The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRANSPORTATION RESEARCH BOARD

Giving Low-Volume Roads a Longer Life with Geosynthetics

November 8, 2021

@NASEMTRB #TRBwebinar

PDH Certification Information:

1.5 Professional Development Hour (PDH) – see follow-up email for instructions
You must attend the entire webinar to be eligible to receive PDH credits
Questions? Contact TRBWebinars@nas.edu

#TRBwebinar

The Transportation Research Board has met the standards and requirements of the Registered **Continuing Education Providers** Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Learning Objectives

- 1. Identify current specifications
- 2. Describe how to use geosynthetics for subgrade separation and stabilization
- Discuss importance of less prescriptive life cycle cost analysis methods

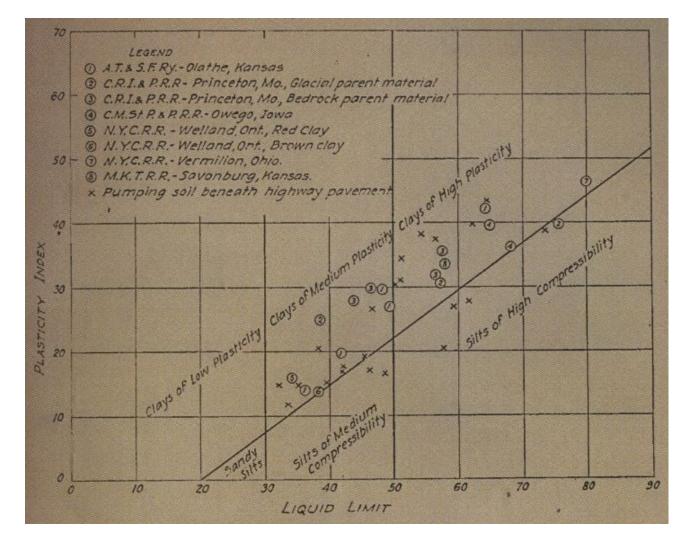
Giving Low-Volume Roads a Longer Life with Geosynthetics

Edward Hoppe

Research Scientist Virginia Department of Transportation Charlottesville, VA

- Frequently the primary objective is to provide access for heavy construction equipment and establish stable platform (stabilization).
 Significant cost savings can be realized in the early stages of road construction.
- Separation is the most underrated geotextile function (Koerner, 2005). It is seldom designed on its own merit. Geotextile separator allows water but not fine particles to flow through it, decreasing the potential for granular base contamination by soft subgrade soils.

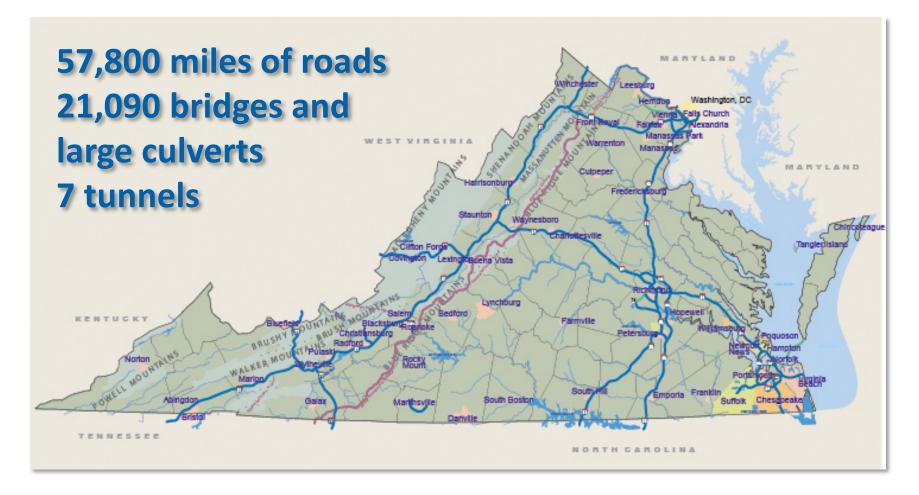
- FHWA published a comprehensive set of design and construction guidelines (Holtz et al., 2008). Stabilization is defined as the primary function when the subgrade CBR is less than 3. Separation and filtration are the primary functions when the subgrade CBR ranges between 3 and 7.
- Geotextile functions uniquely as a separator in soil subgrades with soaked CBR values above 3 (Koerner, 2016).


- AASHTO M 288 design by specification application categories are listed in association with physical, mechanical, hydraulic, and endurance properties.
- Geotextile separator is used when CBR of subgrade soils is greater than 3. No upper limit is specified.
- Stabilization geotextile is used when CBR ranges between 1 and 3.
- Strength is considered the principal property required to survive the installation and provide the required functionality. Three distinct classes of material strength are specified.

- State DOT practices generally follow AASHTO M 288. Zornberg and Thompson (2012) conducted a survey of state DOT specifications. The survey indicated that 31 states had specifications for separation, 30 for stabilization, and 19 for both.
- Prior to this study VDOT did not provide design guidance for using geotextile separators in road construction. VDOT specification included only stabilization geotextile.

Migration of fines

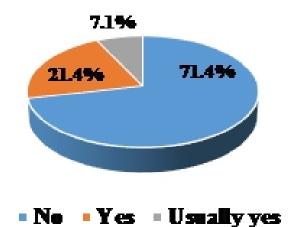
- Pioneering study by Woods and Shelburne (1943) pumping caused by traffic-induced loads. Severe pumping at joints and cracks was observed, mainly in the cut sections with saturated plastic soil subgrades.
- The railway industry consolidated the findings of Woods and Shelburne with their field observations and identified pumpingsusceptible soils.


Plasticity Chart for Pumping Soils

Currently, nonwoven geotextile separators are specified at the subgrade and sub-ballast interface (AREMA, 2018).

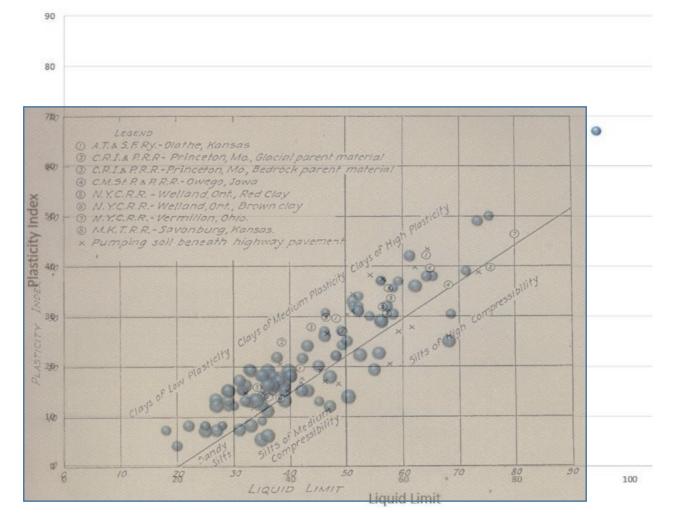
Source: American Railway Engineering Association, 1946.

VDOT road network



VDOT operates the third largest road network in the U.S.

VDOT road network


- Secondary and subdivision roads comprise approximately 79% of VDOT's network.
- Subdivision streets constructed to the appropriate standards may qualify for acceptance into VDOT's secondary road system for public maintenance.
- In 2018, only 60% of the secondary road system was rated as sufficient (VDOT, 2018).

Survey of VDOT resident engineers

In general, is it your experience that subdivision streets that are accepted into VDOT's secondary system reach their 20-year design life?

Virginia soils

Data is representative of approximately 41% of Virginia soils

Plasticity chart for Virginia soils with 3 < CBR < 8 and more than 35% fines.

