The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

Seismic Design of Bridge Abutments

Thursday, September 28, 2017 2:00-4:00PM ET

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

Purpose

Discuss the latest research about theories on computing the ultimate passive force for abutment deflection.

Learning Objectives

At the end of this webinar, you will be able to:

- Understand the differences between available methods for computing ultimate passive force and correctly compute ultimate passive force for four different materials, including: dense backfills, loose backfills, flowable fills/cellular concrete, and geofoam inclusions
- Compute and adjust passive force for several characteristics, including: skew angle of the abutment, and cyclic loading
- Understand how to select soil parameters for lateral pile analysis of abutment piles
- Use p-multipliers to reduce lateral pile resistance due to group interaction and piles near MSE walls

Seismic Design of Bridge Abutments

Kyle Rollins Civil & Environmental Engineering Brigham Young University

Ralph Rollins, performed geotechnical investigations for over 5000 structures

Rachel Rollins was Civil Engineering student

Granddaughter, Ella, shows early interest in soil behavior...

Seismic Design of Bridge Abutments

Kyle Rollins Civil & Environmental Engineering Brigham Young University

Lateral Resistance of Bridge Abutments

- Passive force-displacement against abutment
- Lateral resistance of piles near MSE wall faces

Passive Force on Bridge Abutments

- Passive force contributes to resistance
- Using smaller passive force (lower K_p) may be conservative

Passive Force on Bridge Abutments

- Passive force contributes to load
- Using smaller passive force (lower K_p) is unconservative

Buckled Railroad Bridge Caused by Lateral Spread During the 1964 Alaska Earthquake

Summary of Passive Force Methods

- Rankine
- Coloumb
- Log Spiral
- Caltrans

Rankine Method

Coulomb Method

Advantages

- Accounts for wall friction (δ)
- Complex Geometries for $\delta > 0.4\phi$ Over 100% higher than correct value

Limitations

- Planar Shear Surface
- Yields Very High P_{ult} for $\delta > 0.4\phi$

Nature is often non-linear!

Nature likes log spirals!

Log Spiral Method

Accounts for wall
 More Complicated
 friction and shear
 Graphical or
 shape
 umerical solution

Log Spiral Passive Force

- $P_p = 0.5\gamma H^2 K_p$
- ϕ = Soil friction angle δ = wall friction angle β =backfill slope angle H= height of back wall K_p=passive pressure coefficient
- K_p can come from chart, Excel spreadsheet PYCAP

Wall Friction Angle, δ

Table 3.11.5.3-1-Friction Angle for Dissimilar Materials (U.S. Department of the Navy, 1982a)

	Friction Angle,	Coefficient of Friction, tan δ	
Interface Materials	δ (degrees)	(dim.)	_
Mass concrete on the following foundation materials:			
Clean sound took	35	0.70	
Clean around rock Clean gravel, gravel, sand mixtures, coarse sand	29 to 31	0.55 to 0.60	
 Clean graver, graver-sand mixtures, coarse sand Clean fine to medium sand silty medium to coarse sand silty or clayery gravel 			
Clean fine could will to a clayer fine to medium sand	24 to 29	0.45 to 0.55	
Eine sand, sitty of elayey fine to meanin sand	19 to 24	0.34 to 0.45	
Fine sancy sin, nonplastic sin	17 to 19	0.31 to 0.34	
• Very stiff and nard residual of pieconsolidated etay	22 to 26	0.40 to 0.49	
• Medium sum and sum clay and siny clay	17 to 19	0.31 to 0.34	
Masonry on foundation materials has same friction factors.			
Steel sheet piles against the following soils:			
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls	22	0.40	
Clean sand silty sand-gravel mixture, single-size hard rock fill	17	0.31	
• Silty sand, gravel or sand mixed with silt or clay	14	0.25	
Fine sandy silt nonplastic silt	11	0.19	
Formed or precast concrete or concrete sheet piling against the following soils:			
		0.40.0.00	
 Clean gravel, gravel-sand mixture, well-graded rock fill with spalls 	22 to 26	0.40 to 0.49	
 Clean sand, silty sand-gravel mixture, single-size hard rock fill 	17 to 22	0.31 to 0.40	
 Silty sand, gravel or sand mixed with silt or clay 	17	0.31	
Fine sandy silt, nonplastic silt	14	0.25	
		TABLE 1.	Minin

Noted in AASHTO LRFD (2010)

TABLE 1. Minimum Values of δ_{max}/ϕ Determined by Potyondy (1961)

Duncan and Mokwa (2001)

