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Purpose  
Discuss the latest research about theories on computing the ultimate 
passive force for abutment deflection. 
 
Learning Objectives 

At the end of this webinar, you will be able to: 
• Understand the differences between available methods for computing 

ultimate passive force and correctly compute ultimate passive force for 
four different materials, including: dense backfills, loose backfills, 
flowable fills/cellular concrete, and geofoam inclusions 

• Compute and adjust passive force for several characteristics, including: 
skew angle of the abutment, and cyclic loading 

• Understand how to select soil parameters for lateral pile analysis of 
abutment piles 

• Use p-multipliers to reduce lateral pile resistance due to group 
interaction and piles near MSE walls 
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Ralph Rollins, performed geotechnical 
investigations for over 5000 structures 

I took Soil Mechanics class from my Father 



Rachel Rollins was Civil Engineering student  

Rachel took Soil Mechanics class from her Father 



Granddaughter, Ella, shows early 
interest in soil behavior… 
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Lateral Resistance of Bridge Abutments 

 Passive force-displacement 
against abutment 
 

 Lateral resistance of piles 
near MSE wall faces  
 

L

    



Passive Force on Bridge Abutments 

 Passive force contributes to resistance 
 Using smaller passive force (lower Kp)  
 may be conservative 
 



Passive Force on Bridge Abutments 

 Passive force contributes to load 
 Using smaller passive force (lower Kp) is 

unconservative 
 

Liquefaction 



caption Buckled Railroad Bridge Caused by Lateral Spread During the 
1964 Alaska Earthquake 



Summary of Passive Force Methods 
Rankine 
Coloumb 
Log Spiral 
Caltrans 



Rankine Method 

Advantages 
• Simplicity 
• Conservative 

Limitations 
• Planar Shear Surface 
• Neglects wall friction (δ) 

 

Planar Shear 
Surface 

Pult 

Pult= 0.5 γH2 Kp 

 

Only 30% to 50% of correct value 
 

45-ϕ/2 

Kp = tan2(45+ϕ/2) 

 



Coulomb Method 

Advantages 
• Accounts for wall 

friction (δ) 
• Complex Geometries 

 

Limitations 
• Planar Shear Surface 
• Yields Very High Pult 

for δ > 0.4φ 

Planar Shear 
Surface 

Pult 
δ 

Pult= 0.5 γH2 Kp 

 

Over 100% higher than correct value 
 

Kp =  
 

cos2ϕ 

 cosδ   1-      sin(ϕ+δ)sin ϕ 2  
cosδ 



Nature is often non-linear! 

Nature likes log spirals! 



Log Spiral Method 

Advantages 
• Accounts for wall 

friction and shear 
shape 
 
 

Limitations 
• More Complicated 
• Graphical or 

numerical solution 

Rankine zone 
Pult 

δ 
Pult = 0.5 γH2 Kp 

 Prandl zone 

Log spiral Surface 



Log Spiral Passive Force  

  
 

ϕ = Soil friction angle 
δ = wall friction angle 
β=backfill slope angle 
H= height of back wall 
Kp=passive pressure  
       coefficient 
Kp can come from chart,  
Excel spreadsheet PYCAP  
 

Pp = 0.5γH2 Kp 



Wall Friction Angle, δ  

Noted in AASHTO 
LRFD (2010) 

Duncan and Mokwa 
(2001) 



Caltrans Method 

Advantages 
• Easy to apply  

 

Limitations 
• Assumes uniform 

pressure distribution 
• Neglects variable soil 

strength parameters 
 

)(
5.5

5 kipshksfAP eult ××=
5.5 ft 

5 ksf  

Based on field 
test with silty clay 



Bi-Linear Passive Force-Deflection Curve  
(Caltrans, 2010) 

