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Purpose

Discuss design equations for predicting the maximum lateral 
deformation and settlement of geosynthetic reinforced soil 
(GRS) under various configurations and service loads.

Learning Objectives

At the end of this webinar, you will be able to:

• Apply design tools to deformation analysis of GRS 
bridge support systems

• Evaluate service limit state performance of bridge 
supports
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Background

 In 2014, the Federal Highway Administration (FHWA) 
issued a contract for a research project titled “Service 
Limit State Design and Analysis of Engineered Fills for 
Bridge Support”

 Motivation for the study was the limited methods 
available to accurately estimate deformations of 
abutments and foundations built using engineered fills. 

 In this evaluation, engineered fills were defined as 
compacted granular fill with and without layered 
reinforced soil systems.



Objectives

Develop practice-
ready design tools 

to evaluate 
immediate and 

secondary 
settlement and 

lateral deformation 
of engineered fills 

used for bridge 
support.

Determine the 
stress distribution 
as a function of 

depth transferred 
by the engineered 

fill to native 
foundation soils. 



Limitations of the Study & 
Future Research Needs

 Does not support metallically stabilized earth 
abutments

 Rigid facing elements were not evaluated

 Deformation equations were prepared assuming 
static load (no live load or thermal load)



Tasks
Literature review and data search

Synthesis and Evaluation of The Service Limit State of 
Engineered Fills for Bridge Support (FHWA-HRT-15-080

Development of the research plan

Parametric study

Design analysis and recommendations

Final Report and Recommendations 
(not yet published)
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Outline

 Introduction

 Available Methods to Predict GRS abutment Deformations 

 Numerical Model Development and Validation

 Prediction Tools for GRS Abutment Deformation

 Prediction Tools for RSF deformation

 Conclusions 
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Conventional Bridge Foundation Systems

Engineered Fills Used for Bridge Support

Recreated after Anderson and Brabant (2010)

Nishida et al. (2012)Jones (1996)
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Geosynthetic Reinforced Soil Integrated Bridge System 
(GRS-IBS)

GeogridGeotextile

https://www.ipwea.org

https://www.fhwa.dot.govhttps://www.fhwa.dot.gov
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Advantages

 Simple and rapid construction

 Lower costs

Readily available material and 

equipment

Constructability in any weather 

condition

 Easier maintenance

 Environmental friendly
https://www.fhwa.dot.gov/
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Limit States

 Ultimate Limit State (ULS)
Set of unacceptable conditions related to safety/danger, e.g.,

collapse.

 Service Limit State (SLS)
Set of unacceptable conditions related to performance, e.g.,

excessive settlement or tilt.

A condition beyond which the structure no longer fulfills the
relevant design criteria.
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Adams Method (Adams et al. 2002):

Predicting Lateral Deformations of GRS Abutments

FHWA Method (Christopher et al. 1990):

Geoservices Method (Giroud 1989):

CTI Method (Wu 1994):

Jewell-Milligan Method (Jewell and Milligan, 1989):

Wu Method (Wu et al. 2013):
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Predicting Maximum Settlement of GRS Abutments

Adams Method (Adams et al. 2011):

 ρ = 
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ρ = Vertical displacement of GRS abutment

EGRS = Young’s modulus of the GRS composite

q = Applied pressure

a = Setback distance between the face of the wall and the applied load

b' = Width of facing block

H = Height of abutment
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General Approach for Developing Prediction Tool

Model 
Calibration 

and 
Validation

Parametric 
Study

Regression 
Analysis

Evaluating 
Prediction 
Equations 
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Numerical Modeling Using FLAC3D Software

Concrete Slab
Linear Elastic 

Material

Biaxial Woven Geotextile
Linear Elastic-Plastic Material
(Geogrid Structural Elements)

Concrete Modular Unit (CMU)
Linear Elastic 

Material

Compacted 
Backfill
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Soil Constitutive Models

1. The elastic-perfectly plastic Mohr-Coulomb model

2. The Plastic Hardening model

3. The Plastic Hardening model combined with strain-softening 

behavior
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Model Calibration 
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Model 
Parameters Model I Model II Model 

