Presentation overview

- Introduction and Key Objectives
 - Brian Ray
- Historical Overview of Highway Geometric Design
 - Brian Ray
- AASHTO and TRB Strategic Research Objectives
 - Hermanus Steyn
- NCHRP Report 785 Overview and Application
 - Julia Knudsen and Hermanus Steyn
- NCHRP Report 839 Overview
 - Rich Coakley
- Questions and Discussion
 - Dr. John Mason

Introduction and Key Objectives

- Two significant steps in advancing the profession's approach to multimodal geometric design
 - NCHRP Report 785, Performance-Based Analysis of Geometric Design of Highways and Streets
 - Provides an approach to incorporate performance-based analysis into the project development process.
 - NCHRP Report 839, Developing an Improved Highway Geometric Design Process
 - Developed a comprehensive, flexible design process.
 - Update to AASHTO's Guidelines for Geometric Design of Very Low-Volume Roads.

...Allowing professionals to adapt to any project context

Historical Overview of Highway Geometric Design

- What are the origins of "standards"?
- What are "standards"?
- Recent National Funding Acts

- Railroad engineering
- Early motoring

What were the design controls back in the day? From where do today's standards originate?

What are "standards"?

- Uniform approaches to provide consistency in design
- Methods to match criteria to similar design environments
- Representative approaches that represent the standards of care of our profession
- Anything else?

What are "standards"?

"Standards" have become safety surrogates

Are the following true?

- If it meets standards it must be safe
- If it doesn't meet standards it is not safe
- If there is no standard for it, it must not be allowable
- If a design exception is needed it must be "bad"
- If we meet standards, we won't be sued

...but what is the research behind our standards?

Late 1930s and 1940 -- Bureau of Public Roads and AASHO

- Looking for uniformity on roadway designs
- No research done to establish "standards of care"
- A synthesis of practical knowledge to address issues
 - i.e., Physics to cover vehicles in motion on a curve
- "Pamphlets" based on consensus of the practice
- Compiled in a 3 ring notebooks

...These were combined to form "policies" based on committee's, agency leader's, and professional's consensus of the practice

Late 1950s and 1970s -- FHWA and AASHTO

- Interstate system founded on military applications
 - Pavement studies
 - Roadway clearances
 - Bridge capacities
- Initially primarily focused on rural design ("blue book") but urban freeways and arterials needs expanded ("red book")

...Need for consistency in Interstate system led to policies that were still not necessarily based on research

1980s The origins of AASHTO's "Green Book"

- Combine "Blue Book" and "Red Book"
- "Purple Book" at that time was for 3-R Guidance
- Hence the birth of the "Green Book" in 1984

1980s-1990s

 NCHRP research efforts on new and emerging topics; exploring basis of some existing topics (i.e., Sight Distance)

2000's

 Numerous supplemental guidance documents for topics of interest.

Recent National Funding Acts

- 2005 Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)
- 2012 Moving Ahead for Progress in the 21st Century Act (MAP-21)
 - Performance Measures
- 2015 Fixing America's Surface Transportation Act (FAST Act)
 - Recognizing the NACTO Urban Street Design Guide
 - Applying the Highway Safety Manual

Key Elements: Multimodal, Safety, Urban Form, Environment, Freight Movement, Economic Vitality, and Implementation

Recent National Funding Acts

Funding that considers:

- Multimodal,
- Safety,
- Urban Form,
- Environment,
- Freight Movement,
- Economic Vitality, and
- Implementation

Supports metrics such as:

- Livability,
- Heritage,
- Historical context,
- Community values,
- Right-sized projects,
- Practical solutions, and
- Other softer metrics

... These soft metrics are fueling flexible design demands

....Performance-based approaches provide the means for us to adapt to our contemporary project needs.

Presentation overview

- Introduction and Key Objectives
- Historical Overview of Highway Geometric Design
- AASHTO and TRB Strategic Research Objectives
 - Hermanus Steyn
- NCHRP Report 785 Overview and Application
- NCHRP Report 839 Overview
- Questions and Discussion

AASHTO and TRB Strategic Research Objectives

- Research projects originate with purpose and planning
- TRB and AASHTO collaboration creates projects that meet the needs of transportation professionals nation-wide.
- Two topics were generated back in 2004.
 - NCHRP Report 785 was meant as the first step to advance the practice
 - NCHRP Report 839 was a longer term perspective to look at a new start
 - TRB led the research needs statement development with AASHTO input. AASHTO funded the research.

