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Introduction and technology overview 
Jennifer Nicks, P.E., PhD – Federal Highway Administration  
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What is GRS IBS? 
• Accelerated construction technique  

 
• Utilizes compacted granular fill and 

geosynthetic reinforcement in 
alternating layers for bridge support 



Concrete 
• Aggregate 
• Water 
• Cement 

GRS 
• Aggregate 

 

• Closely-spaced 
geosynthetics 

GRS – Composite Material 



• Steel reinforcement (rebar) 
provides the tensile 
strength 
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Concrete GRS 

• Geosynthetic reinforcement 
provides tensile strength (and 
added compressive strength) 



GRS Abutments 
• Spacing and properties of the reinforcement plays a 

role in strength and serviceability 
• The backfill and facing element also play a role in 

developing a unique composite with measurable 
properties that can be used in design 

GRS IBS – Composite Design 



Open Graded Fill Well Graded Fill 

Reinforced Backfill 



Geogrids Geotextiles 

Geosynthetics 



Facing Element 



• Lower costs (20-60%) 
• Accelerated bridge 

construction 
• Smooth transition alleviated the 

“bridge bump” 
• Good performance 

 

Why Consider the GRS IBS 



• Grade separations 
o Grade crossings of road, rail, trails  

• Water crossings 
o Creeks, rivers, flood plains, tidal zones 

 

• Low volume local roads 
• High volume and high loads 
• Bridges under various load combinations 

o e.g. seismic, lateral, thermal, uplift 

• Unusual geometries 
o e.g. skew, longitudinal grades, transverse grades 

• Various superstructure types 
o e.g. adjacent concrete boxes, steel girders with semi-integral abutment, 

timber bridges, trusses 

Where to Consider  
the GRS IBS 



Use of stone columns to improve foundation soils 

IL – Great Western Trail (over Grace St.)  
(2011) 



ME - Knox County Beach Bridge  
(2013) 



Designed for  PGA x Fpga ground acceleration (PGA=0.6g  Fpga=1.0 ) 

Taken October 
2014, 2 years after 
construction 

HI – Saddle Road Bridge  
(2012) 



NY – CR 38   
St. Lawrence County (2013) 



• Areas with deep scour estimates 
• Areas with highly compressible foundation soils, 

unless considering ground improvement techniques 
 

Where not to Consider  
the GRS IBS 



• First GRS IBS built in 2005 (24o skew, 7.6o superelevation, 
0.006 ft/ft grade)  

• An additional four bridges were instrumented and 
monitored, with the longest span of 140 feet. 

• Results indicated good performance, small 
deformations, and no bump at the end of the bridge 

Performance of GRS-IBS 



• Vertical settlement  
o (survey, LiDAR, etc.) 

• Lateral wall face deformations  
o (survey, LiDAR, inclinometers, etc.) 

• Super-Substructure thermal interactions  
o (visual observations, contact pressure cells, strain gauges, inclinometers, etc.) 

• Differential settlement between the bridge and 
approach  
o (profilers, survey, etc.) 

• Differential settlement across the abutment length  
o (survey, horizontal inclinometers, etc.) 

Key Performance Indicators 
of GRS-IBS 



Case Histories 

Chesapeake City Road, DE RT 7A Over Housatonic RR, MA  

CR 55 over Minnesota Southern RR, MN 



Chesapeake City Road (2013) 
Christopher Meehan, P.E., PhD – University of Delaware 
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Bridge 1-366 on Chesapeake City Road 
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Existing Bridge • AADT = 2617 
• 3/19/13-3/21/13: Existing bridge 

demolition 
• 3/22/13 – 4/5/13: East abutment 

excavation and construction 
• 4/3/15 – 4/23/15: West abutment 

excavation and construction 
• 4/25/13: Placement of bridge 

beams 
• 4/26/13 – 5/4/13: Integration zone 

construction 



Geometric Specifications for Project 
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• 2 HSA soil borings with 
SPT sampling – one 
through the center of each 
existing abutment 

• In second boring, 
continuous Shelby tube 
sampling was performed 
over clay layer immediately 
beneath GRS-IBS 