Caltrans Method

$$P_{ult} = A_e \times 5ksf \times \frac{h}{5.5}(kips)$$

<u>Advantages</u>

• Easy to apply

Limitations

- Assumes uniform pressure distribution
- Neglects variable soil strength parameters

Bi-Linear Passive Force-Deflection Curve (Caltrans, 2010)

Initial resistance, $k_{abut} = (50 \text{ kip/in})*(H/5.5 \text{ ft})*w$

Ultimate resistance, $P_{ult} = (5.0 \text{ ksf})(H/5.5 \text{ ft})A_{wall}$

AASHTO Design Method

- Bi-linear relationship
- Failure occurs at 0.01-0.05H
- Peak passive force obtained using log spiral method

0.01H-0.05H

Hyperbolic Load-Deflection Curve (Duncan and Mokwa, 2001 Shamsabadi et al 2006)

"One good test is worth a thousand expert opinions."

Werner Von Braun

Designer of Saturn V Moon Rocket

Healthy Skepticism about Tests

- A theory is something nobody believes, except the person who proposed it
- An experiment (test) is something everybody believes, except the person who performed it

--Albert Einstein

Pile Caps/Abutments

17

Ft

-27

3.67

Ft

12 -Steel Pipe Piles (12.75" OD)

Field Test Methodology

Development of Passive Resistance

Failure Surface Geometry

Failure Surface Geometry

Comparison of Failure Geometries

Surface of Sliding Comparisons

Measured and Predicted Peak Passive Force

	Total passive force (kN)				
Method	Clean Sand	Fine Gravel	Coarse Gravel	Silty Sand	
Measured	1090	774	1997	1428	
Caltrans	914	914	914	914	
Coulomb	1577	1149	3464	1575	
	(1577)	(824)	(2224)	(351)	
Log spiral numerical solution	922	817	1688	1210	
Rankine	357	405	719	804	
	(357)	(300)	(474)	(194)	

Numbers in (parenthesis) neglect cohesion component

Log Spiral Passive Force-Example

$$P_p = 0.5\gamma H^2 K_p$$

Sandy Gravel

- γ=135 pcf
- $\phi = 40^{\circ}$
- $\delta = 0.70\phi = 0.7(40^{\circ})=28^{\circ}$ H= 6 ft

 $K_{p} = 13.3$

 $P_p = 0.5(135)(6)^2 (13.3)=32.3 \text{ k/ft}$

 $\mathsf{P}_{\mathsf{pH}} = \mathsf{P}_{\mathsf{p}} \cos\delta = 32.3 \cos(28^{\circ})$

 $P_{pH} = 28.5 \text{ k/ft}$

3D Geometry Effects

- Shear zones extend beyond the edge of pile cap/abutment
- Increases the effective width of the abutment

Equations for 3D Shear Effect $P_p = E_p B R_{3D}$ (Duncan and Mokwa, 2001) where E_p is passive force/width, B is width

$$R_{3D} = \left[1 + \left(K_p - K_a \right)^{0.67} \left(1.1A^4 + \frac{1.6B_b}{1 + 5\left(\frac{B}{h}\right)} + \frac{0.4R_0A^3B_b^2}{1 + 0.05\left(\frac{B}{h}\right)} \right) \right]$$
(2-8)

$$A = 1 - \frac{h}{H}$$
 $B_b = 1 - \left(\frac{B}{S'}\right)^2$ $R_o = K_p - K_a$

Equations for 3D Shear Effect $P_p = E_p B R_{3D}$ (Duncan and Mokwa, 2001) where E_p is passive force/width, B is width

$$R_{3D} = \left[1 + \left(K_p - K_a \right)^{0.67} \left(1.1A^4 + \frac{1.6B_b}{1 + 5\left(\frac{B}{h}\right)} + \frac{0.4R_0A^3B_b^2}{1 + 0.05\left(\frac{B}{h}\right)} \right) \right]$$
(2-8)

$$A = 1 - \frac{h}{H}$$
 $B_b = 1 - \left(\frac{B}{S'}\right)^2$ $R_o = K_p - K_a$

Influence of Relative Compaction

Failure Planes & Heave Profiles

CLEAN SAND

Densely Compacted

Loosely Compacted

- Shape of failure surfaces appear to reflect mobilization of wall friction
- Densely compacted backfill has log-spiral failure surface
- Loosely compacted backfill has planar (i.e., Rankine) failure surface

Summary

Passive Pressure for non-skewed abutments (Maroney (1995), Duncan and Mokwa (2001), Rollins and Sparks (2002), Rollins and Cole (2006), Lemnitzer et al (2009)