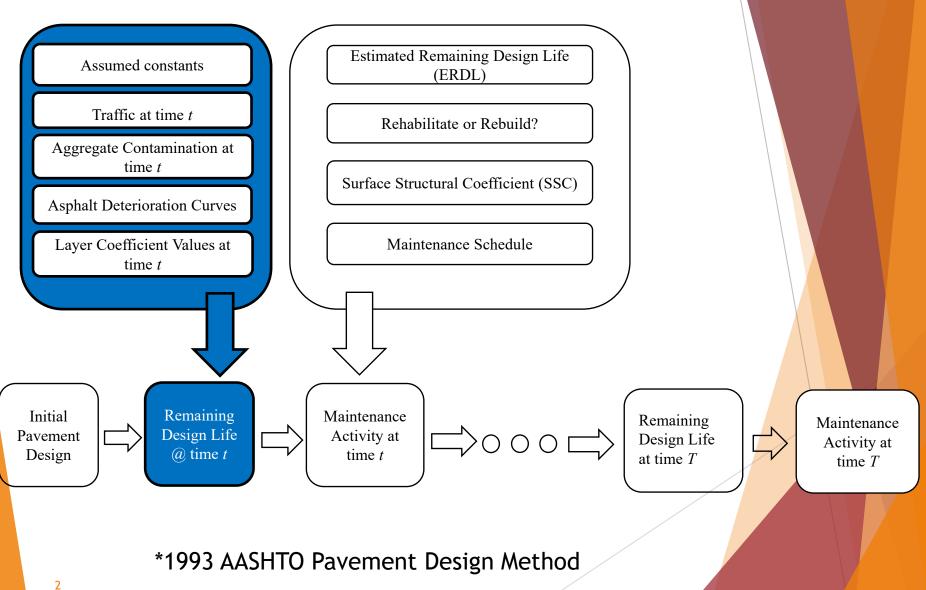
Geosynthetic separator

S E P A R A T I O N

Saturated, pumping-susceptible subgrade soils, porous base material, and cyclic loading. Jorenby and Hicks (1986) concluded that up to 6% added fines can be tolerated without affecting stiffness. Drainage disrupted with 8% fines.

Kermani et al. (2018) reported an approximate 30% reduction in the amount of pavement rutting when geotextile separator is used. The laboratory study concluded that geotextile separator significantly reduces pumping of subgrade fines.

PennDOT published an example of an economic analysis that quantifies the benefits of geotextile separation, finding a cost savings of at least 13% for a collector road (Petrasic, 2017). We performed a similar analysis but used a different LCCA approach with a range of contamination rates.


Geosynthetic separator

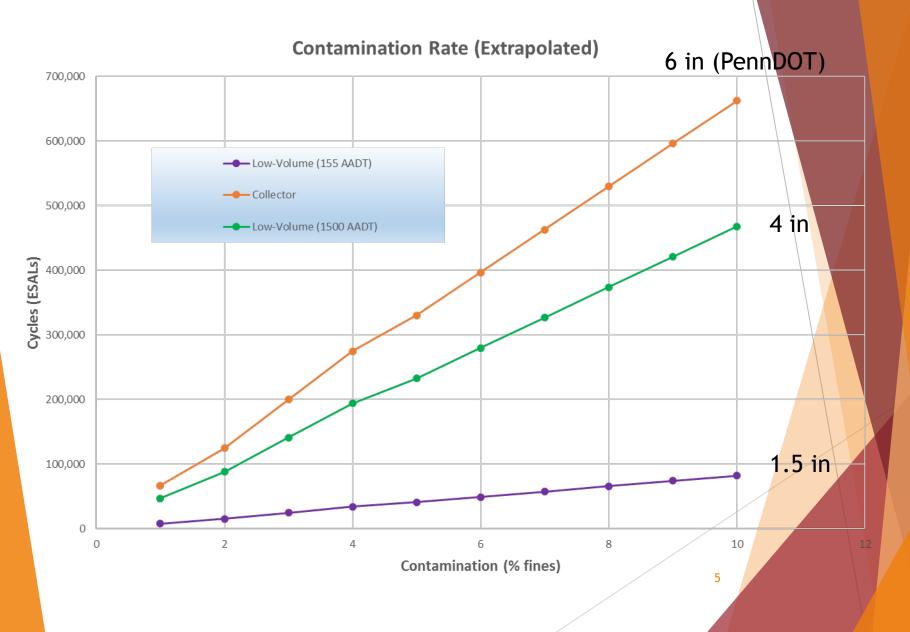
- We developed LCCA method that incorporates aggregate contamination pavement layer deterioration detail.
- The benefit of geotextile separator was quantified in terms of reduced pavement subbase deterioration over the analysis period.

Giving Low-Volume Roads a Longer Life with Geosynthetics

Chaz Weaver, PE, CPEM, F.ASCE District Materials Engineer VDOT - Staunton District

PAVEMENT DESIGN* STEPS

PAVEMENT DESIGN INPUT VALUES


Inputs	Val	lles	_
Average Annual Daily Traffic (2020)	1500 ^a	155ª	_
Tractor Trailers (%)	5.0 ^a	1.0^{a}	
Single Unit Trucks (%)	1.0 ^a	0^{a}	
Performance Period (years)	20		
AADT Growth Rate (%)	2.0) ^a	
Trucks in Design Direction/Lane (%)	50	/100	
	Car:	0.0002	
Equivalent Single Axle Load Factor	Single U	nit Truck: 0.46	
	Tractor	Trailer: 1.05	
Initial Serviceability	4.	0	-
Terminal Serviceability	2.	5	
Reliability (%)	7:	5	
Overall Standard Deviation	0	49	
Subgrade Resilient Modulus (psi)	5	000 ^a	
^a Values assumed for the initial naveme	ent design all o	ther values in acc	ard

^a Values assumed for the initial pavement design; all other values in accordance with VDOT Materials MOI, Chapter 6 for Farm to Market Secondary Route

PENNDOT STUDY* v VDOT

Parameter	PennDOT Study	VDOT
Subgrade Soil	_	
Soil Type	A-4 (ML)	A-4, A-6, A-7-5, -7-6 ML, CL, MH, CH
Fines Content	55.9%	35 - 100%
Density	AASHTO T 180 Proctor	AASHTO T 99 Proctor
Soaked CBR	5 (initial)	3 to 8
Saturation	Inundated	Variable
Aggregate		
Fines Content	6.5%	4 – 7% (2-9%) ^a (No. 21B) 6 – 12% (4-14%) ^a (No. 21A)
Max Aggregate		
Size		1 inch
Pavement Structure		
Aggregate Subbase	6 inches	8 inches (155 AADT); 5 inches (1500 AADT)
Asphalt	8.5 inches	1.5 inches (155 AADT); 6.0 inches (1500 AADT)
^a VDOT production toler	rance	
		*Kermani (2018) 4