III
Mohr-Coulomb 

Model
E 50 MPa N/A N/A
ν 0.3 0.3 0.3
φ 48° 48° 48°
Ψ 7° 7° 7°
c 27.6 kPa 27.6 kPa 27.6 kPa

Plastic 
Hardening Model

E50
ref N/A 50 MPa 50 MPa

Pref N/A 100 100
m N/A 0.5 0.5
Rf N/A 0.8 0.8

Strain Softening 
Model

Residual friction 
angel

N/A N/A 38°

Residual dilation 
angel

N/A N/A 0°

Residual 
cohesion

N/A N/A 1.3 kPa

• Nicks el al. (2013) Experiment 
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Soil Constitutive Model: Plastic Hardening Model
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𝜎𝜎3′: Minor principal stress

Rf: Failure ratio, qf is the ultimate deviatory stress, and qa is:
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Model Validation

Model Parameters
Plastic Hardening Model Parameters

E50
ref (MPa) 110

m (dimensionless) 0.5
Rf (dimensionless) 0.75

Pref (kPa) 100
(dimensionless) 0.3

Block-Block Interface Properties
Friction angle (°) 57

Normal stiffness (kN/m/m) 1000×103

Shear stiffness (kN/m/m) 50×103

Soil-Block Interface Properties
Friction angle (°) 44

Normal stiffness (kN/m/m) 100×103

  

 Full-Scale GRS Wall Test by Bathurst et al. (2000)
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Model Validation
 Full-Scale GRS Wall Test by Bathurst et al. (2000)

Geogrid Properties Walls 1 and 3 Wall 2

Reinforcement type PP PP
Aperture dimensions (mm) 25×33 25×69
Ultimate strength (kN/m) 14 7 

Initial stiffness (kN/m) 115 56.5
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Multi-stage Construction Process in Numerical Model
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Parametric Study
Parameters (unit) Values

Backfill properties Friction angle, φ (°) 40, 45, 46, 48, 50, 55

Reinforcement 
properties

Reinforcement spacing, Sv (m) 0.2, 0.4, 0.6, 0.8

Reinforcement length, LR
0.4 , 0.5 , 0.7 , 

(H is height of abutment)

Reinforcement stiffness, J (kN/m) 500, 1000, 1500, 2000, 
2500

Abutment 
geometry

Abutment height, H (m) 3, 4, 5, 6, 9
Facing batter, β (°) 0, 2, 4, 8
Concrete footing width, B (m) 0.5, 0.7, 1, 1.5, 2, 3

Surcharge load (kPa) 50, 100, 200, 400

Parameters Benchmark 
Values

Friction angle  48°
Reinforcement length 2.5 m

Reinforcement stiffness 2000 kN/m
Reinforcement spacing 0.2 m

Abutment height 5 m
Facing batter 2°
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Parametric Study

Parametric study was conducted in two phases:

Phase 1:  One of the parameters was changed.
Objective: To obtain an initial understanding of the deformation
variation with one parameter when other parameters are fixed.
A total of 172 simulations were conducted in Phase 1.

Phase 2: Parameters were varied simultaneously.
Objective: To quantify the dependency between the parameters
and their mutual effects on deformation.
A total of 184 simulations were conducted in Phase 2.
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Phase 1 of Parametric Study
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Regression Analysis

The best prediction model:

Least root mean square error, RMSE value;

Highest coefficient of determination, R2 value;

Correct polarity for each ai coefficient.  

In this equation, ∆GRS is the maximum lateral deformation or 
settlement of GRS abutment, ai are constant coefficients, xi
represent functions of input parameters which could have any 
format (i = 0 to 8). 

88776655443322110 xaxaxaxaxaxaxaxaaGRS ++++++++=∆
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First Try for Regression Model

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0+𝑎𝑎1𝑞𝑞∗+𝑎𝑎2𝜙𝜙∗+𝑎𝑎3𝑆𝑆𝑣𝑣∗+𝑎𝑎4𝐽𝐽∗ +𝑎𝑎5 𝛽𝛽∗ + 𝑎𝑎6𝐻𝐻∗+𝑎𝑎7𝐿𝐿𝐺𝐺∗ +𝑎𝑎8𝐵𝐵∗

 q*, φ*, Sv*, J*, β*, H*, LR* and B* are defining as q/q0, φ/φ0, Sv/ Sv0, J/J0,

β/β0, H/H0, LR/LR0 and B/B0, respectively.

