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Learning Objectives

1. Explain significance of clean, organized
datasets in enabling Al

2. ldentify opportunities where design
experience can be derived from data
using machine learning

3. Describe the benefits of machine learning
for bridge foundation design

#TRBwebinar
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Agenda

e Technology definitions

e The significance of well-structured, high-quality datasets in
enabling Artificial Intelligence (Al)

e Opportunities where design experience can be derived from
data using advanced analytics

e Looking ahead



What is Artificial Intelligence

“Artificial intelligence is intelligence demonstrated by machines (or software), in
contrast to the natural intelligence (NI) displayed by humans and other animals.”

Wikipedia
“The science and engineering of making intelligent machines”
John McCarthy
“The study and design of intelligent agents, where an intelligent agent is a system that

perceives its environment and takes actions that maximize its chances of success.”

Russell and Norvig



Artificial Intelligence and Machine Learning

Multi-layered models that
learn representations of
data with multiple layers of

Machine

abstraction ;
Learning
Learning
Rule-based Self-learning
intelligent systems algorithms that learn

from data



What is Machine Learning

Building intelligent machines E —
to transform data into knowledge _l

Predictive Model Prediction

The Essence of Machine Learning:

1. A pattern exists
2. We cannot pin it down mathematically
3. We have data on it

Yaser Abu-Mostafa, Learning from Data, 2012



Not only AI/ML: Advanced Analytics

e Artificial Intelligence (Al) & Machine Learning (ML)

e Multivariate statistics

e Automation/optimization through computer programming
e Enhanced business intelligence (Bl)

e Data mining

e Simulations



Prerequisite: High-quality Data

e High-quality, structured data is the new currency and the fuel
that powers Machine Learning

e Example from other industries: The ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) was a catalyst to the
evolution of Deep Learning

e State of open deep foundation datasets: Little uniformity, highly
dissimilar, unstructured, semi-structured or structured with little
to no data validation; incompatible with ML requirements
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Bridge foundation projects generate lots of data

Geotechnical - site investigation
o Boring logs

o (Geophysical testing

o In-situ testing

Inspection records
Construction records

Remote sensing

3D Modeling (AR/VR)

e Load testing
o Static
o Dynamic

e Installation
o Pile driving behavior
o Pile driving equipment

e Construction records
o Precast specs
o QA/QC
o Performance monitoring
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DIGGS

Data Interchange for Geotechnical and Geoenvironmental
Specialists

GML (XML-based) geospatial standard schema for the transfer
of geotechnical and
geoenvironmental data Q

Enter data once, use
anywhere DIGGS is supported

Backed by ASCE, FHWA

. ANALYSIS

--DIGGS-=========

1



DIGGS (cont.)

e Extensible schema

e Asingle file can hold details on
multiple projects

e Can be parsed/generated
programmatically

e Great for large-scale analyses,
machine learning

DIGGS 2.5.a |

Geotechnical
Data

Project

Rock
Grouting

Deep
Foundations

Capacities

[

Properties

Installation

Testing

New in DIGGS 2.6

12



Bridge foundation design challenges

Interpreted Failure Load (kips)
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Concrete Cylinder (R2: -6.972)
Round Concrete (R2: -0.199)
Square Concrete (R?: 0.199)
Steel H-Pile (R?: -1.780)

Pipe Pile Closed (R?: -0.015)
Pipe Pile Open (R?: -0.081)
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102 10
Calculated Capacity (kips)

10*

Wide scatter in nominal vs interpreted
capacities

Semi-empirical, empirical design
methods, based on the behavior of a
few dozen piles

Experience from past projects is
transferred through people, not data,
and often lost

Missing the data structure, tools and
methods to analyze at scale
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Hypothesis

R

n
Nominal Capacity

i.e. 4,000 tons

Can advanced analytics workflows lead to:
e Accurate interpreted capacity

e Reliable calculated capacity

e Case-based design

R

m
Interpreted Capacity

1,000 - 16,000 tons

14



Prediction PoC

1.