CONTAMINATION RATES

CONTAMINATION CURVES

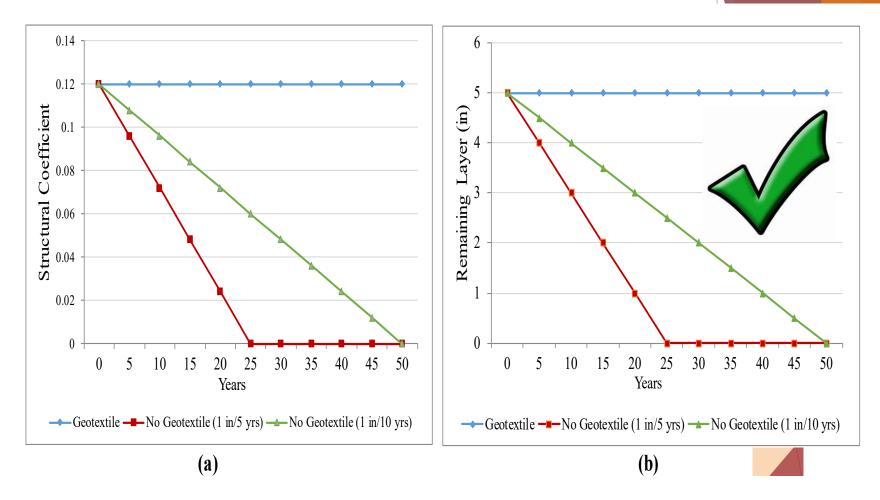
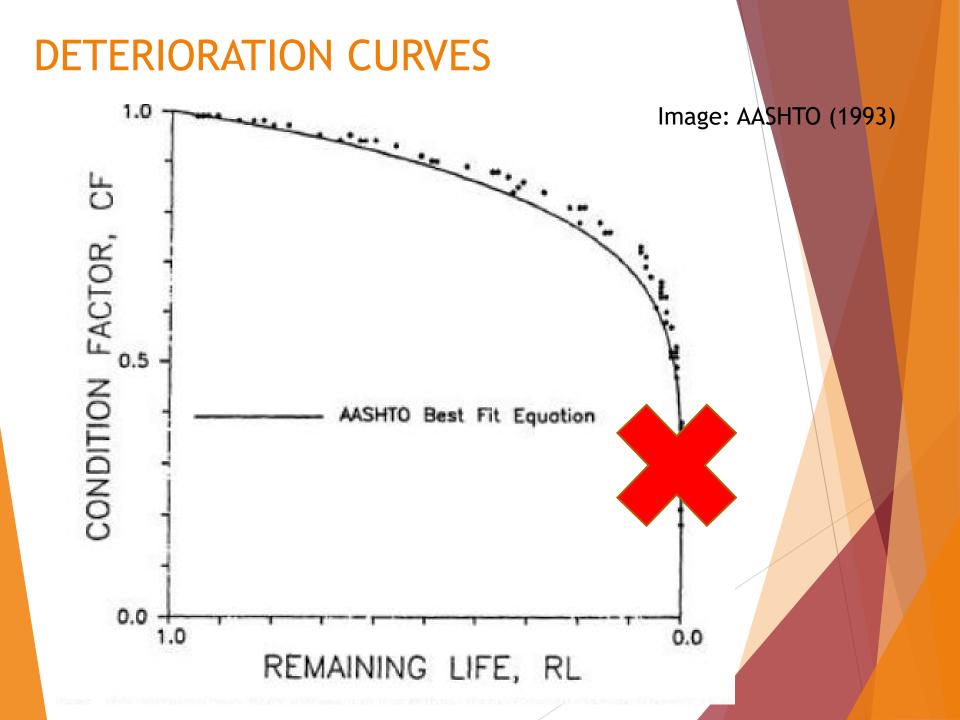



Fig. 1. Conceptualizations of pavement damage: (a) structural coefficient response to aggregate contamination; (b) layer thickness response to aggregate contamination

DETERIORATION CURVES

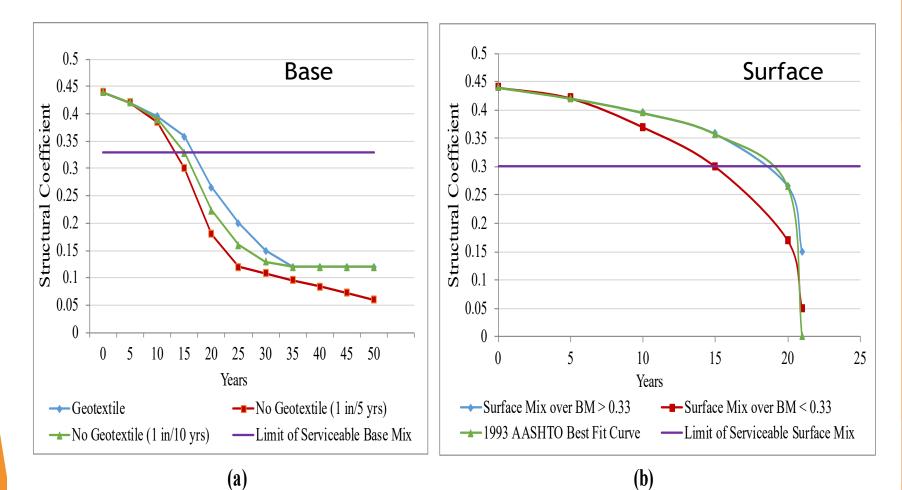


Fig. 2. Pavement layer deterioration curves developed for LCCA: (a) base mix deterioration curve; (b) surface mix deterioration curve

PAVEMENT DESIGN EXAMPLE

1993 AASHTO Pavement Design

DARWin[™] Pavement Design Flexible Structural Design Module

GRAC Geotextile Separator Study

Year 10 - 155 AADT, 1"/5 years contamination, No GTX, No PM Friday, December 21, 2018

Step 1: Traffic has increased over 10 years

ulation
6.2
2
189
100
50

Class	% of ADT	% Growth	ESALS/Truck	Accum. 18K ESALs over Perf. Period
Cars	99	2	0.0002	
Single unit	0	2	0.46	
T. Trailer	1	2	1.05	
	100			2,370

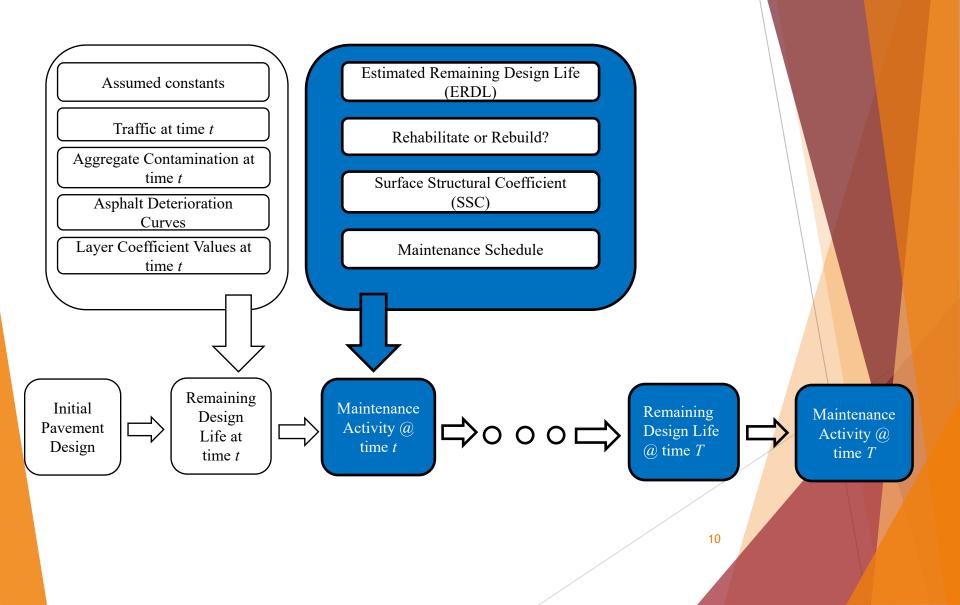
Flexible Structural Design Module Data

Accum 18K ESALs over Perf Per	2,370
Intial Serviceability	4
Terminal Serviceability	2.5
Reliability Level (%)	75
Overall Standard Deviation	0.49
Roadbed Soil Reilient Modulus	5000
Calculated Design Structural No	1.31

Step 2: Asphalt has deteriorated over 10 years

Specified Layer Design

Layer	Mat'l Description	Str. Coef.	Thick.	Width	Calc. SN
1	SM-9.5A	• 0.395	1.5	24	0.59
2	IM-19.0A	0.44	0	24	
3	BM-25.0A	0.44	0	24	
4	Aggregate No. 21B	0.12	6	24	0.72
			1		
Total			7.5		1.3125


Step 4: Change Performance Period until these values are equal

Step 5: Remaining Life

9

Step 3: Aggregate has diminished 2" over 10 years

PAVEMENT DESIGN STEPS

	No G	TX - No PM, Initial AADT 155, Contamination Rat	te 0.2-in./yr.	
Ye	ar ERDI	Maintenance	SSC	AADT
202	20 20	Construction	0.44	155
203	30 6.2		0.395	189
203	35 2.8	Patch	0.358	209
204	40 0.8	Overlay 1.5" (RRDL = 11.4 yrs)	0.266	230
204	45 4.3	Patch	0.421	254
205	50 1.3	Patch	0.395	281
205	0.31	Overlay 1.5" (RRDL = 5.6 yrs)	0.358	310
206	50 2.3	Patch	0.421	342
206	65 0.51	Rebuild 8.5" 21B, 2" SM (RRDL = 20.0 yrs)	0.395	378
 207	70 12.3	Remaining service life = 12.3 yrs	0.421	417