 In this study q0 = 200 kPa, Sv0 = 0.2 m, J0 = 500 kN/m, φ0 = 45°, β0= 90°,
H0 = 5 m, LR0 =2.5 m and B0 =1 m.

 q should be in the unit of kPa, φ and β should be in degree, J in kN/m, and
Sv , H, LR, and B should be in the unit of m, then ∆GRS result would be in
m.



Prediction 
Eq. a0 a1 a2 a3 a4 a5 a6 a7 a8 R2 RMSE

Lateral 
deformation 0.019 7e-5 -7e-4 -5e-6 0.03 -9e-4 0.001 -8e-4 0.008 0.68 0.008

Settlement 0.038 8e-5 -1e-3 -5e-6 0.03 -9e-4 0.002 -7e-4 0.009 0.72 0.009
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First Try for Regression Model

Model should have the 
least RMSE value and the 
closest R2 value to one!

The signs of a3 and a4 are not logical!

Model Predicts 
negative 

deformation 
values!

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0+𝑎𝑎1𝑞𝑞∗+𝑎𝑎2𝜙𝜙∗+𝑎𝑎3𝑆𝑆𝑣𝑣∗+𝑎𝑎4𝐽𝐽∗ +𝑎𝑎5 𝛽𝛽∗ + 𝑎𝑎6𝐻𝐻∗+𝑎𝑎7𝐿𝐿𝐺𝐺∗ +𝑎𝑎8𝐵𝐵∗
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Developing Prediction Equation

The effects of individual variables on the deformation of GRS
abutment, investigated through Phase 1, were studied to find
functions for input parameters (xi).

• Reinforcement Stiffness: 
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Tries for Nonlinear Regression Prediction Model

.

.

.

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0 + 𝑎𝑎1𝑞𝑞∗ + 𝑎𝑎2 tan 90 + 𝜙𝜙 + 𝑎𝑎3𝑆𝑆𝑣𝑣∗ +𝑎𝑎4 𝐽𝐽∗ + 𝑎𝑎6 1 − 𝛽𝛽∗ + 𝑎𝑎7𝐻𝐻∗ + 𝑎𝑎8𝐿𝐿𝐺𝐺∗ +𝑎𝑎9 𝐵𝐵∗
𝑎𝑎10

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0 + 𝑎𝑎1
𝑆𝑆𝑣𝑣∗

𝐽𝐽∗𝑎𝑎2
𝑎𝑎3𝑞𝑞∗ + 𝑎𝑎4 tan 90 + 𝜙𝜙 + 𝑎𝑎5 1 − 𝛽𝛽∗ + 𝑎𝑎6𝐻𝐻∗ + 𝑎𝑎7𝐿𝐿𝐺𝐺∗ +𝑎𝑎8 𝐵𝐵∗

𝑎𝑎9

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0 + 𝑎𝑎1𝑞𝑞
𝑆𝑆𝑣𝑣∗

𝐽𝐽∗𝑎𝑎2
× 𝐵𝐵∗𝑎𝑎3 𝑎𝑎4 tan 90 + 𝜙𝜙 + 𝑎𝑎5 1 − 𝛽𝛽∗ + 𝑎𝑎6𝐻𝐻∗ + 𝑎𝑎7𝐿𝐿𝐺𝐺∗

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0 + 𝑎𝑎1𝑞𝑞∗
𝑎𝑎2 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×

𝑆𝑆𝑣𝑣∗

𝐽𝐽∗𝑎𝑎3
× 𝐵𝐵∗𝑎𝑎4 𝑎𝑎5 1 − 𝛽𝛽∗ + 𝑎𝑎6𝐻𝐻∗ + 𝑎𝑎7𝐿𝐿𝐺𝐺∗

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝑎𝑎0 + 𝑎𝑎1𝑞𝑞∗
𝑎𝑎2 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×