Pult and kabut based on load 
tests at BYU, UC-Davis and 
UCLA 

Ultimate resistance, Pult = (5.0 ksf)(H/5.5 ft)Awall 

Initial resistance, kabut = (50 kip/in)*(H/5.5 ft)*w 

Fo
rc

e 

Pult 
kabut 

Deflection 



AASHTO Design Method 

19 

• Bi-linear relationship 
• Failure occurs at 
0.01-0.05H 

• Peak passive force 
obtained using log 
spiral method Pa

ss
iv

e 
Fo
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e 

0.01H-0.05H 

PP 

 



Hyperbolic Load-Deflection Curve  
(Duncan and Mokwa, 2001 Shamsabadi et al 2006) 

Pult based on log-
spiral method 

P-y curve based on: 
• Soil Type 
• Soil density/stiffness 
• Cap geometry 

 



“One good test is worth a  
thousand expert opinions.” 
 
   
 
    
       Werner Von Braun 

                   Designer of Saturn V Moon Rocket 



Healthy Skepticism about Tests 
 A theory is something nobody believes, 

except the person who proposed it. 
 An experiment (test) is something 

everybody believes, 
  

--Albert Einstein 
 

performed it 
except the person who 



3.67 
Ft 

Pile Caps/Abutments 

12 -Steel Pipe 
Piles (12.75” 
OD) 



Field Test Methodology  
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Development of Passive Resistance 
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Failure Surface Geometry 



Failure Surface Geometry 
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Comparison of Failure Geometries 
Rankine Failure 
Geometry 

Log-Spiral Failure 
Geometry 

Ep 



Surface of Sliding Comparisons 
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Log spiral theory
Estimated from field data

φ = 27°
δ = 20°

c = 27.3 kPa
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c = 0 kPa
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Measured and Predicted  
Peak Passive Force 

Clean Sand Fine Gravel Coarse Gravel Silty Sand
Measured 1090 774 1997 1428
Caltrans 914 914 914 914

1577 1149 3464 1575
(1577) (824) (2224) (351)

Log spiral               
numerical 
solution 

922 817 1688 1210

357 405 719 804
(357) (300) (474) (194)

Rankine

Numbers in (parenthesis)  neglect cohesion component

Method
Total passive force (kN)

Coulomb



Log Spiral Passive Force-Example  

  

Sandy Gravel 
γ=135 pcf 
ϕ = 40º 
δ = 0.70ϕ = 0.7(40º)=28º 
H= 6 ft 
 
 
 

Pp = 0.5γH2 Kp 

Pp = 0.5(135)(6)2 (13.3)=32.3 k/ft 
PpH = Pp cosδ =32.3 cos(28º) 

PpH = 28.5 k/ft  

Kp = 13.3 

13.3 



3D Geometry Effects 

Plan View 

Shear Z
one 

 Shear zones extend beyond the edge of pile 
cap/abutment 

 Increases the effective width of the abutment 

B Be 

Pile C
ap 

Load 



Equations for 3D Shear Effect 
Pp = Ep B R3D     (Duncan and Mokwa, 2001)      
 where Ep is passive force/width, B is width 

Ro = Kp – Ka 



Equations for 3D Shear Effect 
Pp = Ep B R3D     (Duncan and Mokwa, 2001)      
 where Ep is passive force/width, B is width 

Ro = Kp – Ka 



Influence of Relative Compaction 
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Failure Planes & Heave Profiles 
 
 

CLEAN SAND 
 Densely Compacted    Loosely Compacted 

 
 
 
 
 
 
 
 
 

 
 
 Shape of failure surfaces appear to reflect mobilization of wall 

friction 
 Densely compacted backfill has log-spiral failure surface 
 Loosely compacted backfill has planar (i.e., Rankine) failure 

surface 
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Summary 
 Passive Pressure for non-skewed abutments (Maroney (1995), 

Duncan and Mokwa (2001), Rollins and Sparks (2002), Rollins and 
Cole (2006), Lemnitzer et al (2009) 
 
 
 
 
 
 
 Passive force best estimated using log-spiral method  
 Peak passive force mobilized at displacement of 0.03H to 0.05H  
 Hyperbolic curve best represents passive force-displacement curve 

