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Learning Objectives
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1. Explain significance of clean, organized 
datasets in enabling AI

2. Identify opportunities where design 
experience can be derived from data 
using machine learning

3. Describe the benefits of machine learning 
for bridge foundation design
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Agenda
● Technology definitions

● The significance of well-structured, high-quality datasets in 
enabling Artificial Intelligence (AI)

● Opportunities where design experience can be derived from 
data using advanced analytics

● Looking ahead
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What is Artificial Intelligence
“Artificial intelligence is intelligence demonstrated by machines (or software), in 
contrast to the natural intelligence (NI) displayed by humans and other animals.”

Wikipedia

“The science and engineering of making intelligent machines”

John McCarthy

“The study and design of intelligent agents, where an intelligent agent is a system that 
perceives its environment and takes actions that maximize its chances of success.”

Russell and Norvig

3



Artificial Intelligence and Machine Learning
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AI

Machine 
Learning

Deep 
Learning

Rule-based 
intelligent systems

Self-learning 
algorithms that learn 
from data

Multi-layered models that 
learn representations of 
data with multiple layers of 
abstraction

Figure adapted from Sebastian Raschka.



What is Machine Learning
Building intelligent machines 
to transform data into knowledge

The Essence of Machine Learning:
1. A pattern exists
2. We cannot pin it down mathematically
3. We have data on it

Yaser Abu-Mostafa, Learning from Data, 2012
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Not only AI/ML: Advanced Analytics
● Artificial Intelligence (AI) & Machine Learning (ML)

● Multivariate statistics

● Automation/optimization through computer programming

● Enhanced business intelligence (BI)

● Data mining

● Simulations

● … 
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Prerequisite: High-quality Data
● High-quality, structured data is the new currency and the fuel 

that powers Machine Learning

● Example from other industries: The ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) was a catalyst to the 
evolution of Deep Learning

● State of open deep foundation datasets: Little uniformity, highly 
dissimilar, unstructured, semi-structured or structured with little 
to no data validation; incompatible with ML requirements
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Research activity
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Bridge foundation projects generate lots of data
● Geotechnical - site investigation

○ Boring logs

○ Geophysical testing

○ In-situ testing

● Inspection records

● Construction records

● Remote sensing

● 3D Modeling (AR/VR)

9

● Load testing
○ Static
○ Dynamic

● Installation
○ Pile driving behavior
○ Pile driving equipment

● Construction records
○ Precast specs
○ QA/QC
○ Performance monitoring



Data structures

Structured
10

Semi-structuredUnstructured



DIGGS
● Data Interchange for Geotechnical and Geoenvironmental 

Specialists

● GML (XML-based) geospatial standard schema for the transfer 
of geotechnical and 
geoenvironmental data

● Enter data once, use 
anywhere DIGGS is supported

● Backed by ASCE, FHWA

11



DIGGS (cont.)

● Extensible schema

● A single file can hold details on 
multiple projects

● Can be parsed/generated 
programmatically

● Great for large-scale analyses, 
machine learning 
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Bridge foundation design challenges
● Wide scatter in nominal vs interpreted 

capacities

● Semi-empirical, empirical design 
methods, based on the behavior of a 
few dozen piles

● Experience from past projects is 
transferred through people, not data, 
and often lost

● Missing the data structure, tools and 
methods to analyze at scale
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Hypothesis

Can advanced analytics workflows lead to:
● Accurate interpreted capacity
● Reliable calculated capacity
● Case-based design
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Rn
Nominal Capacity

Rm
Interpreted Capacity

i.e. 4,000 tons 1,000 - 16,000 tons

Rn ≈ Rm



Prediction PoC
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1. Calculate capacity using 
Nordlund and Tomlinson

2. Interpret capacity from static 
load test using the Davisson 
criterion

3. Predict capacity using M/L 
(SVR model)

Qc

Qm

Qp

Qc

Qm

Qp

Qm

VS.

MSE: ...
    R2: ...

MSE: ...
    R2: ...