Research Topic Development Timeline

TRB Committees needs statements (RNS) at annual or mid-

SCOR provides

research results to AASHTO in March-April

Annual NCHRP **Projects Announced**

AASHTO Members, **AASHTO Committees** Research Needs by

SCOR/RAC Ballots

AASHTO/TRB meet regularly

TRB solicits panel

TRB issues requests for proposals and selects research contractors in

14

Presentation overview

- Introduction and Key Objectives
- Historical Overview of Highway Geometric Design
- AASHTO and TRB Strategic Research Objectives
- NCHRP Report 785 Overview and Application
 - Julia Knudsen
- NCHRP Report 839 Overview
- Questions and Discussion

NCHRP Report 785

- Chapter 1 Introduction
- Chapter 2 Overview
- Chapter 3 Identify Project Outcomes
- Chapter 4 Geometric Design Elements
- Chapter 5 Process Framework
- Chapter 6 Project Examples

NCHRP Report 785 Model

Fundamental model of the approach

NCHRP Report 785

Overview of geometric design decisions

NCHRP Report 785

Relationship between project-level and performance measures

Chapter 3 – Identify Project Outcomes

- Fundamentally: Whom are we serving?
 - Whom are we serving?
 - Identifying the key road users and stakeholders for a given project and project context
 - What are we trying to achieve?
 - Identifying and articulating the core desired outcomes from the project

Establishing project context—Users and Performance

Chapter 3 – Identify Project Outcomes

- Geometric Design Performance <u>Categories</u>
 - Accessibility
 - Ability to approach a desired destination or potential opportunity for activity using highways and streets (including the sidewalks and/or bicycle lanes).
 - Mobility
 - Ability to move various users efficiently from one place to another using highways and streets.
 - Quality of Service
 - Perceived quality of travel by a road user.
 - Reliability
 - Consistency of performance over a series of time periods.
 - Safety
 - Expected frequency and severity of crashes occurring on highways and streets.

Chapter 3 – Identify Project Outcomes

Geometric Design Decisions

- Consider overall intended project outcomes, project performance, and transportation performance.
 - How do the features influence performance measures related to accessibility, mobility, quality of service, reliability, and safety?
- May have incremental and cumulative effects
- Discrete choices may impact broader concepts
 - Sustainability, economic competitiveness, or livability
- Identifying project design controls
 - Leads to appropriate design criteria to meet those design control needs

Chapter 4 – Geometric Design Elements

Introduction

- Summarize critical or high priority known relationships between design elements and performance
- Document the general relationship
- Identify possibly performance trade-offs
- Present resources and tools that can be used

This information can be expanded with future research

Chapter 4 – Geometric Design Elements

- Expected relationships between geometric design elements and performance categories
 - Segments
 - Nodes Intersections and Interchanges
- = expected direct effect
- \Box = expected indirect effect
- -- = expected not to have an effect
- * = relationship can be directly estimated by existing performance prediction tools
- ◊ = relationship can be indirectly estimated using more than one existing tool
- x = relationship cannot be estimated by existing tools

Segment Geometric					25
Elements/Characteristics	Accessibility	Mobility	Quality of Service	Reliability	Safety
Access points and density	•*	•*	•*		•*
Design speed and target speed		\Box^{\Diamond}	\Box^{\Diamond}	\Box^{\Diamond}	□*
Horizontal alignment		●◊	•◊	\Box^{\Diamond}	•*
Number of travel lanes	•*	•*	•*	□*	•*
Sidewalk and pedestrian facilities	•	•*	•*	□ ^x	●×
Bicycle accommodation features	•	•*	•*	\Box^{X}	●×
Median provisions	●◊	•*	•*	\Box^{\Diamond}	•*
Travel lane width(s)	●◊	•*	•*	□*	•*
Auxiliary lane width(s)	●X	●X	•×	\Box^{X}	●×
Type and location of auxiliary lanes	•◊	•*	•*		•*
Shoulder width(s) and composition	•◊	•*	•*	•	•*
Shoulder type(s)	●◊	●×	●X	\Box^{\Diamond}	•*
Lane & shoulder cross slopes				\Box^{X}	●×
Superelevation		●×	●X	\Box^{\Diamond}	•*
Roadside design features	●X	●x	●X	\Box^{X}	•*
Roadside barriers	●◊	•*	•*	\Box^{\Diamond}	•*
Minimum horizontal clearances	•◊	•*	•*		•*
Minimum sight distance	●X	●X	•×	\Box^{X}	●×
Maximum grade(s)	□◊	□*	□*		□*
Minimum vertical clearances	•◊	\Box^{X}	\Box^{X}	$\Box^{\mathbf{X}}$	\Box^{X}
Vertical alignment(s)		•*	•*	□*	•*
Bridge cross section	●◊	•*	•*		•*
Bridge length/ termini				\Box^{\Diamond}	•*
Rumble strips	●¢			\Box^{X}	•*