• Laboratory tests performed: 
o 41 soil classification tests – 

grain size analysis and Atterberg 
limits 

o 6 one-dimensional consolidation 
tests 

o 2 unconfined compression tests 
o 4 unconsolidated undrained 

triaxial tests 
o 11 organic content tests 
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Geotechnical Conditions at the Site 



Materials Used for GRS Abutment Construction 
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No. 8 Stone Backfill for Reinforced Zone 

Property Test 
Method 

Value 
  

Wide Width Tensile 
Strength (Maximum) 

ASTM 
D4595 

70.0 x 70.0 
kN/m 

Wide Width Tensile 
Strength (2% Strain) 
  

ASTM 
D4595 

14.0 x 19.3 
kN/m 

Wide Width Tensile 
Strength (5% Strain) 
  

ASTM 
D4595 
  

35.0 x 39.4 
kN/m 

Polypropylene Woven Fabric Geotextile 
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Resulting GRS-IBS Design Section 

(All dimensions shown are in m) 

• External Stability Analysis 
o Direct sliding 
o Bearing capacity   
o Global stability 

• Internal Stability Analysis 
o Ultimate capacity 
o Vertical & horizontal deformation 
o Required reinforcement strength 

Design was performed following the 2011 “Geosynthetic Reinforced Soil Integrated 
Bridge System Interim Implementation Guide”, Publication No. FHWA-HRT-11-026 



GRS-IBS 
CONSTRUCTION 

PROCESS 
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28 
West Abutment 

Construction 
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Bridge Placement and Approach Road Construction 

Bridge Superstructure Construction 



New Bridge 1-366 
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INSTRUMENTATION 
& 

MONITORING  
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Instrumentation Profile 
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Three Phases of Project Monitoring 
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Construction 

Live Load Testing 
 

Long Term Monitoring 
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Deflection of GRS-IBS Wall Facing Blocks 

• The measurement precision and resolution for the utilized surveying system was 6 mm 
and 0.3 mm, respectively. 

• The maximum facing wall lateral deflection at the abutment centerline is less than 10 mm. 

East Facing Wall at 
Abutment Centerline 

West Facing Wall at 
Abutment Centerline 
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Settlement of GRS-IBS Wall Facing Blocks 

• The measurement precision and resolution for the utilized surveying approach was 6 mm 
and 0.3 mm, respectively. 

• The maximum facing wall settlement at the abutment centerline is less than 12 mm. 

East Facing Wall at 
Abutment Centerline 

West Facing Wall at 
Abutment Centerline 
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Deformation in the GRS-IBS Foundation 

Inclinometer Deflection: E-W Direction 

• The maximum deflection in E-W and N-S directions are 10 mm and 7 mm respectively. 

Inclinometer Deflection: N-S Direction 



No “Bump at the End of the Bridge” 

37 

Construction of 
transition zone 

Transition zone after two 
years of operation 
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Geosynthetic Strains Within the GRS Abutment 

Long Strain Gauge 

• The maximum strain in the abutment is less than 0.5%. 
• The maximum creep in the abutment in less than 0.1%. 
• No significant difference in long and short strain gauge measurements. 
• No significant difference in the strains in the East and West abutments. 

Short Strain Gauge 
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Temperature Within the GRS Abutment 

• The temperature distribution in the 
abutment varies with the hot and cold 
weather. 

• The upper elevations and the areas 
closer to the facing wall experience 
higher temperature changes due to 
being more exposed to the air 
temperature changes. 

Temperature recorded by thermistors Temperature recorded from accuweather.com 
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Correcting Measured Strains for Temperature Effects 

• A two-wire Wheatstone bridge configuration was used to wire foil strain gauges – 
measured results can be affected by temperature. 

• A mathematical technique was developed for correcting strain gauge readings to 
account for temperature effects. Using this method, the temperature corrected strain 
(𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐) is determined using the measured strain (𝜀𝜀𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐), air temperature (𝑇𝑇𝑎𝑎), and 
average wire path temperature under the ground (𝑇𝑇𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎). 
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Applied Bearing Pressure Beneath the Base of the RSF 

Wall Height, 
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Conclusions 
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Overall Conclusion: Satisfactory performance of the structure 
over the three phases of project monitoring. 