Calculate capacity using Q Qc _ MSE:..
Nordlund and Tomlinson ' c o o K
Interpret capacity from static Qm
Iogd ’Fest using the Davisson — Q_ VS.
criterion

MSE
Predict capacity using M/L 08

—l o

(SVR model)

Q
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Feature Selection

1. Soil type (Sand, Clay, mixed) - 1. Pile material (Steel, Concrete,
categorical composite) - categorical
2. Average N count - numerical* 2. Pile end (open/closed) - categorical
3. Cross sectional area - numerical
* intentional oversimplification; not ideal, but the quality of the 4. Circumference - numerical
available soil data does not justify the additional computational
effort of using a layered system 5. Length _ numerical

Three (3) categorical and four (4) numerical features

16



Results

e MSE reduced by a factor
of 17 (62,566 kips)

e MPE improved by a factor
of 2 (-47.78% to -25.7%)

e Absolute MPE reduced
(76.3% t0 42.3%)

e Test R2was 0.6 (or 60%).
The model yields errors
that are 45% smaller than
those of a constant-only
model, on average. An
improvement on errors by
a factor of 9.

FHWA Capacity (kips), Q.

Calculated vs. Measured Capacity
for 213 Load Tests from DFLTDv2
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Results of predicted capacity compared to measured capacity. Absolute MPE with

real-value MPE in parentheses (RHS legend)
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Recommendation PoC

Example

10-inch side

51-ft long

HPILE

Mixed Soil Conditions

Analytical workflow

Compute capacity or use
stored values

Offer design insights by
running aggregate
analyses for similar
records

Pile Information

Type:

Shape:
Diameter/Side:

Wall Thickness:
Circumf./Perimeter:
Date Driven:

Name:

Description:

Taper: n/a

HPIL

HP 10X42
10.0in

n/a

n/a
1973-08-21
n/a

n/a

Vibro: n/a

Calculated Capacities

Total Length:
Embedded Length:
AE/L:

Modulus:
Displacement Ratio:
Design Load:
Predrill Depth:

Cased: n/a

Lagen Tyre S
A lowa DOT Modified ENR (bearing) (source DB) 49.20
B lowa Theoretical Capacity (source DB) 106.92
o lowa Blue Book Method (source DB) 120.00
D Meyerhof (source DB) 104.00
E API 1984 (source DB) 164.00
F Beta Burland 1973 (source DB) 177.00
G Nordlund (source DB) 146.00

Design Insights

There are 25 similar records in NYU Pile Capacity. Click here to
review the aggregate analysis.

51.0 ft
51.0 ft
n/a

n/a

n/a

37.0 kips
n/a

Predrill: n/a

Weight: n/a
Square Circ.: n/a
Cross Sec. Area: 12.4 sq.in

Head Elevation: n/a
Toe Elevation: ~ 759.7 ft

Relief: n/a Jetted: n/a

% Difference from Qp, (Std. Davisson)

x 100%

Qc—Om
05(Qc+Qm)
N
o S

-40

18



In conclusion

Reducing the inherent complexity of data management and analysis
enables interactivity and flexibility to investigate new areas

Hypothesis is confirmed: more/better data and advanced analytics
can lead to better bridge foundation designs

There is no Al without high-quality, well-structured data
|ldentify and empower citizen data scientists within your organization

Get leadership on board and seek the advice of experts

19



Looking ahead

e Proof of concept (PoC) studies on Al are excellent, and there is
an increasing number of them

e As Al is adopted and becomes more mature in our field, the
focus will be on reliable applications rather than PoC

e Industry leaders will eventually compete on Al, and decision
makers at the state/federal level might have to step in to set
standards

20



Webinar: Artificial Intelligence and Bridge Foundation Design

Evaluating the Ultimate Pile Capacity from Cone Penetration
Test (CPT) Data using Artificial Neural Network

Murad Abu-Farsakh, Ph.D., P.E., F-ASCE
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PRESENTATION OUTLINE
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Introduction