𝑆𝑆𝑣𝑣∗

𝐽𝐽∗𝑎𝑎3
× 𝐵𝐵∗𝑎𝑎4 𝑎𝑎5 1 − 𝛽𝛽∗ + 𝑎𝑎6𝐻𝐻∗ + 𝑎𝑎7

𝐿𝐿𝐺𝐺∗

𝐻𝐻∗

2

𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺
= 0.005 + 0.006 × 𝑞𝑞∗1.42 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×

𝑆𝑆𝑣𝑣∗

𝐽𝐽∗0.49 × 𝐵𝐵∗1.26 −23.3 + 26.7 1 − 𝛽𝛽∗ + 0.025𝐻𝐻∗ − 0.2𝐿𝐿𝐺𝐺∗

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺
= 0.056 × 𝑞𝑞∗1.32 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×

𝑆𝑆𝑣𝑣∗

𝐽𝐽∗0.17 × 𝐵𝐵∗1.11 −1.53 + 1.69 1 − 𝛽𝛽∗ + 0.105𝐻𝐻∗ − 0.0125𝐿𝐿𝐺𝐺∗
2
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Prediction Models

R2=0.91 R2=0.88

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺
= 0.056 × 𝑞𝑞∗1.32 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×

𝑆𝑆𝑣𝑣∗

𝐽𝐽∗0.17 × 𝐵𝐵∗1.11 −1.53 + 1.69 1 − 𝛽𝛽∗ + 0.105𝐻𝐻∗ − 0.0125𝐿𝐿𝐺𝐺∗
2

𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺
= 0.005 + 0.006 × 𝑞𝑞∗1.42 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×

𝑆𝑆𝑣𝑣∗

𝐽𝐽∗0.49 × 𝐵𝐵∗1.26 −23.3 + 26.7 1 − 𝛽𝛽∗ + 0.025𝐻𝐻∗ − 0.2𝐿𝐿𝐺𝐺∗



27

Evaluation of Prediction Equation of Settlement of 
GRS Abutment

Set No. Reference φ
(°)

J
(kN/m)

Sv
(m)

B
(m)

β
(°)

H
(m)

LR
(m)

1 Helwany et al. 
(2007) 34.8 800 0.2 0.9 0 4.65 3.15

2 Helwany et al. 
(2007) 34.8 380 0.2 0.9 0 4.65 3.15

3 Hatami and 
Bathurst (2005) 40 115 0.6 6.0 8 3.6 2.5

4 Hatami and 
Bathurst (2005) 40 56.5 0.6 6.0 8 3.6 2.5

5 Gotteland et al. 
(1997) 30 340 0.6 1.0 8 4.35 2.4

Set No. Load 
(kPa)

Actual value
(mm)

This study FHWA Method
∆ (mm) Error (%) ∆ (mm) Error (%)

1

100 15 16 6.7 6.7 -55.3
200 33 32 -3.0 13.5 -59.1
300 55 54 -1.8 20.2 -63.3
400 75 79 5.3 27.0 -64.0
500 97 105 8.2 33.7 -65.3

2

100 23 20 -13.0 6.7 -70.9
200 57 44 -22.8 13.5 -76.3
300 100 74 -26.0 20.2 -79.8
400 155 110 -29.0 27.0 -82.6

5 123 33 32 -3.0 8.4 -74.5
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Evaluation of Prediction Equation of Lateral Deformation

Set 
No

Load 
(kPa)

Actual 
value
(mm)

This study FHWA 
method

Geoservice
method

CTI 
method

Jewell-
Milligan 
method

Wu method Adams 
method

∆
(mm)

Error
(%)

∆
(mm)

Error
(%)

∆
(mm)

Error
(%)

∆
(mm)

Error
(%)

∆
(mm)

Error
(%)

∆
(mm)

Error
(%)

∆
(mm)

Error
(%)

1
307 24 40 40.0 307 1179.2 - - - - - - - - 16 -33.3
475 57 71 19.7 465 715.8 - - - - - - - - 42 -26.3

2
214 36 28 -28.6 244 577.8 - - - - - - - - 27 -25.0
317 61 48 -27.1 331 442.6 - - - - - - - - 45 -26.2
414 115 68 -69.1 413 259.1 - - - - - - - - 69 -40.0