Feature Selection
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SOIL PILE
1. Soil type (sand, clay, mixed) - 

categorical

2. Average N count - numerical*

* intentional oversimplification; not ideal, but the quality of the 
available soil data does not justify the additional computational 
effort of using a layered system

1. Pile material (steel, concrete, 
composite) - categorical

2. Pile end (open/closed) - categorical

3. Cross sectional area - numerical

4. Circumference - numerical

5. Length - numerical

Three (3) categorical and four (4) numerical features



Results
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● MSE reduced by a factor 
of 17 (62,566 kips)

● MPE improved by a factor 
of 2 (-47.78% to -25.7%)

● Absolute MPE reduced 
(76.3% to 42.3%)

● Test R2 was 0.6 (or 60%). 
The model yields errors 
that are 45% smaller than 
those of a constant-only 
model, on average. An 
improvement on errors by 
a factor of 9. Results of predicted capacity compared to measured capacity. Absolute MPE with 

real-value MPE in parentheses (RHS legend)



Recommendation PoC
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Example
● 10-inch side
● 51-ft long
● HPILE 
● Mixed Soil Conditions

Analytical workflow
● Compute capacity or use 

stored values

● Offer design insights by 
running aggregate 
analyses for similar 
records



In conclusion
● Reducing the inherent complexity of data management and analysis 

enables interactivity and flexibility to investigate new areas

● Hypothesis is confirmed: more/better data and advanced analytics 
can lead to better bridge foundation designs

● There is no AI without high-quality, well-structured data

● Identify and empower citizen data scientists within your organization

● Get leadership on board and seek the advice of experts
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Looking ahead
● Proof of concept (PoC) studies on AI are excellent, and there is 

an increasing number of them

● As AI is adopted and becomes more mature in our field, the 
focus will be on reliable applications rather than PoC

● Industry leaders will eventually compete on AI, and decision 
makers at the state/federal level might have to step in to set 
standards
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PRESENTATION OUTLINE
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 Introduction
 Objectives of the study
 Cone Penetration Test
 Overview of ANN
 Evaluation of Ultimate Pile Capacity from CPT Data
 Pile Load Tests Database
 Development of Neural Network Model
 Results of ANN Modeling
 Sensitivity Analysis of ANN model Inputs
 Comparison with Traditional Pile-CPT Methods 
 Limitations of Study
 Conclusions



INTRODUCTION

 Over the years, many analytical and empirical pile design methods were
developed [e.g., Static analysis methods using total or effective stresses (α, β, γ),
Methods based on SPT data, Methods based on CPT] for different soil types
based on lab or in-situ field test data.

 These methods usually relate the pile capacity to different soil properties, which
are evaluated from laboratory and/or in-situ field tests that include soil
borings/layering, undrained shear strength, friction angle, soil classification, etc.

 Conducting laboratory tests is expensive and time consuming.
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INTRODUCTION

Many direct pile-CPT methods were developed in the last few decades to
estimate the ultimate pile capacity form CPT data (qt,fs), such as: Schmertmann,
De Ruiter and Beringen, LCPC (Laboratoire Central des Ponts et Chaussees),
probabilistic, UF (University of Florida) and many other CPT methods.

Most of the pile design methods involve several correlation assumptions and
judgments in selecting the proper correlation coefficients, which can influence
the calculation of ultimate pile capacity, that can result in inconsistent accuracy
of pile capacity for different soil/pile conditions.
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INTRODUCTION

To resolve the shortcoming in traditional direct pile-CPT methods, the ANN
concept can be introduced to develop models to estimate the pile capacity from
CPT data, since it does not need any correlation assumptions or judgements.

The ANN method usually learns from previous cases/instances and trains by
using special mathematical algorithms.

The developed ANN models are expected to yield better and consistent accuracy
in estimating the ultimate pile capacity from CPT data.
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OBJECTIVES OF THE STUDY
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 Explore the applicability of ANN in predicting the ultimate axial capacity of
piles from CPT data.