Objectives of the study

Cone Penetration Test

Overview of ANN

Evaluation of Ultimate Pile Capacity from CPT Data
Pile Load Tests Database

Development of Neural Network Model

Results of ANN Modeling

Sensitivity Analysis of ANN model Inputs
Comparison with Traditional Pile-CPT Methods
Limitations of Study

Conclusions



INTRODUCTION

d Over the years, many analytical and empirical pile design methods were
developed [e.g., Static analysis methods using total or effective stresses (o, 3, ),

Methods based on SPT data, Methods based on CPT] for different soil types
based on lab or in-situ field test data.

d These methods usually relate the pile capacity to different soil properties, which
are evaluated from laboratory and/or in-situ field tests that include soil
borings/layering, undrained shear strength, friction angle, soil classification, etc.

[ Conducting laboratory tests 1s expensive and time consuming.



INTRODUCTION

U Many direct pile-CPT methods were developed in the last few decades to
estimate the ultimate pile capacity form CPT data (q,1,), such as: Schmertmann,
De Ruiter and Beringen, LCPC (Laboratoire Central des Ponts et Chaussees),
probabilistic, UF (University of Florida) and many other CPT methods.

L Most of the pile design methods involve several correlation assumptions and
judgments 1n selecting the proper correlation coefficients, which can influence
the calculation of ultimate pile capacity, that can result in inconsistent accuracy
of pile capacity for different soil/pile conditions.



INTRODUCTION

U To resolve the shortcoming in traditional direct pile-CPT methods, the ANN
concept can be introduced to develop models to estimate the pile capacity from
CPT data, since it does not need any correlation assumptions or judgements.

d The ANN method usually learns from previous cases/instances and trains by
using special mathematical algorithms.

U The developed ANN models are expected to yield better and consistent accuracy
in estimating the ultimate pile capacity from CPT data.



OBJECTIVES OF THE STUDY

Q Explore the applicability of ANN 1n predicting the ultimate axial capacity of
piles from CPT data.

Q Evaluate the relative importance of different input parameters, e.g. q,, f,,
embedment pile length, L, and pile width, B.

0 Compare the ANN results with the well-performed direct pile-CPT methods.

d Evaluate the ANN models within the context of LRFD reliability analysis to
demonstrate their accuracy and bolster their reliability and feasibility.



CONE PENETRATION TEST (CPT)

Penetration Rate: 2 cm/sec

Base area = |0 cm?
Sleeve area = |50 cm?
Cone angle = 60°

Sleeve Friction, f_

i

Cone Tip Resistance, q,

Computer




CPT TRUCK AND PENETROMETERS




TYPICAL CPT TEST DATA

Tip Resistance (MPa)  Sleeve Friction (MPa) Rf (%) Probability of soil type (%)
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TYPICAL CPT TEST DATA

qt=qc+u2(1'a) ;
a=A/A, U : )
~ sestonal arsa w
q, = corrected cone resistance | | | (P T
q. = measured cone resistance ,%’ et s 5;80 <10 )
a = effective cone area ratio ﬂAL e M
A = cross-sectional area of the // ¥ i otom) A i
load cell Cross 25 )
A, = area projected by the \/ e EE TN S T

Corrected Factor

cone



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)

A The artificial neural network (ANN) models are trying to mimic
the learning system of humans brain, which is composed of
complex webs of interconnected neurons, using mathematical
algorithms.

d So, the ANN is composed of complex webs of interconnected
neurons/nodes, the primary elements of Artificial Neural Network.

0 Usually the ANN model consists of an input layer, one or a more
intermediate/ hidden layers, and an output layer.

O The network 1s arranged in a way that, the output of one layer
serves as the mput for the following layer.

O The ANN can performs parallel computation for complex and
massive data processing.



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)

U The nodes of cach layer are connected to other node

elements through weighted connections. Between the
interconnected neurons, the corresponding weights
represent the strength of the connections.

