS

Source: A Policy on the Geometric Design of Highways and Streets, AASHTO, 2004.


Pedestrian Concerns

- Refuge
- At-grade or cut-through installations
- Texture and guidance
- Logical
- Clearly delineated

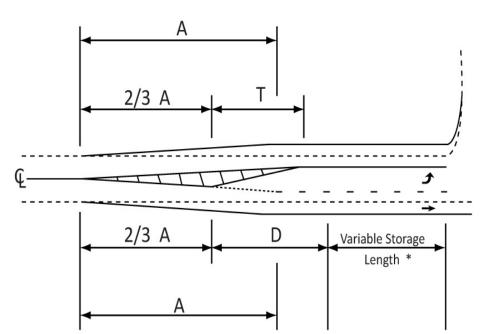
Additional Concerns

- Reduced visibility
- Snow removal
- Access control in functional intersection area

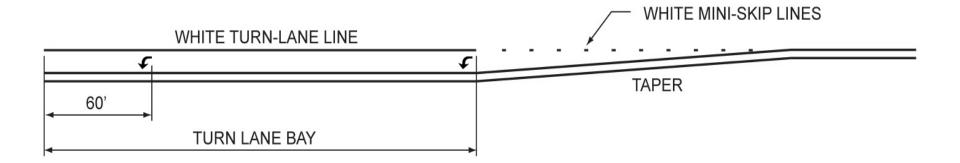
Deceleration Design

 "Provision for deceleration clear of the throughtraffic lanes is a desirable objective on arterial roads and streets and should be incorporated into design, whenever practical." – Green Book

Fuquay Varina, North Carolina


- Left- and right-turn deceleration lanes
- Approach is 2 11-ft. lanes
- Intersection 4 10-ft. lanes (2 thru, 1 LT, 1 RT)

- 9 ft. symmetric widening about center line
- Design speed 50 mph
- Approach taper formula A=WS
 - W = 9 ft.
 - S = 50 mph
 - A = 450 ft.



- 2/3 A = 300 ft.
- Recommended T = 100 ft.
- T = 75 ft. used

Source: North Carolina Roadway Design Manual, North Carolina Department of Transportation, 2002.

Source: *North Carolina Roadway Standard Drawings*, North Carolina Department of Transportation, 2006.

Recommended Revisions to AASHTO Green Book

Kay Fitzpatrick

"Disclaimer"

- This presentation represents the authors opinions
- Material is documented in Appendix A of NCHRP 780
- We have provided this material to and have talked with members of the AASHTO Technical Committee on Geometric Design; however, what they will (or will not) include is not currently known

9.3.1 Three-Leg Intersections

- Add discussion about bypass lanes, including a cross-reference to warrants suggested for Section 9.7.3, based on research in NCHRP Report 745
- Recommended revisions to some existing diagrams to improve legibility, provide additional detail, and add conflict diagrams

9.3.2 Four-Leg Intersections

- Provide new material to connect to other sections
- New material regarding skew:
 - <u>where right-of-way is not restricted, all</u> <u>intersecting roadways should meet at a 90-degree</u> <u>angle.</u>
 - <u>...where right-of-way is restricted, intersection</u>
 <u>roadways should meet at an angle of not less than</u>
 <u>75 degrees.</u>
- Several publications support the 75 degree limit

9.6.1 Types of Turning Roadways

- Added material on Channelized Right-Turn Lanes based on NCHRP 3-89 research
 - Crosswalk location
 - Island type
 - Radius of turning roadway
 - Deceleration lanes
 - Acceleration lanes
 - Others

9.6.1 Types of Turning Roadways

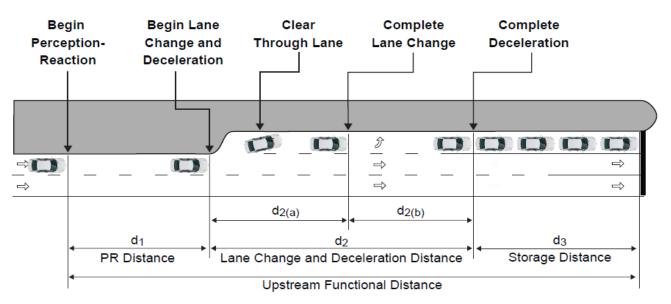
- <u>Curb radii should accommodate the expected</u> <u>amount and type of traffic and allow for safe</u> <u>turning speeds at intersections.</u>
- 15 ft = typically used...residential street
- 25 ft = typically used...arterial streets
- <u>Refuge islands are provided when crossing</u> <u>distance exceeds 60 ft</u>

9.6.2 Channelization

- Added clarity to a bullet
 - Motorists should not be confronted with more than one decision at a time; as such, sufficient median storage should be provided to permit through and left-turning traffic to make a two-stage maneuver.