- Passive force best estimated using log-spiral method
- Peak passive force mobilized at displacement of 0.03H to 0.05H
- Hyperbolic curve best represents passive force-displacement curve

Skewed Bridge Abutment Overview

- ☆ ≈ 40% of 600,000 bridges in US are skewed
- Current design codes do not consider any effect of skew on passive force
- Observations of poor performance of skewed bridges

Shamsabadi et al. 2006

Earthquake Damage to Skewed Bridges (Paine, Chile)

Damage rate for skewed bridges was twice that of non-skewed bridges (Toro et al 2013)

Interaction of Forces on Bridge Abutment

Numerical Analysis of Skewed Abutments

23 m (75 ft) wide abutment with 2.4 m (8 ft) high backwall (5th NSC, Shamsabadi et al., 2006)

Results of Numerical Analysis

(5th NSC, Shamsabadi et al., 2006)

Testing Program

Variations in Wingwall Geometry

Transverse Wingwalls

Parallel Wingwalls

MSE Wingwalls

- Variations in Backfill Materials
 - Sand
 - Gravel
 - Geosynthetically Reinforced Soil (GRS)

Initial Laboratory Testing

Test Layout

Test Procedure

Test "Abutment"

Test "Abutment"

Test "Abutment"

Displacement:

60 mm 2.5" (0.10H)

Load measurements:

- Longitudinal
- Vertical
- Transverse

Backfill Soil Properties

Gradation and Strength

Passive Force-Displacement Curves

Reduction Factor for Skew Effects

$$R_{skew} = P_{P(skew)} / P_{p (No-skew)}$$

where R_{skew} is a function of skew angle, and wall width is equal to non-skewed (projected) width.

$$R_{skew} = 8x10^{-5}\theta - 0.018\theta + 1.0$$

(ASCE, J. of Bridge Engrg., Rollins and Jessee 2013)

Normalized Passive Force vs Skew, θ

(ASCE, J. of Bridge Engrg., Rollins and Jessee 2013)

Large Scale Field Testing

Field Test Setup - Plan View

Field Test Setup Elevation View

Sand backfill properties

- Poorly graded sand (SP/A-1-b)
 96% relative compaction
- $\Box \phi = 41^{\circ}$
- □ c = 5 kPa (100 lbs/ft²)
- $\Box \gamma_{max} = 17.5 \text{ kN/m}^3 (111.5 \text{ lbs/ft}^3)$

No Skew - 0° Test Setup

15° Skew Test Setup

30° Skew Test Setup

45° Skew Test Setup

Heave Geometry at Test Completion

Test completed at 3.21 in (81.6 mm) of displacement

Test completed at 3.43 in (87.2 mm) of displacement

Surface Failure Geometry (30° Skew)

Passive Force vs. Displacement

Passive Force Reduction Factor vs. Skew

Shear force vs. transverse displacement

Abutment with MSE Wingwalls

Test Setup for MSE Wingwall Tests

Welded Wire Grid Reinforcement (SSL)

No Skew - 0° Test Setup

12 ft x 5 ft wall panels

15° Skew Test with MSE Wingwalls

Field Test with 30° Skew & MSE Walls

Passive Force-Displacement curves

Backwall Displacement, Δ [in]

Passive Force Reduction Factor vs. Skew

Geometry Effects?

Field and Lab tests involved W/H ratios of 2.0

Does this ratio impact the results?

Field Test with 0.9m Backfill - W/H=3.7

SECTION A-A

Passive Force-Displacement Curves

Passive Force Reduction Factor vs. Skew

45° Skew with RC Wingwalls

Overall Best Fit – Simplified Equation

Summary Relative to Skew Effects

- Significant decrease in passive force with increase in skew angle.
 - Numerical Analysis
 - 8 Small Scale Lab Tests
 - 11 Large Scale Field tests
- Simple reduction factor can account effect of skew angle on passive force
- Reduction factor not much affected by wall W/H ratio
- Reduction factor not much affected by sand, gravel, or GRS backfill type
- ♦ Passive force typically mobilized at $\Delta/H \approx 3$ to 5%
- Shear resistance largely mobilized with 0.25 inch of movement at interface

Example Problem

Given:

- Abutment wall 6 ft high and 50 ft wide.
- Backfill soil is sandy gravel (A-1-a) compacted to 95% of Modified Proctor density. (γ_{moist} = 135 pcf)
- * Soil friction angle, ϕ , of 40° with no cohesion
- ♦ Assume soil/wall friction angle, δ, is 0.7φ = 28°
- Skew angle, θ, of 30°

Find: (a) Passive Force vs. Deflection Curve(b) Shear Resistance vs. Deflection Curve