Chapter 4 – Geometric Design Elements

- Tables summarize the design elements/decisions and their relationship to performance measures from each of the transportation performance categories:
 - Accessibility
 - Mobility
 - Quality of Service
 - Reliability
 - Safety

For example: Accessibility

Chapter 4 – Geometric Design Elements *Accessibility*

Facility Type	Performance Measure	Definition	Geometric Design Elements	Basic Relationship	Potential Performance Tradeoffs
Segment	Driveway Density	Number of driveways per mile	Access points and density	Higher density of driveways associated with higher motor vehicle access	Degrade bicycle LOS, Increase crash likelihood, Increase average travel speed
Urban/ Suburban Segment	Transit stop spacing	Distance between transit stops along a roadway segment	Transit accommodation features	Higher frequency increases access for transit riders	Increases transit travel time and may degrade mobility for other vehicle modes
Segment	Presence of Pedestrian Facility	Presence of a sidewalk, multiuse path or shoulder	Sidewalk and pedestrian facilities	Greater connectivity and continuity of pedestrian network increases access for pedestrians	Implementing pedestrian facilities in a constrained environment may require removing capacity or parking for vehicle mode
Segment	Presence of Bicycle Facility	Presence of bicycle lanes, multiuse path, or shoulder	Bicycle accommodation features	Greater connectivity and continuity of bicycle network increases access for bicyclists	Implementing bicycle facilities in a constrained environment may require removing capacity or parking for vehicle mode

- Project Initiation
 - Project Context
 - Existing site constraints
 - Current performance
 - Surrounding land uses
 - Planned improvements
 - Anticipated form and function
 - Intended Outcomes

- A clear and concise understanding of the primary project purpose; and
- A set of performance measures to be used to evaluate a design's impact on the desired project purpose.

Concept Development

- Geometric Influences
 - Identify the geometric characteristics that influence a project's performance
 - Identify the geometric characteristics or decisions influenced by the desired performance of a project.
- Potential Solutions specific awareness of the:
 - Project context
 - Intended outcomes
 - Geometric characteristics and decisions

- Evaluation and Selection
 - Estimated Project Performance
 - Selecting the evaluation resource
 - For the stage in the project development process.
 - Applicable to the project context
 - Financial Feasibility
 - Total construction and maintenance cost
 - Cost effectiveness
 - Benefit/Cost ratio (B/C ratio)
 - Interpreting Results
 - Estimated Project Performance
 - Financial Feasibility

- Selection
 - Are the performance evaluation results making progress towards the intended project outcomes?
 - Do the alternatives serve the target audience and achieve the desired objectives?
 - Are there reasonable adjustments that can be made to the geometric design elements most significantly influencing project performance?
 - Do the performance measures help differentiate between the alternatives?
- Environmental Review Process
 - Environmental checklists, assessments and impact statements

	Site	e - Area and Fa Pro Type	ject Developm Stage	Performar Categorie	Project Type	3
Ch	a US 2 Rura	S 21/Sanderson IAlternatives ural Collector (Tv Identification and Evaluation		Safety ir	ntersection – Consider alternative ntersection control to improve safe	ety.
E	xample#	Site - Area and Facility Type	Project Development Stage	Performance Categories	Project Type	izontal
	1	US 21/Sanderson Road - Rural Collector (Two- Lane Highway)	Alternatives Identification and Evaluation	Safety	Intersection – Consider alternative intersection control to improve safety.	
	2	Richter Pass Road - Rural Collector	Preliminary Design	Safety, Mobility	Segment – Consider alternative horizontal curve radii to improve safety while minimizing costs and maintaining appropriate speed.	uto- te
	3	Cascade Ave - Suburban/Urban Arterial	Preliminary Design	Safety, Mobility Reliability, Accessibility, Quality of Servio	 Corridor – Retrofitting an existing auto- oriented urban arterial to incorporate complete street attributes. Focus on alternative street cross-sections. 	1
	4	SR 4 - Rural Collector	Preliminary Design	Safety, Reliabilit Quality of Servio	y, widths and sideslopes to minimize impact to an environmentally sensitive area.	ulder mpact a.
	5	27 th Avenue - Urban Minor Arterial	Alternatives Identification and Evaluation	Quality of Servic Safety, Accessibil	Segment – Alignment and cross-section considerations for new urban minor arterial being constructed to entice employers to a newly zoned industrial area.	tion ,
	6	US 6/Stonebrook Road - Rural Interchange	Alternatives Identification and Evaluation	Safety, Mobility	Interchange - Converting an at-grade intersection to a grade-separated y interchange. Focus on selecting the appropriate interchange form and	le
	Rura	l Interchange Evalı Evalı	tification and uation	satety, iviot ir a lo	propriate interchange form and	