9.6.2 Channelization

- Remove the use of the term "refuge" when describing a vehicle storage area so to not confuse that space with space for pedestrians or bicycles
 - Refuge areas for turning vehicles should be provided separate from through traffic.
 - For locations with sufficient turning volumes and/or safety concerns, separate storage lanes should be used to permit turning traffic to wait clear of throughtraffic lanes.

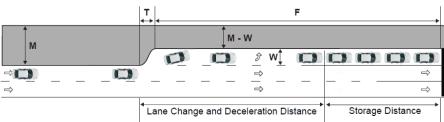

9.7.1 General Design Considerations

- Provided additional guidance / clarity about acceleration lanes
 - Acceleration lanes are advantageous on roads without stop control, <u>particularly those with higher</u> <u>operating speeds and/or higher volumes.</u> <u>Acceleration lanes are not desirable at all-way</u> <u>stop-controlled intersections where entering</u> <u>drivers can wait for an opportunity to merge</u> <u>without disrupting through traffic</u>.

9.7.2 Deceleration Lanes P-R Dist, Lane Change/Decel Dist

 Extensive changes based on recent research (including this project)

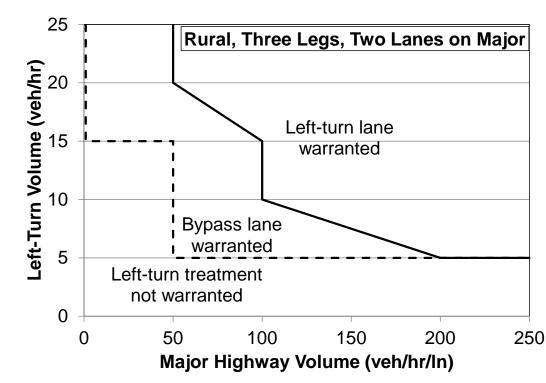
Where:


- d₁ = Distance traveled while driver recognizes upcoming turn lane and prepares for the left-turn maneuver.
- d_{2(a)} = Distance traveled while decelerating and changing lanes from the through lane into the turn lane.
- $d_{2(b)}$ = Distance traveled during deceleration after lane change.
- d₃ = Distance provided for the storage of the queue of stopped vehicles waiting to turn.

-

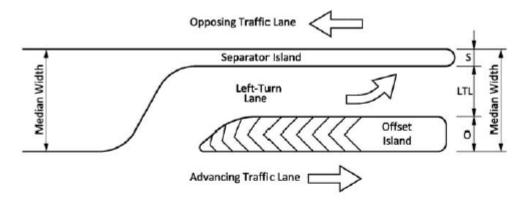
9.7.2 Deceleration Lanes Taper Length

- Provide discussion on different approaches for calculating taper length
 - For example: <u>Jurisdictions across the country</u> are increasingly adopting the use of taper lengths such as short as 30 15 m [100 50 ft] for a single-turn lane and 45 30 m [150 100 ft] for a dual-turn lane for urban streets.



Legend: F = Full-Width Left-Turn Lane M = Median Width T = Taper Length W = Left-Turn Lane Width

9.7.3 Design Treatments for Left-Turn Maneuvers


 New material for warrants for leftturn lanes and bypass lanes (based on research documented in NCHRP Report 745)

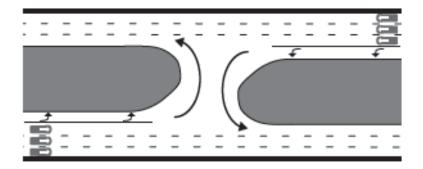
9.7.3 Design Treatments for Left-Turn Maneuvers, Offset Left-Turn...

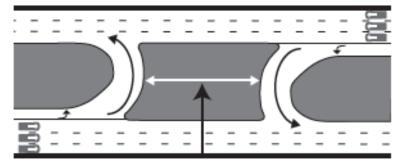
 From draft Access Management Manual, 2nd edition (exhibit 17-7)

Condition	S Separator Island (feet)	LTL Left-Turn Lane (feet)	O Offset Island (feet)	Minimum Median Width (feet)
Standard Design:				
Pedestrians	≥ 6	12	≥ 3.5	≥ 21.5
No Pedestrians	≥ 4	12	≥ 3.5	≥ 19.5
Permitted by Variance:				
Pedestrians	≥ 6	12	≥ 2	≥ 20
No Pedestrians	≥ 4	12	≥ 2	≥18
No Pedestrians	≥ 3	11	≥ 2	≥16

9.7.3 Design Treatments for Left-Turn Maneuvers, Double...

- Multiple left-turn lanes are becoming more widely used at signalized intersections where traffic volumes have increased beyond the design volume of the original single left-turn lane. The following are design considerations for double or triple left-turn lanes:
 - Width of receiving leg.
 - <u>Width of intersection (to accommodate the two or three vehicles turning abreast).</u>
 - <u>Clearance between opposing left-turn movements if concurrent</u> <u>maneuvers are used.</u>
 - Turning path width for design vehicle.
 - Pavement marking visibility.
 - Location of downstream conflict points.
 - Weaving movements downstream of turn.
 - Potential for pedestrian conflict.