Adjustment for Width & Skew

Previously $P_{pH} = 28.5 \text{ k/ft}$

For 0° skew condition $P_{pH} = (28.5 \text{ k/ft}) (50 \text{ft}) = 1425 \text{ k}$

Compute skew reduction factor $R_{skew} = e^{(-\Theta/45^{\circ})} = e^{(-30^{\circ}/45^{\circ})} = 0.51$

For 30° skew condition P_{pH} = (1425 k)(0.51) = 727 k

Passive Force-Displacement

Shear Force-Displacement

Bi-linear Passive Force vs. Displacement

Hyperbolic Passive Force vs. Displacement

Flowable Fill Abutment Tests

 $\gamma = 127 \text{ lbs/ft}^3$ UCS = 50 to 60 psi

Flowable Fill Abutment Tests

 $P_p = 0.5\gamma H^2B + 2cHB$, Passive force for cohesive soil c = UCS/2

Flowable Fill Abutment Tests

Lightweight Cellular Concrete Backfill

 $\gamma = 30 \text{ lbs/ft}^3$ UCS = 50 to 60 psi

Passive Force-Deflection Curves

 $P_p = 0.5\gamma H^2B + 2cHB$, Passive force for cohesive soil

Lateral Pile Resistance at Abutments

- Group interaction factors (P-multipliers)
- Reduction factors for presence of MSE wall face

Pile Group Interaction Leading Row Piles Row 1 Row 2 **Trailing Row Piles** Row 3 **Direction of** Loading

Lateral Load Analysis for Piles with *p-y* Curves

P-Multiplier Concept (Brown et al, 1988)

9 Pile Group at 5.6 D Spacing

3x5 Pile Group at 3.3 D Spacing

3x3 Pile Group at 5.6 Dia. Spacing

3x5 Pile Group at 3.3D Spacing

P-Multipliers from AASHTO

AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS

Table 10.7.2.4-1—Pile P-Multipliers, Pm, for Multiple Row Shading (averaged from Hannigan et al., 2006)

Pile CTC spacing (in the direction of	P -Multipliers, P_m		
loading)	Row 1	Row 2	Row 3 and higher
3B	0.8	0.4	0.3
58	1.0	0.85	0.7

P-Multipliers from Tests

Abutment Piles near MSE Walls

Abutment Piles Near MSE Walls

MSE Wall Geometry S Н

Elevation View

Plan View

- Wall decreases lateral pile resistance
- Pile load increases force on reinforcement

Approaches to the Problem

Ignore Soil Resistance

Increased Cost from Larger Pile Diameter or More Piles

Approaches to the Problem

Increase Spacing to Eliminate Interaction

Increased Cost from Larger Bridge Span

Approaches to the Problem

Estimate a Reduction Factor

What should the reduction be?

Mechanically Stabilized Earth Abutment Wall

MSE Test Wall (20 ft high & 100 ft long)