 
• The maximum facing wall lateral deflection at the abutment centerline was 

less than 10 mm 
• The maximum facing wall settlement at the abutment centerline was less 

than 12 mm 
• Maximum strain in the abutments was less that 0.5% 
• Maximum creep in the abutments was less that 0.1% 
• Temperature had a direct influence on measured strain and should be 

corrected for 
• No apparent scour issues 
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Rock County Road 55 over MN Southern Railway 
Derrick Dasenbrock, P.E.  – Minnesota DOT 

Derrick Dasenbrock, PE 
Geomechanics/LRFD Engineer 
Minnesota Department of Transportation 
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Project Summary 

• Rock County (County State Aid Highway) Bridge 67564 
• 5.3% grade (largest grade of an IBS built to date)* 
• Length: 82.5’ (clear span 77.5’) 
• Face height of 22’  
• Width: 33’ 
• ADT 135 

 
• Instrumentation Program Evaluated: 

o Construction behavior 

o *Reaction of GRS wall to bridge constructed at this grade 

o Deformation and movement during thermal cycles 

o 3-year post-construction monitoring 
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Instrumentation Layout Plans + X-Sec 

Foundation EPCs 

Beam EPCs 

V. SAA 

H. SAA 
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Instrumentation Sensors and Equipment 

• Each Abutment (N/S) 
• 1 Vertical ShapeAccelArray @ center behind wall (2) 
• 1 Horizontal ShapeAccelArray behind front face (2) 
• 3-5 Earth Pressure Cell below reinforced soil foundation (8) 
• 3 Fat Back EPC at back interface of bridge beams (6) 
• 1 AMTS: NE*, SW (2 initially; *1 long-term) 
• Optical Prisms on Face and on exterior beams (about 60) 
• Support Equipment 

o Weather Station + Cameras + Solar Panels 

o Radios + Cell Modems + Batteries 

o Cabinets + Conduit + Cables 

o Back-sight Reference Prisms and Posts Total numbers in ( ) 
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Internal + External Instrumentation  
Sensors and targets installed throughout construction of the bridge 

Many comments were received with respect to the number of strange looking devices  



Site Location (Winter Before Construction) 
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Early Project Work 
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EPC SAA 

• Trenching & Excavation 
• Horizontal SAAs and EPCs installed 
• Posts for AMTS and solar panels were drilled 
• Cabinet Hardware + Sensor Conduit + Cabling 

And Snow! 



Beginning Wall Block Placement 
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Horizontal SAA and Earth Pressure 
Cells are Installed and Acquiring Data 



52 

AMTS System: Targets Placed as Wall Progresses 

Some targets will be buried after initial construction  

N
E A

M
TS 

SW
 A

M
TS 



Vertical Wall Deformation and Beam Pressure 
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• SAA installed about 3’ from edge of box beams 
• Installed after backfill is placed up to beams 

o Access available for rig and full wall height established 

• June 4, 2013 (compare to AMTS target data from mid-May) 
• 3 Fat Back EPC sensors installed on box beams (each end) 

SAA 

EPC 
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Finished Bridge Rail and Roadway Paving 

SOUTH 
ABUTMENT 
(High Side) 

NORTH 
ABUTMENT 
(Low Side) 

NORTH  APPROACH 



North Abutment Construction Pressure/Fill 
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EPC Pressure 
(5 Cells) 

Fill Height  

Beams Placed 
 



South Abutment Construction: Pressure/Fill 
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EPC Pressure 
(3 Cells) 

Fill Height  

Beams Placed 
 



North Abutment Long-Term Earth Pressure 
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5 Cells 

Ambient Temp. Peak        EPC Temp. Peak       EPC Max Pressure 



South Abutment Long-Term Earth Pressure 
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3 Cells 

Behavior consistent with North Abutment 
(long term trends and pressure range) 
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Lateral (N/S) Wall Deflection Measurements: 

2013 Looking East 
Nearing End of Construction 

SW AMTS 

NE AMTS 

AMTS (scanning center and east/west wing wall faces: 60+ optical prism targets) 
Vertical SAA sensors at center of both abutments  

SAA 

SAA 



Vertical Wall Deformation 2013-2016 

60 Largest movements at the lower portion of the wall above embedded portion 

Base of Wall 

Sloped Backfill 
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North Abutment Translation: (-0.2” to -0.9”N) 