An 1individual processing node receives weighted inputs,
which are then summed and propagated through a transfer
function (e.g., step, linear, ramp, logistic sigmoid or
hyperbolic tangent) to generate the output of the neuron.

For any node j in layer /, the summed process can be summarized
using the following equations:

1 i 1,1-1 —

where, Iil = activation level of node j; W]-li = connection weight between nodes 1 and J; X;j

E S =Y Xi Wi _
Summation \ -
xn Yn

X1 W1
Transfer Y1
X2 Function
- We Processing F(S)
- Element Y2

Whn

I-1_ input from node i

1=0,1, ..., n; e}:WjO: bias for node j; yil = output of node j; and {(I,) = transfer function.



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)

 The difference between the obtained output and the target output 1s the Error, E
E = 7(Output

Q The Error 1s then distributed backward through the weights starting from the
output layer towards the input layer.

— 2
Target OUtplIt obatined )

d The weights, w, are then adjusted with respect to the corresponding error as
follows:
(i)

W . — W - rl*a—w , 111s the learning rate

d The network propagation i1s repeated with the updated weights until the

obtained output 1s close enough to the target output (within acceptable
tolerance).

13



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)

According
to Structure

According
to learning
paradigm

feedforward networks -

Flow is unidirectional starting from input layer to output layer.
No connections are allowed between neurons in same layer.

Recurrent networks #

Outputs of some neurons are fed back to same neuron
(connection loops) or to other neurons in preceding layers.

Supervised 1 earning #

Network 1s provided with correct answers for input patterns. The
connection weights are adjusted to allow the network to produce
answers as close as possible to target answers.

Unsupervised L earning -

Reznforcement 1earning #

Does not require desired outputs. Learning proceeds by clustering
input patterns into categories of similar features.

This is a special case of supervised learning in which the network
is provided only with a critique on the goodness of network outputs
for a given input pattern rather than true answers.

14



ESTIMATION OF ULTIMATE AXIAL PILE CAPACITY

O Static pile load tests: Davisson, Modified Davisson, Butler-Hoy, DeBeer,
VanDer Veen, etc.

 Static analysis: a-Tomlinson method, Nordlund method (from Borings), etc.,

O Dynamic analysis: PDA, CAPWAP (EOD, Restrikes), GRL WEAP, CASE,
etc.,

[ Statnamic load tests,

A In-situ test methods: SPT, CPT, etc.



INTERPRETATION OF STATIC PILE LOAD TESTS

1 Davisson method
O Butler-Hoy method

Load (kN)
100 200 300 400 500 600 700
' Q, (Butler-Hoy)=460 KN | |

Settlement (mm)

(Qu )Davisson =1.02* (Qu )Butler—Hoy -
Coef. of det., R2=0.99

0 1 I 1 I 1 I 1
0 500 1000 1500 2000

Butler-Hoy ultimate pile capacity (kN)

Davisson ultimate pile capacity (kN)




INTERPRETATION OF STATIC PILE LOAD TESTS

1 Davisson method
O Butler-Hoy method

Load (kN)
100 200 300 400 500 600 700
' Q, (Butler-Hoy)=460 KN | |

Settlement (mm)

(Qu )Davisson =1.02* (Qu )Butler—Hoy -
Coef. of det., R2=0.99

0 1 I 1 I 1 I 1
0 500 1000 1500 2000

Butler-Hoy ultimate pile capacity (kN)

Davisson ultimate pile capacity (kN)




ULTIMATE AXTAL PILE CAPACITY

Qult = Qp + Qs

Shaft friction capacity,
‘ Q=2 (fi.Ay)

End bearing capacity,
TR
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CONE PENETRATION VERSUS PILE

Due to similarity between cone
and pile, the cone can be
considered as a simple mini pile.

