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Purpose  

Discuss the concepts of Direct Displacement-Based Seismic 
Design (DDBD) as a methodology suitable for seismic design 
of bridges.  
 

Learning Objectives 
At the end of this webinar, you will be able to: 
• Understand the fundamentals of DDBD 
• Apply DDBD principles do the design of simple bridges 
• Understand the issues involved in developing more 

complex structures 
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Webinar Schedule 

• Introduction and Motivation 
• Seismic Demands for DDBD 
• Fundamentals of DDBD for SDOF systems. 
• Multi-span bridges 
 



Traditional Force-Based Design 
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Forces: Poor Indicators of Damage 



DESIGN  TO  ELASTIC  ACCELERATION 
SPECTRA (FORCE-BASED DESIGN) 

ASSUMPTIONS  ARE: 

• Elastic force levels (dependent on initial stiffness) are 
of prime importance 

• Elastic stiffness is known at the start of design 

• Elastic forces can be reduced by ductility factors, 
dependent only on material and structural type 

• Maximum transient response is the issue.  Residual 
displacement is irrelevant 

• Displacements are well estimated by elastic response 
values 

• Safety is increased as strength is increased 
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INTERDEPENDENCY OF STRENGTH AND STIFFNESS 

Stiffness EI = M/φ 
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(a) Design assumption 
(constant stiffness) 

(b) Realistic assumption 
(constant yield curvature 

INFLUENCE OF STRENGTH ON MOMENT-CURVATURE RESPONSE 



FORCE-BASED DESIGN – 
ASSUMPTIONS OF SYSTEM DUCTILITY 

• In current force-based design it is assumed that 
structural systems have a unique ductility capacity, and 
hence a unique force-reduction factor 

 e.g. 

Concrete Frame Building: Rµ = 6  (depends on country) 

Concrete Wall Building:   Rµ = 4  (::) 

Concrete Bridge:   Rµ  = 3  (::)  

 



CONSIDER BRIDGE COLUMNS OF DIFFERENT 
HEIGHTS 

H=3m 

H=8m 

(a) Squat Column,µ∆=9.4  (b) Slender Column,µ∆=5.1 

(P/f’cAg=0.1, Rebar = 2% long., 0.6% transverse 
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Direct Displacement-Based 
Design: What’s Different? 

• Design for a target damage level. 
• Use displacement spectra to define hazard. 
• Consider energy dissipation via equivalent 

viscous damping. 
• Start with target displacement – end with 

required strength and stiffness. 
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FUNDAMENTALS OF DDBD 



 

Session 2 
Characterization of Seismicity for 

Displacement-Based Seismic Design 

 

 



Seismicity Outline 

• Time histories 
• Response Spectra 
• Seismic Input for DDBD 
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(a) Whittier Earthquake, MW=6.0, 1987
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WHITTIER NARROWS 1987, Mw = 6.0 (15 km) 
ACCELEROGRAM 
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(b) Sylmar Record, Northridge Earthquake, MW=6.7, 1994
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Time History Observations 

• Acceleration time histories give an 
incomplete picture of an EQ 

• Frequency content may be influenced by 
distance to source 

• Displacement time histories expose 
large differences between earthquakes 
of comparatively similar PGAs 



ARS and DRS 
of Selected 

Records 
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Response Spectra Observations 

• ARS do not give the complete picture of 
damage potential of an EQ 

• EQs with large PGAs do not necessarily 
indicate large potential for damage. 

• Distance to source plays an important 
role in defining damage potential of an 
EQ 



Seismic Input for DDBD 



DRS Options 

• Approximate from code ARS 
• Direct calculation from code specified 

parameters (i.e. EuroCode) 
• Ground motion prediction equations 

(magnitude-distance relationships) for 
DRS, or converted from ARS. 

• Site-specific evaluation 



Option One: DRS from ARS 



Derived ASCE 7 Displacement Spectra 

Tc 

Easy to apply, however, 
design ARS may  
be inaccurate in the long  
period range, likely  
overestimating response  
levels. 
 



Option Two: Code DRS 

Ideal option, however, only EuroCode defines DRS directly 



Option Three: GMPEs 

• Numerous GMPEs for ARS that could be 
converted to DRS by dividing by ω2 as in 
option one. 

• Preferable to use GMPE that directly 
defines DRS, i.e. Faccioli, 2004 and 
2010. 