Presentation overview

- Introduction and Key Objectives
- Historical Overview of Highway Geometric Design
- AASHTO and TRB Strategic Research Objectives
- NCHRP Report 785 Overview and Application
 - Hermanus Steyn
- NCHRP Report 839 Overview
- Questions and Discussion

NCHRP Report 785 - Applications

- Montana Department of Transportation (MDT) Road Design Manual
- Project Approach
 - Work collaboratively to generate design material that reflects current design research, updated project development processes, and best practices for road design
 - Performance-Based Design

MDT Road Design Manual Chapter 1 – Road Design Guidelines and Procedures

- Integrating performance-based design throughout manual
 - Coordination with State DOTs, local agencies, and stakeholders
 - Road design principles
 - Focus on performance vs. dimensions
 - Using performance based-design approach to make informed decisions and understand tradeoffs
 - Balance safety, design, and operations
 - Working collaboratively to generate ideas and solutions
 - Apply principles to accomplish the goal
MDT Road Design Manual

Chapter 1 – Road Design Guidelines and Procedures

- Integrating a performance based design approach

MDT Road Design Manual

- Author Notes in Margins through Manual referencing Performance-based Design
 - Excerpt from Chapter 3

Chapter 1, Section 1.2 provides additional information on applying a performance-based design approach. The MDT Geometric Design Standards provide the design team with design criteria for the horizontal design elements (1). The criteria provide a starting point for the design team to make a thoughtful evaluation of the project needs in consideration of the specific context. Design decisions may result in reasonable exceptions to the design criteria in order to meet the overall project purpose. A performance-based design framework can provide tools for making these decisions and design exceptions can help document these design choices.

NCHRP Report 785 - Applications

- Consistent with FHWA Performance-Based Practical Design (PBPD)
- FHWA PBPD Website
- <u>https://www.fhwa.dot.gov/design/pbpd/</u>
 - Overview
 - Fact Sheets
 - Case Studies

FHWA Designing for Operations

- Illustrative Examples
 - Complete Streets Examples
 - High-Occupancy Toll Lanes
 - Urban Freeway Reconstruction
 - Others

FACT SHEET: #1

AUGUST 2015 • www.fhwa.dot.gov/GoSHRP2/

Performance-Based Practical Design (PBPD)

What is PBPD?

PBPD is a decision-making approach that helps agencies better manage

transportation investments and serve system-level needs and performance

priorities with limited resources. Building upon Context Sensitive Solutions, flexibility in design, Practical Design, Asset Management, and Value Engineming, PBPD helps agencies expand the focus from cost-saving, short-kerm solutions to improving and evaluating overall system performance.

How is PBPD Different?

The PBPD approach uses quantifative analyses to guide decision-making throughout the project development process. Advances in data the state of the

Operational and Safety Analysis Tools

ANALYSIS TOOLS				
Safety	Operational			
Safety Analyst	Treffic Simulatio			
Highway Safety Manual	Highway Capaci Manual			
Interactive Highway Safety Design Model	Integrated Corris Management			

Analysis is a law component of PEPD. Many projects include a stated or implicit goard of moving/or goardsnor or antifyr; however, the State or local agoing does not always have enough dats to know whether a propeed project voud actually accomplish that gaal or whether a complete or project has achieved its attated purpose. The use of appropriate analysis tools, as shown in the table, will allow agancies to affectively evaluate and compare the performance of various attransfers.