PP 



Skewed Bridge Abutment Overview 
 ≈ 40% of 600,000 bridges in US are skewed 
 Current design codes do not consider any 

effect of skew on passive force 
 Observations of poor performance of skewed 

bridges 
 
 

Shamsabadi et al. 2006 



Earthquake Damage to Skewed Bridges 
(Paine, Chile) 

Top Bridge 

  

Bottom Bridge 

Top Bridge 

Bridge decks have rotated and 
bridge was demolished 

Bottom Bridge 

Bridge deck was offset and was 
eventually demolished 

Top Bridge 

Bridge remained in service after 
the earthquake 



Damage rate for skewed bridges was twice that of 
non-skewed bridges (Toro et al  2013) 



Interaction of Forces on Bridge Abutment 

Deck Length, L 

Skew Angle, θ 

PL 



Numerical Analysis of Skewed Abutments 

(5th NSC, Shamsabadi et al., 2006) 

23 m (75 ft) wide abutment with 2.4 m (8 ft) high backwall  



Results of Numerical Analysis 

(5th NSC, Shamsabadi et al., 2006) 



Testing Program  
 Variations in Wingwall Geometry 

 
 
 
 
 

 Variations in Backfill Materials 
• Sand 
• Gravel 
• Geosynthetically Reinforced Soil (GRS) 

Transverse Wingwalls Parallel Wingwalls MSE Wingwalls 



Initial Laboratory Testing 



Test Layout 

No Skew 

Plan view: 

Elevation view: 

1.22 m (4 ft) 

0.6 m (2 ft) 



Test Procedure 

Plan view: 

Elevation view: 



Test “Abutment” 

15° 



Test “Abutment” 

30° 



Test “Abutment” 

45° 

Displacement:  60 mm 2.5” (0.10H) 
Load measurements: 
• Longitudinal 
• Vertical 
• Transverse 



Backfill Soil Properties 
 Gradation and Strength 

Property Value 
Classification SP or A-1-b 

Cu 3.7 

Cc 0.7 

Rc 98% 

γ 17.8 kN/m3 

ϕ 46º 
δ 33.2º 



Passive Force-Displacement Curves 



Reduction Factor for Skew Effects 
 

 Rskew= PP(skew)/Pp (No-skew) 
 
where Rskew is a function of skew angle, and wall width is 
equal to non-skewed (projected) width.  
  

    Rskew= 8x10-5θ – 0.018 θ + 1.0 
 
 

(ASCE, J. of Bridge Engrg., Rollins and Jessee 2013) 



Normalized Passive Force vs Skew, θ 

(ASCE, J. of Bridge Engrg., Rollins and Jessee 2013) 



Large Scale Field Testing 



Field Test Setup - Plan View 

12.75 in Dia.  
Steel Pipe Piles 

11 ft wide x 5.5 ft high  
Pile Cap  

24 ft 

22 ft 

Transverse Wingwalls 
2 x 4 ft Reinforced 
Concrete blocks 

4 ft Dia.  
Bored Pile 
Sheet Pile Wall Section 
AZ-18 

2 – 2500 kN Actuators 



Field Test Setup Elevation View 

11 ft wide x 5.5 ft high x 15 ft long 
Pile Cap  

1.8m 
6.4m  

4 ft Dia.  
Bored Pile 
Sheet Pile Wall 
Section AZ-18 

2 – 600 kip Actuators 12.75 in Dia.  
Steel Pipe Piles 



Sand backfill properties 
 
  Poorly graded sand (SP/A-1-b) 
 96% relative compaction 
 ϕ = 41° 
 c = 5 kPa (100 lbs/ft2) 
 γmax = 17.5 kN/m3 (111.5 lbs/ft3) 
 