LONG TERM 

Construction 

AMTS service interruption 
 

Lower targets covered by fill 
 

SAA Installation 
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South Abutment Translation : (-0.2” to 0.4”N) 

LONG TERM 

Construction 

AMTS service interruption 
 

SAA Installation 
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North SAA + Prism Settlement 

Prism Settlement Generally < SAA 
Good Match at Center (Gray Lines) 
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South SAA + Prism Settlement 

Prism Settlement Generally > SAA 
Good Match at Center (Green Lines) 
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Abutment Beam EPC Response 2013 - 2016 

SOUTH ABUTMENT 
(high side of bridge) 
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Sensor/Prism Monitoring Summary (2016) 
• Lateral movement: -0.2 to 0.9 inch at both abutments 

o Larger movement at wall base (bulging) 

o Distinct short-term generally outward movements; longer-term creep movement 

o Behavior is different than rigid tilt (active pressure on retaining wall) 

• Settlement: 0.5 to 2.0 inches at both abutments 
o Majority occurred during initial construction and backfilling (steep curve) 

o Several years of small magnitude creep appears to be present (shallow, long-term, curve) 

o Long-term settlement magnitude is minimal 

o Targets showed largest settlement at center of structure  

• Base EPCs showed regular increase during construction 
o Show jumps when new loads are applied (fill/beams) some creep between loading events 

• Earth pressure at beams was most dynamic sensor reading 
o large daily and seasonal temperature variations 

• North EPC Beam Pressures (lower elevation) were somewhat 
higher than those observed at South side (higher elevation) 
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Monitoring Program Technical Support 
Field problems were both technical and rodent-based* 

*Field mice (south system cabinet) snacked on antenna wiring 

* 

* 
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Performance Monitoring and Instrumentation Challenges 

• Coordination: Several different crews installed site sensors 
• Remote site location (4.5 hours from Twin Cities) 
• Power and Communications (radio + cellular modem) 
• Correlation of data from instruments installed at different 

times and loading points during construction sequence 
• Large amounts of data/frequency could have been reduced 

o Intermittent construction activity made this somewhat challenging 

o Data presentation (different sensor installation start times, additive movement) 

• Very small movements are very difficult to measure* 
o Fixed datum is required- often hard to come by at a construction site 

• *Temperature effects on equipment and data 
• Several types of error associated with different sensors 
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Bridge In Service (looking west) 

2013 Looking West 
from NE AMTS 

SOUTH 
ABUTMENT 
(High Side) 

NORTH 
ABUTMENT 
(Low Side) 

A summary of technical, measured, performance has been discussed 
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Qualitative Fascia Distress 

• Some block cracking 
• Some chipping 
• Some movement at joints 
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Pavement Cracks (2016 Observations) 

SOUTH ABUTMENT 

NORTH ABUTMENT 

• Distinct, uniform, crack in pavement at beam ends 
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3 Year Project Study Conclusions 

• No significant movement appears related to the 5.3% 
grade of the bridge- distortions are 0.5” to 2.0” 
o Movements toward the south (high side) appear comparatively large 

o Wall movement is complex and appears to include aspects of settlement (both 
initial and creep), bulging, tilt/rotation, and translation  

o Movements are small; temperature effects are comparatively large 

• Distress is present in pavement and some blocks 
o Pavement cracks observed across entire roadway at beam ends 

o Pavement cracks are the most noticeable performance feature 

o  Small amounts of minor block distress- cracks, chips, gap at construction joint 

• Studying performance is challenging 
o Maintaining AMTS systems required effort and many field trips 
o Power and cell modem issues arose several times during study 
o Project partners (design, construction, monitoring) did a great job 
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RT 7A Over Housatonic RR (2014)  
Peter Connors, P.E. – Massachusetts DOT 
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SHEFFIELD 
Bridge No. S-10-023 
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Route 7A (Ashley 
Falls Road) over 

Housatonic Railroad  



Sheffield S-10-023 
Route 7A/Housatonic Railroad  

Before August 2016 
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Built 1935 



Summary Details 
 

• 105’ single span 
• 30° skew 
• 24’ to 28’ high walls (RR clearance) 
• Steel girders w/ CIP deck 
• Concrete footings for superstructure 
• Cut down existing piers for RR protection 
• FHWA instrumentation monitoring program 
• 49% cost savings over original design! 
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Bridge Plan 
  