3
30 9 13 30.8 68 655.6 - - - - 31 242.2 7.3 -18.9 - -
50 21 26 19.2 81 285.7 - - - - 38 79.0 17 -19.0 - -
70 37 40 7.5 93 151.4 - - - - 44 20.0 31 -16.2 - -

4
30 12 15 20.0 68 466.7 - - - - 62 413.3 15 25.0 - -
50 37 30 -23.3 81 118.9 - - - - 75 103.2 34 -8.1 - -
70 58 47 -23.4 93 60.3 - - - - 89 53.1 61 5.2 - -

5 190 83 46 -80.4 264 218.1 111 33.7 180 116.9 - - - - - -
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Incremental Sensitivity Analysis
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Incremental Sensitivity Analysis
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Parameters
SR

Lateral 
Deformation Settlement

Friction angle -3.26 -1.71
Reinforcement 

spacing 1.00 0.69

Footing width 0.90 1.20

Abutment height 0.50 0.25

Facing batter -0.45 -0.20
Reinforcement 

length -0.33 -0.13

Reinforcement 
stiffness -0.16 -0.25
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Tool Development
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Deformations and Vertical Stress Distribution under 
200 kPa Applied Pressure

Reinforcement spacing = 0.2 m Reinforcement spacing = 0.8 m

Max. Lateral Deformation= 9 mm

Max. Settlement=12 mm Max. Settlement=31mm

Max. Lateral Deformation= 34 mm
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Reinforcement spacing = 0.2 m Reinforcement spacing = 0.8 m
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Reinforced Soil Foundation (RSF) 

Methods to predict the settlement of footings placed on 
unreinforced granular soil:
• Modified Schmertmann
• Hough 
• Peck and Bazaraa
• Burland and Burbidge 
• D’Appolonia
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Model Validation - Adams and Collin (1997) 
Experiments 

Type Biaxial geogrid
Ultimate strength 34 kN/m

Tensile strength in machine direction at 5% strain 20 kN/m
Tensile strength in cross machine direction at 5% 

strain 25 kN/m

Vertical spacing of reinforcement 0.15 m 
Embedment depth of top geogrid layer 0.15 m 

Apparatus size 25 mm × 30 mm
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Model Validation
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Parametric Study
Parameters (unit) Values

Backfill 
properties

Friction angle, φ (deg) 30, 35, 40, 
45, 50

Cohesion, c (kPa) 0, 1, 5, 10

Reinforcement 
properties

Reinforcement spacing, Sv
(m) 0.2, 0.3, 0.4

Number of reinforcement 
layers, N 2, 3, 4,5

Reinforcement length 
extended beyond 
foundation, LX (m)

0.25B, 
0.5B, 

0.75B, B

Compacted depth, Dc (m) 0.9, 1.2, 
1.5. 1.8

Reinforcement stiffness,  J
(kN/m)

500, 1000, 
2000, 3000

Foundation 
dimension

Width of foundation, B (m) 1, 2, 3
Length of foundation, L 
(m)

1B, 2B, 3B, 
7B, 10B

Service load (kPa)
50, 100, 

200, 400, 
600

Parametric study was conducted
in two phases:

Phase 1: One of parameters
changes; a total of 135
simulations was conducted in
Phase 1.

Phase 2: Parameters are varied
simultaneously; a total of 175
simulations was conducted in
Phase 2.
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NaLaLaBaDaSaJacaaqaaS XcvRSF 109876543210 )90tan( +++++++++++= φ
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Tries for Nonlinear Regression Prediction Model

SRSF = 1.3 × 10−3 × 𝑞𝑞∗1.17 × 𝑐𝑐𝑐𝑐𝑡𝑡2𝜙𝜙 × 𝑁𝑁−0.05 × (−0.07 −
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Equation for Predicting Settlement of RSF

SRSF = 1.3 × 10−3 × 𝑞𝑞∗1.17 × 𝑐𝑐𝑐𝑐𝑡𝑡2𝜙𝜙 × 𝑁𝑁−0.05 × (−0.07 − 6.5 × 10−5𝑐𝑐∗ +67.9( ⁄𝑆𝑆𝑣𝑣∗ 𝐽𝐽∗) +

 q*, c*, J*, Sv*, Dc*, B*, L*, and Lx* are defined as q/q0,

c/c0, J/J0, Sv/ Sv0, Dc/Dc0, B/B0, L/L0, and LX/LX0

respectively.

 q and c should be in the unit of kPa, φ in degree, J in

kN/m, and Sv, Dc, B, L and LX in the unit of m, then SRSF

result would be in m.