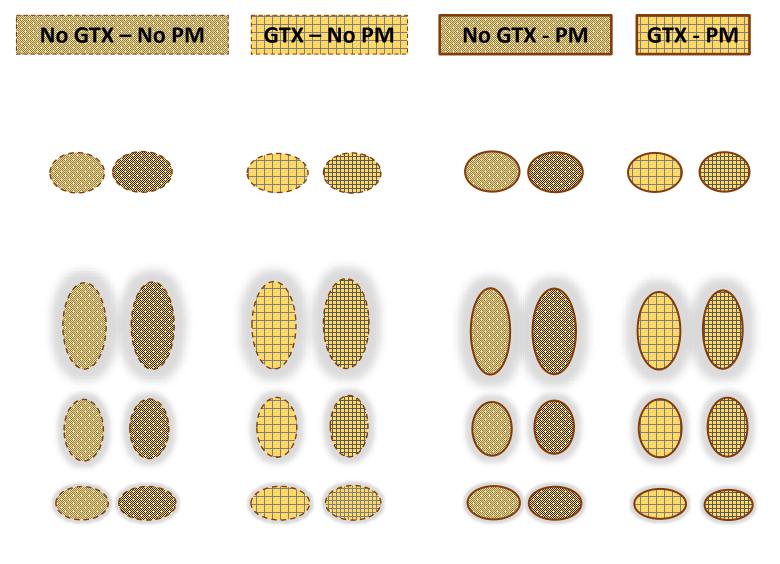
	No GTX - No PM, Initial AADT 155, Contamination Rate 0.2-in./yr.					
Year	ERDL	Maintenance	SSC	AADT		
2020	20	Construction	0.44	155		
2030	6.2		0.395	189		
2035	2.8 🗱	Patch	0.358	209		
2040	0.8	Overlay 1.5" (RRDL = 11.4 yrs)	0.266	230		
2045	4.3	Patch	0.421	254		
2050	1.3	Patch	0.395	281		
2055	0.31	Overlay 1.5" (RRDL = 5.6 yrs)	0.358	310		
2060	2.3	Patch	0.421	342		
2065	0.51	Rebuild 8.5" 21B, 2" SM (RRDL = 20.0 yrs)	0.395	378		
2070	12.3	Remaining service life = 12.3 yrs	0.421	417		

	No GTX - No PM, Initial AADT 155, Contamination Rate 0.2-in./yr.					
Year	ERDL	Maintenance	SSC	AADT		
2020	20	Construction	0.44	155		
2030	6.2		0.395	189		
2035	2.8	Patch	0.358	209		
2040	0.8 🗱	Overlay 1.5" (RRDL = 11.4 yrs)	🗱 0.266	230		
2045	4.3	Patch	0.421	254		
2050	1.3	Patch	0.395	281		
2055	0.31	Overlay 1.5" (RRDL = 5.6 yrs)	0.358	310		
2060	2.3	Patch	0.421	342		
2065	0.51	Rebuild 8.5" 21B, 2" SM (RRDL = 20.0 yrs)	0.395	378		
2070	12.3	Remaining service life = 12.3 yrs	0.421	417		

	No GTX - No PM, Initial AADT 155, Contamination Rate 0.2-in./yr.					
Year	ERDL	Maintenance	SSC	AADT		
2020	20	Construction	0.44	155		
2030	6.2		0.395	189		
2035	2.8	Patch	0.358	209		
2040	0.8	Overlay 1.5" (RRDL = 11.4 yrs)	0.266	230		
2045	4.3	Patch	0.421	254		
2050	1.3	Patch	0.395	281		
2055	0.31 🗱	Overlay 1.5" (RRDL = 5.6 yrs) \checkmark	0.358	310		
2060	2.3	Patch	0.421	342		
2065	0.51	Rebuild 8.5" 21B, 2" SM (RRDL = 20.0 yrs)	0.395	378		
2070	12.3	Remaining service life = 12.3 yrs	0.421	417		

	No GTX - No PM, Initial AADT 155, Contamination Rate 0.2-in./yr.					
Year	ERDL	Maintenance	SSC	AADT		
2020	20	Construction	0.44	155		
2030	6.2		0.395	189		
2035	2.8	Patch	0.358	209		
2040	0.8	Overlay 1.5" (RRDL = 11.4 yrs)	0.266	230		
2045	4.3	Patch	0.421	254		
2050	1.3	Patch	0.395	281		
2055	0.31	Overlay 1.5" (RRDL = 5.6 yrs)	0.358	310		
2060	2.3	Patch	0.421	342		
2065	0.51 🗱	Rebuild 8.5" 21B, 2" SM (RRDL = 20.0 yrs)	0.395	378		
2070	12.3	Remaining service life = 12.3 yrs	0.421	417		

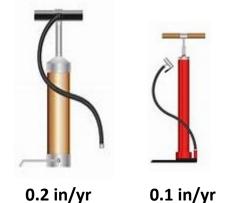
	No GTX - No PM, Initial AADT 155, Contamination Rate 0.2-in./yr.				
Year	ERDL	Maintenance	SSC	AADT	
2020	20	Construction	0.44	155	
2030	6.2		0.395	189	
2035	2.8	Patch	0.358	209	
2040	0.8	Overlay 1.5" (RRDL = 11.4 yrs)	0.266	230	
2045	4.3	Patch	0.421	254	
2050	1.3	Patch	0.395	281	
2055	0.31	Overlay 1.5" (RRDL = 5.6 yrs)	0.358	310	
2060	2.3	Patch	0.421	342	
2065	0.51	Rebuild 8.5" 21B, 2" SM (RRDL = 20.0 yrs)	0.395	378	
2070	12.3	Remaining service life = 12.3 yrs	0.421	417	