24± ft 28± ft 

105± ft 

• ABP 
• Collins/GEI 
• Maximilian 
• District 1  
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Construction Timeline 
 

• April to June, 2014 - GRS abutments built 
• June - MassDOT showcase 
• FHWA instrumentation 
• July to August - beams set and cast back wall 
• FHWA instrumentation 
• September – CIP Deck 
• October – Approaches and pavement 
• November 18, 2014 – Complete and in service 
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GRS Construction 
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GRS Construction 
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• Standard 
CMU Blocks 

• Woven 
Geotextile 

• Open graded 
Fill (46-48° lab) 



2014 Showcase 
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• 60 participants 
• 1 day: class & site 
• MassDOT Districts 
• NE DOTs 
• Local DPWs 
• FHWA 
• ACEC 
• CIM 

 



GRS Construction 
Beams on footings Crane loading 
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FHWA Instrumentation 
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• Installed by FHWA 
• 36 months monitoring 

 
• Soil Structure Interaction 
• Response to 30° skew 
• Compare to other GRS 

and traditional bridges 
 



In-place inclinometer casing (2.75 inch ID)  
Concrete(Fatback) Pressure Cell (25-psi) – Geokon 4810 
Earth pressure cell (50-psi) – Geokon 4800 

L 

L/4 

L/2 L/2 
L/4 

ASHLEY FALLS RD GRS-IBS - SHEFFIELD, MA  
As-Built Layout of Instrumentation 

Installed 6/2014 to 8/2014  

Typical Instrumentation Layout for both abutments 

As Built (both abutments) 
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West Abutment Instrumentation 

 Concrete Pressure Cell (25-psi) 

 Earth Pressure Cells (50-psi) 

Concrete pressure cell on cheek wall (25-psi) 

Survey target  
 
In place inclinometer 

Center of Bearing  

Mid Height of Abutment Stem Wall 

23 ft 

Bottom of IPI casing 
embedded in bedrock ~1ft 

RSF is 1.5 ft due to 
bedrock in excavation 86 



Concrete Pressure Cells 
Stem Wall 
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Concrete Pressure Cells  
Cheek Walls 
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Instrumentation Panel 
Battery Power from Solar A/D Board and Modem 
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West Abutment Lateral Pressures 
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Daily Average Temperature 
Pressure cells – East Abutment 
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West Abutment In-Place Inclinometer 
  

Season Backwall Movement = 0.17 in 
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East Abutment In-Place Inclinometer 
  

Season Backwall Movement = 0.2in 



Pavement Sawcut 
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Survey Targets for Settlement  
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East Abutment Survey Settlement  
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West Abutment Survey Settlement  
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Abutment Face 2016 
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Conclusions 
• Monitoring ongoing 
• Small longitudinal movements observed 
• Horizontal Earth Pressure controlled by thermal 

effects 
• GRS Settlement within FHWA guidelines 
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GRS IBS performance & deployment efforts  
Daniel Alzamora, P.E. – Federal Highway Administration 

Chesapeake City Road, DE (2013) RT 7A Over Housatonic RR, MA (2014)  

CR 55 over Minnesota Southern RR, MN (2013) 100 



OH – Bowman Rd Bridge (2005) 
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OH – Tiffin River Bridge (2009) 
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HI – Kauaula Stream Bridge (2012) 
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WI – STH 40 Bloomer, WI (2012) 
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Project Example: UT – I-84 Echo Bridge (2013) 

First GRS IBS on the Interstate; utilized SIBC 

105 Image source: FHWA 

Constructed summer 2013 
• No approach slab 
• ADT > 8,000 
• Truck ~ 40% 



NY – CR47 in St. Lawrence County, NY (2013) 
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PR – Yauco PR2 (2014) 

ADT: 40,000 
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CO – I 70 over Smith Road (2015) 
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LA – Maree Michael Canal,  Vermilion 
Parish (2015)  
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MO – Rustic Road Project (2015) 
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GRS IBS Implementation – October 2016 

Legend Implementation 

4 None constructed 
2 None constructed but state has been looking for projects on local roads 
5 Projects in designed and/or going out to bid 

41 Projects Constructed 

DC 

PR 

HI 
AK 
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Questions? 

112 
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