> 1, can be correlated to f,
> (. can be correlated to q,,




ESTIMATION OF PILE CAPACITY FROM CPT DATA

d Indirect Approach

— Use the CPT data (q,, f,) to evaluate the soil strength parameters
strength parameters, such as undrained shear strength (S,) for clay
and angle of internal friction (@) for sand, from CPT data — input for
Static Analysis Methods.

d Direct Approachv
Evaluate pile capacity directly from CPT data (q,, f,)

— The pile unit toe resistance (¢,) is evaluated from the cone tip resistance (¢, )
profile,

— The pile unit shaft resistance (f) is evaluated either from the sleeve friction  *
(f,) or from the cone tip resistance (¢q_) profiles.



ESTIMATION OF PILE CAPACITY FROM CPT

Tip resistance Sleeve friction Friction ratio
q. (MPa) fs (MPa) Ry (o)

05101520 O0 01 0.2

»
»

21




ESTIMATION OF PILE CAPACITY FROM CPT DATA

Cone data Soil Type Pile Parameters

“ 3
bl y
Il




DIRECT PILE-CPT DESIGN METHODS

1- Schmertmann 10- ICP

2- De Ruiter and Beringen 11- UWA

3- LCPC (Bustamante and Gianeselli) I:: 12- CPT2000

4- Tumay and Fakhroo 13- Fugro

5- Aoki and De Alencar 14- Purdue

6- Price and Wardle 15- Probabilistic
7- Philipponnat > 16- UF

8- Penpile 17- Togliani

9- NGI 18- Zhou

19- ERTC3
20- German

21- Eurocode

23



EXAMPLE: UF CPT METHOD

» The unit end bearing capacity: » The unit side capacity:
. (o
g =kaq. <150 TSF Soil Type Kk, JFSZ_ = q i side) ?‘S < 1.27SF
Well cemented sand 0.1 s
q + q Lightly cemented sand | (.15 0. depends on the pile type ((ls equals
g =-=< c2 to 1.25 for precast concrete driven piles)
o 2 Gravel 0.35
Sand 0.40 Soil Type Fs
Silt 0.45 Clay and calcareous clay 50
Clay 1.0 Silt, sandy clay, and clayey sand 60
q.;: average cone tip resistance within 3b (b is the pile
width) below the pile tip; g_.,: average cone tip resistance Loose sand 100
within 8b (b is the pile width) above pile tip. Medium dense sand 150

In cases that q., > g,y =& Y4c2 = 9c1

TR o cd o~ v o~ ow = PR IR ) | L YAYAY



PILE LOAD TEST DATABASE

O The database consists of eighty (80) precast prestressed concrete
(PPC) piles of different sizes and lengths were collected from 34
different project sites across the state of Louisiana.

Q All the piles were square piles loaded to failure under static load
tests. The corresponding CPT tests were conducted close to each
test pile. The pile lengths range from 36 ft. to 200 ft., and the pile

widths range from 14 in. to 36 in. ._-!a L
[ The pile load tests were performed based on quick load test as -!45“'&"‘
x|

described by ASTM D1143 testing procedure. The tests were """\.__,.Q""”
performed 14 days after pile driving , partially accounted for pile

setup.

O Davisson interpretation criteria was used to estimate the ultimate
pile capacity from the load-settlement curve for each pile load test. %



DEVELOPMENT OF NEURAL NETWORK MODEL

Model Input Parameters

 The proper selection of input variables is very important for developing ANN models,
since 1t has significant impact on the performance of the ANN models.

d Based on prior knowledge from literature, the selected input variables were: pile
embedment length, L, pile width, B, corrected cone tip resistance, q, and cone sleeve
friction, f.. The ultimate pile capacity, q,, was the only output.

 There are some other factors, such as the pile installation method, pile type, whether the
pile tip 1s open or closed, shape of pile cross-section, etc. These factors were ignored in
this study since all the tested piles were square precast prestressed concrete (PPC) driven
pile with closed tip.



DEVELOPMENT OF NEURAL NETWORK MODEL

Model Input Parameters

[ The soil properties along the shaft of the pile varies with depth.