 Evaluate the relative importance of different input parameters, e.g. qt, fs,
embedment pile length, L, and pile width, B.

 Compare the ANN results with the well-performed direct pile-CPT methods.

 Evaluate the ANN models within the context of LRFD reliability analysis to
demonstrate their accuracy and bolster their reliability and feasibility.



CONE PENETRATION TEST (CPT)
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CPT TRUCK AND PENETROMETERS

8

Tip

Tip

Sleeve

U1

U2

U3

10 cm2

15 cm2



TYPICAL CPT TEST DATA
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TYPICAL CPT TEST DATA
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qc fc

qt = qc + u2 (1 - a)
a = An/Ac

qt = corrected cone resistance
qc = measured cone resistance
a  = effective cone area ratio
An= cross-sectional area of the 
load cell
Ac = area projected by the 
cone



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)
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 The artificial neural network (ANN) models are trying to mimic
the learning system of humans brain, which is composed of
complex webs of interconnected neurons, using mathematical
algorithms.

 So, the ANN is composed of complex webs of interconnected
neurons/nodes, the primary elements of Artificial Neural Network.

 Usually the ANN model consists of an input layer, one or a more
intermediate/ hidden layers, and an output layer.

 The network is arranged in a way that, the output of one layer
serves as the input for the following layer.

 The ANN can performs parallel computation for complex and
massive data processing.

Input 
Layer Hidden Layer

Output 
Layer



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)
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 The nodes of each layer are connected to other node
elements through weighted connections. Between the
interconnected neurons, the corresponding weights
represent the strength of the connections.

 An individual processing node receives weighted inputs,
which are then summed and propagated through a transfer
function (e.g., step, linear, ramp, logistic sigmoid or
hyperbolic tangent) to generate the output of the neuron.

 For any node j in layer l, the summed process can be summarized
using the following equations:

Ij
l

= 𝛉𝛉𝐣𝐣𝐥𝐥 + ∑𝐧𝐧=𝟏𝟏𝐢𝐢 𝐰𝐰𝐣𝐣𝐢𝐢
𝐥𝐥 𝐱𝐱𝐢𝐢𝐥𝐥−𝟏𝟏 yj

l = f(Ij)

where, Ij
l = activation level of  node j; wji

l = connection weight between nodes i and j; xil−1= input from node i; 
i = 0, 1, …, n; θjl=wj0= bias for node j; yj

l = output of  node j; and f(Ij) = transfer function.



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)
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 The difference between the obtained output and the target output is the Error, E

E = ½(OutputTarget− Output obatined )2

 The Error is then distributed backward through the weights starting from the
output layer towards the input layer.

 The weights, w, are then adjusted with respect to the corresponding error as
follows:

wnew = w - ƞ*𝝏𝝏𝝏𝝏
𝝏𝝏𝐰𝐰

, ƞ is the learning rate

 The network propagation is repeated with the updated weights until the
obtained output is close enough to the target output (within acceptable
tolerance).



OVERVIEW OF ARTIFICIAL NEURAL NETWORK (ANN)
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According 
to learning 
paradigm

According 
to Structure

feedforward networks

Recurrent networks

• Flow is unidirectional starting from input layer to output layer.
• No connections are allowed between neurons in same layer.

• Outputs of some neurons are fed back to same neuron
(connection loops) or to other neurons in preceding layers.

Supervised Learning

Unsupervised Learning

• Network is provided with correct answers for input patterns. The 
connection weights are adjusted to allow the network to produce 
answers as close as possible to target answers. 

• Does not require desired outputs. Learning proceeds by clustering
input patterns into categories of similar features.

Reinforcement Learning
• This is a special case of supervised learning in which the network

is provided only with a critique on the goodness of network outputs
for a given input pattern rather than true answers.



ESTIMATION OF ULTIMATE AXIAL PILE CAPACITY
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 Static pile load tests: Davisson, Modified Davisson, Butler-Hoy, DeBeer, 
VanDer Veen, etc.