PBPD Resources

PHWA embraces the PBPD approach and developed a team specifically designated to raise swareness of PBPD by supporting Stated interested in PBPD, promoting the use of existing design flexibility along with performance analysis tools, and developing and disseminating information. The best place to find PBPD information is on HWKs weblan: http://www.thwa.dot.gov/design/pbpd/. This website includes:

- A recorded webinar with a full overview of PBPD
- Case studies highlighting PBPD in action
- Links to design guides, reports, publications, and performance analysis tools

George Merritt 404-552-3911

- Information about training and hosting a PBPD workshop
- Contact information for technical assistance in deploying PBPD

FHWA Contacts Robert Moowy 202-366-2221 Robert Moowy@dot.gov

U.S. Department of Transportation Federal Highway Administration

INTRODUCTION TO PERFORMANCE-BASED PRACTICAL DESIGN

Presentation overview

- Introduction and Key Objectives
- Historical Overview of Highway Geometric Design
- AASHTO and TRB Strategic Research Objectives
- NCHRP Report 785 Overview
- NCHRP Report 839 Overview
 - Rich Coakley
- Questions and Discussion

Introduction to NCHRP 15-47 – NCHRP Report 839 A Performance Based Highway Geometric Design Process

41

The recommended geometric design process reflects an understanding of:

- History of highway design
- Growth in knowledge of design effects on roadway performance,
- Changes in emphasis and importance of road design and all road users
- Legal framework that shapes implementation of public infrastructure,
- Advances in technology that facilitate roadway design
- Growing and seemingly permanent condition of limited resources for
 - Construction
 - Operation
 - Maintenance of roads

Early Decearch Eindinge	Alternative Design Processes and Initiatives 42							42		
Important Insights for the Design Process	Complete Streets	CSS	Perfomance- Based Design	Practical Design	Design Matrix	Safe Systems	Travel Time Reliability	Value Engineering	Designing for 3R	Designing for VLVLR
Roads serve more than just motor vehicles	•	•								
Road design involves many different disciplines	•	•	•			•		•	0	
Context matters and it varies	•	•	0	0	•	0	0	0		•
Performance (operational, safety) is important		0	•	•	•	•	•	0		
Performance may have many dimensions	•	•	•	•	•		•	0	0	
Safety performance should focus on elimination or mitigation of severe crashes			0	o	0	•		o		o
Speed and crash severity are closely linked			•			•				
Existing roads with known problems are different from new roads				•	•				•	0
Traditional design approaches (full application of AASHTO criteria) are believed by professionals to yield suboptimal results	•	•		•	•			0		
Focusing on identifying and addressing the problem(s) should be central to developing design solutions	0	0	•	•	•		0	•	0	
Safety risk and cost-effectiveness are related to traffic volumes			•		•				0	•

The current mental model of designers –

Fundamental Bases for Roadway Design

- Roadway design projects begin with a stated transportation problem. The purpose of geometric design is to provide the necessary three-dimensional framework for a facility to address the problem by providing the appropriate service to the users.
- Dimensional and other design standards and criteria are a means to an end. The end is transportation performance, such performance to include mobility, accessibility, safety, and state-of-good repair.
- Highway design criteria should be objectively related to one or more measures of transportation performance.

Solving objectively defined transportation problems is the reason for any and every project

Replacement of infrastructure in disrepair

Mobility or traffic operational problems; and accessibility

Safety problems (crash prevention and/or severity mitigation)

Design Standards and Problem Definition

- The presence of one or more geometric design features that fail to meet current design criteria is NOT a transportation problem...
- It is merely a condition of the context of a reconstruction or 3R project.

Design must consider needs of all legal roadway users

- Vehicle types
 - passenger cars

47

- trucks (freight)
- Buses and transit
- Non-motorized users
 - pedestrians
 - bicyclists
 - disabled

Guiding Principles for an Updated Highway Design Process

Fundamental Bases

- Solutions Should Address
 Objective, Quantitative
 Measures of Transportation
 Performance
- Explicitly Address All Potential, Legal Road Users
- Integrate Operational Solutions with Geometric Elements
- Forward Looking
- Context Sensitive to the Extent Possible
- Financially Sustainable

 Social and Public Policy Framework

- Accountability and Responsibility
- Legal Framework
- Support the Financial Sustainability of the Agency's Program