 In this study q0 = 100 kPa, c0 = 1 kPa, J0 = 100 kN/m, Sv0

= 0.1 m, Dc0 = 1 m, B0 = 1 m, L0 = 1 m and LX0 = 1 m.
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Evaluation of RSF Settlement Prediction Equation
Reference Set 

No.
φ
(°)

c 
(kPa)

J
(kN/m)

Sv
(m)

Dc
(m)

B
(m)

L
(m) N

Adams and Collin 
(1997) 1 36 1 450 0.15 5.55 0.91 0.91 3

Chen and Abu-Farsakh 
(2011) 2 25 13 370 0.607 4.86 1.822 1.822 4

Abu-Farsakh et al. 
(2013) 3 46 1 365 0.051 0.75 0.152 0.152 3

Set No. Load (kPa) Actual
Settlement (mm)

Predicted
Settlement (mm)

Error
(%)

1

100 2.94 2.45 -17
200 5.87 5.50 -6
300 8.12 8.83 9
400 11.06 12.36 12
500 15.72 16.04 2
600 22.46 19.84 -12

2

100 11.89 12.49 5
200 25.79 28.07 9
300 40.79 45.07 10
400 60.72 63.06 4
500 83.95 81.84 -3
600 109.19 101.26 -7

3

100 0.36 0.19 -47
200 0.73 0.43 -41
300 1.2 0.69 -43
400 1.51 0.97 -36
500 1.83 1.26 -31
600 2.24 1.55 -31

B = 0.91 m

B = 1.822 m

B = 0.152 m
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Incremental Sensitivity Analysis
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Parameters SR
Friction angle -2.7

Reinforcement spacing 0.52
Compacted depth 0.39

Reinforcement stiffness -0.34
Width of foundation 0.32
Length of foundation 0.10

Number of reinforcement -0.05
Cohesion -0.01 
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Conclusions  

The Plastic Hardening model can accurately predict the behavior

of soil in simulation of GRS abutments and RSF under service

loads.

This study suggests these equations for calculating the maximum

lateral deformation and settlement of GRS abutment and

maximum settlement of RSF under service loads:

𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺 = 0.005 + 0.006 × 𝑞𝑞∗1.42 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×
𝑆𝑆𝑣𝑣∗

𝐽𝐽∗0.49 × 𝐵𝐵∗1.26 −23.3 + 26.7 1 − 𝛽𝛽∗ + 0.025𝐻𝐻∗ − 0.2𝐿𝐿𝐺𝐺∗

𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 = 0.056 × 𝑞𝑞∗1.32 × 𝑡𝑡𝑎𝑎𝑡𝑡2 90 + 𝜙𝜙 ×
𝑆𝑆𝑣𝑣∗

𝐽𝐽∗0.17 × 𝐵𝐵∗1.11 −1.53 + 1.69 1 − 𝛽𝛽∗ + 0.105𝐻𝐻∗ − 0.0125𝐿𝐿𝐺𝐺∗
2

SRSF = 1.3 × 10−3 × 𝑞𝑞∗1.17 × 𝑐𝑐𝑐𝑐𝑡𝑡2𝜙𝜙 × 𝑁𝑁−0.05 × (−0.07 − 6.5 × 10−5𝑐𝑐∗ +67.9( ⁄𝑆𝑆𝑣𝑣∗ 𝐽𝐽∗) + 0.15𝐷𝐷𝑐𝑐∗ + 0.06𝐵𝐵∗ +
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Conclusions  

Results of sensitivity analysis for suggested equations indicated

that:

 In GRS abutment lateral deformation equation, soil friction

angle and reinforcement spacing have the highest effect;

 In GRS abutment settlement equation, soil friction angle

and foundation width have the highest effect;

 In RSF settlement equation, soil friction angle and

reinforcement spacing have the highest effect.
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