The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

Predicting Deformations of Geosynthetic Reinforced Soil for Bridge Support

Monday, September 17, 2018 1:00-2:30 PM ET

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Purpose

Discuss design equations for predicting the maximum lateral deformation and settlement of geosynthetic reinforced soil (GRS) under various configurations and service loads.

Learning Objectives

At the end of this webinar, you will be able to:

- Apply design tools to deformation analysis of GRS bridge support systems
- Evaluate service limit state performance of bridge supports

Predicting Deformations of Geosynthetic Reinforced Soil for Bridge Support

Moderator:

Jennifer Nicks, PhD, PE Chair, AFS70 (Geosynthetics)

Co-Sponsors: AFS10 (Transportation Earthworks) AFS70 (Geosynthetics)

September 17, 2018

Background

- In 2014, the Federal Highway Administration (FHWA) issued a contract for a research project titled "Service Limit State Design and Analysis of Engineered Fills for Bridge Support"
- Motivation for the study was the limited methods available to accurately estimate deformations of abutments and foundations built using engineered fills.
- In this evaluation, engineered fills were defined as compacted granular fill with and without layered reinforced soil systems.

Objectives

Develop practiceready design tools to evaluate immediate and secondary settlement and lateral deformation of engineered fills used for bridge support.

Determine the stress distribution as a function of depth transferred by the engineered fill to native foundation soils. Limitations of the Study & Future Research Needs

- Does not support metallically stabilized earth abutments
- Rigid facing elements were not evaluated
- Deformation equations were prepared assuming static load (no live load or thermal load)

Tasks

Literature review and data search

Synthesis and Evaluation of The Service Limit State of Engineered Fills for Bridge Support (FHWA-HRT-15-080

Development of the research plan

Parametric study

Design analysis and recommendations

Final Report and Recommendatior (not yet published)

Research Team

- Principal Investigator:
 - Dr. Ming Xiao (Penn State University)
- Co-Principal Investigator:
 - Dr. Tong Qiu (Penn State University)
- Research Assistant:
 - Dr. Mahsa Khosrojerdi (formerly Penn State University)
- Consultant:
 - Jim Withiam (D'Appolonia Engineering Division of Group Technology, Inc.)

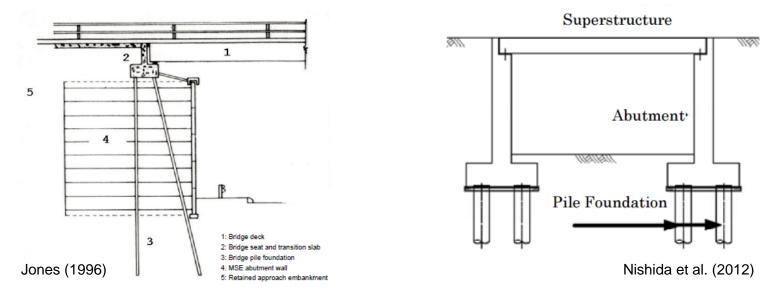
Predicting Deformations of Geosynthetic Reinforced Soil for Bridge Support

TRB Webinar September 2018

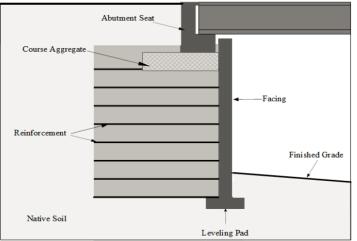
Presented by:

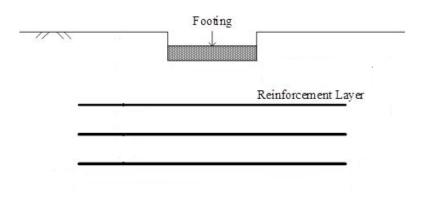
Ming Xiao, PhD, PE - *Pennsylvania State University* Tong Qiu, PhD, PE - *Pennsylvania State University* Mahsa Khosrojerdi, PhD - *Pennsylvania State University*

Moderated by:

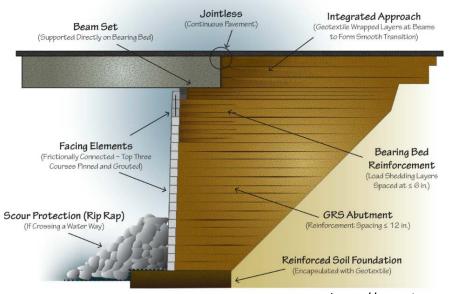

Jennifer Nicks, PhD, PE- U.S. Department of Transportation

Outline


Introduction


- Available Methods to Predict GRS abutment Deformations
- Numerical Model Development and Validation
- Prediction Tools for GRS Abutment Deformation
- Prediction Tools for RSF deformation
- Conclusions

Conventional Bridge Foundation Systems


Engineered Fills Used for Bridge Support

Recreated after Anderson and Brabant (2010)

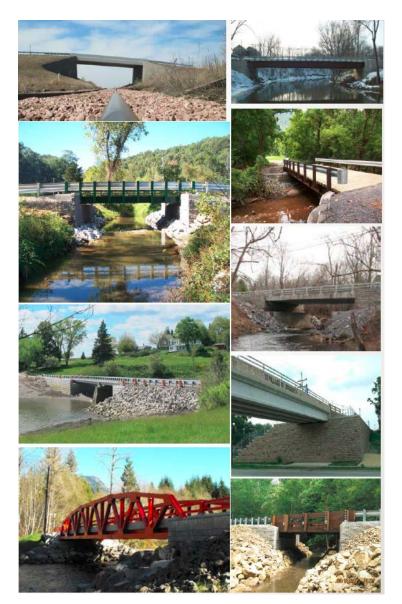
Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS)

https://www.ipwea.org

Geotextile

https://www.fhwa.dot.gov

Geogrid


https://www.fhwa.dot.gov

Advantages

- \checkmark Simple and rapid construction
- ✓ Lower costs
- ✓ Readily available material and equipment
- \checkmark Constructability in any weather

condition

- ✓ Easier maintenance
- ✓ Environmental friendly

https://www.fhwa.dot.gov/

Limit States

A condition beyond which the structure no longer fulfills the relevant design criteria.

> Ultimate Limit State (ULS)

Set of unacceptable conditions related to safety/danger, e.g., collapse.

Service Limit State (SLS)

Set of unacceptable conditions related to performance, e.g., excessive settlement or tilt.