[ To account for this variability, the embedded length of the piles
was divided into five equal segments (layers). For each division,

the average q, v and fs,avg were determined as follow:

_ X9t Zi £ _ Xfsi Zi

qt, avg _ Zzi ) S, avg _ Zzi

[ For calculating the pile end bearing capacity, the average
corrected tip resistance, Qetipp WAS calculated for two cases of
influence zone: 4B below to 4B above pile toe, and 4B below to
8B above pile toe, in order to find the best results.

27



DEVELOPMENT OF NEURAL NETWORK MODEL

Model Input Parameters

[ The final selection of ANN input parameters were: (1) Pile embedment depth, L, (2) Pile

Width: Ba (3) qt, avg 1» (4) qt, avg 2° (5) qt, avg 3° (6) qt, avg 4° (7) qt, avg 5° (8) fs, avg 1° (9) fs, avg 2°
(10) Jfs, avg 3» (1 1) Jfs, avg 4> (12) fs, avg 5 (13) qt-tip, 4B/8B above?’ (14) qt-tip, 4B below*

d These inputs parameters were arranged in six different combinations (6 ANN Model
Types) to determine the ANN model(s) that yields the best performance in terms of
estimating the measured ultimate pile capacity of driven PPC piles.

28



DEVELOPMENT OF NEURAL NETWORK MODEL

Sample of Data Set

Width L Qetip,  qetip, 4B Geetip,

qt,avgl qt,ang qt,avg3 qt,avg4 qt,avgs fs,avgl fs,ang fs,avg3 fs,avg4 fs,anS Qu

(in) (ft) (tsf) (tsf)  (tsf)  (tsf)  (tsf) 8‘%;5” (:‘S);) “ztbsgw (tsf)  (tsf)  (tsf)  (tsf)  (tsf)  (tons)

24 542 27.60 235 469 178 113 11.75 1194 1048 145 088 1.12 1.05 032 265

24 491 1934 238 263 285 17.8 32.65 2244 1782 0.78 1.00 105 095 0.77 239
30 86 2466 291 275 327 479 4133 7242 2743 109 124 103 0.69 096 570
24 601 2720 252 343 466 19.8 3738 50.78 1931 0.82 0.74 131 078 0.70 275
24 85 9.68 113 736 100 189 1261 17.78 20.17 042 035 031 032 046 205
14 63.7 8.1 6.28 567 29.1 557 5653 4543 4488 0.25 021 0.17 024 0.63 127
24 87 1190 11.8 158 36.6 283 4733 2458 3182 046 042 038 050 058 309
30 72,5  50.16 468 422 0698 582 87.63 50.03 60.11 0.12 038 058 045 045 374
24 60 51.51  259. 196. 759 405 9239 38.14 4294 045 132 141 118 092 210

24 39 1877 150 316 430 6.67 4.02 3.26 821 0.71 021 012 016 0.17 66 29




DEVELOPMENT OF NEURAL NETWORK MODEL

Types of ANN Models

Types of ANN

Input Parameters

Model

Type 1 (1) Pile embedment depth, L, (2) Pile width, D, (3) q¢ ave1, (4) qt ave 2,
(5) q, avg 35 (6) qt, avg 45 (7) qt, avg 5, (8) (t-tip, 4B above, (9) (t-tip, 4B below

Type 2 (1) Pile embedment depth, L, (2) Pile width, D, (3) q¢ave1, (4) qt ave 2,
(5) q, avg 35 (6) qt, avg 45 (7) qt, avg 5, (8) (t-tip, 8B above, (9) (t-tip, 4B below

Type 3 (1) Pile embedment depth, L, (2) Pile width, D (3) f; awe1, (4) fs ave2,
(5) fs, avg 35 (6) fs, avg 45 (7) fs, avg 5y (8) (t-tip, 4B above, (9) (t-tip, 4B below

Type 4 (1) Pile embedment depth, L, (2) Pile width, D (3) f; w1, (4) £ ave2,
(5) fs, avg 35 (6) fs, avg 45 (7) fs, avg 55 (8) (t-tip, 8B above, (9) (t-tip, 4B below

