TRANSPORTATION RESEARCH BOARD

Preparing and Using Airport Design Day Flight Schedules

Wednesday, July 18, 2018 2:00-3:30 PM ET

Purpose

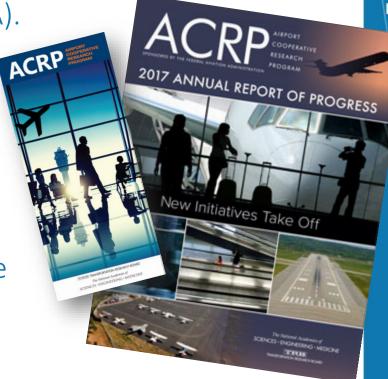
Discuss research from the <u>Airport Cooperative Research</u> <u>Program</u> (ACRP)'s <u>Research Report 163</u>: Guidebook for Preparing and Using Airport Design Day Flight Schedules.

Learning Objectives

At the end of this webinar, you will be able to:

- Describe how to determine when to use a design day flight schedule (DDFS)
- Understand the practical uses of DDFSs
- Understand how to develop a DDFS

ACRP is an Industry-Driven Program


Managed by TRB and sponsored by the Federal Aviation Administration (FAA).

Seeks out the latest issues facing the airport industry.


Conducts research to find solutions.

Publishes and disseminates research results through free publications and webinars.

Five Ways to Get Involved!

AIRPORT COOPERATIVE RESEARCH PROGRAM

Visit us online: www.trb.org/ACRP

Other Ways to Participate

Upcoming ACRP Webinars September 13

Applying the Value of Time in Benefit-Cost Analyses
When Airport Capital Improvement Projects Impact
Passenger Trip Segments

September 26

Establishing a Coordinated Local Family Assistance Program for Airports

October 11

Understanding the Challenges of Airport Drinking Water Quality Events

Additional ACRP Publications Available on Today's Topic

Report 25: <u>Airport Passenger Terminal Planning and Design,</u>
<u>Volumes 1</u> and <u>2</u>

Report 40: <u>Airport Curbside and Terminal Area Roadway</u> <u>Operations</u>

Report 76: <u>Addressing Uncertainty about Future Airport</u>
<u>Activity Levels in Airport Decision Making</u>

Report 79: Evaluating Airfield Capacity

Report 82: Preparing Peak Period and Operational Profiles

Today's Speakers

Patrick Kennon, HNTB Corporation and Rick Busch, Jviation, Inc.

Presenting Report 163

Guidebook for Preparing

and Using Airport

Design Day Flight Schedules (DDFS)

ACRP Report 163: Guidebook for Preparing and Using Airport Design Day Flight Schedules

Patrick Kennon Rick Busch

ACRP Report 163 Oversight Panel

Angela Schaefer, Southwest Florida International Airport, Panel Chair

Steven Baun, AvAirPros, Inc.

Joel Hirsch, Hirsch Associates

Benjamin Leischner, Seattle-Tacoma International Airport

Wayne G. Sieloff, Wayne County Airport Authority

Susan J. H. Zellers, Hanson Professional Services, Inc.

Danielle J. Rinsler, AICP, FAA Liason

Richard Marchi, RFMarchi Aviation Consulting, Inc.

Christine Gerencher, TRB Liaison

Marci A. Greenberger, ACRP Senior Program Officer

ACRP Report 163 Research Team

Patrick Kennon, HNTB Corporation, Principal Investigator

Rick Busch, Jviation Inc.

Bob Hazel, Oliver Wyman, Inc.

Omar El-Sayed, Oliver Wyman, Inc.

Rose Agnew, Aviation Innovation, LLC

Cristina Coverdall, Aviation Innovation, LLC

Debra Lubin

ACRP Report 163: Guidebook for Preparing and Using Airport Design Day Flight Schedules

- Identifies when a DDFS should be used
- Describes key elements of DDFS
- Provides guidance on scoping DDFS
- Describes how to prepare DDFS
- Describes how to apply DDFS results
- Describes how to Address Risk and Uncertainty
- Describes how to communicate DDFS results
- Published 2016

What is a DDFS?

A Design Day Flight Schedule (DDFS) is a detailed snapshot of existing or forecast activity at an airport during a defined busy day (design day) or critical demand period.

The DDFS shows individual aircraft arrivals and departures by time of day and, if needed, can also show airline, origin/destination, and the number of passengers associated with each flight.

Purpose of Guidebook (Research Problem)

- Provide Airport leaders an understanding of DDFS
- 2. Provide Airport staff and consultants with detailed information on how to prepare a DDFS
- 3. Provide Airport staff and consultants guidance on how to use and communicate results.