 Static analysis: α-Tomlinson method, Nordlund method (from Borings), etc.,

 Dynamic analysis: PDA, CAPWAP (EOD, Restrikes), GRL WEAP, CASE, 
etc.,

 Statnamic load tests,

 In-situ test methods: SPT, CPT, etc.



INTERPRETATION OF STATIC PILE LOAD TESTS
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INTERPRETATION OF STATIC PILE LOAD TESTS
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ULTIMATE AXIAL PILE CAPACITY

18End bearing capacity, 
Qp = qp . At

Shaft friction capacity, 
Qs = Σ (fi . Asi)

Qult = Qp + Qs

f 

qp



CONE PENETRATION VERSUS PILE

19

qc

f s

f 

qp

Qult

Due to similarity between cone 
and pile, the cone can be 
considered as a simple mini pile.

 fs can be correlated to f,
 qc can be correlated to qp



ESTIMATION OF PILE CAPACITY FROM CPT DATA
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 Indirect Approach
– Use the CPT data (qc, fs) to evaluate the soil strength parameters 

strength parameters, such as undrained shear strength (Su) for clay 
and angle of internal friction (φ) for sand, from CPT data → input for 
Static Analysis Methods.  

 Direct Approach✓
Evaluate pile capacity directly from CPT data (qc, fs)
– The pile unit toe resistance (qp) is evaluated from the cone tip resistance (qc) 

profile,
– The pile unit shaft resistance (f) is evaluated either from the sleeve friction 

(fs) or from the cone tip resistance (qc) profiles.



ESTIMATION OF PILE CAPACITY FROM CPT
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ESTIMATION OF PILE CAPACITY FROM CPT DATA
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qca
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Cone data
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Soil Type
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DIRECT PILE-CPT DESIGN METHODS
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1- Schmertmann

2- De Ruiter and Beringen

3- LCPC (Bustamante and Gianeselli)

4- Tumay and Fakhroo

5- Aoki and De Alencar

6- Price and Wardle 

7- Philipponnat

8- Penpile

9- NGI

10- ICP

11- UWA

12- CPT2000

13- Fugro

14- Purdue

15- Probabilistic

16- UF

17- Togliani

18- Zhou

19- ERTC3

20- German

21- Eurocode



EXAMPLE: UF CPT METHOD

The unit end bearing capacity:

( ) 1.2s
si ci side

s

f q TSF
F
α

= <

αs: depends on the pile type (αs equals 
to 1.25 for precast concrete driven piles)

Soil Type Fs

Clay and calcareous clay 50

Silt, sandy clay, and clayey sand 60

Loose sand 100

Medium dense sand 150

Dense sand and gravel 200

The unit side capacity:
Soil Type kb

Well cemented sand 0.1
Lightly cemented sand 0.15

Gravel 0.35

Sand 0.40

Silt 0.45

Clay 1.0

  <150 TSFt b caq k q=

1 2  
2

c c
ca

q qq +
=

qc1 : average cone tip resistance within 3b (b is the pile 
width) below the pile tip; qc2 : average cone tip resistance 
within 8b (b is the pile width) above pile tip.
In cases that 𝑞𝑞𝑐𝑐𝑐 > 𝑞𝑞𝑐𝑐1 → 𝒒𝒒𝒄𝒄𝟐𝟐 = 𝒒𝒒𝒄𝒄𝟏𝟏



PILE LOAD TEST DATABASE
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 The database consists of eighty (80) precast prestressed concrete
(PPC) piles of different sizes and lengths were collected from 34
different project sites across the state of Louisiana.

 All the piles were square piles loaded to failure under static load
tests. The corresponding CPT tests were conducted close to each
test pile. The pile lengths range from 36 ft. to 200 ft., and the pile
widths range from 14 in. to 36 in.

 The pile load tests were performed based on quick load test as
described by ASTM D1143 testing procedure. The tests were
performed 14 days after pile driving , partially accounted for pile
setup.

 Davisson interpretation criteria was used to estimate the ultimate
pile capacity from the load-settlement curve for each pile load test.