Necessary Attributes

- Efficiency
- Scalability
- Executable
- Transparency and Defensibility

Simplified Geometric Design Process

Performance-Based Highway Design Process

Step 1 - Define the Transportation Problem or Need

Step 2 – Identify and Charter Stakeholders

Step 3 - Develop the Project Scope

Step 4 - Determine Project Type and Design Development Parameters

Step 5 – Establish the Project Context and Geometric Design Framework

Step 6 – Apply the Appropriate Geometric Design Process and Framework

Performance-Based Highway Design Process - continued

Step 7 – Design the Geometric Alternatives

Step 8 – Design Decision-Making and Documentation

Step 9 – Transition to Preliminary and Final Engineering

Step 10 – Agency Operations and Maintenance Database Assembly

Step 11 - Monitoring and Feedback to Agency Processes and Database

Highway design does not occur in a vacuum – the 'context' matters... and it varies considerably

Roadway Context Zones

Typical or Critical Substantive Safety Issues Governing Geometric Design by Context

Roadway Type	Rural Natural Zone	Rural Zone	Suburban Zone	General Urban Zone	Urban Center Zone	Urban Core Zone
Local	Single-vehicle (low speed, lo	e Run-off-road ow frequency)	Multi-vehicle Intersection and driveway-related; pedestrian and bicycle; low speed		Pedestrian intersections and mid-block	
Collector Arterial	Single-vehicle (high spe frequency); intersectio	e Run-off-road ed, higher multivehicle on-related	Multi-vehicle Inte driveway-related; me related	ersection and edian and access d	Pedestrian intersection and mid-block; multivehic intersection-related	
Freeway	Single-vehicle truck involved exiting (interd med	e Run-off-road; d; merging and changes); cross dian	Single-vehicle Run- off road; weaving, entering and exiting (interchange related)	Multi-vehicle weaving, entering and congestion-related rear-end and si		ng and exiting; and sideswipe

Characteristics of Fatal and Injury Crashes by Context Zone

Typical or Critical Operational Issues Governing Geometric Design by Context

Roadway Type	Rural Natural Zone	Rural Zone	Suburban Zone	General Urban Zone	Urban Center Zone	Urban Core Zone	
Local	Accessibility to ad with minima environmenta	ljacent land uses al cost and al disruption	Access to land uses for motor vehicles and vulnerable users		Access to land uses by pedestrians, transit users and		
Collector	Mobility and relia	obility and reliability of traffic		Ill range of road	goods delivery.		
Arterial	service (travel time and travel time variance) for reasonable range of vehicle types		users including bicycles and	motor vehicles, pedestrians	Travel time reliability for transit buses and taxis; mobility for pedestrians		
Freeway	Minimization and reliability of minimization of total costs of motor vehicle trips of all types (including especially freight), such costs to include both vehicle operating and travel time costs						

Basic Design Controls

- Design Year Traffic
- Service Life Traffic
- Design or Target Speed
- Design Operating Conditions
 - Design Level of Service
 - Travel Time Reliability
- Road User Attributes

Project Types and Transportation Problems

	Transportation Problem					
Project Type	Mobility	Access	Safety	State-of- good Repair		
New Location	Х	Х				
3R				Х		
Reconstruction	Х	Х	Х	Х		

New Construction vs reconstruction

New Construction vs. Reconstruction

New Construction

- Unknown Safety
 Performance
- Unknown Operational Performance
- Available R/W of Sufficient Width
- Minimal Impacts to Adjacent Development
- Construction Costs are Quantity Based

Reconstruction

- Known Crash History
- Known Operational Performance Known
- Limited R/W
- Adverse Impacts to Adjacent Development
- Maintenance of Traffic/Local Access
 Drive Construction Cost

Strawman Framework for Design of Lane Widths for Road Types by Context

Roadway Type	Rural Natural Zone	Rural Zone	Suburban Zone	General Urban Zone	Urban Center Zone	Urban Core Zone	
Local	Total road width based on operating characteristics of vehicle; 9 ft minimum lanes may suffice		10-ft minimum; additional width where bicycles are to be considered	10 to 11-ft widths; greater dimension where bicycles, on-street parking, bus and loading zone occur			
Collector	Total road width based on providing minimum LOS and reflecting expected crash risk; 10 ft lanes should suffice for most volume ranges		10- 12 ft; additional width where bicycles are to be considered	10 to 11-ft widths; greater dimension where bicycles, on-street parking, bus and loading zones occur			
Arterial	Range of 10 ft to 12 ft may apply based on volume, context (terrain, trucks, environmental); shoulder dimensions of 2 ft or more based on crash risk and maintenance costs		10- 12 ft; additional width where bicycles are to be considered	10 to 11-ft widths; greater dimension where bicycles, on-street parking, bus and loading zor occur			
Freeway	12 ft lane widths for most cases; in extreme context constraints 11 ft to 11.5 ft may be considered		12-ft lane widths; full right shoulders	11 to 12-ft lanes; consider total width of shoulders and develop optimal solution ging right-of-way, maintenance and performa analysis			