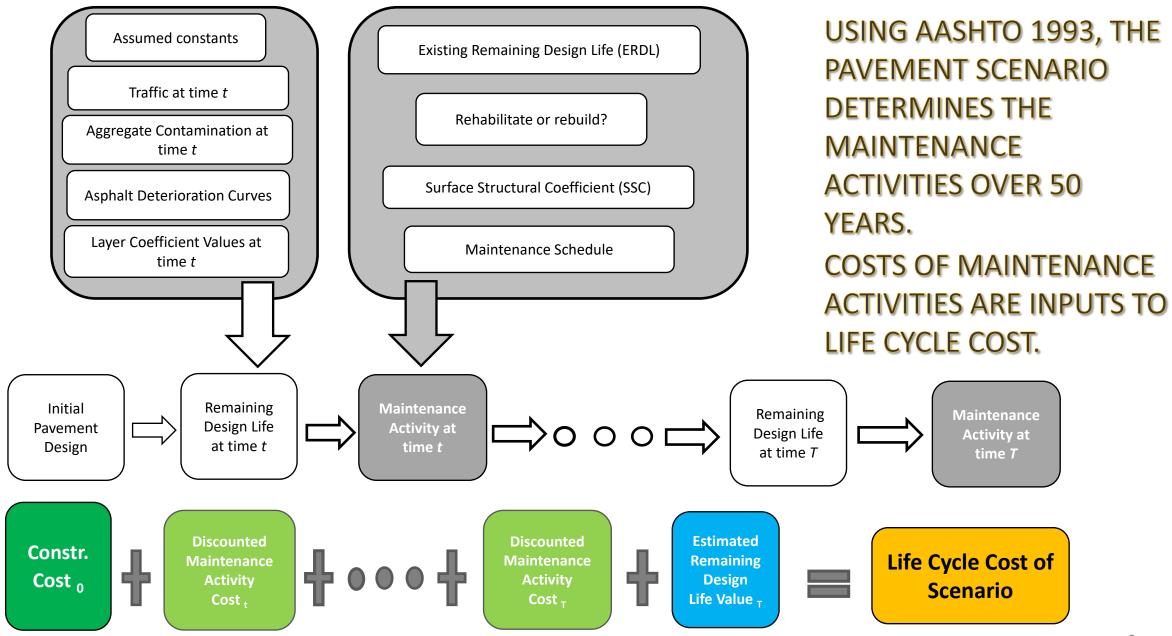

LIFE CYCLE COST ANALYSIS FOR GEOSYNTHETIC SEPARATORS

IN LOW-VOLUME ROADS IN VIRGINIA

Audrey Moruza

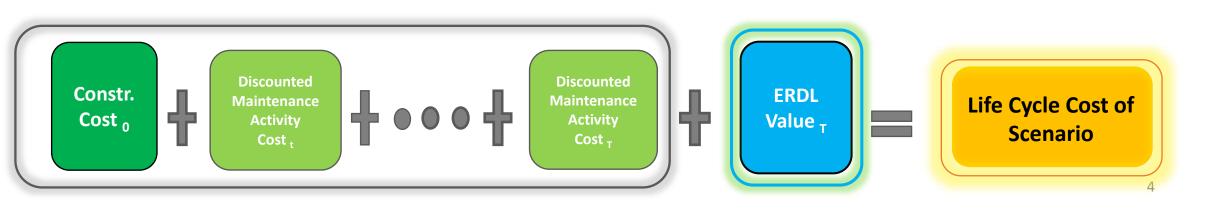
Research Scientist Virginia Department of Transportation Charlottesville, Virginia


24 SCENARIOS WERE EVALUATED FOR LIFE-CYCLE COSTS



0.1 in/yr

0.05 in/yr



LIFE CYCLE COST ANALYSIS

COSTS OF ORIGINAL CONSTRUCTION + *DISCOUNTED* COSTS OF MAINTENANCE ACTIVITIES FOR A SCENARIO

+ DISCOUNTED PAVEMENT VALUE AT END OF ANALYSIS PERIOD TO ACCOUNT FOR ESTIMATED REMAINING SERVICE LIFE (ERDL)

= LIFE-CYCLE COST OF THE SCENARIO

COSTS OF ORIGINAL CONSTRUCTION AND MAINTENANCE ACTIVITIES

ORIGINAL CONSTRUCTION + MAINTENANCE ACTIVITIES

Initial AADT 155, Contamination Rate 0.2 in/yr

	(1)			(2)			(3)			(4)	
	No GTX - No PM		V	GTX - No PM			No GTX - PM			GTX - PM	
Year	Activity	SCC*	Year	Activity	SCC*	Year	Activity	SCC*	Year	Activity	SCC*
2020	Construction	0.440	2020	Construction	0.440	2020	Construction	0.440	2020	Construction	0.440
2030		0.395			0.395	2030		0.395	2030		0.395
2035	Patch	0.358			0.358	2035	Patch	0.358	2035		0.358
2040	Overlay	0.266	2040	Overlay	0.266	2040	Mill / Overlay	0.266	2040	Mill / Overlay	0.266
2045	Patch	0.421			0.421	2045	Patch	0.421	2045		0.421
2050	Patch	0.395			0.370	2050	Demo / Rebuild	0.395	2050		0.395
2055	Overlay	0.358			0.300	2055		0.421	2055		0.358
2060	Patch	0.421	2060	Overlay	0.170	2060		0.395	2060	Mill / Overlay	0.266
2065	Demo / Rebuild	0.395			0.421	2065	Patch	0.358	2065		0.421
2070		0.421	2070		0.370	2070	Mill / Overlay	0.266	2070		0.395
2070	ERDL** = 12.3 yrs		2070	ERDL** = 18 yrs		2070	ERDL** = 3.5 yrs		2070	ERDL** = 6.8 yrs	

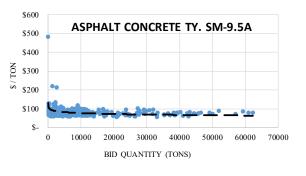
*Surface Condition Coefficient

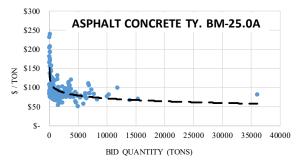
**Estimated Remaining Design Life

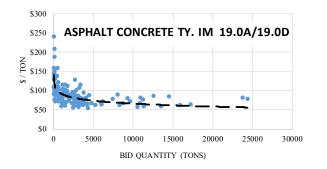
NO PREVENTIVE MAINTENANCE

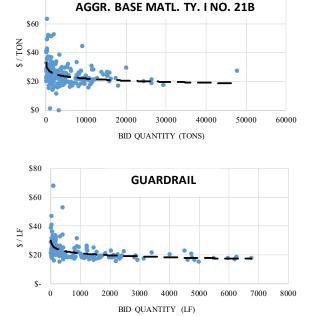
PREVENTIVE MAINTENANCE

Initial AADT 155, Contamination Rate 0.2 in/yr

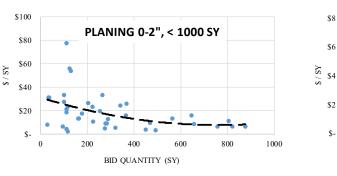

(1) No GTX - No

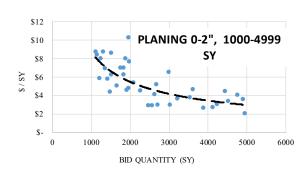

No GTX - No PM						
Year	Activity	SCC*				
2020	Construction	0.440				
2030		0.395				
2035	Patch	0.358				
2040	Overlay	0.266				
2045	Patch	0.421				
2050	Patch	0.395				
2055	Overlay	0.358				
2060	Patch	0.421				
2065	Demo & Rebuild	0.395				
2070		0.421				
		0.421				
2070	ERDL** = 12.3 yrs					