Predicting Lateral Deformations of GRS Abutments

FHWA Method (Christopher et al. 1990):

$$\delta_R = 11.81 \left(\frac{L}{H}\right)^4 - 42.25 \left(\frac{L}{H}\right)^3 + 57.16 \left(\frac{L}{H}\right)^2 - 35.45 \left(\frac{L}{H}\right) + 9.471$$

Geoservices Method (Giroud 1989):

$$\delta_h = \frac{\varepsilon_d L}{2}$$

CTI Method (Wu 1994):

$$\delta_h = \varepsilon_d \left(\frac{H}{1.25} \right)$$

Jewell-Milligan Method (Jewell and Milligan, 1989):

$$\Delta_{h} = \left(\frac{1}{2}\right) \left(\frac{P_{\rm rm}}{K_{\rm reinf}}\right) \left(H - z_{i}\right) \left[\tan\left(45^{\circ} - \frac{\psi}{2}\right) + \tan\left(90^{\circ} - \phi_{ds}\right)\right]$$

Wu Method (Wu et al. 2013):

$$\Delta_{i} = 0.5 \left(\frac{K_{h} (\gamma_{s} z_{i} + q) S_{v} - \gamma_{b} b S_{v} \tan \delta (1 + \tan \delta \tan \beta)}{K_{\text{reinf}}} \right) (H - z_{i}) \left[\tan \left(45^{\circ} - \frac{\psi}{2} \right) + \tan \left(90^{\circ} - \phi_{ds} \right) \right]$$

Adams Method (Adams et al. 2002):

$$D_L = \frac{2b_{q,vol}D_v}{H}$$

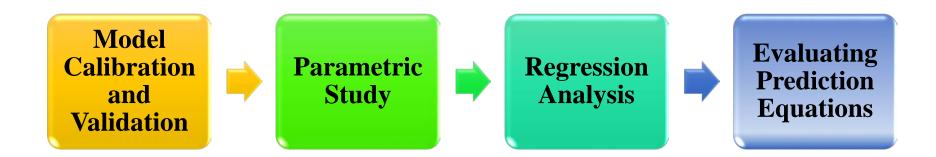
Predicting Maximum Settlement of GRS Abutments

Adams Method (Adams et al. 2011):

$$\rho = \frac{3qb'}{4\pi E_{GRS}} \left[\frac{1}{2} \left(1 + \frac{a + \frac{b'}{2}}{\frac{b'}{2}} \right) \ln \left(\frac{H^2 + \left(a + \frac{b'}{2}\right)^2}{\left(\frac{b'}{2}\right)^2} \right) + \frac{1}{2} \left(1 - \frac{a + \frac{b'}{2}}{\frac{b'}{2}} \right) \ln \left(\frac{H^2 + a^2}{\left(\frac{b'}{2}\right)^2} \right) + \frac{H}{a} \tan^{-1} \left(\frac{a + b'}{H}\right) + \frac{H}{a} \tan^{-1} \left(\frac{-b'}{H}\right) \right]$$

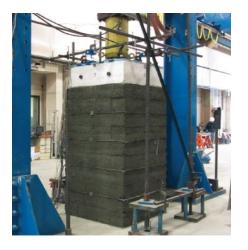
 ρ = Vertical displacement of GRS abutment

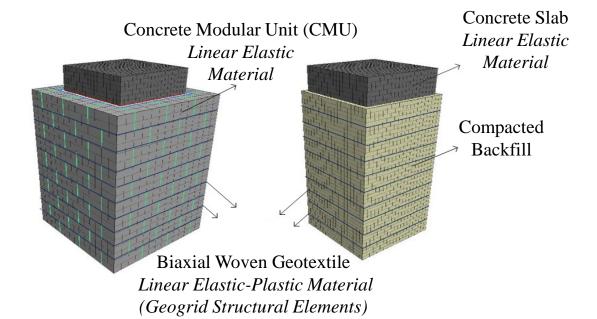
 E_{GRS} = Young's modulus of the GRS composite


q = Applied pressure

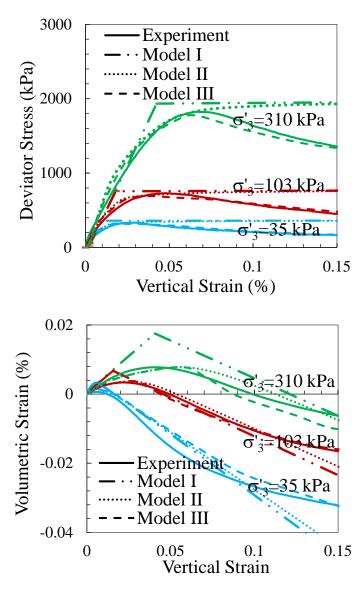
a = Setback distance between the face of the wall and the applied load

b' = Width of facing block


H = Height of abutment

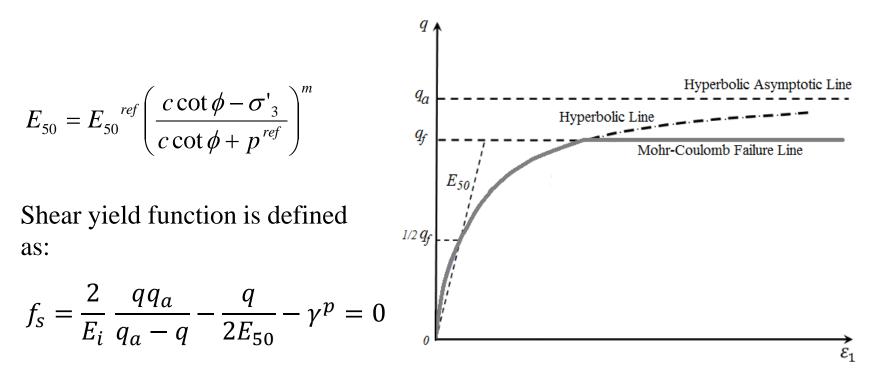

General Approach for Developing Prediction Tool

Numerical Modeling Using FLAC^{3D} Software


Soil Constitutive Models

- 1. The elastic-perfectly plastic Mohr-Coulomb model
- 2. The Plastic Hardening model
- 3. The Plastic Hardening model combined with strain-softening

behavior


Model Calibration

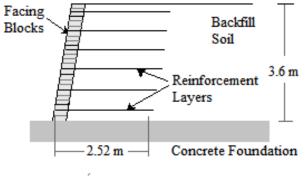
• Nicks el al. (2013) Experiment

Model Parameters	Model I	Model II	Model III	
Mohr-Coulomb				
Model				
E	50 MPa	N/A	N/A	
V	0.3	0.3	0.3	
ϕ	48°	48°	48°	
Ψ	7°	7°	7°	
С	27.6 kPa	27.6 kPa	27.6 kPa	
Plastic				
Hardening Model				
E_{50}^{ref}	N/A	50 MPa	50 MPa	
P ^{ref}	N/A	100	100	
m	N/A	0.5	0.5	
R_{f}	N/A	0.8	0.8	
Strain Softening				
Model				
Residual friction	N/A	N/A	38°	
angel		IN/A	50	
Residual dilation	N/A	N/A	0°	
angel			0	
Residual	N/A	N/A	1.3 kPa	
cohesion			1.3 KFa	

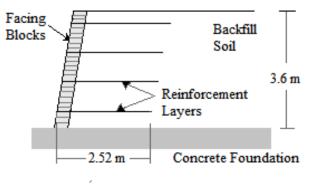
Soil Constitutive Model: Plastic Hardening Model

m: Power coefficient for stress level dependency of stiffness

 σ'_3 : Minor principal stress

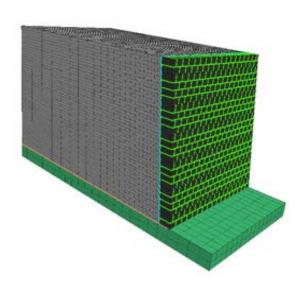

 E_{50}^{ref} : Secant stiffness in standard drained triaxial test

 R_f : Failure ratio, q_f is the ultimate deviatory stress, and q_a is:

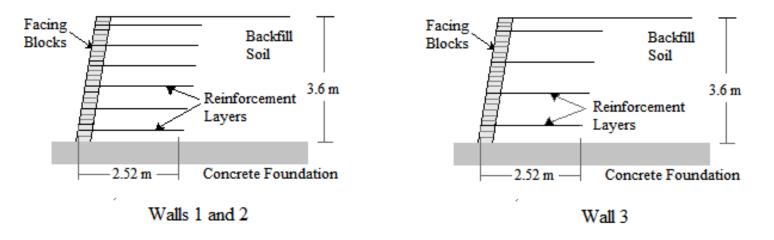

$$q_a = \frac{q_f}{R_f}$$

Model Validation

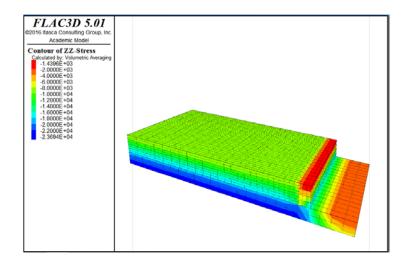
> Full-Scale GRS Wall Test by Bathurst et al. (2000)

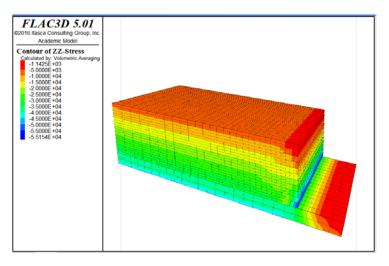


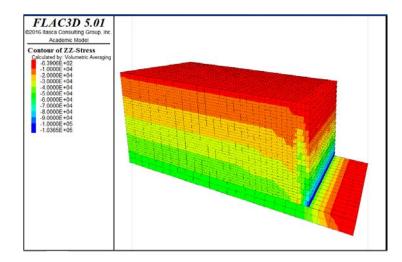
Wall 3

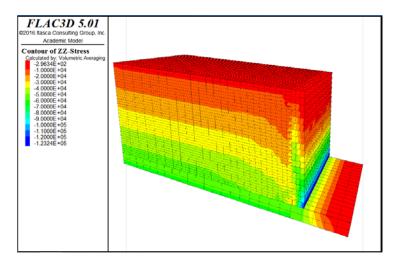

Model Parameters					
Plastic Hardening Model Parameters					
E_{50}^{ref} (MPa)	110				
<i>m</i> (dimensionless)	0.5				
R_f (dimensionless)	0.75				
Pref (kPa)	100				
(dimensionless)	0.3				
Block-Block Interface Pre	operties				
Friction angle (°)	57				
Normal stiffness (kN/m/m)	1000×10^{3}				
Shear stiffness (kN/m/m)	50×10^{3}				
Soil-Block Interface Properties					
Friction angle (°) 44					
Normal stiffness (kN/m/m)	100×10^{3}				

14

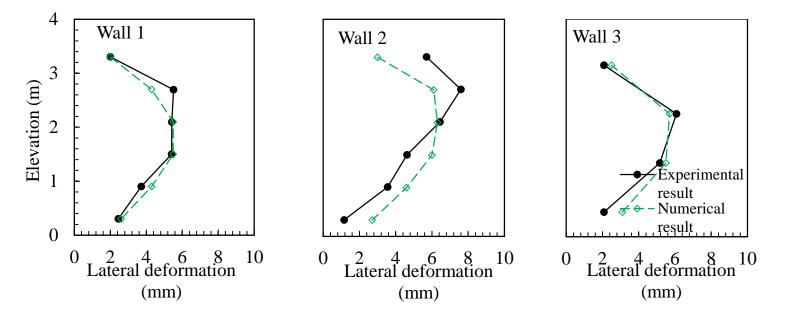

Model Validation

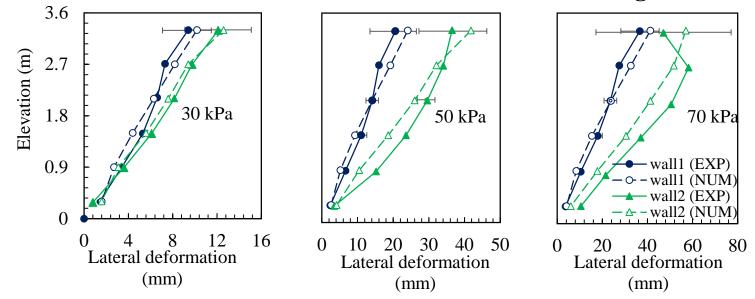

> Full-Scale GRS Wall Test by Bathurst et al. (2000)



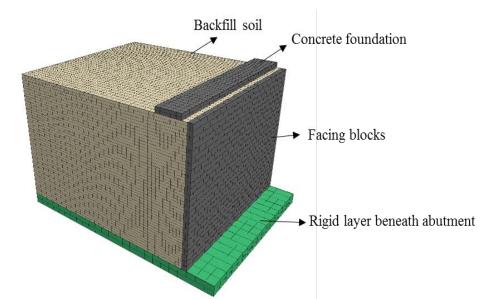

Geogrid Properties	Walls 1 and 3	Wall 2
Reinforcement type	PP	PP
Aperture dimensions (mm)	25×33	25×69
Ultimate strength (kN/m)	14	7
Initial stiffness (kN/m)	115	56.5