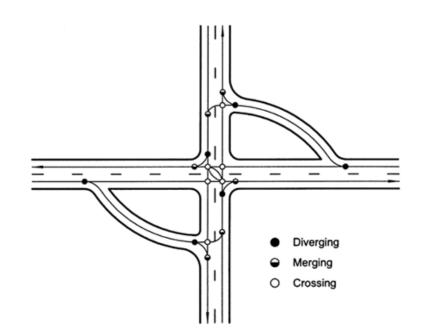



9.8 Median Openings

• Provide discussion on differences between bidirectional and directional crossovers

Bidirectional Crossover

Directional Crossover

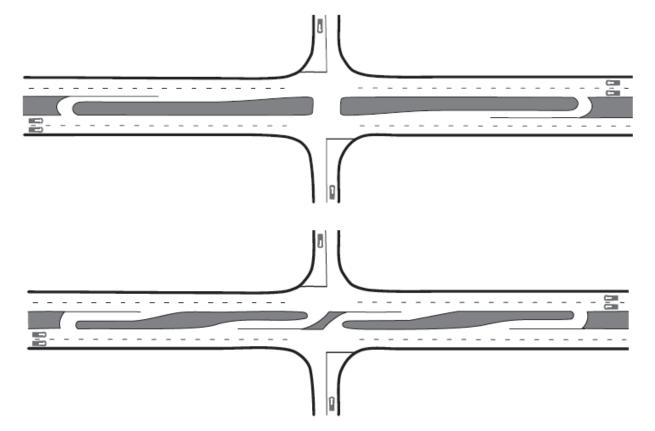


100 ft minimum 150 ft desirable

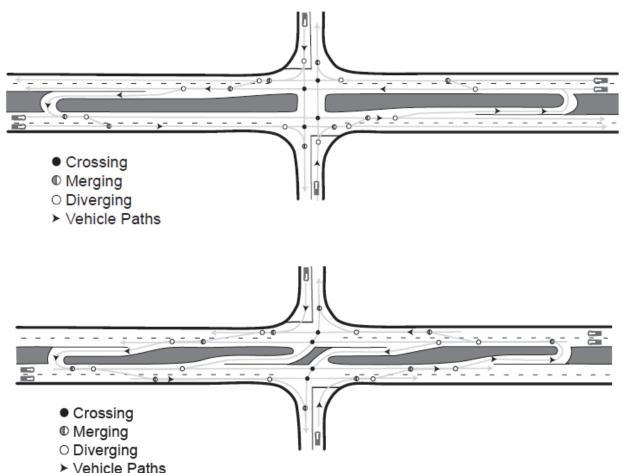
9.9.2 Intersections with Jughandle or Loop Roadways

- Example Graphic for Replacing Green Book Figure 9-60.
 Intersection with Jughandle Roadways for Indirect Left Turns
- From FHWA Signalized Intersections: Informational Guide

9.9.3 Displaced Left-Turn Intersections


Example Material for New Green Book Table 9-X5. Number of Conflict Points at a Four-Leg Signalized **Intersection Compared** to a Continuous-Flow Intersection with **Displaced Left Turns on** the Major Street Only.

<u>Conflict</u> <u>type</u>	<u>Four-Leg</u> <u>Signalized</u> Intersection	<u>Continuous</u> <u>-Flow</u> Intersection
<u>Merging/</u> diverging	<u>16</u>	<u>14</u>
<u>Crossing</u> <u>(left turn)</u>	<u>12</u>	<u>6</u>
<u>Crossing</u> (angle)	<u>4</u>	<u>10</u>
<u>Total</u>	<u>32</u>	<u>30</u>


9.9.4 Wide Medians with U-Turn Crossover Roadways

- U-turn...for indirect left turns...with wide median
-restricted crossing Uturn intersections

9.9.4 Wide Medians with U-Turn Crossover Roadways

- U-turn...for indirect left turns...with wide median
-restricted crossing Uturn intersections

9.9.5 Location and Design of U-Turn Median Openings

- Figure A-20. Example Graphic for New Green Book Figure 9-XK: Dual U-Turn Directional Crossover Design (part B).
- Michigan Department of Transportation
 Geometric Design Guide 670

DUAL TURNS

4	
4	
225′ (70m) Desirable	For layout details See D-1 (TYP) 250'(75m) Minimum - 3

9.10 Roundabout Design

- New text about:
 - Public outreach
 - Right-turn bypass lanes (slip lanes)
 - Turbo-roundabout concept
 - Accommodating large WB-67 trucks or oversized vehicles

QUESTIONS