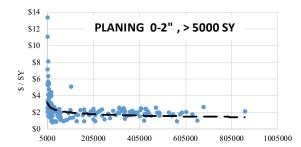

*Surface Condition Coefficient
**Estimated Remaining Design Life


Analysis Year	Calendar Year	Activity	Depth (in)	Quantity	Unit	L	Init Cost	т	otal Cost	Pre	esent Value
		Mainline - HMA Surface	1.5	1,156	Tons	\$	93	\$	107,052	\$	107,052
		Mainline - 21B	8	6,420	Tons	\$	23	\$	146,515	\$	146,515
•	2020	Maintenance of Traffic		1.00	LS	\$	10,000	\$	10,000	\$	10,000
0	2020							\$	263,567	\$	263,5 <mark>67</mark>
		CEI (15%)						\$	39,5 <mark>35</mark>	\$	39,5 <mark>35</mark>
								\$	303,103	\$	303,103
		Mainline - Patching 44%	1.5	509	Tons	\$	350	\$	178,073	\$	98,8 <mark>78</mark>
		Maintenance of Traffic		1.00	LS	\$	10,000	\$	10,000	\$	5,5 <mark>53</mark>
15	2035							\$	188,073	\$	104,4 <mark>30</mark>
		CEI (5%)						\$	9,404	\$	5,2 <mark>22</mark>
								\$	197,477	\$	109,652
		Mainline - Overlay HMA S	1.5	1,156	Tons	\$	93	\$	107,052	\$	48,8 <mark>57</mark>
		Maintenance of Traffic		1.00	LS	\$	10,000	\$	10,000	\$	4,5 <mark>64</mark>
20	2040							\$	117,052	\$	53,421
-		CEI (5%)						\$	5,853	\$	2,671
								\$	122,905	Ś	56,092
		Mainline - Patching 14%	1.5	162	Tons	\$	350	\$	56,660	\$	21,254
		Maintenance of Traffic		1.00	LS	\$	10,000	\$	10,000	\$	3,751
25	2045					ŕ	-,	\$	66,660	\$	25,005
		CEI (5%)						\$	3,333	\$	1,250
		- X /						\$	69,993	Ś	26,255
		Mainline - Patching 74%	1.5	856	Tons	\$	350	\$	299,487	\$	92,337
		Maintenance of Traffic		1.00	LS	\$	10,000	\$	10,000	Ś	3,083
30	2050					ŕ	-,	\$	309,487	\$	95,421
		CEI (5%)						\$	15,474	\$	4,771
								\$	324,961	\$	100,192
		Mainline - Overlay HMA S	1.5	1,156	Tons	\$	93	\$	107,052	\$	27,129
		Maintenance of Traffic		1.00	LS	\$	10,000	\$	10,000	\$	2,534
35	2055						· ·	\$	117,052	\$	29,663
		CEI (5%)						\$	5,853	\$	1,483
		- (/						Ś	122,905	Ś	31,146
		Mainline - Patching 54%	1.5	624	Tons	\$	350	\$	218,544	Ś	45,520
		Maintenance of Traffic	1.5	1.00	LS	\$	10,000	\$	10,000	\$	2,083
40	2060			1.00		Ŷ	10,000	\$	228,544	\$	47,603
40	2000	CEI (5%)						\$	11,427	\$	2,380
		CEI (570)					_	\$	239,972	\$	49,983
		Demolition of Pavement		14,080	SY	\$	12	, \$	168,960	\$	28,926
		Mainline - HMA Surface	2	14,080	Tons		91	ې \$	139,529	ې \$	28,928
		Mainline - 21B	2 8.5	1,542 6,822	Tons	\$ \$	23	ې \$	139,529 154,786	ې \$	23,887
45	2065	Maintenance of Traffic	0.5	6,822 1.00	LS	ې \$	23 10,000	ې \$	10,000	ې \$	26,499 1,712
				1.00	LJ	ç	10,000	ې \$	473,275	ې \$	81,024
		CEI (15%)						ې S	70,991	⊋ Ś	12,1 <mark>54</mark>
		CLI [15%]			_					<u> </u>	
							_	\$	544,266	\$	93,178

UNIT COSTS





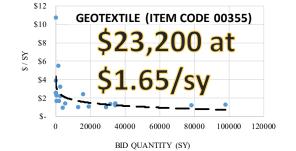


\$80

BID QUANTITY (SY)

100000 200000 300000

0


PLANING OVER 2" - 4"

400000

BID QUANTITY (SY)

500000 600000

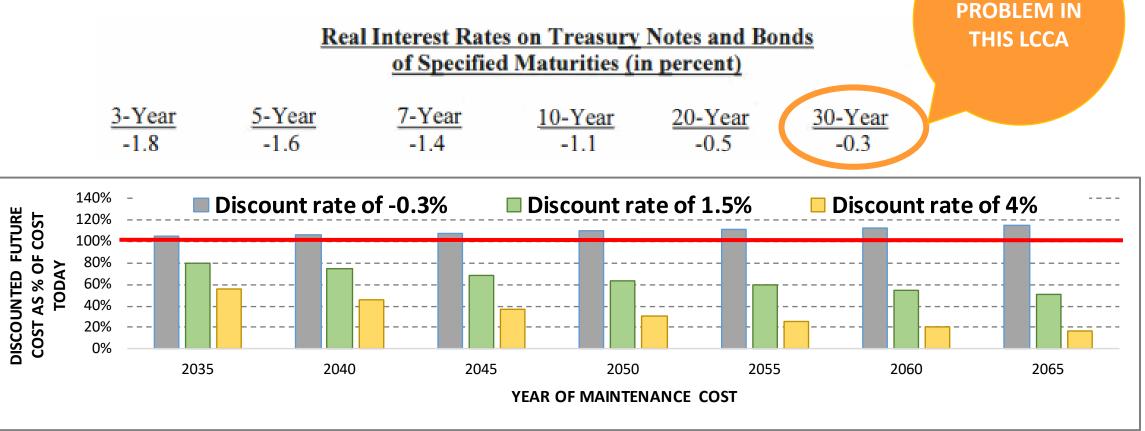
700000

VDOT BID TAB DATA WERE PULLED FROM 2008 – 2018 AND ADJUSTED FOR INFLATION TO 2018 PRICE LEVELS ACCORDING TO THE NHCCI

DISCOUNTED COSTS OF FUTURE MAINTENANCE ACTIVITIES

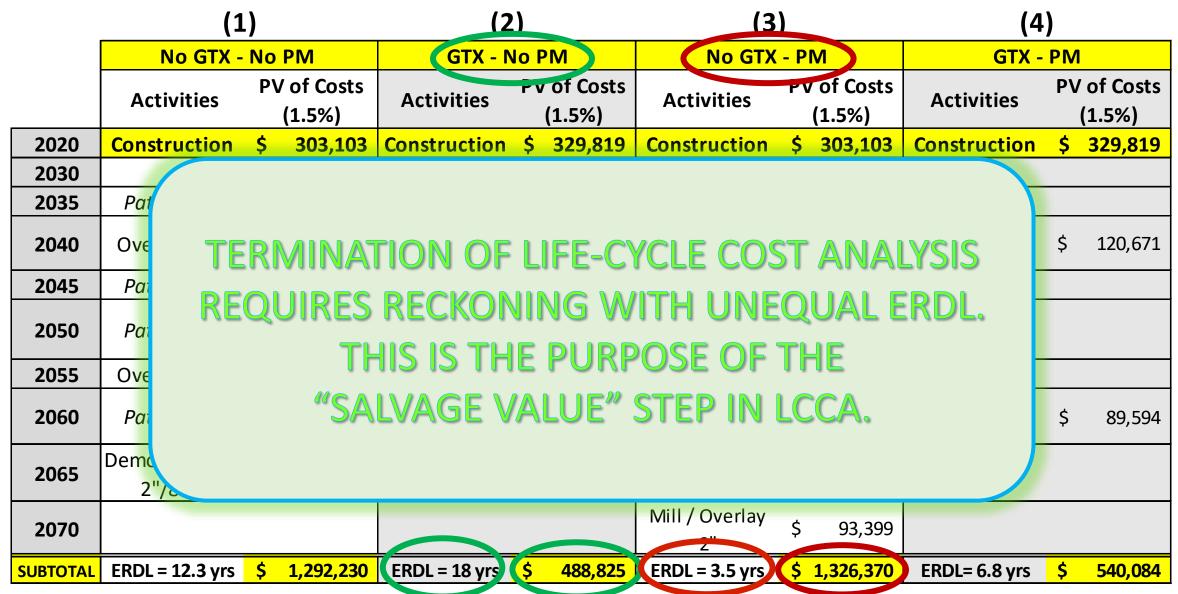
Co	Initial AADT Initial AADT Initian Ra No GTX - No	te 0.2	in/yr		D	ACTIVIT ISCOUNTI		
Year	Activity	1	ty costs (2020)			d = 1.5%	•	d = 4%
2020		¢	202.402	DISCOUNT FORMULA	\$	303,103	\$	303,103
2020	Construction	\$	303,103					
2030				🔺 Activity costs at current prices 👝	4	457.052	~	100 (52
2035	Patch 44%	\$	197,477			157,952	\$	109,652
2040	Overlay	\$	122,905	$(1+d)^{yrselapsedsinceCN}$	\$	91,253	<i>Ş</i>	56,092
2045	Patch 14%	\$	69,993		\$	48,239	\$	26,255
2050	Patch 74%	\$	324,961		\$	207,898	\$	100,192
2055	Overlay	\$	122,905	RESULTS ARE SENSITIVE TO	\$	72,989	\$	31,146
2060	Patch 54%	Ś	239,972	THE CHOICE OF "d" USED IN DISCOUNT	\$	<i>132,287</i>	\$	<i>49,983</i>
2065	Demo/Rebuild	\$	544,266	CALCULATIONS	\$	278,509	\$	<i>93,178</i>
2070		\$	1,925,582		\$	1,292,230	\$	769,601