DEVELOPMENT OF NEURAL NETWORK MODEL

Model Input Parameters
 The proper selection of input variables is very important for developing ANN models,

since it has significant impact on the performance of the ANN models.

 Based on prior knowledge from literature, the selected input variables were: pile
embedment length, L, pile width, B, corrected cone tip resistance, qt, and cone sleeve
friction, fs. The ultimate pile capacity, qt, was the only output.

 There are some other factors, such as the pile installation method, pile type, whether the
pile tip is open or closed, shape of pile cross-section, etc. These factors were ignored in
this study since all the tested piles were square precast prestressed concrete (PPC) driven
pile with closed tip.



DEVELOPMENT OF NEURAL NETWORK MODEL
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Model Input Parameters
 The soil properties along the shaft of the pile varies with depth.
 To account for this variability, the embedded length of the piles

was divided into five equal segments (layers). For each division,
the average qt, avg and fs,avg were determined as follow:

qt, avg = ∑𝒒𝒒𝒕𝒕𝒕𝒕 𝒁𝒁𝒕𝒕
∑𝒁𝒁𝒕𝒕

,                  fs, avg = ∑𝒇𝒇𝐬𝐬𝐢𝐢 𝒁𝒁𝒕𝒕
∑𝒁𝒁𝒕𝒕

 For calculating the pile end bearing capacity, the average
corrected tip resistance, qt-tip, was calculated for two cases of
influence zone: 4B below to 4B above pile toe, and 4B below to
8B above pile toe, in order to find the best results.



DEVELOPMENT OF NEURAL NETWORK MODEL
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Model Input Parameters
 The final selection of ANN input parameters were: (1) Pile embedment depth, L, (2) Pile

width, B, (3) qt, avg 1, (4) qt, avg 2, (5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) fs, avg 1, (9) fs, avg 2,
(10) fs, avg 3, (11) fs, avg 4, (12) fs, avg 5, (13) qt-tip, 4B/8B above, (14) qt-tip, 4B below.

 These inputs parameters were arranged in six different combinations (6 ANN Model
Types) to determine the ANN model(s) that yields the best performance in terms of
estimating the measured ultimate pile capacity of driven PPC piles.



DEVELOPMENT OF NEURAL NETWORK MODEL
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Sample of Data Set

 1 

Width 
(in) 

L 
(ft) 

qt,avg1 
(tsf) 

qt,avg2 
(tsf) 

qt,avg3 
(tsf) 

qt,avg4 
(tsf) 

qt,avg5 
(tsf) 

qt-tip, 

8B above 
(tsf) 

qt-tip, 4B 

above 
(tsf) 

qt-tip, 

4B below 
(tsf) 

fs,avg1 
(tsf) 

fs,avg2 
(tsf) 

fs,avg3 
(tsf) 

fs,avg4 
(tsf) 

fs,avg5 
(tsf) 

Qu 
(tons) 

24 54.2 27.60 23.5 46.9 17.8 11.3 11.75 11.94 10.48 1.45 0.88 1.12 1.05 0.32 265 

24 49.1 19.34 23.8 26.3 28.5 17.8 32.65 22.44 17.82 0.78 1.00 1.05 0.95 0.77 239 

30 86 24.66 29.1 27.5 32.7 47.9 41.33 72.42 27.43 1.09 1.24 1.03 0.69 0.96 570 

24 61 27.20 25.2 34.3 46.6 19.8 37.38 50.78 19.31 0.82 0.74 1.31 0.78 0.70 275 

24 85 9.68 11.3 7.36 10.0 18.9 12.61 17.78 20.17 0.42 0.35 0.31 0.32 0.46 205 

14 63.7 8.51 6.28 5.67 29.1 55.7 56.53 45.43 44.88 0.25 0.21 0.17 0.24 0.63 127 

24 87 11.90 11.8 15.8 36.6 28.3 47.33 24.58 31.82 0.46 0.42 0.38 0.50 0.58 309 

30 72.5 50.16 46.8 42.2 69.8 58.2 87.63 50.03 60.11 0.12 0.38 0.58 0.45 0.45 374 

24 60 51.51 259. 196. 75.9 40.5 92.39 38.14 42.94 0.45 1.32 1.41 1.18 0.92 210 

24 39 18.77 1.50 3.16 4.30 6.67 4.02 3.26 8.21 0.71 0.21 0.12 0.16 0.17 66 

… … … … … …. … …. …. …. …. …. …. …. ….. …. 