Comparison of four lane standard and five lane reduced width cross sections

Alternative 1:

4 – 12 ft lanes with 10 ft right shoulders and 10 ft left shoulders

Alternative 2:

5 – 11 ft lanes with 10 ft right shoulders and 3 ft left shoulders

Comparison of four lane standard and five lane reduced width cross sections

Alternative	Capacity Analysis results					
	Level of Service	Density (pc/mi/ln)	Speed (mph)			
1	F	61.3	43.7			
2	E	35.5	60.5			

LOS was determined using HCS 2010 Freeways Version 6.60

Alternative	Predicted Crashes per mile per year								
	Total	К	А	В	С	PDO			
1	46.8	0.2	0.6	3.2	9.7	33.2			
2	40.1	0.3	0.6	3.5	8.1	27.7			

Predicted crashes were determined using ISATe (Build 6.10) (uncalibrated model without crash data input)

Functional Basis for Curve	Design Vehicle	Speed Input	Potential Geometric	Comments	Research Issues 6
Design	Assumption	Assumptions	Interactions		
Driver Comfort	Passenger Car	Requires Design Speed Assumption	None	Current AASHTO approach; requires updated data and model	Replicate studies using current vehicles and drivers; or potentially use SHRP2 naturalistic driver database
Vehicle Overturn Potential	Single Unit or Semi-trailer	Requires Design Speed Assumption	Could be combined with grade	May be appropriate for Special purpose roads, loop ramps, or roads with high proportion of large vehicles (TBD)	Determine relationship of curvature to overturn risk
Driver Loss of Control	Passenger Car	Requires Design Speed Assumption	Could be combined with grade	Apply models of actual driver behavior through curves; establish margin of safety for range of pavement friction based on studies or agency policy	Apply models of vehicle path and speed behavior (validate and update); potentially use SHRP2 naturalistic database; collect pavement performance data
Off-tracking of Critical Design Vehicle	Semi-trailer or other long vehicle	None would by definition apply to low speed roads with minimal risk of severe crashes	Could be combined with roadway or lane width	May be appropriate for very low speed and/or low volume roadways	Develop radius and width for low speed turns based on AUTOTURN or other computer models
Off-tracking at speed of Frequent Design Vehicle	Bus, semi-trailer or single unit truck	None would by definition apply to moderate speed roads irrespective of speed	Could be combined with roadway or lane width	May be appropriate for collectors and urban arterials up to 40 to 45 mph	Confirm and validate insensitivity of horizontal curvature to crashes on urban and suburban arterials; Conduct field studies observing offtracking at moderate speeds
Cost Effectiveness Analysis; Quantitative Safety and Operating Cost vs. Construction and Maintenance Cost	None	None process tests incrementally larger radii curves for their quantitative benefits	Could be combined with shoulder width and roadside; automatically incorporates radius and length (or central angle)	May be appropriate for 2-lane highway reconstruction projects	Model operating costs (fuel consumption, wear and tear); incremental safety benefits using HSM models for various road types)
Cost Effectiveness Analysis; Quantitative Safety and Operating Cost vs. Construction and Maintenance Cost; including effects of curvature on capacity and throughput	None		Could be combined with shoulder width and roadside; automatically incorporates radius and length (or central angle)	May be appropriate for reconstruction of high volume urban freeways	Model operating costs (fuel consumption, wear and tear); incremental safety benefits using HSM models for various road types); study effects of curvature on capacity and include these