Multi-stage Construction Process in Numerical Model





Lateral deformation of GRS walls at the end of construction without surcharge

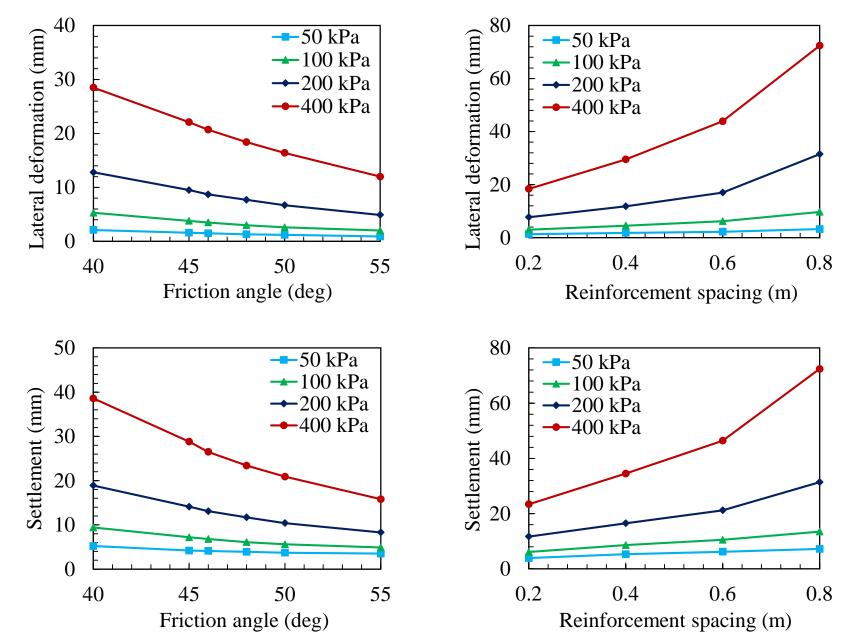


Lateral deformation of GRS walls under surcharge loads

Parametric Study

	Parameters (unit)	Values			
Backfill properties	40, 45, 46, 48, 50, 55				
Reinforcement	Reinforcement spacing, S_v (m)	0.2, 0.4, 0.6, 0.8			
	Reinforcement length, L_R	0.4, 0.5, 0.7, (<i>H</i> is height of abutment)			
properties	Reinforcement stiffness, J (kN/m)	500, 1000, 1500, 2000, 2500			
	Abutment height, $H(m)$	3, 4, 5, 6, 9			
Abutment geometry	Facing batter, β (°)	0, 2, 4, 8			
	Concrete footing width, <i>B</i> (m)	0.5, 0.7, 1, 1.5, 2, 3			
Surcharge load (kPa) 50, 100, 200, 400					

Parameters	Benchmark Values
Friction angle	48°
Reinforcement length	2.5 m
Reinforcement stiffness	2000 kN/m
Reinforcement spacing	0.2 m
Abutment height	5 m
Facing batter	2°


Parametric Study

Parametric study was conducted in two phases:

Phase 1: One of the parameters was changed.Objective: To obtain an initial understanding of the deformation variation with one parameter when other parameters are fixed.A total of 172 simulations were conducted in Phase 1.

Phase 2: Parameters were varied simultaneously.Objective: To quantify the dependency between the parameters and their mutual effects on deformation.A total of 184 simulations were conducted in Phase 2.

Phase 1 of Parametric Study

20

Regression Analysis

 $\Delta_{GRS} = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 x_6 + a_7 x_7 + a_8 x_8$

In this equation, Δ_{GRS} is the maximum lateral deformation or settlement of GRS abutment, a_i are constant coefficients, x_i represent functions of input parameters which could have any format (i = 0 to 8).

The best prediction model:

- ✓ Least root mean square error, RMSE value;
- ✓ Highest coefficient of determination, R^2 value;

✓ Correct polarity for each a_i coefficient.

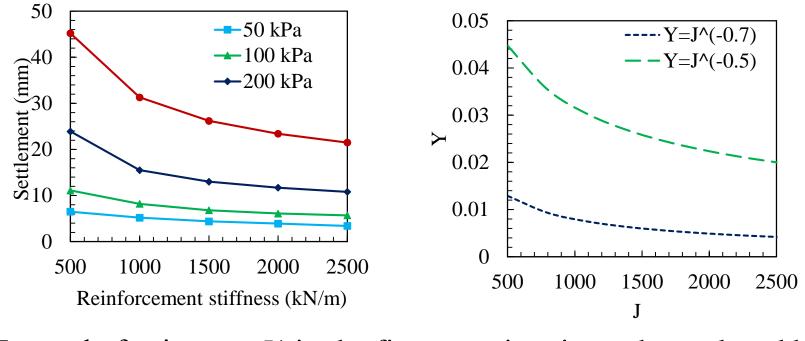
First Try for Regression Model

 $\Delta_{GRS} = a_0 + a_1 q^* + a_2 \phi^* + a_3 S_v^* + a_4 J^* + a_5 \beta^* + a_6 H^* + a_7 L_R^* + a_8 B^*$

- → q^* , ϕ^* , S_v^* , J^* , β^* , H^* , L_R^* and B^* are defining as q/q_0 , ϕ/ϕ_0 , S_v/S_{v0} , J/J_0 , β/β_0 , H/H_0 , L_R/L_{R0} and B/B_0 , respectively.
- ➤ In this study $q_0 = 200$ kPa, $S_{v0} = 0.2$ m, $J_0 = 500$ kN/m, $\phi_0 = 45^\circ$, $\beta_0 = 90^\circ$, $H_0 = 5$ m, $L_{R0} = 2.5$ m and $B_0 = 1$ m.
- ▷ q should be in the unit of kPa, ϕ and β should be in degree, J in kN/m, and S_v , H, L_R , and B should be in the unit of m, then Δ_{GRS} result would be in m.

First Try for Regression Model

 $\Delta_{GRS} = a_0 + a_1 q^* + a_2 \phi^* + a_3 S_v^* + a_4 J^* + a_5 \beta^* + a_6 H^* + a_7 L_R^* + a_8 B^*$


Model should have the least RMSE value and the closest R^2 value to one!

Prediction Eq.	a_0	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	a_4	a_5	<i>a</i> ₆	<i>a</i> ₇	a_8	(\mathbf{R}^2)	RMSE
Lateral deformation	0.019	7e-5	-7e-4	-5e-6	0.03	-9e-4	0.001	-8e-4	0.008	0.68	0.008
Settlement	0.038	8e-5	-1e-3	-5e-6	0.03	-9e-4	0.002	-7e-4	0.009	0.72	0.009
			The	signs o	fa_3 and	$d a_4 are$	not log	ical!			
		0.16 _Г	Late	ral Deformati	on		0.16 _[Set	tlement		
		0.14 - 0.12 - 0.1	R ² = 0.6829	2	/		0.14 - 0.12 - F 0.1 -	a ² = 0.72045	/		
Model Predi	cts	0.08 -				ed (m)	0.08 -				
negative		(E) 0.08 - 0.08 - 0.06 -	/	/		Predicted (m)	0.06	。	800 0	0	
deformatio	n	0.04	8800	000 000	0		0.04 - 2	00 m	800°°	0	
values!		0.02	8 m o				0.02	ω			
		-0.02	0.05 S	0 imulation (m)	.1	0.15	0.02	0.05 Simu	0.1 lation (m)	0.	15

Developing Prediction Equation

The effects of individual variables on the deformation of GRS abutment, investigated through Phase 1, were studied to find functions for input parameters (x_i) .