Research Process

- 1. Literature Review
- 2. Surveys and Interviews
 - 1. Airports (10)
 - 2. Consultants (10)
 - 3. Airlines (7)
 - 4. Technology Providers (3)
- 3. Independent Research
 - 1. Stability of Airline Schedules
 - 2. Impact of Uncertainty
- 4. Field Tests (Validation)
 - 1. Airports (4)
 - 2. Consultants (3)

When to Use DDFS Key General Decision Factors

- Type and Complexity of Project
- Resources Available
- Capital Project Costs Will Benefit-Cost Analysis be Needed?
- Degree of Stakeholder Scrutiny
- Expected Amount of Controversy

When Should DDFSs be Used – General Guidance

	DDFS More Likely to be Needed or Useful	DDFS Less Likely to be Needed or Useful			
Airport Size	Large or Medium Hub	Small or Non-Hub			
	High percentage of scheduled	Low percentage of scheduled			
Airport Role	operations	operations			
Pattern of aircraft activity	Complex/ Changing	Simple/ Stable			
Constraints on aircraft activity	Constraints	No constraints			
Type of Project	Capacity	Non-Capacity			
Project Category	Terminal/Airfield	General Aviation/ Landside			
Project Complexity	Complex	Simple			
Detailed Follow-on Work	Yes	No			
Competing Airport Activity					
Demands	High	Low			
Planning Tool (s)	Complex	Simple			
Project Cost	High	Low			
Degree of Stakeholder Scrutiny	High	Low			
Expected Amount of Controversy	High	Low			
Available Analytical Resources	High	Low			

When Should DDFS be Used -- Specific Guidance

Tables in Report:

- Airside
- Terminal Area
- Landside Analysis
- Environmental Analysis
- Operations and Management

For Each Table:

- Planning Issue
- Approach Used
- DDFS Role
 - Is DDFS Required, Useful and/or Not Required?
- Alternatives to DDFS

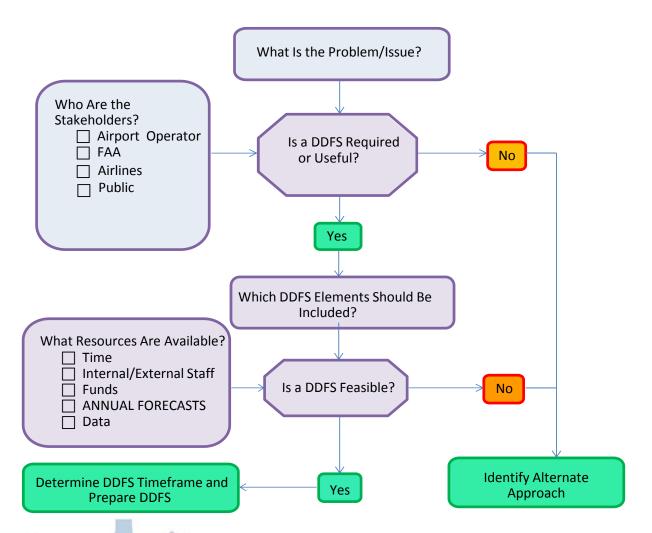
When Should a DDFS Be Used: Airside

Planning Issue	Approach	DDFS Role	Alternatives to DDFS		
	Simulation Model	Required	None		
Capacity/Delay	Spreadsheet		Peak Period/Fleet Mix		
Capacity, Sciay	Models	Not Required	Forecasts		
	Simulation Model	Required	None		
Operations and Efficiency	Airfield Layout	Not Required	Peak Period/Fleet Mix		
	Analysis	'	Forecasts		
Dunway Langth	Spreadsheet Models	Not Required			
Runway Length			Fleet Mix Forecasts		
	Simulation Model	Required	None		
Deicing	Spreadsheet Models	Not Required	Peak Period/Fleet Mix		
			Forecasts		
	Gate Allocation Model	Required	None		
At Gate	Spreadsheet Models	Not Required	Operations/Passenger Forecasts		
	Airline Input	Not Required	Not applicable		
	Gate Allocation Model	Required	None		
Remain Overnight		Not Required	Operations/Passenger		
	Spreadsheet Models		Forecasts		
	Airline Input	Not Required	Not applicable		
Aircraft Rescue and	Airfield Layout		Operations/Fleet Mix		
Firefighting	Analysis	Not Required	Forecasts		

.