DESIGN DISPLACEMENT SPECTRA (4)

• Based on Faccioli’s observations,the corner period Tc
appears to increase almost linearly with moment 
magnitude.  For earthquakes with MW > 5.7, the 
following expression seems conservative:

( )7.55.20.1 −+= wc MT

• Peak  displacement at the corner period can be 
estimated from the following expression (firm ground):

r

WM )2.3(

max
10 −

=δ

seconds

mm r = nearest 
distance to fault 
plane (km)
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Comparison of 2004 Faccioli 
Model with actual Data 
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SESSION 3 
Fundamentals of 

Displacement-Based Seismic 
Design 
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(a) SDOF Simulation               (b) Effective Stiffness Ke  
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FUNDAMENTALS OF DDBD 







• Select target displacement, ∆d 
– Strain, Drift, or Ductility 

• Calculate yield displacement, ∆y 
– Fundamental member property 

• Calculate equivalent viscous damping, 
ζ 
– Relationships between damping 

and ductility available and easily 
obtained 

• Calculate effective period, Teff 
– From Response spectra 

• Calculate effective stiffness, Keff 
– Keff = 4π2m/Teff

2 

• Calculate design base shear force, Vb 
– Vb = Keff∆d 



SINGLE-DEGREE-OF-FREEDOM 
STRUCTURES 

DIRECT DISPLACEMENT-BASED 
DESIGN 



1. DESIGN DISPLACEMENT FOR S.D.O.F 
STRUCTURES 

• Depends on Design Limit State 

• Structural displacement limit: Strain related, 
Ductility related 

• Non-structural displacement limit: Drift related 

• chose critical of structural and non-structural limit 
displacements 



EXAMPLE OF STRAIN LIMIT STATES 

Curvature from concrete 
compression: 

 φmc = εcm/c 
Curvature from reinforcement 
tension: 

 φms = εsm/(d-c) 

Chose lesser of φmc and φms, 
Design Displacement is: 

∆ds = ∆y +  ∆p 

      = φyH2/3 + (φm-φy)LpH 

Lp = plastic hinge length. 



2. DUCTILITY 

Damping depends on the design displacement 
ductility:  

 µ∆ = ∆d/∆y 

NOTE: The yield displacement is independent 
of strength, and is thus known at the start 
of the design process (provided section size 
is known). Hence ductility is known at the 
start of the design process. 



DIMENSIONLESS YIELD CURVATURES 
AND DRIFTS 



3.EQUIVALENT VISCOUS DAMPING 





HYSTERETIC DAMPING – INITIAL WORK: 
JACOBSEN EVD APPROACH 



RELATIONSHIPS FOR TANGENT-STIFFNESS 
DAMPING, Te > 1 sec (CORRECTION FACTOR 

INCLUDED) 
 



Example – DDBD SDOF 

H=10m 
d=2m fy=470MPa 

Es=200GPa 
W=5000kN 
θd=0.035 
µd=4 

Target Displacement: 
     Drift: ∆d=(0.035)(10m) = 0.350 m 
     Ductility: ∆d=µd∆y 
                         ∆y=φyH2/3  
                             φy=2.25εy/D=0.00264 1/m 
                         ∆y= 0.088 m 
                 ∆d = 4(0.088) = 0.353 m 
                           

875 
mm 

4 sec. 

ζ=5% 



Example – DDBD SDOF 
Equivalent Viscous Damping (These expressions all assume 5% 
tangent stiffness proportional viscous damping and hysteretic 
damping):                         



Example – DDBD SDOF 

∆c 5% = 875 mm 

Tc = 4  

ζ=5% 

Obtaining Effective Period: 

∆d = 350 mm 

∆c 15.5% = 553 mm ζ=15.5% 

Teff = 2.53  Period 
(sec) 

Disp  (mm) 

NOTE: ∆c X% = ∆c 5% Rξ 
   2 + ζ 

Rξ =  
   7 



Example – DDBD SDOF 
Obtaining Effective Stiffness: 

Obtaining Design Base Shear: 



Simplified Base Shear Equation for DDBD 

α = 0.5 for regular conditions 
α = 0.25 for velocity pulse conditions 
NOTE: Damping expressed as ratio in the above equation 
(not %). 
NOTE: Equation assumes a linear DRS to the corner 
point.           