Reinforcement Stiffness:

 \rightarrow Instead of using $x_4 = J^*$ in the first equation, it can be replaced by $x_4 = J^{*a}$

Tries for Nonlinear Regression Prediction Model

$$\Delta_{GRS} = a_0 + a_1 q^* + a_2 \tan(90 + \phi) + a_3 S_v^* + a_4 J^* + a_6 (1 - \beta^*) + a_7 H^* + a_8 L_R^* + a_9 B^{*a10}$$

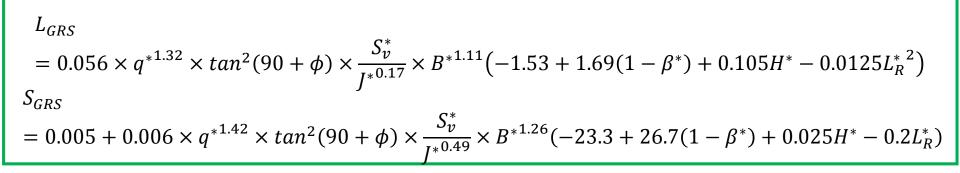
$$\Delta_{GRS} = a_0 + a_1 \frac{S_v^*}{J^{*a2}} \left(a_3 q^* + a_4 \tan(90 + \phi) + a_5 (1 - \beta^*) + a_6 H^* + a_7 L_R^* + a_8 B^{*a9} \right)$$

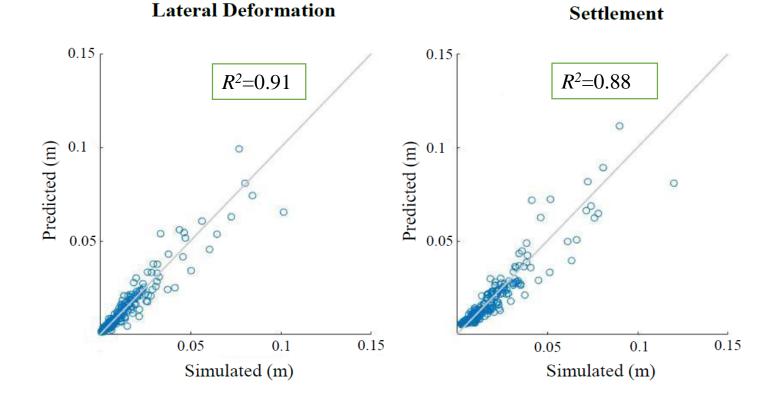
$$\Delta_{GRS} = a_0 + a_1 q \frac{S_v^*}{J^{*a2}} \times B^{*a3}(a_4 \tan(90 + \phi) + a_5(1 - \beta^*) + a_6 H^* + a_7 L_R^*)$$

$$\Delta_{GRS} = a_0 + a_1 q^{*a_2} \times tan^2 (90 + \phi) \times \frac{S_v^*}{J^{*a_3}} \times B^{*a_4} (a_5 (1 - \beta^*) + a_6 H^* + a_7 L_R^*)$$

$$\Delta_{GRS} = a_0 + a_1 q^{*a_2} \times tan^2 (90 + \phi) \times \frac{S_v^*}{J^{*a_3}} \times B^{*a_4} \left(a_5 (1 - \beta^*) + a_6 H^* + a_7 \left(\frac{L_R^*}{H^*}\right)^2 \right) \qquad \checkmark$$

 L_{GRS}


•


$$= 0.056 \times q^{*1.32} \times tan^{2}(90 + \phi) \times \frac{S_{v}^{*}}{J^{*0.17}} \times B^{*1.11}(-1.53 + 1.69(1 - \beta^{*}) + 0.105H^{*} - 0.0125L_{R}^{*2})$$

$$= 0.005 + 0.006 \times q^{*1.42} \times tan^{2}(90 + \phi) \times \frac{S_{\nu}^{*}}{I^{*0.49}} \times B^{*1.26}(-23.3 + 26.7(1 - \beta^{*}) + 0.025H^{*} - 0.2L_{R}^{*})$$

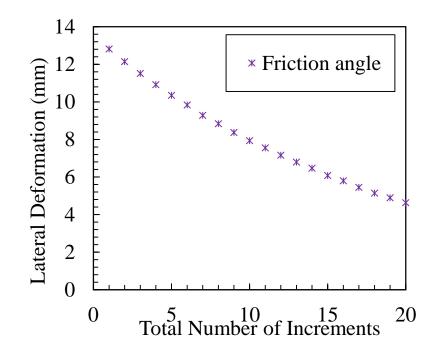
X

Prediction Models

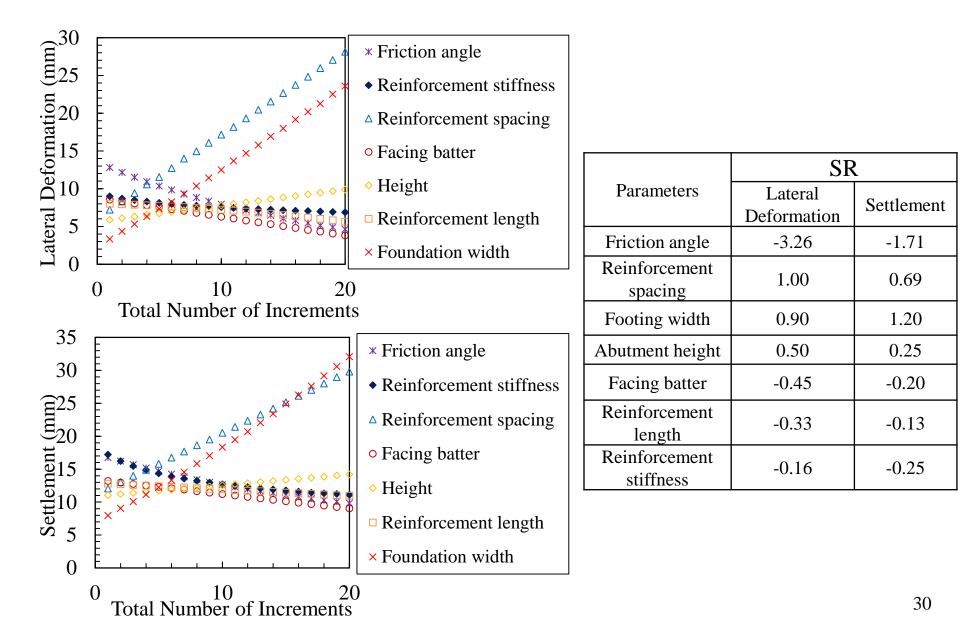
Evaluation of Prediction Equation of Settlement of GRS Abutment

Set No.	Reference	φ (°)	J (kN/m)	Sv (m)	<i>B</i> (m)	β (°)	<i>H</i> (m)	L_R (m)
1	Helwany et al. (2007)	34.8	800	0.2	0.9	0	4.65	3.15
2	Helwany et al. (2007)	34.8	380	0.2	0.9	0	4.65	3.15
3	Hatami and Bathurst (2005)	40	115	0.6	6.0	8	3.6	2.5
4	Hatami and Bathurst (2005)	40	56.5	0.6	6.0	8	3.6	2.5
5	Gotteland et al. (1997)	30	340	0.6	1.0	8	4.35	2.4