Required DDFS Elements: Airside Planning

	Type of Planning Analysis							
		Airfield		Aircraft	Safety			
DDFS Element	Capacity/ Delay	Operations and Efficiency	Deicing	At Gate	Remain Overnight	Incursion Analysis		
Arrival/Departure Designation	Required	Required	Required	Required	Required	Required		
Arrival/Departure Pairing	Useful	Useful	Useful	Required	Required	Useful		
Activity Category	Useful	Useful	Useful	Useful	Useful	Useful		
Flight Time	Required	Required	Required	Required	Required	Required		
Day of Week	Useful	Useful	Useful	Useful	Useful	Useful		
Airline Designation	Useful	Useful	Useful	Useful	Useful	Useful		
Flight Number	Useful	Useful	Useful	Useful	Useful	Useful		
Domestic/International Designation	Not Required	Not Needed	Not Required	Useful	Useful	Not Required		
Gate Assignment	Useful	Useful	Useful	Useful*	Useful*	Useful		
Remain Overnight Status	Useful	Useful	Useful	Required	Required	Useful		
Origin/Destination	Useful	Useful	Useful	Useful	Useful	Useful		
Equipment Type/Category	Required	Required	Required	Required	Required	Required		
Aircraft Seats	Not Required	Not Needed	Not Required	Not Required	Not Required	Not Required		
Enplaned/Deplaned	Not	Not	Not	Not	Not	Not		
Passengers	Required	Needed	Required	Required	Required	Required		



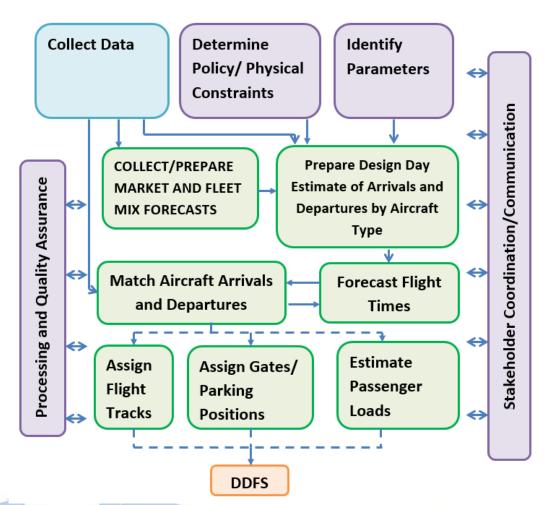
DDFS Time Period

- Timeframe(s) to be Considered for the DDFS?
 - Current, "Base Year"
 - Near-Term (12 months or less)
 - Medium-Term (5 years +/-)
 - Long-Term (10, 20 years or more)

Summary: Scoping a DDFS

How to Prepare DDFS

Stakeholder Input


- Airlines
- Airport staff

Types of Input

- Definition of Design Day
- Fleet mix
- Factors determining flight times
- Turnaround, tow-on and tow-off, and buffer times
- Gate utilization targets
- Gates vs. hardstands
- Spare gates
- Irregular operations

How to Prepare DDFS

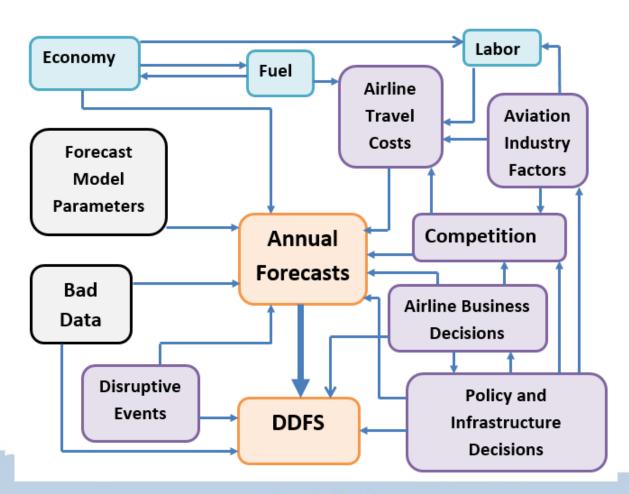
How to Prepare DDFS

Summary of Key Steps

- 1. Project Future Markets
- 2. Project Future Fleet Mix
- 3. Forecast Future Flight Times
- 4. Assigning Gates
- 5. Forecasting Passengers by Flight
- 6. Charter, Cargo, GA and Military
- 7. Application of Constraints, if Applicable
- 8. Update Process
- 9. Quality Assurance and Control

How to Apply DDFS Outputs

- Inputs to various modeling types: Simulation,
 Spreadsheet and Other
- Airfield/Airspace Planning
- Terminal Building Planning
- Landside Planning
- Environmental Planning (Noise and Air Quality Models and Mitigation)
- Airport Operations (Staffing, Maintenance and Construction Scheduling, etc.)