DEVELOPMENT OF NEURAL NETWORK MODEL

30

Types of ANN Models Types of ANN 
Model  Input Parameters  

Type 1 (1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, avg 2, 
(5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) qt-tip, 4B above, (9) qt-tip, 4B below 

Type 2 (1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, avg 2, 
(5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) qt-tip, 8B above, (9) qt-tip, 4B below 

Type 3 (1) Pile embedment depth, L, (2) Pile width, D (3) fs, avg 1, (4) fs, avg 2, 
(5) fs, avg 3, (6) fs, avg 4, (7) fs, avg 5, (8) qt-tip, 4B above, (9) qt-tip, 4B below 

Type 4 (1) Pile embedment depth, L, (2) Pile width, D (3) fs, avg 1, (4) fs, avg 2, 
(5) fs, avg 3, (6) fs, avg 4, (7) fs, avg 5, (8) qt-tip, 8B above, (9) qt-tip, 4B below 

Type 5 (1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, avg 2, 
(5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) fs, avg 1, (9) fs, avg 2, (10) fs, avg 3,  

(11) fs, avg 4, (12) fs, avg 5, (13) qt-tip, 4B above, (14) qt-tip, 4B below 

Type 6 (1) Pile embedment depth, L, (2) Pile width, D, (3) qt, avg 1, (4) qt, avg 2, 
(5) qt, avg 3, (6) qt, avg 4, (7) qt, avg 5, (8) fs, avg 1, (9) fs, avg 2, (10) fs, avg 3, (11) fs, 

avg 4, (12) fs, avg 5, (13) qt-tip, 8B above, (14) qt-tip, 4B below 
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Training of ANN Models
 Training of ANN model refers to the process of initializing a network through the deployment of initial

values and then optimizing the connection weights in order to obtain global minima instead of a local one.

 A widely used method to obtain the optimum weights is the back-propagation algorithm or the gradient
descent method. However, the convergence is sometimes slower and requires lots of iterations. Therefore,
a faster Quasi-Newton method was used in this work to optimize weights for the ANN model.

Stopping Criteria of Training Process
 It is important to determine when to stop the training process. In this study, the cross-validation method

was implemented where data was divided into three sets: 70% training, 12% testing and 18% validation.

 The function of training set is to re-adjust the connection weights. The testing set judges the capability of
the model to be generalized, through evaluating the performance of the model at different stages of the
training process. When an increase in error is detected, the training process is stopped. The validation set
ensures the model’s ability to be generalized in a robust way within the limits of training data.
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ANN 
type 

ANN 
model 

Phase r R2 RMSE 
(tons) 

Mean 
𝜆𝜆𝑅𝑅  

COV 

Type 1 9-7-1 
Training 0.99 0.97 28.45 1.00 0.18 
Testing 0.98 0.90 52.09 0.94 0.20 

validation 0.98 0.93 25.39 0.93 0.17 

Type 2 9-7-5-1  
Training 0.98 0.97 27.42 1.00 0.18 
Testing 0.95 0.90 35.46 1.14 0.23 

validation 0.97 0.91 29.40 0.97 0.20 

Type 3 9-7-7-1 
Training 0.99 0.99 11.65 1.00 0.08 
Testing 0.94 0.68 33.23 1.06 0.19 

validation 0.99 0.98 26.78 0.99 0.19 

Type 4 9-7-7-1 
Training 0.99 0.99 11.83 1.00 0.08 
Testing 0.96 0.92 25.79 0.93 0.11 