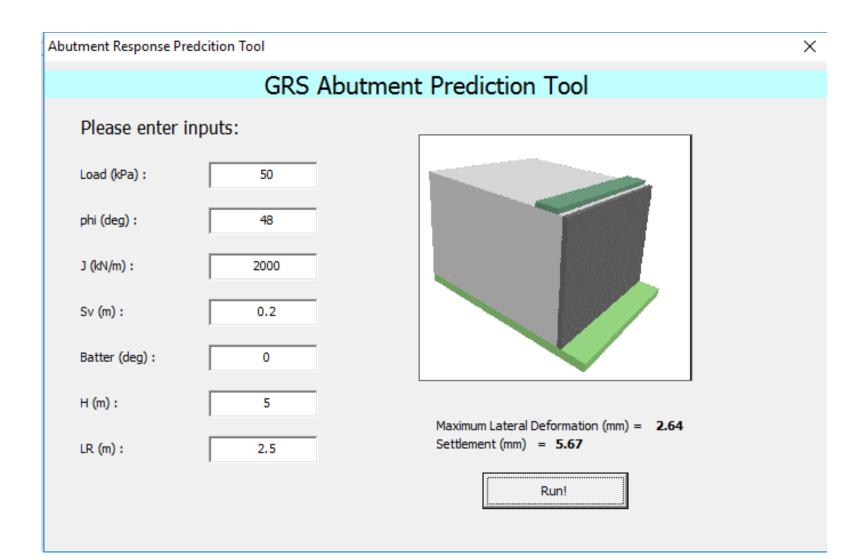
Set No.	Load	Actual value	This	study	FHWA	FHWA Method			
5001100.	(kPa)	(mm)	Δ (mm)	Δ (mm) Error (%)		Error (%)			
	100	15	16	6.7	6.7	-55.3			
	200	33	32	-3.0	13.5	-59.1			
1	300	55	54	-1.8	20.2	-63.3			
	400	75	79	5.3	27.0	-64.0			
	500	97	105	8.2	33.7	-65.3			
	100	23	20	-13.0	6.7	-70.9			
2	200	57	44	-22.8	13.5	-76.3			
L	300	100	74	-26.0	20.2	-79.8			
	400	155	110	-29.0	27.0	-82.6			
5	123	33	32	-3.0	8.4	-74.5			


Evaluation of Prediction Equation of Lateral Deformation

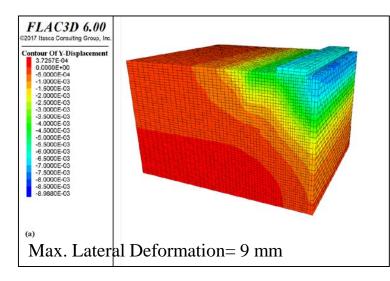
Set No	Load (kPa)	Actual value (mm)	This study		FHWA method		Geoservice method		CTI method		Jewell- Milligan method		Wu method		Adams method	
			⊿ (mm)	Error (%)	⊿ (mm)	Error (%)	⊿ (mm)	Error (%)	⊿ (mm)	Error (%)	⊿ (mm)	Error (%)	⊿ (mm)	Error (%)	⊿ (mm)	Error (%)
1	307	24	40	40.0	307	1179.2	-	-	-	-	-	-	-	-	16	-33.3
1	475	57	71	19.7	465	715.8	-	-	-	-	-	-	-	-	42	-26.3
	214	36	28	-28.6	244	577.8	-	-	-	-	-	-	-	-	27	-25.0
2	317	61	48	-27.1	331	442.6	-	-	-	-	-	-	-	-	45	-26.2
	414	115	68	-69.1	413	259.1	-	-	-	-	-	-	-	-	69	-40.0
	30	9	13	30.8	68	655.6	-	-	-	-	31	242.2	7.3	-18.9	- '	-
3	50	21	26	19.2	81	285.7	-	-	-	-	38	79.0	17	-19.0	-	-
	70	37	40	7.5	93	151.4	-	-	-	-	44	20.0	31	-16.2	-	-
	30	12	15	20.0	68	466.7	-	-	-	-	62	413.3	15	25.0	-	-
4	50	37	30	-23.3	81	118.9	-	-	-	-	75	103.2	34	-8.1	-	-
	70	58	47	-23.4	93	60.3	-	-	-	-	89	53.1	61	5.2	-	-
5	190	83	46	-80.4	264	218.1	111	33.7	180	116.9	-	-	-	-	-	-

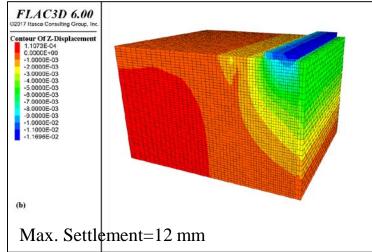

Incremental Sensitivity Analysis

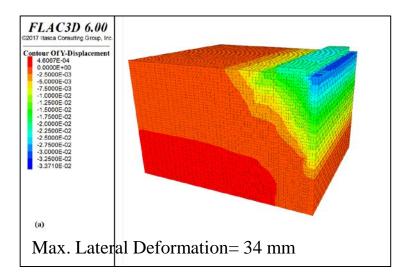
$$SR = \frac{\frac{y_{i+1}(x) - y_i(x)}{y_i(x)}}{\frac{x_{i+1}(x) - x_i(x)}{x_i(x)}}$$

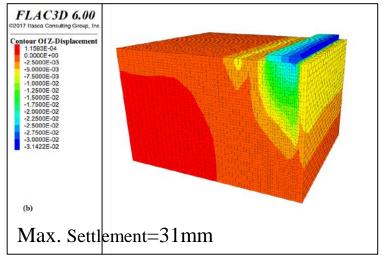

where $y_{i+1}(x)$ = equation output in step *i*+1 due to variable *x*; $y_i(x)$ = equation output in step *i* due to variable *x*; $x_{i+1}(x)$ = value of variable *x* in step *i*+1; and $x_i(x)$ = value of variable *x* in step *i*.