No Skew - 0° Test Setup  

Hydraulic 
Actuators Simulated 

Abutment 
Concrete 
Wingwall 

Sand 
Backfill 



15° Skew Test Setup  



30° Skew Test Setup  



45° Skew Test Setup  



Test completed at 3.21 in 
(81.6 mm) of displacement 

Test completed at 3.43 in 
(87.2 mm) of displacement 

Heave Geometry at Test Completion 
0º Skew 45º Skew 



Surface Failure Geometry (30° Skew) 

64 



Passive Force vs. Displacement 
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Passive Force Reduction Factor vs. Skew 

Rskew = 8x10-05θ2 - 0.018θ + 1 
R² = 0.98 
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Shear force vs. transverse displacement 
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Abutment with MSE Wingwalls 



Test Setup for MSE Wingwall Tests 
        

15° 
Skew 30° 

Skew 



Welded Wire Grid Reinforcement (SSL) 



No Skew - 0° Test Setup  
12 ft x 5 ft wall panels 



15º Skew Test with MSE Wingwalls 



Field Test with 30º Skew & MSE Walls 
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Passive Force-Displacement curves 
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Passive Force Reduction Factor vs. Skew 

Rskew = 8x10-05θ2 - 0.018θ + 1 
R² = 0.98 
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Geometry Effects? 
 Field and Lab tests involved W/H ratios of 2.0 

 
 
 
 
 
 
 

Does this ratio impact the results? 

Laboratory Wall 

2 ft 

4 ft 

Field Wall 

5.5 ft 

11 ft 



Field Test with 0.9m Backfill - W/H=3.7 

11 ft x 5.5 ft high x 15 ft long  
Pile Cap  

0.9m 

4 ft Dia. Reinforced 
Concrete Shaft 

12.75 in. Dia.  
Steel Pipe Piles 
 

2- 600 kip Actuators 



Passive Force-Displacement Curves 
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Passive Force Reduction Factor vs. Skew 

Rskew = 8x10-05θ2 - 0.018θ + 1 
R² = 0.98 
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45º Skew with RC Wingwalls 



Overall Best Fit – Simplified Equation 
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Rskew =  e(-ϴ/45°)



Summary Relative to Skew Effects 
 Significant decrease in passive force with increase in 

skew angle. 
• Numerical Analysis 
• 8 Small Scale Lab Tests 
• 11 Large Scale Field tests 

 Simple reduction factor can account effect of skew angle 
on passive force 

 Reduction factor not much affected by wall W/H ratio 
 Reduction factor not much affected by sand, gravel, or 

GRS backfill type 
 Passive force typically mobilized at Δ/H ≈ 3 to 5% 
 Shear resistance largely mobilized with 0.25 inch of 

movement at interface 



Example Problem 
Given: 
 Abutment wall 6 ft high and 50 ft wide. 
 Backfill soil is sandy gravel (A-1-a) compacted to 95% of 

Modified Proctor density. ( γmoist = 135 pcf) 
 Soil friction angle, φ, of 40º with no cohesion 
 Assume soil/wall friction angle, δ, is 0.7φ = 28º 
 Skew angle, θ, of 30º 

 
Find: (a) Passive Force vs. Deflection Curve 
         (b) Shear Resistance vs. Deflection Curve 



Adjustment for Width & Skew 

Previously PpH = 28.5 k/ft  

50 ft 

θ = 30º 

For 0º skew condition 
PpH = (28.5 k/ft) (50ft) = 1425 k 

Compute skew reduction factor 
 Rskew= e(-ϴ/45º) = e(-30º/45º) =  0.51 

For 30º skew condition 
PpH = (1425 k)(0.51) = 727 k 
 

PpH 



Passive Force-Displacement 

50 ft 

θ = 30º 
PpH 

PpH 

Displacement (in) 

For a 6 ft high backwall: 
Peak at 0.03H = 0.03(6 ft)(12in/ft) 
                        = 2.2 in 

2.2 in 

727 k 

 = 727k 



Shear Force-Displacement 

50 ft 

θ = 30º For a δ=28º = 0.70φ  
T = cA + PpHtanδ 
    = 0 + (727 k) tan(28º) = 387k 
 