THE DISCOUNT RATE IS NOT A "WILD CARD"


"...[d] should be selected to reflect both historical trends over long time periods and near-term projections." [FHWA] e.g., DISCOUNT RATE = NOMINAL RETURN ON ALTERNATIVE ASSET – INFLATION RATE

OMB Circular No. A-94

APPENDIX C


(Revised November 2020)

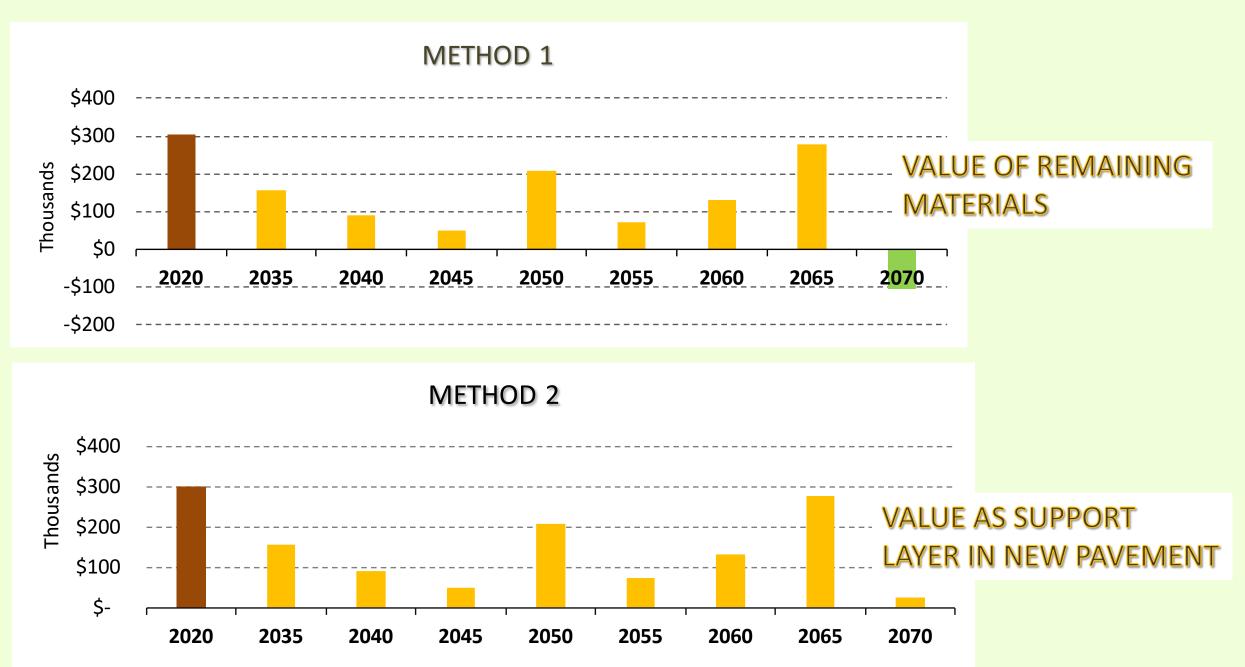
DISCOUNT RATES FOR COST-EFFECTIVENESS, LEASE PURCHASE, AND RELATED ANALYSES

NOT A

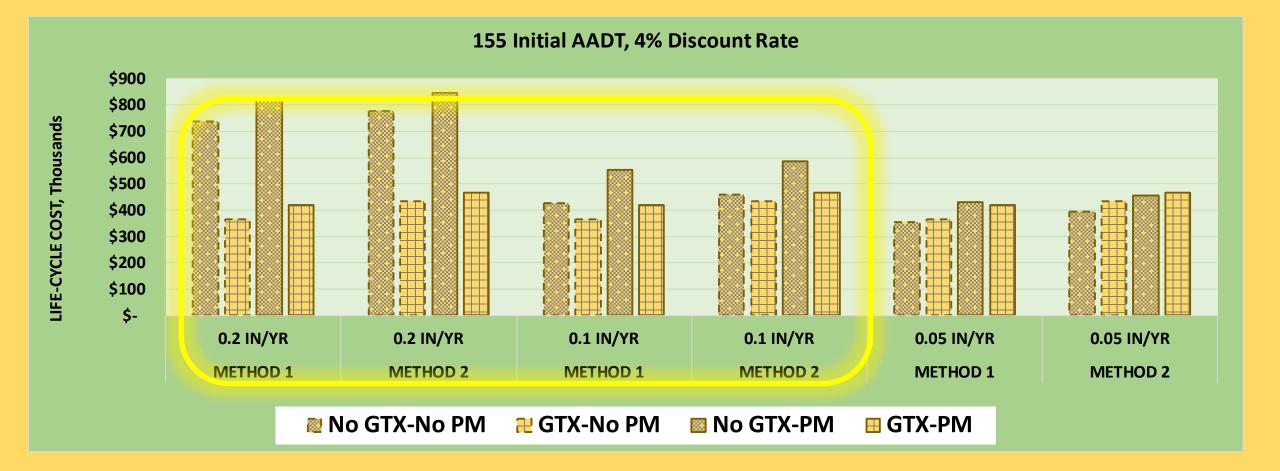
Initial AADT 155, Contamination Rate 0.2 in/yr

"SALVAGE VALUE" IS AN ESTIMATE OF THE DISCOUNTED PAVEMENT VALUE AT THE END OF THE ANALYSIS PERIOD TO ACCOUNT FOR UNEQUAL ERDL.

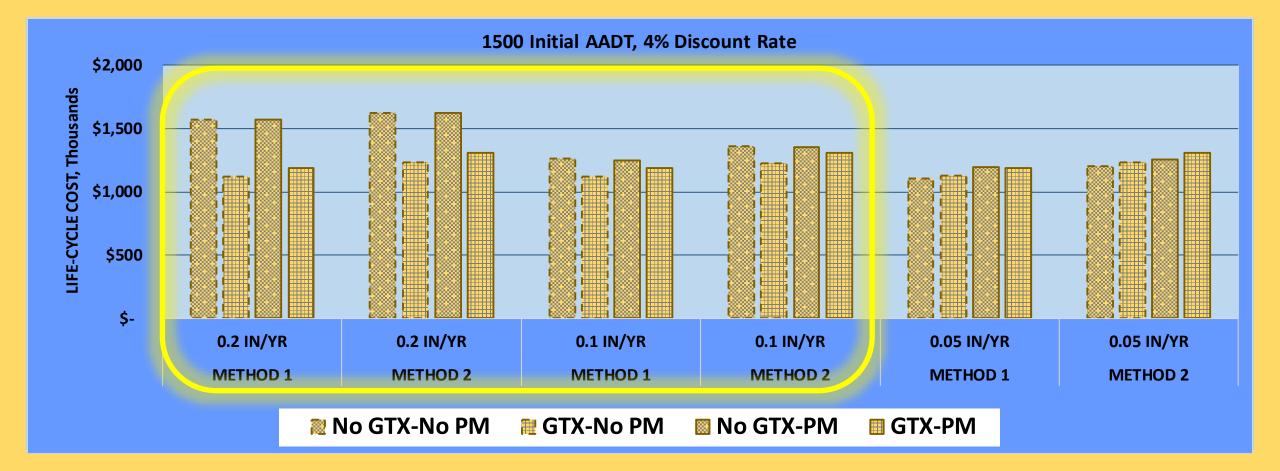
TWO VIABLE CONCEPTS FOR INCORPORATING THE VALUE OF UNEQUAL ERDL IN LCCA


- 1. CALCULATE THE <u>VALUE OF REMAINING MATERIALS</u> AT THE END OF THE (50 YEAR) ANALYSIS PERIOD ASSUMING THE PAVEMENT WILL GO OUT OF SERVICE
- CALCULATE THE <u>VALUE OF THE REMAINING PAVEMENT STRUCTURE</u> AT THE END OF THE ANALYSIS PERIOD ASSUMING IT WILL SERVE <u>AS A</u> <u>SUPPORT LAYER</u> IN ANOTHER 20-YEAR PAVEMENT DESIGNED FOR THE HIGHER AADT LEVEL