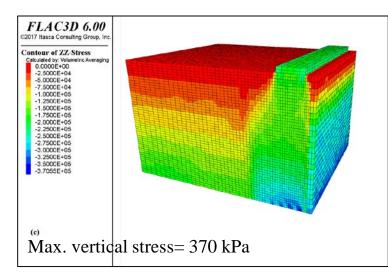
Incremental Sensitivity Analysis

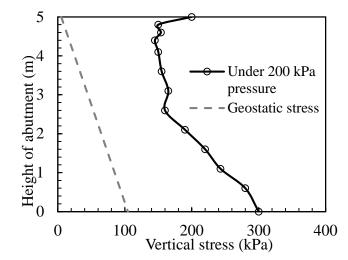


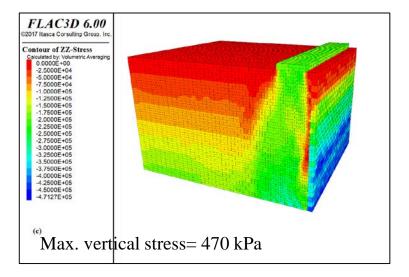

Tool Development

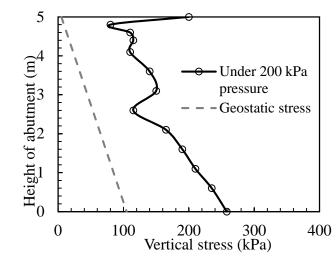

Deformations and Vertical Stress Distribution under 200 kPa Applied Pressure

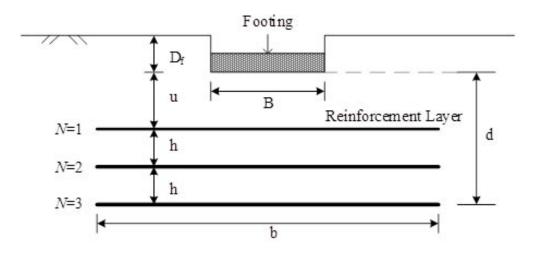

Reinforcement spacing = 0.2 m


Reinforcement spacing = 0.8 m

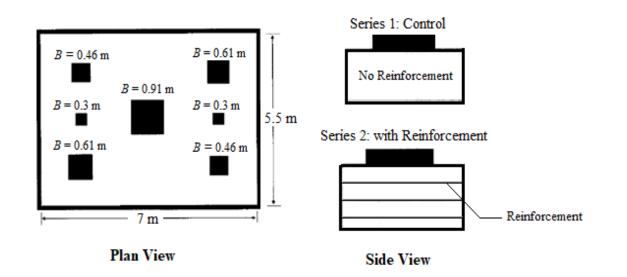



Deformations and Vertical Stress Distribution under 200 kPa applied pressure

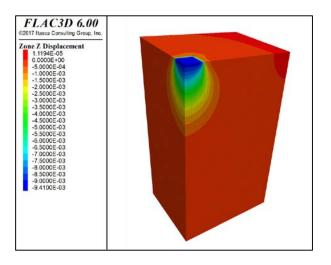

Reinforcement spacing = 0.2 m

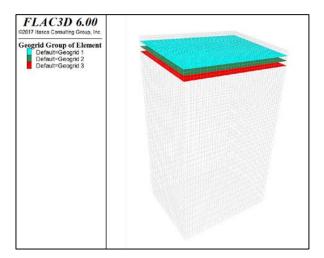


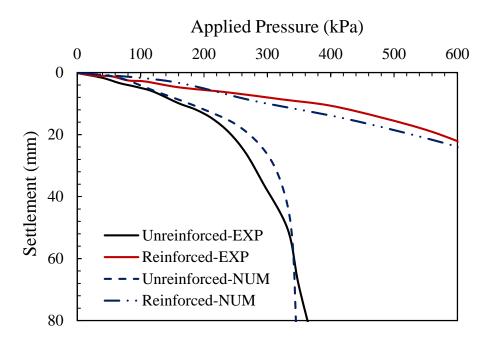
Reinforcement spacing = 0.8 m


Reinforced Soil Foundation (RSF)

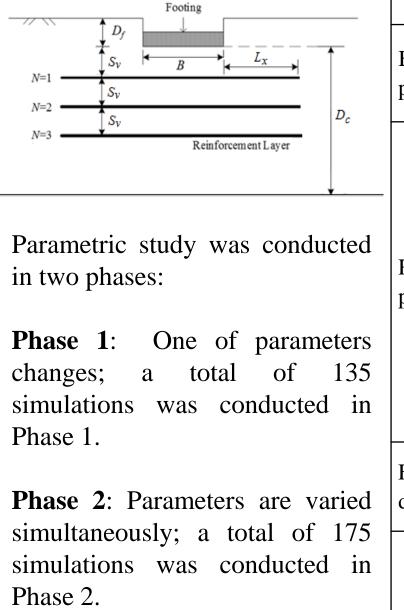
Methods to predict the settlement of footings placed on unreinforced granular soil:


- Modified Schmertmann
- Hough
- Peck and Bazaraa
- Burland and Burbidge
- D'Appolonia


Model Validation - Adams and Collin (1997) Experiments



Туре	Biaxial geogrid		
Ultimate strength	34 kN/m		
Tensile strength in machine direction at 5% strain	20 kN/m		
Tensile strength in cross machine direction at 5% strain	25 kN/m		
Vertical spacing of reinforcement	0.15 m		
Embedment depth of top geogrid layer	0.15 m		
Apparatus size	25 mm × 30 mm		


Model Validation

Parametric Study

Pa	Values			
Backfill	Friction angle, ϕ (deg)	30, 35, 40 , 45, 50		
properties	Cohesion, c (kPa)	0, 1 , 5, 10		
	Reinforcement spacing, S_v (m)	0.2, 0.3 , 0.4		
	Number of reinforcement layers, N	2, 3 , 4,5		
Reinforcement	Reinforcement length	0.25 <i>B</i> ,		
	extended beyond	0.5 <i>B</i> ,		
properties	foundation, $L_X(m)$	0.75 <i>B</i> , <i>B</i>		
	Compacted depth, D_c (m)	0.9, 1.2 , 1.5. 1.8		
	Reinforcement stiffness, J	500, 1000 ,		
	(kN/m)	2000, 3000		
Foundation	Width of foundation, <i>B</i> (m)	1, 2, 3		
dimension	Length of foundation, L	1 <i>B</i> , 2 <i>B</i> , 3 <i>B</i> ,		
u111101151011	(m)	7 <i>B</i> , 10 <i>B</i>		
Ser	50, 100, 200, 400,			
	600 37			

Tries for Nonlinear Regression Prediction Model

$$S_{RSF} = a_{0} + a_{1}q + a_{2} \tan(90 + \phi) + a_{3}c + a_{4}J + a_{5}S_{v} + a_{6}D_{c} + a_{7}B + a_{8}L + a_{9}L_{x} + a_{10}N$$

$$S_{RSF} = a_{0} \times q^{a_{1}} \times (a_{2} \tan(90 + \phi) + a_{3}c + a_{4}J + a_{5}S_{v} + a_{6}D_{c} + a_{7}B + a_{8}L + a_{9}L_{x} + a_{10}N)$$

$$S_{RSF} = a_{0} \times q^{a_{1}} \times \tan(90 + \phi) \times (a_{2}c + a_{3}J + a_{4}S_{v} + a_{5}D_{c} + a_{6}B + a_{7}L + a_{8}L_{x} + a_{9}N)$$

$$S_{RSF} = a_{0} \times q^{a_{1}} \times \tan^{2}(90 + \phi) \times (a_{2}c + a_{3}J + a_{4}S_{v} + a_{5}D_{c} + a_{6}B + a_{7}L + a_{8}L_{x} + a_{9}N)$$

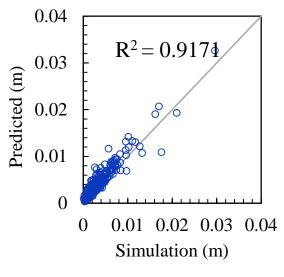
$$S_{RSF} = a_{0} \times q^{a_{1}} \times \tan^{2}(90 + \phi) \times (a_{2}c + a_{3}J + a_{4}S_{v} + a_{5}D_{c} + a_{6}B + a_{7}L + a_{8}L_{x} + a_{9}N)$$

$$S_{RSF} = a_{0} \times q^{a_{1}} \times \tan^{2}(90 + \phi) \times (a_{2} + a_{3}c + a_{4}(S_{v} / J) + a_{5}D_{c} + a_{6}B + a_{7}L + N^{a8})$$

$$S_{RSF} = a_{0} \times q^{a_{1}} \times \tan^{2}(90 + \phi) \times (B/L^{a_{2}}) \times N^{a_{3}}(a_{4} + a_{5}c + a_{6}(S_{v} / J) + a_{7}D_{c} + a_{8}B + a_{9}L_{x})$$