PpH=727k 

T 

Displacement (in) 

Peak at 0.25 in 

0.25 in 

387k 

T  = 387k 



Bi-linear Passive Force vs. Displacement 
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Hyperbolic Passive Force vs. Displacement 
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Flowable Fill Abutment Tests 
γ = 127 lbs/ft3 

UCS = 50 to 60 psi 
 



Flowable Fill Abutment Tests 

Pp = 0.5γH2B + 2cHB, Passive force for cohesive soil 
c = UCS/2 

 



Flowable Fill Abutment Tests 



Lightweight Cellular Concrete Backfill 

γ = 30 lbs/ft3 

UCS = 50 to 60 psi 
 



Passive Force-Deflection Curves 
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Pp = 0.5γH2B + 2cHB, Passive force for cohesive soil 
 



Lateral Pile Resistance at Abutments 
 Group interaction factors (P-multipliers) 
 Reduction factors for presence of MSE wall face 

 



Pile Group Interaction 
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P-Multiplier Concept (Brown et al, 1988) 
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9 Pile Group at 5.6 D Spacing 

LVDT Tie-Rod 
Load Cell 

Pinned 
Connection 



3x5 Pile Group at 3.3 D Spacing 



3x3 Pile Group at 5.6 Dia. Spacing 
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3x5 Pile Group at 3.3D Spacing 
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P-Multipliers from AASHTO 



(b) Trailing Row P-Multipliers
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P-Multipliers from Tests 
 

  
  

Rollins et al., 2005 



Abutment Piles near MSE Walls 



Abutment Piles Near MSE Walls 



MSE Wall Geometry 
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Plan View 
 Wall decreases lateral pile resistance 
 Pile load increases force on reinforcement 

Elevation View 



Approaches to the Problem 

Increased Cost from Larger Pile Diameter or More Piles 

Ignore Soil Resistance 



Approaches to the Problem 

Increased Cost from Larger Bridge Span 

Increase Spacing to Eliminate Interaction 



Approaches to the Problem 

What should the reduction be? 

Estimate a Reduction Factor 



Mechanically Stabilized Earth Abutment Wall 



MSE Test Wall (20 ft high & 100 ft long)  

24 Tests with round, square, & H piles at 2D to 5D 



Profile View of Test Layout 
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Plan and Elevation View of Test Abutment 
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Strip Reinforcement Welded Wire grid Reinforcement 
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Cross-Section Through MSE Wall 
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Pile Testing Sequence 

2D 3D 4D 5D 5D 4D 3D 2D 5D 4D 3D 2D 2D 3D 4D 5D 

Wire Mat Type Reinforcement Strip Type Reinforcement 

12.75” Pipe Piles 12.75” Pipe Piles HP12x74 Piles 12” Square 
Piles 

Total of 31 Tests 15 ft Wall – L/H ≈ 0.9 
 
20 ft Wall – L/H ≈ 0.7 

Reaction Beam Reaction Beam Reaction Beam 



Nuclear Density Gauge Tests 



Typical Test Set-up 

Reaction Pile 
Reaction Beam Pre-cast 

Concrete Blocks 



Typical Test Set-up 

Reaction Pile 

Reaction Beam 

Test Pile 

Pre-cast Block 
Surcharge 



Load Test Photos 

Hydraulic 
Jack Pinned 

Connection 



Effect of MSE Wall on Lateral Pile Resistance 



Pipe Piles with Strip Reinforcement 
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Square Piles with Welded-Wire Reinforcement 



P-multiplier Concept For Proximity of the Wall 
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Measured and Computed Load-Deflection 
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P-multipliers from All Tests 
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Effect of Variables on P-multiplier Equation 

RED = ribbed strips 
BLUE = welded wire 

RED = L/H of 1.0+ 
BLUE = L/H of 0.9 
GREEN = L/H of 0.7 

Not significantly affected by reinforcement type Not significantly affected by L/H ratio 
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