Type 5 (1) Pile embedment depth, L, (2) Pile width, D, (3) q¢ ave1, (4) qt ave 2,
(5) Gravg3, (0) Guavg s (7) Quavg s> (8) frang 1, 9) fiavg2, (10) £ aves,
(1 1) fs, avg 45 (1 2) fs, avg 5, (1 3) (t-tip, 4B above, (1 4) (t-tip, 4B below

Type 6 (1) Pile embedment depth, L, (2) Pile width, D, (3) qu 1, (4) G avez,

(5) qt, avg 3, <6> qt, avg 4, (7) qt, avg 5, <8> fs, avg 1, (9) fs, avg 2, (1 O) fs, avg 3, (1 1) fs,
avg 45 (1 2) fs, avg 5, (1 3) qt—tip, 8B above, (1 4) qt—tip, 4B below




DEVELOPMENT OF NEURAL NETWORK MODEL

Training of ANN Models

 Training of ANN model refers to the process of initializing a network through the deployment of initial
values and then optimizing the connection weights in order to obtain global minima instead of a local one.

1 A widely used method to obtain the optimum weights is the back-propagation algorithm or the gradient
descent method. However, the convergence is sometimes slower and requires lots of iterations. Therefore,
a faster Quasi-Newton method was used in this work to optimize weights for the ANN model.

Stopping Criteria of Training Process

O It is important to determine when to stop the training process. In this study, the cross-validation method
was implemented where data was divided into three sets: 70% training, 12% testing and 18% validation.

U The function of training set is to re-adjust the connection weights. The testing set judges the capability of
the model to be generalized, through evaluating the performance of the model at different stages of the
training process. When an increase in error is detected, the training process is stopped. The validation set
ensures the model’s ability to be generalized in a robust way within the limits of training data.
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RESULTS OF ANN MODELS

2
ANN  ANN  Phase r R* RMSE Mean COV 1 1. performance of ANN model was

type model (tons) 1, ,
Traning 099 097 2845 1.00 0.18 evaluated based on the coefficient of

Type1 971  Testing 098 090 5209 094 0.20 correlation, r, coefficient of determination, R?,
validation 0.98 093 2539 093 0.7 root mean of squared errors, RMSE, mean
Training 098 097 2742 100 0.18 bias factor, A, and the coefficient of variation,
Type2 9-7-5-1 Testing 095 090 3546 114 0.23 COV
validaton 0.97 091 2940 097 0.20 :

Training  0.99 099 1165 100 0.08 . .
Type3 9771 Testng 094 068 3323 106 o019 = The ANN models are designated in a manner

validation 0.99 098 26.78 099 0.19 to understand its structure. For example, for
077 Training 882 ggg ;;33 ggg 8(1)513 the model designated as 9-4-1-1, the first and
Type 4 -7-7- Testing : : : : : -
validation 099 098 2249 099 045 last .number refers to the number of nodes in
Training 099 099 10.18 1.00 0.08 the input and output layers, respectively. The
Type5 14-9-3-1 Testing 0.98 094 1478 096 0.08 intermediate numbers denote the number of
validaton 099 097 2490 096 0.14 hi
1dden layers and nodes.
Training 099 099 7.17 1.00 0.07 M 3

Type 6 14-9-4-1 Testing 097 094 3027 096 0.23
validaton 0.99 098 2965 097 0.14




RESULTS OF ANN MODELS: TYPE 4 ANN MODEL 9-7-7-1
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RESULTS OF ANN MODELS: TYPE 5 ANN MODEL 14-9-3-1
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SENSITIVITY ANALYSIS (14-9-3-1)

CPT Input Variables

The Relative Importance of the
Input Variables (%)

Embedment length of pile, L.
Width of pile, B
(t-tip, 4B above

(t-tip, 4B below

Jrave along the pile shaft
fvg along the pile shaft

14.8
14.1
19.0
22.8
12.9
16.4
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COMPARISON WITH TRADITIONAL PILE-CPT METHODS

0 Amirmojahedi and Abu-Farsakh (2019) evaluated 21 traditional direct pile-CPT methods for
estimating the ultimate pile capacity form CPT data (q,,f,) using a database of 80 pile load tests,
and ranked LCPC, probabilistic and UF methods as the best three performed pile-CPT methods.