 $S_{RSF} = 1.3 \times 10^{-3} \times q^{*1.17} \times cot^2 \phi \times N^{-0.05} \times (-0.07 - 10^{-10})$

Equation for Predicting Settlement of RSF

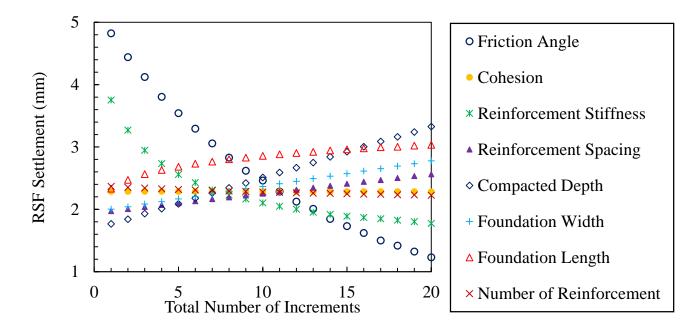

 $S_{RSF} = 1.3 \times 10^{-3} \times q^{*1.17} \times \cot^2 \phi \times N^{-0.05} \times (-0.07 - 6.5 \times 10^{-5} c^* + 67.9 (S_{\nu}^*/J^*) + C_{\nu}^*/J^*) + C_{\nu}^*/J^* + C_{$

 $\checkmark q^*$, c^* , J^* , S_v^* , D_c^* , B^* , L^* , and L_x^* are defined as q/q_0 ,

 c/c_0 , J/J_0 , Sv/S_{v0} , D_c/D_{c0} , B/B_0 , L/L_0 , and L_X/L_{X0} respectively.

- ✓ *q* and *c* should be in the unit of kPa, ϕ in degree, *J* in kN/m, and *S_v*, *D_c*, *B*, *L* and *L_X* in the unit of m, then *S_{RSF}* result would be in m.
- ✓ In this study $q_0 = 100$ kPa, $c_0 = 1$ kPa, $J_0 = 100$ kN/m, $S_{\nu 0}$

 $= 0.1 \text{ m}, D_{c0} = 1 \text{ m}, B_0 = 1 \text{ m}, L_0 = 1 \text{ m} \text{ and } L_{X0} = 1 \text{ m}.$


Evaluation of RSF Settlement Prediction Equation

Reference	Set No.	φ (°)	c (kPa)	J (kN/m)	Sv (m)	<i>D_c</i> (m)	<i>B</i> (m)	<i>L</i> (m)	N
Adams and Collin (1997)	1	36	1	450	0.15	5.55	0.91	0.91	3
Chen and Abu-Farsakh (2011)	2	25	13	370	0.607	4.86	1.822	1.822	4
Abu-Farsakh et al. (2013)	3	46	1	365	0.051	0.75	0.152	0.152	3

	Cat Na	L and (IrDa)	Actual	Predicted	Error
	Set No.	Load (kPa)	Settlement (mm)	Settlement (mm)	(%)
		100	2.94	2.45	-17
		200	5.87	5.50	-6
	1	300	8.12	8.83	9
B = 0.91 m	1	400	11.06	12.36	12
		500	15.72	16.04	2
		600	22.46	19.84	-12
		100	11.89	12.49	5
		200	25.79	28.07	9
B = 1.822 m	2	300	40.79	45.07	10
D = 1.022 III	2	400	60.72	63.06	4
		500	83.95	81.84	-3
		600	109.19	101.26	-7
		100	0.36	0.19	-47
		200	0.73	0.43	-41
	3	300	1.2	0.69	-43
B = 0.152 m	3	400	1.51	0.97	-36
		500	1.83	1.26	-31
		600	2.24	1.55	-31

40

Incremental Sensitivity Analysis

Parameters	SR
Friction angle	-2.7
Reinforcement spacing	0.52
Compacted depth	0.39
Reinforcement stiffness	-0.34
Width of foundation	0.32
Length of foundation	0.10
Number of reinforcement	-0.05
Cohesion	-0.01

Conclusions

- ➤ The Plastic Hardening model can accurately predict the behavior of soil in simulation of GRS abutments and RSF under service loads.
- ➤ This study suggests these equations for calculating the maximum lateral deformation and settlement of GRS abutment and maximum settlement of RSF under service loads:

$$L_{GRS} = 0.056 \times q^{*1.32} \times tan^{2}(90 + \phi) \times \frac{S_{v}^{*}}{J^{*0.17}} \times B^{*1.11} \left(-1.53 + 1.69(1 - \beta^{*}) + 0.105H^{*} - 0.0125L_{R}^{*2}\right)$$

 $S_{GRS} = 0.005 + 0.006 \times q^{*1.42} \times tan^2 (90 + \phi) \times \frac{S_v^*}{J^{*0.49}} \times B^{*1.26} (-23.3 + 26.7(1 - \beta^*) + 0.025H^* - 0.2L_R^*)$

 $S_{RSF} = 1.3 \times 10^{-3} \times q^{*1.17} \times cot^2 \phi \times N^{-0.05} \times (-0.07 - 6.5 \times 10^{-5} c^* + 67.9 (S_v^*/J^*) + 0.15 D_c^* + 0.06 B^* + 0.06 B^*$

Conclusions

- Results of sensitivity analysis for suggested equations indicated that:
 - ✓ In GRS abutment lateral deformation equation, soil friction angle and reinforcement spacing have the highest effect;
 - ✓ In GRS abutment settlement equation, soil friction angle and foundation width have the highest effect;
 - ✓ In RSF settlement equation, soil friction angle and reinforcement spacing have the highest effect.

Today's Speakers

• Jennifer Nicks, Federal

Highway Administration, jennifer.nicks@dot.gov

U.S. Department of Transportation Federal Highway Administration

- Ming Xiao, Penn State University, <u>mxiao@engr.psu.edu</u>
- Tong Qiu, Penn State University, tqiu@engr.psu.edu
- Mahsa Khosrojerdi, Arup, <u>mahsa.khosrojerdi@arup.com</u>

Get Involved with TRB

- Getting involved is free!
- Join a Standing Committee (<u>http://bit.ly/2jYRrF6</u>)
- Become a Friend of a Committee (http://bit.ly/TRBcommittees)
 - Networking opportunities
 - May provide a path to become a Standing Committee member
 - Sponsoring Committees: AFS10, AFS70
- For more information: <u>www.mytrb.org</u>
 - Create your account
 - Update your profile

Receiving PDH credits

- Must register as an individual to receive credits (no group credits)
- Credits will be reported two to three business days after the webinar
- You will be able to retrieve your certificate from RCEP within one week of the webinar

TRB turns 100 on November 11, 2020

Help TRB:

- · Promote the value of transportation research;
- · Recognize, honor, and celebrate the TRB community; and
- · Highlight 100 years of accomplishments.

Learn more at

www.TRB.org/Centennial

MOVING IDEAS: ADVANCING SOCIETY—100 YEARS OF TRANSPORTATION RESEARCH