METHOD 1: VALUE OF REMAINING MATERIALS


MAINLINE - HMA SURFACE	2 IN.	\$139,529	(1)
MAINLINE 21B AGGREGATE	9 IN.	\$163,096	NO GTX – NO PM
MOT	LS	\$10,000	0.2 IN/YR
CEI @ 5% \$359,519/(1.015)^50 = \$170,773		\$45,894	ERDL = 12.3 YRS
$$333,513/(1.013)^{-30} = $170,773$ \$170,773 * (12.3/20) = \$105,026	SUBTRACT FF	ROM LIFE-CYCLE COST	2070 AADT

METHOD 2: VALUE OF STRUCTURE AS SUPPORT LAYER


MAINLINE – HMA SURFACE	0.5 IN.	\$38,733
MOT	LS	\$10,000
CEI @ 5%		\$2,437
\$51,170/(1.015)^50 = <mark>\$24,306</mark>	ADD TO LIFE-	CYCLE COST

	Initial AADT 155, Contamination Rate 0.2 in/yr								
	(1	L)	(2	2)	(3	3)	(4)		
	No GTX -	No PM	GTX - I	No PM	No GT	X - PM	GTX	- PM	
	Activities	PV of Costs (1.5%)	Activities	PV of Costs (1.5%)	Activities	PV of Costs (1.5%)	Activities	PV of Costs (1.5%)	
2020 2030			THESE 4	4 SCENA	RIOS EAC	H HAVE			
2035									
2040	3 CONTAMINATION RATES, 2 INITIAL AADT LEVELS, 2 "SALVAGE VALUE" METHODS AND 2 DISCOUNT RATES								
2045									
2050	= 96 RESULTS.								
2055	VALID COMPARISONS HAVE								
2060	ONE DISCOUNT RATE								
2065	AND ONE "SALVAGE VALUE" METHOD.								
2070	THE REST IS SENSITIVITY TESTING.								
SUBTOTAL	ERDL = 12.3 yrs	\$ 1,292,230	ERDL = 18 yrs	\$ 488,825	ERDL = 3.5 yrs	\$ 1,326,370	ERDL= 6.8 yrs	<mark>\$ 540,084</mark>	
METHOD 1		\$ (105,026)		\$ (153,696)		\$ (29,885)		\$ (58,063)	
METHOD 2		\$ 24,306		\$ 77,201		\$ 50,106		\$ 101,362	

155 INITIAL AADT, 4% DISCOUNT RATE

1500 INITIAL AADT, 4% DISCOUNT RATE

Conclusions

- A geosynthetic layer without preventive maintenance is the most costeffective pavement option over 50 years in *every* combination of factors and assumptions <u>except</u> those with the lowest contamination rate. GTX-PM is typically second best at high and middle contamination rates in this analysis.
- GTX PM will likely have a superior riding surface to GTX No PM.
- Results are mixed in the lowest contamination rate scenario: the life-cycle costs of GTX – No PM are appreciably lower in only 1 of 8 low-contamination rate scenarios.
- GTX is a low-cost pavement design option with low risk of "wasted expenditure."
- LCCA is <u>incomplete</u> without a reckoning for varying ERDL of pavement options by means of a "salvage value" estimate.

Pavements with separator geotextile are expected to be **consistently more cost-effective** than pavements without separator geotextile at contamination rates above 0.1 inch/year, regardless of whether preventive maintenance is performed or whether initial AADT is set at the lower (155) or higher (1500) level, for discount rates within the range explored in this study (4% and lower).

Separation geotextile in pavement structure can have a **significant life-cycle cost advantage** over pavement without geotextile for the highest contamination rate tested in this study when both pavements receive preventive maintenance, and the cost advantage of separation geotextile usually increases if neither pavement receives preventive maintenance, regardless of initial AADT.

The life-cycle cost advantage of separator geotextile decreases with decreasing contamination rate, yet separation geotextile is a relatively low-cost item to install as a preventive measure to mitigate potential premature deterioration. PennDOT estimated that a future reconstruction could cost as much as 211% of the present cost of a road with GTX originally incorporated in construction (K. Petrasic 2017). Only surficial maintenance is likely to be required with separation geotextile incorporated into the pavement section.

Although aggregate contamination by fine-grained subgrade soils is a well-documented problem, **current pavement design methods do not incorporate this knowledge**. Thus, some pavements designed using these methods may deteriorate at a faster rate than anticipated, increasing their life-cycle costs. Aggregate layers protected by means of separator geotextile are more likely to be preserved and reused.

RECOMMENDATIONS

- 1. VDOT's Materials Division should revise current geosynthetic specifications to include Subgrade Stabilization and Subgrade Separation Geotextiles as two separate and distinct pay items.
- 2. VDOT's Materials Division should implement changes to the existing geosynthetic special provision, as proposed in Appendix E.
- 3. VDOT's Materials Division should adopt Table 4 guidelines for the use of geosynthetics on low-volume roads.

REVISED SPECIFICATIONS

Primary Application (pay item)	AASHTO M 288 Class and Material Type	Minimum Permittivity (sec ⁻¹)	Maximum AOS (mm)	Guidelines for use*
Subgrade Stabilization	Class 1 Biaxial geogrid with nonwoven or woven separator geotextile at the subgrade level. No slit film woven fabrics allowed.	0.1	0.212 (No. 70)	Any of the following: - CH, MH, OH, OL, PT - organic content > 5% - swelling > 5% - LL > 50% and PI > 30% - natural WC > 30% above OWC - subgrade CBR < 3 - CBR or M _R < design value - <u>as judged by the Engineer</u>
Subgrade Separation	Class 2 Nonwoven geotextile only	0.1	0.212 (No. 70)	All of the following: - more than 35% subgrade fines - subgrade CBR between 3 and 8 - no adequate pavement subdrainage - <u>as judged by the Engineer</u>

RESEARCH NEEDS

- 1. Refinement of LCCA to reflect actual maintenance decisions in lieu of prescriptive or idealized guidelines.
- Targeted field studies re: subsurface drainage. Current study did not take into account loss of permeability with contamination.

THANKS!

VTRC Report 20-R8 Use of Geosynthetics for Separation and Stabilization in Low-Volume Roadways

20-r8.pdf (virginiadot.org)

Edward

Hoppe

Today's Panelists

Moderator: Jennifer Nicks

Chaz Weaver

Audrey Moruza

#TRBwebinar

Register for TRB's Annual Meeting!

Register now for our January meeting! There will be no onsite registration this year.

#TRBAM

The National Academies of SCIENCES • ENGINEERING • MEDICINE

TRB Weekly

TRB Weekly covers the latest in transportation research.

• Subscribe to the newsletter for the most recent TRB news & research!

https://bit.ly/ResubscribeTRBWeekly

TRB's New Podcast!

- Have you heard that we have a new podcast, TRB's Transportation Explorers?
- Listen on <u>our website</u> or subscribe wherever you listen to podcasts!

#TRBExplorers

Get involved with TRB

 Receive emails about upcoming webinars: <u>https://mailchi.mp/nas.edu/trbwebinars</u>

 Find upcoming conferences: <u>http://www.trb.org/Calendar</u>

The National Academies of SCIENCES • ENGINEERING • MEDICINE TRANSPORTATION RESEARCH BOARD

Get Involved with TRB #TRBwebinar

@NASEMTRB @NASEMTRB

Getting involved is free!

Transportation Research Board

> Be a Friend of a Committee <u>bit.ly/TRBcommittees</u> – Networking opportunities May provide a path to Standing Committee membershir

May provide a path to Standing Committee membership

Join a Standing Committee bit.ly/TRBstandingcommittee

Work with CRP https://bit.ly/TRB-crp

Update your information www.mytrb.org