O The best-performed ANN models ( 9-7-7-1, 14-9-3-1) developed in this study were compared
with the aforementioned three pile-CPT methods.

O The comparison clearly shows that, the ANN models outperform these three pile-CPT methods
in almost all evaluation criteria. Especially the RMSE value seems to be much higher in the
conventional methods.

Method  Qm/Qm R? ('?“c’)':f) M‘;a“ cov
LCPC 110 091 5713 096 027
Probabilistic ~ 099 0.91 3529 097 021
UF 112 093 5130 099 025

ANN (9-7-7-1) 097 098 2249 099 0.15
ANN (14-9-3-1) 097 097 2490 096 0.14




EVALUATION AND COMPARISON BASED ON LRFD ANALYSIS

L LRFD analysis help to grasp a better understanding of efficiency of the developed ANN models.
O First Order Reliability Method (FORM) was used to calibrate the LRFD resistance factors.

4 Qp/Q, equal to 3 (specified by AASHTO LRFD)

O A target reliability (B) of 2.33 was selected

Pile Capacit Bias, Resistance Efficienc
Method = DataSet Sy cov Tl Y
LCPC 1.04 0.31 0.60 0.57
Probabilistic 1.08 0.34 0.57 0.53
UF Wh(%'g sifgi)set 105 0.27 0.65 0.62  Bias factor, Az = %—m
ANN (9-7-7-1) 0.99 0.107 0.88 0.88 P
ANN (14-9-3-1) 0.99 0.10 0.89 0.90
ANN (9-7-7-1)  Validation data 0.97  0.15 0.79 0.81 ;

ANN (14-9-3-1) set(16piles) 097 0.14 0.81 0.83




LIMITATIONS OF STUDY

O The data set represents clayey soils in Louisiana. Thus, the proposed
ANN models should perform well for clayey soils in Louisiana, and
other locations with similar geological conditions.

[ The range of g, should be (0-300) tsf, the range of f, should be (0-3.2)
tsf and B should be <36 1n, and the range of Qt should be (0-678) tons.

O Recommended for squared PPC driven piles only.

d The developed ANN models should be used to predict the data for
unknown sites without further training. If 1t 1s trained again on the same
training data, the prediction capability might not remain the same.
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CONCLUSIONS

a All the developed ANN model types were able to estimate the measured ultimate
capacity of the 80 pile load tests with good to excellent accuracy.

d However, Type 4 ANN model 9-7-7-1 (A= 0.99, RMSE = 22.49, COV = 0.15) and Type
5 ANN model 14-9-3-1 (A, = 0.96, RMSE,, = 21.53, COV,, = 0.12) showed better
performance.

O Using the combination of ¢ ,,, and f;
ANN prediction models.

_avg> t0 evaluate the pile’s skin friction gives better

O Sensitivity analysis showed that the q g, 45 pelow Nas relatively the highest importance
input parameter.

Q £ . has higher importance than g ,,, along the shaft in evaluating pile skin friction. |,



CONCLUSIONS

1 The comparison with LCPC, probabilistic, and UF methods clearly showed that the

ANN models outperformed the traditional pile-CPT methods with lower RMSE and
lower COV.

] The evaluation and comparison based on LRFD reliability analysis demonstrated higher
resistant factors and superior efficiencies for the ANN models.

U Finally, the ANN models use data and previous experience and training without
incorporating any assumption or hypothesis. Besides, the ANN models can be
continuously updated with time to achieve more accurate estimation results, whenever
new pile load test data are available.
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