Strawman Framework for Design of Horizontal Curvature for Road Types by Context

	Strawman' Framework for Design of Horizontal Curvature for Road Types by Context						
Roadway Type	Rural Natural Zone	Rural Zone	Suburban Zone	General Urban Zone	Urban Center Zone	Urban Core Zone	
Local	Based on off-track of larger design veh = 20 to 30 mph) o from skidding (ing requirements nicles (nominal DS r loss of control DS = 40 mph)	Based on loss of control from	Based on off-tracking requirements of typical la vehicles (perhaps vary by road type and context zo very low speeds; urban buses, single unit trucks, s trailers			
Collector	Based on loss of skidd	f control from ling	Skidding				
Arterial	Based on volume effective design crit safety performance	-sensitive, cost- eria derived from e, operating cost;	Based on loss of control from skidding	Based on off-tra vehicles (perhaps v	acking requirements vary by road type ar moderate speeds	s of typical large nd context zone) at	
Freeway	and infrastructure include interactive e approp	e life-cycle cost; effects of grade as priate	Based on volume-sensitive, cost-effective design criteria derived from safety performance, operating cost, and throughput/capacity; and infrastructure life-cycle cost; include interactive effects of grade; include consideration of decision or stopping sight distance limited by horizont				

Predicted Changes in Annual Crashes for Changes in Radius

Change in	Predicted Annual Crashes for Central Angle of 45 Degrees					
Radius of Curve	4000 vpd	7000 vpd	10, 000 vpd			
500 to 1000	0.06	0.104	0.149			
500 to 1500	0.038	0.144	0.206			
500 to 2000	0.096	0.168	0.240			
1000 to 2000	0.036	0.064	0.091			
1000 to 3000	0.054	0.095	0.136			

Transition in skills, knowledge and approach

- The 'old model' geometric designer
 - Understands basics of vehiclecentric AASHTO models
 - Applying the policy and standards to produce a solution that fully meets criteria
 - Calculation of alignment
 - Balancing of earthwork
 - Detailing of construction plans
 - Compiling quantities for contract documents

- The 'new model' geometric designer
 - Engaging multiple stakeholders (some non-technical)
 - Proficient in application of tools, models and evaluation methods for operational and safety effects of design (HCM, HSM, IHSDM)
 - Always testing multiple alternatives
 - Able to design in range of speed and land-use contexts
 - Fully knowledgeable in environmental regulations, laws, and processes
 - Applying multi-attribute decision models
 - Knowledgeable in economic analysis; B/C principles

GUIDELINES for GEOMETRIC DESIGN of LOW-VOLUME ROADS

More than 80% of the roads in the United States have traffic volumes of 2000 vehicles per day or less

Update of the AASHTO Guidelines for Geometric Design of Very Low-Volume Local Roads

The first edition published in 2001 addressed roads with traffic volumes of 400 vehicles per day or less

The second Edition is the AASHTO Guidelines for Geometric Design of Low-Volume Roads

For projects on existing roads, the second edition increases the traffic volume threshold to which the guidelines are applicable from 400 to 2,000 vehicles/day

Results of the survey:

- Approximately 40 percent of respondents supported expanding the guidelines to an AADT higher than 400 vehicles/day
- This support was generally from states that have substantial lower volume road networks
- Agencies that supported an increase in the AADT threshold were asked what that revised threshold should be:
 - responses ranged from 500 to 2,500 vehicles/day
 - the most common response was 1,000 vehicles/day

Definition of Terms

- The current guide defines a "very low-volume road" as having an AADT of 400 vehicles/day or less
- In the past, research has defined a "low-volume road" as having an AADT of 2,000 vehicles/day or less
- If we were to adopt a threshold between 400 and 2,000 vehicles/day, what term would be use for roads below that threshold that would not be confusing?
Existing Roads vs. New Construction

- For new construction, these guidelines apply for traffic volumes up to 400 vehicles/day;
- For new construction in the range of traffic volumes from 400 to 2,000 vehicles/day, normal Green Book design criteria apply
- For projects on existing roads, the guidelines apply for traffic volumes up to 2,000 vehicles/day

Relevant material from these documents referenced in the Low-volume Road guidelines:

- 2004 and 2011 editions of the AASHTO Green Book
- Chapter 5 of the Manual on Uniform Traffic Control Devices
- AASHTO Highway Safety Manual
- AASHTO Roadside Design Guide
- AASHTO Guidelines for Design, Operation, and Maintenance of Pedestrian Facilities
- AASHTO Guidelines for Development of Bicycle Facilities
- U.S. Access Board Public Rights-of-Way Guidelines

Questions

Brian Ray, PE bray@kittelson.com

Julia Knudsen, PE jknudsen@kittelson.com

Hermanus Steyn, Pr.Eng., PE hsteyn@kittelson.com

Richard Coakley, PE, PTOE Richard.Coakley@CH2M.com