Sample Problems  
See Handout 



Longitudinal Design of Bridges 

Transverse Design of Bridges 

Session 4 



DDBD OF MDOF BRIDGES 

Longitudinal Design: If the bridge is straight, this is 
generally straightforward, but will often dominate 
design requirements. Effective damping and design 
displacement are the main issues. 

Transverse Design: More complex, but often doesn’t 
govern. Displacement shape may not be obvious at 
start. Design displacement, damping, higher mode 
effects need to be considered. 



Obtaining Displaced Shape 
D
is
pl
ac

em
en

t 

Position along bridge 
Note: Stars are limit state displacements based on  
strain, ductility, or drift 



System Displacement and Effective 
Mass 

From work balance between MDOF and SDOF systems: 

From force equilibrium between MDOF and SDOF systems: 



Force is distributed in proportion to mass and pier top 
displacement. 

Base Shear Distribution 
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Transverse Design 
Example 

Estimate proportion of total force carried to abutments: X = 0.5 
Target displaced shape (governed by limit state displacement of  
central column: 40mm; 417mm; 596mm; 417mm; 40mm 
 
Pier B and D displacements are assumed to be 70% of Pier C displ.  



Example, continued 
System displacement: 485mm 
Pier ductilities: 1.59; 3.82; 1.59 
Pier damping: 10.2%, 15.4%, 10.2% 
System damping: 8.9% 
Base shear: 10280 kN 
Lateral force distribution: 115; 2820; 4410; 2820;115 
kN 
Lateral analysis using secant stiffness properties: 
 43mm; 383mm; 572mm; 383mm; 43mm (actual) 
 40mm; 417mm; 596mm; 417mm; 40mm (target) 
Revision of proportion of force carried by abutments. 
 (increase portion of force to abutments slightly) 
Converge onto X and displaced shape. 
 40mm; 395mm; 595mm; 395mm; 40mm (final) 



Sample Design and Analysis 
Result for MDOF Bridge 



Other verification results 
• 2, 4, 6 span bridges with 9 different 

support conditions. 
• Each bridge designed with DDBD and 

then analyzed with NLTH analysis.  



6 Span Bridge Results 
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IMPLEMENTATION OF DDBD IN PRACTICE 

CODES: 

1. Chapter 14 is written in code format, as a starting 
point for code development. 

2. Envisaged as being adopted as an “alternative” 
design process (i.e. parallel force-based and 
displacement-based procedures acceptable) 

3. POLA has adopted DDBD as the preferred 
procedure of a dual force-based/displacement-based 
code (performance defined by limit strains for BOTH 
approaches. 

4. Australia, New Zealand, Europe developing DDBD 
based codes. 



IMPLEMENTATION OF DDBD IN PRACTICE 

WITHIN EXISTING CODES: 

• Many codes permit the use of Time-history analysis as 
a design tool, hence: 

1. Design using DDBD to obtain a rational design 

2. Verify response using ITHA. 

Note that this approach follows the logical procedure of 
using analysis to verify design, rather than using 
analysis to DEFINE design (as with multi-modal analysis) 



To learn more 

• Textbook/papers 
• Occasional short courses 
• Feel free to contact me with any 

questions or to chat further. 



Panelists Presentations 

 
http://onlinepubs.trb.org/onlinepubs/webinars/170622.pdf 

 
After the webinar, you will receive a follow-up email 

containing a link to the recording 

http://onlinepubs.trb.org/onlinepubs/webinars/141023.pdf
http://onlinepubs.trb.org/onlinepubs/webinars/170413.pdf


Today’s Participants 
 
 

 
• Elmer Marx, Alaska Department of Transportation and 

Public Facilities, elmer.marx@alaska.gov  
• Mervyn Kowalsky, North Carolina State University, 

kowalsky@ncsu.edu  
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Get Involved with TRB 
 
• Getting involved is free! 
• Join a Standing Committee  (http://bit.ly/2jYRrF6) 

– Search for AFF50 (Seismic Design and Performance of 
Bridges) 

• Become a Friend of a Committee http://bit.ly/TRBcommittees 
– Networking opportunities 
– May provide a path to become a Standing Committee 

member 
• For more information: www.mytrb.org  

– Create your account 
– Update your profile 

97th TRB Annual Meeting: January 7-11, 2018 

http://bit.ly/2jYRrF6
http://bit.ly/2jYRrF6
http://bit.ly/TRBcommittees
http://www.mytrb.org/
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