Profile View of Test Layout

Ultimate Design

Layout During Tests

Plan and Elevation View of Test Abutment

Cross-Section Through MSE Wall

Pile Testing Sequence

19 ft Wallta LofB7 Cests

Nuclear Density Gauge Tests

Typical Test Set-up

Typical Test Set-up

Reaction Pile

Load Test Photos

Effect of MSE Wall on Lateral Pile Resistance

Pipe Piles with Strip Reinforcement

Square Piles with Welded-Wire Reinforcement

P-multiplier Concept For Proximity of the Wall

Measured and Computed Load-Deflection

P-multipliers from All Tests

Effect of Variables on P-multiplier Equation

Passive Force References

- Duncan, M.J. and Mokwa, R.L. (2001). "Passive earth pressure: theories and tests," J. Geotech. & Geoenv. Engrg. ASCE, 127(3), 248-257.
- Cole, R.T and Rollins, K.M. (2006). "Passive Earth Pressure Mobilization During Cyclic Loading." J. Geotechnical and Geoenvironmental Engrg., Vol. 132, No. 9, 1154-1164.
- Rollins, K.M. and Cole, R.T. (2006). "Cyclic Lateral Load Behavior of a Pile Cap and Backfill." J. Geotechnical and Geoenvironmental Engrg., ASCE, Vol. 132, No. 9, 1143-1153.
- Rollins, K.M. and Sparks, A.E. (2002) "Lateral Load Capacity of a Full-Scale Fixed-Head Pile Group." J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 9, p. 711-723.
- Rollins, K.M., Sparks, A.E., Peterson, K.T. (2000) "Lateral Load Capacity and Passive Resistance of a Full-Scale Pile Group and Cap." Transportation Research Record 1736, Transportation Research Board, p. 24-32
- Rollins, K. M. and Jessee, S. (2013). "Passive Force-Deflection Curves for Skewed Abutments". Journal of Bridge Engineering, ASCE, Vol. 18, No. 10, p. 1086-1094
- Marsh, A., Rollins, K.M., Behavior of Zero and Thirty Degree Skewed Abutments." (2013). Journal of Transportation Research, Transportation Research Board, Washington, DC. Vol. 2363 (Soil Mechanics 2013), p. 12-20
- Shamsabadi, A., ROLLINS, K.M., Kapaskur, M. (2007). "Nonlinear Soil-Abutment-Bridge Structure Interaction for Seismic Performance-Based Design." J. of Geotechnical and Geoenvironmental Engrg., ASCE, (June 2007) Vol. 133, No. 6, 707-720.
- Rollins, K.M., Scott, E., Marsh, E. (2017). "Geofoam Inclusions for Reducing Passive Force on Bridge Abutments Based on Large-Scale Tests." Procs. Geotechnical Frontiers, Geotechnical Special Publication 279, ASCE, p. 59-68.

Lateral Pile Group Load References

- Rollins, K.M., Olsen, R.J., Egbert, J.J., Jensen, D.H., Olsen, K.G., and Garrett, B.H. (2006). "Pile Spacing Effects on Lateral Pile Group Behavior: Load Tests." J. Geotechnical and Geoenvironmental Engrg., ASCE, Vol. 132, No. 10, p. 1262-1271,
- Rollins, K.M., Olsen, K.G., Jensen, D.H, Garrett, B.H., Olsen, R.J., and Egbert, J.J. (2006). "Pile Spacing Effects on Lateral Pile Group Behavior: Analysis." J. Geotechnical and Geoenvironmental Engrg., ASCE, Vol. 132, No. 10, p. 1272-1283.
- Rollins, K.M., Lane, J.D., Gerber, T. M. (2005) "Measured and Computed Lateral Response of a Pile Group in Sand." J. Geotechnical and Geoenvironmental Engrg., ASCE Vol. 131, No. 1, p. 103-114.
- Rollins, K.M., Snyder, J.L. and Broderick, R.D. (2005). "Static and Dynamic Lateral Response of a 15 Pile Group." Procs. 16th Intl. Conf. on Soil Mechanics and Geotech. Engineering, Millpress, Rotterdam, The Netherlands, Vol. 4, p. 2035-2040.
- Rollins K., Budd, R., Luna, A., Hatch, C., Besendorfer, J., Han, J., and Gladstone, R. (2016). "Lateral Resistance of Abutment Piles Near MSE Walls." International Bridge Conference, Washington, D.C., paper 16-52, 8 p.
- Rollins, K.M. and Nelson, K. (2015). "Influence of pile offset behind an MSE wall on lateral pile resistance." Procs. XVI European Conference on Soil Mechanics and Geotechnical Engineering: Geotechnical Engineering for Infrastructure and Development, ICE publishing, p. 1163-1168

Lateral Pile Resistance Near MSE Walls

- Rollins K., Budd, R., Luna, A., Hatch, C., Besendorfer, J., Han, J., and Gladstone, R. (2016). "Lateral Resistance of Abutment Piles Near MSE Walls." International Bridge Conference, Washington, D.C., paper 16-52, 8 p.
- Rollins, K.M. and Nelson, K. (2015). "Influence of pile offset behind an MSE wall on lateral pile resistance." Procs. XVI European Conference on Soil Mechanics and Geotechnical Engineering: Geotechnical Engineering for Infrastructure and Development, ICE publishing, p. 1163-1168

Questions?

Brigham Young University Campus

Today's Participants

- Ken Fishman, McMahon and Mann Consulting Engineers, PC, <u>kfishman@mmce.net</u>
- Kyle Rollins, *Brigham Young University,* rollinsk@byu.edu

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Get Involved with TRB

- Getting involved is free!
- Join a Standing Committee (<u>http://bit.ly/2jYRrF6</u>)
 AFF50 (Seismic Design & Performance of Bridges)
- Become a Friend of a Committee (<u>http://bit.ly/TRBcommittees</u>)
 - Networking opportunities
 - May provide a path to become a Standing Committee member
- For more information: <u>www.mytrb.org</u>
 - Create your account
 - Update your profile

97th TRB Annual Meeting: January 7-11, 2018

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Take Part in the *Careers in Motion* Networking Fair

http://bit.ly/CareersInMotionFair

The National Academies of SCIENCES • ENGINEERING • MEDICINE