- Sources of Uncertainty
- Evaluation of Uncertainty
- Management of Uncertainty

Additional Guidance in ACRP Report 76: Addressing Uncertainty about Future Airport Activity Levels in Airport Decision Making

Sources of Uncertainty

Evaluation of Uncertainty: Confidence Intervals

90 percent confidence interval

	Calculated Regulrement	Variation in Curbside Length Requirements by Confidence Interval						val		
	(length in feet)	98%	95%	90%	75%	50%	25%	10%	5%	2%
Large Hubs		92%	93%	95%	97%	100%	103%	105%	107%	108%
Me dium Hubs		90%	91%	93%	96%	100%	104%	107%	109%	110%
Small Hubs		85%	87%	90%	95%	100%	105%	110%	113%	115%
Non-Hubs		77%	81%	85%	92%	100%	108%	115%	119%	123%
Curbside Requirement at each Confidence Level										
Large Hubs	3,000	2,754	2,795	2,841	2,917	3,000	3,083	3,159	3,205	3,246
Medium Hubs	1,500	1,343	1,369	1,398	1,447	1,500	1,553	1,602	1,631	1,657
Small Hubs	1,000	850	875	903	949	1,000	1,051	1,097	1,125	1,150
Non-Hubs	500	384	403	425	461	500	539	575	597	616

Note: Based on peak 60 minute O&D passengers.

Source: Appendix D

Management of Uncertainty

- Ad hoc Adjustments
- Forecast Scenarios
- Incorporating Uncertainty into Aggregate DDFS Results
 - Monte Carlo Analysis
 - Risk Register

Example of Risk Register

Risk Identification				Risk Evaluation							
							Magnitude of Impacts				
Risk ID	Risk Category	Status	Threat or Opportunity	Probability/ Likelihood	Description of Impact	Impact on	Low	Mid	High	Expected Duration	Expected Recovery
1	Airline Strategy		Increase in number of connecting banks	30%	Increase in number of connecting banks resulting in passengers and operations spread more evenly throughout the day with reduced peaks and increased nighttime operations	Aircraft Operations, Passengers			x	Medium to Long term	Uncertain
2	Airline Strategy		Decrease in aircraft turnaround time	40%	Decrease in gate requirements; reduced ability to recover from disrupted operations	Aircraft Operations, Passengers		х		Long term	None
3	Technology		Supersonic aircraft	5%	Change in international flight times/windows, U.S. CBP requirements	International Aircraft Operations, Passengers		Х		Long term	None
4	Airport Facilities		Runway Reconstruction	50%	Reduced capacity; change in throughput, reduced peak activity	Aircraft Operations, Passengers			х	Medium term	Full
5	Irregular Operations		Disruption in Schedule	99%	Delay in Operations	Aircraft Operations, Passengers			х	Short term	Full

CBP = U.S. Customs and Border Protection

How to Communicate Results

Generally Two Target Audiences:

- Senior Airport Management and Stakeholders
 - Decision Makers
- Technical Airport Staff and Consultants

When to Communicate:

- Project Manager is Key to Reporting Process
 - Receives and reviews technical work
 - Assesses strategies to ensure stakeholder involvement
 - Coordinates reporting to senior management

Future Research: Remaining Issues

- Closing the communications gap between DDFS preparers and airport decision makers?
- Stability of critical factors providing different results if done for a different time period?
- Factors driving changes in the peak hour percentage?
- Variance in the Split between O&D and Connecting Traffic Vary by Time of Day?
- What Determines Changes in Airline Share at an Airport or Within a Market?

For additional information:

ACRP Report 163

Guidebook for Preparing and Using Airport Design Day Flight Schedules

- Patrick Kennon
 - o pkennon@hntb.com

http://www.trb.org/main/blurbs/175210.aspx

Today's Participants

 Wayne Sieloff, Capital Region Airport Authority, wsieloff@craa.com

 Patrick Kennon, , HNTB Corporation, <u>pkennon@hntb.com</u>

 Rick Busch, Jviation, Inc., Rick.Busch@jviation.com

Panelists Presentations

http://onlinepubs.trb.org/onlinepubs/webinars/180718.pdf

After the webinar, you will receive a follow-up email containing a link to the recording

Get Involved in ACRP

- Submit a research idea to ACRP.
- Volunteer to participate on a project panel.
- Prepare a proposal to conduct research.
- Get involved in TRB's Aviation Group of committees.
- Take part in the Champion or Ambassador Programs.

For more information:

http://www.trb.org/acrp/acrp.aspx

TRB turns 100 on November 11, 2020

Help TRB:

- · Promote the value of transportation research;
- · Recognize, honor, and celebrate the TRB community; and
- · Highlight 100 years of accomplishments.

Learn more at

www.TRB.org/Centennial

MOVING IDEAS: ADVANCING SOCIETY—100 YEARS OF TRANSPORTATION RESEARCH