validation 0.99 0.98 22.49 0.99 0.15 

Type 5 14-9-3-1 
Training 0.99 0.99 10.18 1.00 0.08 
Testing 0.98 0.94 14.78 0.96 0.08 

validation 0.99 0.97 24.90 0.96 0.14 

Type 6 14-9-4-1 
Training 0.99 0.99 7.17 1.00 0.07 
Testing 0.97 0.94 30.27 0.96 0.23 

validation 0.99 0.98 29.65 0.97 0.14 
  

 The performance of ANN model was
evaluated based on the coefficient of
correlation, r, coefficient of determination, R2,
root mean of squared errors, RMSE, mean
bias factor, λ, and the coefficient of variation,
COV.

 The ANN models are designated in a manner
to understand its structure. For example, for
the model designated as 9-4-1-1, the first and
last number refers to the number of nodes in
the input and output layers, respectively. The
intermediate numbers denote the number of
hidden layers and nodes.
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Data for each case was selected randomly
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CPT Input Variables 
The Relative Importance of the 

Input Variables (%) 
Embedment length of pile, L 14.8 
Width of pile, B 14.1 
qt-tip, 4B above 19.0 
qt-tip, 4B below 22.8 
qt-avg along the pile shaft 12.9 
fs-avg along the pile shaft 16.4 
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 Amirmojahedi and Abu-Farsakh (2019) evaluated 21 traditional direct pile-CPT methods for
estimating the ultimate pile capacity form CPT data (qt,fs) using a database of 80 pile load tests,
and ranked LCPC, probabilistic and UF methods as the best three performed pile-CPT methods.

 The best-performed ANN models ( 9-7-7-1, 14-9-3-1) developed in this study were compared
with the aforementioned three pile-CPT methods.

 The comparison clearly shows that, the ANN models outperform these three pile-CPT methods
in almost all evaluation criteria. Especially the RMSE value seems to be much higher in the
conventional methods.
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 LRFD analysis help to grasp a better understanding of efficiency of the developed ANN models.

 First Order Reliability Method (FORM) was used to calibrate the LRFD resistance factors.

 QD/QL equal to 3 (specified by AASHTO LRFD)

 A target reliability (βT) of 2.33 was selected

Bias factor, 𝜆𝜆𝑅𝑅 = Q𝑚𝑚
Q𝑝𝑝



LIMITATIONS OF STUDY 
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The data set represents clayey soils in Louisiana. Thus, the proposed
ANN models should perform well for clayey soils in Louisiana, and
other locations with similar geological conditions.

The range of qt should be (0-300) tsf, the range of fs should be (0-3.2)
tsf and B should be <36 in, and the range of Qt should be (0-678) tons.

Recommended for squared PPC driven piles only.
The developed ANN models should be used to predict the data for

unknown sites without further training. If it is trained again on the same
training data, the prediction capability might not remain the same.
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 All the developed ANN model types were able to estimate the measured ultimate
capacity of the 80 pile load tests with good to excellent accuracy.

 However, Type 4 ANN model 9-7-7-1 (λ = 0.99, RMSE = 22.49, COV = 0.15) and Type
5 ANN model 14-9-3-1 (λav = 0.96, RMSEav = 21.53, COVav = 0.12) showed better
performance.

 Using the combination of qt, avg, and fs, avg, to evaluate the pile’s skin friction gives better
ANN prediction models.

 Sensitivity analysis showed that the qt-tip,4B below, has relatively the highest importance
input parameter.

 fs-avg, has higher importance than qt-avg along the shaft in evaluating pile skin friction.



CONCLUSIONS
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 The comparison with LCPC, probabilistic, and UF methods clearly showed that the
ANN models outperformed the traditional pile-CPT methods with lower RMSE and
lower COV.

 The evaluation and comparison based on LRFD reliability analysis demonstrated higher
resistant factors and superior efficiencies for the ANN models.

 Finally, the ANN models use data and previous experience and training without
incorporating any assumption or hypothesis. Besides, the ANN models can be
continuously updated with time to achieve more accurate estimation results, whenever
new pile load test data are available.
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